| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * XArray implementation |
| * Copyright (c) 2017-2018 Microsoft Corporation |
| * Copyright (c) 2018-2020 Oracle |
| * Author: Matthew Wilcox <willy@infradead.org> |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/export.h> |
| #include <linux/list.h> |
| #include <linux/slab.h> |
| #include <linux/xarray.h> |
| |
| /* |
| * Coding conventions in this file: |
| * |
| * @xa is used to refer to the entire xarray. |
| * @xas is the 'xarray operation state'. It may be either a pointer to |
| * an xa_state, or an xa_state stored on the stack. This is an unfortunate |
| * ambiguity. |
| * @index is the index of the entry being operated on |
| * @mark is an xa_mark_t; a small number indicating one of the mark bits. |
| * @node refers to an xa_node; usually the primary one being operated on by |
| * this function. |
| * @offset is the index into the slots array inside an xa_node. |
| * @parent refers to the @xa_node closer to the head than @node. |
| * @entry refers to something stored in a slot in the xarray |
| */ |
| |
| static inline unsigned int xa_lock_type(const struct xarray *xa) |
| { |
| return (__force unsigned int)xa->xa_flags & 3; |
| } |
| |
| static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) |
| { |
| if (lock_type == XA_LOCK_IRQ) |
| xas_lock_irq(xas); |
| else if (lock_type == XA_LOCK_BH) |
| xas_lock_bh(xas); |
| else |
| xas_lock(xas); |
| } |
| |
| static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) |
| { |
| if (lock_type == XA_LOCK_IRQ) |
| xas_unlock_irq(xas); |
| else if (lock_type == XA_LOCK_BH) |
| xas_unlock_bh(xas); |
| else |
| xas_unlock(xas); |
| } |
| |
| static inline bool xa_track_free(const struct xarray *xa) |
| { |
| return xa->xa_flags & XA_FLAGS_TRACK_FREE; |
| } |
| |
| static inline bool xa_zero_busy(const struct xarray *xa) |
| { |
| return xa->xa_flags & XA_FLAGS_ZERO_BUSY; |
| } |
| |
| static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) |
| { |
| if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) |
| xa->xa_flags |= XA_FLAGS_MARK(mark); |
| } |
| |
| static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) |
| { |
| if (xa->xa_flags & XA_FLAGS_MARK(mark)) |
| xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); |
| } |
| |
| static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) |
| { |
| return node->marks[(__force unsigned)mark]; |
| } |
| |
| static inline bool node_get_mark(struct xa_node *node, |
| unsigned int offset, xa_mark_t mark) |
| { |
| return test_bit(offset, node_marks(node, mark)); |
| } |
| |
| /* returns true if the bit was set */ |
| static inline bool node_set_mark(struct xa_node *node, unsigned int offset, |
| xa_mark_t mark) |
| { |
| return __test_and_set_bit(offset, node_marks(node, mark)); |
| } |
| |
| /* returns true if the bit was set */ |
| static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, |
| xa_mark_t mark) |
| { |
| return __test_and_clear_bit(offset, node_marks(node, mark)); |
| } |
| |
| static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) |
| { |
| return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); |
| } |
| |
| static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) |
| { |
| bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); |
| } |
| |
| #define mark_inc(mark) do { \ |
| mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ |
| } while (0) |
| |
| /* |
| * xas_squash_marks() - Merge all marks to the first entry |
| * @xas: Array operation state. |
| * |
| * Set a mark on the first entry if any entry has it set. Clear marks on |
| * all sibling entries. |
| */ |
| static void xas_squash_marks(const struct xa_state *xas) |
| { |
| unsigned int mark = 0; |
| unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; |
| |
| if (!xas->xa_sibs) |
| return; |
| |
| do { |
| unsigned long *marks = xas->xa_node->marks[mark]; |
| if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) |
| continue; |
| __set_bit(xas->xa_offset, marks); |
| bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); |
| } while (mark++ != (__force unsigned)XA_MARK_MAX); |
| } |
| |
| /* extracts the offset within this node from the index */ |
| static unsigned int get_offset(unsigned long index, struct xa_node *node) |
| { |
| return (index >> node->shift) & XA_CHUNK_MASK; |
| } |
| |
| static void xas_set_offset(struct xa_state *xas) |
| { |
| xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); |
| } |
| |
| /* move the index either forwards (find) or backwards (sibling slot) */ |
| static void xas_move_index(struct xa_state *xas, unsigned long offset) |
| { |
| unsigned int shift = xas->xa_node->shift; |
| xas->xa_index &= ~XA_CHUNK_MASK << shift; |
| xas->xa_index += offset << shift; |
| } |
| |
| static void xas_advance(struct xa_state *xas) |
| { |
| xas->xa_offset++; |
| xas_move_index(xas, xas->xa_offset); |
| } |
| |
| static void *set_bounds(struct xa_state *xas) |
| { |
| xas->xa_node = XAS_BOUNDS; |
| return NULL; |
| } |
| |
| /* |
| * Starts a walk. If the @xas is already valid, we assume that it's on |
| * the right path and just return where we've got to. If we're in an |
| * error state, return NULL. If the index is outside the current scope |
| * of the xarray, return NULL without changing @xas->xa_node. Otherwise |
| * set @xas->xa_node to NULL and return the current head of the array. |
| */ |
| static void *xas_start(struct xa_state *xas) |
| { |
| void *entry; |
| |
| if (xas_valid(xas)) |
| return xas_reload(xas); |
| if (xas_error(xas)) |
| return NULL; |
| |
| entry = xa_head(xas->xa); |
| if (!xa_is_node(entry)) { |
| if (xas->xa_index) |
| return set_bounds(xas); |
| } else { |
| if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) |
| return set_bounds(xas); |
| } |
| |
| xas->xa_node = NULL; |
| return entry; |
| } |
| |
| static void *xas_descend(struct xa_state *xas, struct xa_node *node) |
| { |
| unsigned int offset = get_offset(xas->xa_index, node); |
| void *entry = xa_entry(xas->xa, node, offset); |
| |
| xas->xa_node = node; |
| if (xa_is_sibling(entry)) { |
| offset = xa_to_sibling(entry); |
| entry = xa_entry(xas->xa, node, offset); |
| } |
| |
| xas->xa_offset = offset; |
| return entry; |
| } |
| |
| /** |
| * xas_load() - Load an entry from the XArray (advanced). |
| * @xas: XArray operation state. |
| * |
| * Usually walks the @xas to the appropriate state to load the entry |
| * stored at xa_index. However, it will do nothing and return %NULL if |
| * @xas is in an error state. xas_load() will never expand the tree. |
| * |
| * If the xa_state is set up to operate on a multi-index entry, xas_load() |
| * may return %NULL or an internal entry, even if there are entries |
| * present within the range specified by @xas. |
| * |
| * Context: Any context. The caller should hold the xa_lock or the RCU lock. |
| * Return: Usually an entry in the XArray, but see description for exceptions. |
| */ |
| void *xas_load(struct xa_state *xas) |
| { |
| void *entry = xas_start(xas); |
| |
| while (xa_is_node(entry)) { |
| struct xa_node *node = xa_to_node(entry); |
| |
| if (xas->xa_shift > node->shift) |
| break; |
| entry = xas_descend(xas, node); |
| if (node->shift == 0) |
| break; |
| } |
| return entry; |
| } |
| EXPORT_SYMBOL_GPL(xas_load); |
| |
| /* Move the radix tree node cache here */ |
| extern struct kmem_cache *radix_tree_node_cachep; |
| extern void radix_tree_node_rcu_free(struct rcu_head *head); |
| |
| #define XA_RCU_FREE ((struct xarray *)1) |
| |
| static void xa_node_free(struct xa_node *node) |
| { |
| XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); |
| node->array = XA_RCU_FREE; |
| call_rcu(&node->rcu_head, radix_tree_node_rcu_free); |
| } |
| |
| /* |
| * xas_destroy() - Free any resources allocated during the XArray operation. |
| * @xas: XArray operation state. |
| * |
| * This function is now internal-only. |
| */ |
| static void xas_destroy(struct xa_state *xas) |
| { |
| struct xa_node *next, *node = xas->xa_alloc; |
| |
| while (node) { |
| XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); |
| next = rcu_dereference_raw(node->parent); |
| radix_tree_node_rcu_free(&node->rcu_head); |
| xas->xa_alloc = node = next; |
| } |
| } |
| |
| /** |
| * xas_nomem() - Allocate memory if needed. |
| * @xas: XArray operation state. |
| * @gfp: Memory allocation flags. |
| * |
| * If we need to add new nodes to the XArray, we try to allocate memory |
| * with GFP_NOWAIT while holding the lock, which will usually succeed. |
| * If it fails, @xas is flagged as needing memory to continue. The caller |
| * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, |
| * the caller should retry the operation. |
| * |
| * Forward progress is guaranteed as one node is allocated here and |
| * stored in the xa_state where it will be found by xas_alloc(). More |
| * nodes will likely be found in the slab allocator, but we do not tie |
| * them up here. |
| * |
| * Return: true if memory was needed, and was successfully allocated. |
| */ |
| bool xas_nomem(struct xa_state *xas, gfp_t gfp) |
| { |
| if (xas->xa_node != XA_ERROR(-ENOMEM)) { |
| xas_destroy(xas); |
| return false; |
| } |
| if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) |
| gfp |= __GFP_ACCOUNT; |
| xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); |
| if (!xas->xa_alloc) |
| return false; |
| xas->xa_alloc->parent = NULL; |
| XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); |
| xas->xa_node = XAS_RESTART; |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(xas_nomem); |
| |
| /* |
| * __xas_nomem() - Drop locks and allocate memory if needed. |
| * @xas: XArray operation state. |
| * @gfp: Memory allocation flags. |
| * |
| * Internal variant of xas_nomem(). |
| * |
| * Return: true if memory was needed, and was successfully allocated. |
| */ |
| static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) |
| __must_hold(xas->xa->xa_lock) |
| { |
| unsigned int lock_type = xa_lock_type(xas->xa); |
| |
| if (xas->xa_node != XA_ERROR(-ENOMEM)) { |
| xas_destroy(xas); |
| return false; |
| } |
| if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) |
| gfp |= __GFP_ACCOUNT; |
| if (gfpflags_allow_blocking(gfp)) { |
| xas_unlock_type(xas, lock_type); |
| xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); |
| xas_lock_type(xas, lock_type); |
| } else { |
| xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); |
| } |
| if (!xas->xa_alloc) |
| return false; |
| xas->xa_alloc->parent = NULL; |
| XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); |
| xas->xa_node = XAS_RESTART; |
| return true; |
| } |
| |
| static void xas_update(struct xa_state *xas, struct xa_node *node) |
| { |
| if (xas->xa_update) |
| xas->xa_update(node); |
| else |
| XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); |
| } |
| |
| static void *xas_alloc(struct xa_state *xas, unsigned int shift) |
| { |
| struct xa_node *parent = xas->xa_node; |
| struct xa_node *node = xas->xa_alloc; |
| |
| if (xas_invalid(xas)) |
| return NULL; |
| |
| if (node) { |
| xas->xa_alloc = NULL; |
| } else { |
| gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; |
| |
| if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) |
| gfp |= __GFP_ACCOUNT; |
| |
| node = kmem_cache_alloc(radix_tree_node_cachep, gfp); |
| if (!node) { |
| xas_set_err(xas, -ENOMEM); |
| return NULL; |
| } |
| } |
| |
| if (parent) { |
| node->offset = xas->xa_offset; |
| parent->count++; |
| XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); |
| xas_update(xas, parent); |
| } |
| XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); |
| XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); |
| node->shift = shift; |
| node->count = 0; |
| node->nr_values = 0; |
| RCU_INIT_POINTER(node->parent, xas->xa_node); |
| node->array = xas->xa; |
| |
| return node; |
| } |
| |
| #ifdef CONFIG_XARRAY_MULTI |
| /* Returns the number of indices covered by a given xa_state */ |
| static unsigned long xas_size(const struct xa_state *xas) |
| { |
| return (xas->xa_sibs + 1UL) << xas->xa_shift; |
| } |
| #endif |
| |
| /* |
| * Use this to calculate the maximum index that will need to be created |
| * in order to add the entry described by @xas. Because we cannot store a |
| * multi-index entry at index 0, the calculation is a little more complex |
| * than you might expect. |
| */ |
| static unsigned long xas_max(struct xa_state *xas) |
| { |
| unsigned long max = xas->xa_index; |
| |
| #ifdef CONFIG_XARRAY_MULTI |
| if (xas->xa_shift || xas->xa_sibs) { |
| unsigned long mask = xas_size(xas) - 1; |
| max |= mask; |
| if (mask == max) |
| max++; |
| } |
| #endif |
| |
| return max; |
| } |
| |
| /* The maximum index that can be contained in the array without expanding it */ |
| static unsigned long max_index(void *entry) |
| { |
| if (!xa_is_node(entry)) |
| return 0; |
| return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; |
| } |
| |
| static void xas_shrink(struct xa_state *xas) |
| { |
| struct xarray *xa = xas->xa; |
| struct xa_node *node = xas->xa_node; |
| |
| for (;;) { |
| void *entry; |
| |
| XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); |
| if (node->count != 1) |
| break; |
| entry = xa_entry_locked(xa, node, 0); |
| if (!entry) |
| break; |
| if (!xa_is_node(entry) && node->shift) |
| break; |
| if (xa_is_zero(entry) && xa_zero_busy(xa)) |
| entry = NULL; |
| xas->xa_node = XAS_BOUNDS; |
| |
| RCU_INIT_POINTER(xa->xa_head, entry); |
| if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) |
| xa_mark_clear(xa, XA_FREE_MARK); |
| |
| node->count = 0; |
| node->nr_values = 0; |
| if (!xa_is_node(entry)) |
| RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); |
| xas_update(xas, node); |
| xa_node_free(node); |
| if (!xa_is_node(entry)) |
| break; |
| node = xa_to_node(entry); |
| node->parent = NULL; |
| } |
| } |
| |
| /* |
| * xas_delete_node() - Attempt to delete an xa_node |
| * @xas: Array operation state. |
| * |
| * Attempts to delete the @xas->xa_node. This will fail if xa->node has |
| * a non-zero reference count. |
| */ |
| static void xas_delete_node(struct xa_state *xas) |
| { |
| struct xa_node *node = xas->xa_node; |
| |
| for (;;) { |
| struct xa_node *parent; |
| |
| XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); |
| if (node->count) |
| break; |
| |
| parent = xa_parent_locked(xas->xa, node); |
| xas->xa_node = parent; |
| xas->xa_offset = node->offset; |
| xa_node_free(node); |
| |
| if (!parent) { |
| xas->xa->xa_head = NULL; |
| xas->xa_node = XAS_BOUNDS; |
| return; |
| } |
| |
| parent->slots[xas->xa_offset] = NULL; |
| parent->count--; |
| XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); |
| node = parent; |
| xas_update(xas, node); |
| } |
| |
| if (!node->parent) |
| xas_shrink(xas); |
| } |
| |
| /** |
| * xas_free_nodes() - Free this node and all nodes that it references |
| * @xas: Array operation state. |
| * @top: Node to free |
| * |
| * This node has been removed from the tree. We must now free it and all |
| * of its subnodes. There may be RCU walkers with references into the tree, |
| * so we must replace all entries with retry markers. |
| */ |
| static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) |
| { |
| unsigned int offset = 0; |
| struct xa_node *node = top; |
| |
| for (;;) { |
| void *entry = xa_entry_locked(xas->xa, node, offset); |
| |
| if (node->shift && xa_is_node(entry)) { |
| node = xa_to_node(entry); |
| offset = 0; |
| continue; |
| } |
| if (entry) |
| RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); |
| offset++; |
| while (offset == XA_CHUNK_SIZE) { |
| struct xa_node *parent; |
| |
| parent = xa_parent_locked(xas->xa, node); |
| offset = node->offset + 1; |
| node->count = 0; |
| node->nr_values = 0; |
| xas_update(xas, node); |
| xa_node_free(node); |
| if (node == top) |
| return; |
| node = parent; |
| } |
| } |
| } |
| |
| /* |
| * xas_expand adds nodes to the head of the tree until it has reached |
| * sufficient height to be able to contain @xas->xa_index |
| */ |
| static int xas_expand(struct xa_state *xas, void *head) |
| { |
| struct xarray *xa = xas->xa; |
| struct xa_node *node = NULL; |
| unsigned int shift = 0; |
| unsigned long max = xas_max(xas); |
| |
| if (!head) { |
| if (max == 0) |
| return 0; |
| while ((max >> shift) >= XA_CHUNK_SIZE) |
| shift += XA_CHUNK_SHIFT; |
| return shift + XA_CHUNK_SHIFT; |
| } else if (xa_is_node(head)) { |
| node = xa_to_node(head); |
| shift = node->shift + XA_CHUNK_SHIFT; |
| } |
| xas->xa_node = NULL; |
| |
| while (max > max_index(head)) { |
| xa_mark_t mark = 0; |
| |
| XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); |
| node = xas_alloc(xas, shift); |
| if (!node) |
| return -ENOMEM; |
| |
| node->count = 1; |
| if (xa_is_value(head)) |
| node->nr_values = 1; |
| RCU_INIT_POINTER(node->slots[0], head); |
| |
| /* Propagate the aggregated mark info to the new child */ |
| for (;;) { |
| if (xa_track_free(xa) && mark == XA_FREE_MARK) { |
| node_mark_all(node, XA_FREE_MARK); |
| if (!xa_marked(xa, XA_FREE_MARK)) { |
| node_clear_mark(node, 0, XA_FREE_MARK); |
| xa_mark_set(xa, XA_FREE_MARK); |
| } |
| } else if (xa_marked(xa, mark)) { |
| node_set_mark(node, 0, mark); |
| } |
| if (mark == XA_MARK_MAX) |
| break; |
| mark_inc(mark); |
| } |
| |
| /* |
| * Now that the new node is fully initialised, we can add |
| * it to the tree |
| */ |
| if (xa_is_node(head)) { |
| xa_to_node(head)->offset = 0; |
| rcu_assign_pointer(xa_to_node(head)->parent, node); |
| } |
| head = xa_mk_node(node); |
| rcu_assign_pointer(xa->xa_head, head); |
| xas_update(xas, node); |
| |
| shift += XA_CHUNK_SHIFT; |
| } |
| |
| xas->xa_node = node; |
| return shift; |
| } |
| |
| /* |
| * xas_create() - Create a slot to store an entry in. |
| * @xas: XArray operation state. |
| * @allow_root: %true if we can store the entry in the root directly |
| * |
| * Most users will not need to call this function directly, as it is called |
| * by xas_store(). It is useful for doing conditional store operations |
| * (see the xa_cmpxchg() implementation for an example). |
| * |
| * Return: If the slot already existed, returns the contents of this slot. |
| * If the slot was newly created, returns %NULL. If it failed to create the |
| * slot, returns %NULL and indicates the error in @xas. |
| */ |
| static void *xas_create(struct xa_state *xas, bool allow_root) |
| { |
| struct xarray *xa = xas->xa; |
| void *entry; |
| void __rcu **slot; |
| struct xa_node *node = xas->xa_node; |
| int shift; |
| unsigned int order = xas->xa_shift; |
| |
| if (xas_top(node)) { |
| entry = xa_head_locked(xa); |
| xas->xa_node = NULL; |
| if (!entry && xa_zero_busy(xa)) |
| entry = XA_ZERO_ENTRY; |
| shift = xas_expand(xas, entry); |
| if (shift < 0) |
| return NULL; |
| if (!shift && !allow_root) |
| shift = XA_CHUNK_SHIFT; |
| entry = xa_head_locked(xa); |
| slot = &xa->xa_head; |
| } else if (xas_error(xas)) { |
| return NULL; |
| } else if (node) { |
| unsigned int offset = xas->xa_offset; |
| |
| shift = node->shift; |
| entry = xa_entry_locked(xa, node, offset); |
| slot = &node->slots[offset]; |
| } else { |
| shift = 0; |
| entry = xa_head_locked(xa); |
| slot = &xa->xa_head; |
| } |
| |
| while (shift > order) { |
| shift -= XA_CHUNK_SHIFT; |
| if (!entry) { |
| node = xas_alloc(xas, shift); |
| if (!node) |
| break; |
| if (xa_track_free(xa)) |
| node_mark_all(node, XA_FREE_MARK); |
| rcu_assign_pointer(*slot, xa_mk_node(node)); |
| } else if (xa_is_node(entry)) { |
| node = xa_to_node(entry); |
| } else { |
| break; |
| } |
| entry = xas_descend(xas, node); |
| slot = &node->slots[xas->xa_offset]; |
| } |
| |
| return entry; |
| } |
| |
| /** |
| * xas_create_range() - Ensure that stores to this range will succeed |
| * @xas: XArray operation state. |
| * |
| * Creates all of the slots in the range covered by @xas. Sets @xas to |
| * create single-index entries and positions it at the beginning of the |
| * range. This is for the benefit of users which have not yet been |
| * converted to use multi-index entries. |
| */ |
| void xas_create_range(struct xa_state *xas) |
| { |
| unsigned long index = xas->xa_index; |
| unsigned char shift = xas->xa_shift; |
| unsigned char sibs = xas->xa_sibs; |
| |
| xas->xa_index |= ((sibs + 1) << shift) - 1; |
| if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) |
| xas->xa_offset |= sibs; |
| xas->xa_shift = 0; |
| xas->xa_sibs = 0; |
| |
| for (;;) { |
| xas_create(xas, true); |
| if (xas_error(xas)) |
| goto restore; |
| if (xas->xa_index <= (index | XA_CHUNK_MASK)) |
| goto success; |
| xas->xa_index -= XA_CHUNK_SIZE; |
| |
| for (;;) { |
| struct xa_node *node = xas->xa_node; |
| xas->xa_node = xa_parent_locked(xas->xa, node); |
| xas->xa_offset = node->offset - 1; |
| if (node->offset != 0) |
| break; |
| } |
| } |
| |
| restore: |
| xas->xa_shift = shift; |
| xas->xa_sibs = sibs; |
| xas->xa_index = index; |
| return; |
| success: |
| xas->xa_index = index; |
| if (xas->xa_node) |
| xas_set_offset(xas); |
| } |
| EXPORT_SYMBOL_GPL(xas_create_range); |
| |
| static void update_node(struct xa_state *xas, struct xa_node *node, |
| int count, int values) |
| { |
| if (!node || (!count && !values)) |
| return; |
| |
| node->count += count; |
| node->nr_values += values; |
| XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); |
| XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); |
| xas_update(xas, node); |
| if (count < 0) |
| xas_delete_node(xas); |
| } |
| |
| /** |
| * xas_store() - Store this entry in the XArray. |
| * @xas: XArray operation state. |
| * @entry: New entry. |
| * |
| * If @xas is operating on a multi-index entry, the entry returned by this |
| * function is essentially meaningless (it may be an internal entry or it |
| * may be %NULL, even if there are non-NULL entries at some of the indices |
| * covered by the range). This is not a problem for any current users, |
| * and can be changed if needed. |
| * |
| * Return: The old entry at this index. |
| */ |
| void *xas_store(struct xa_state *xas, void *entry) |
| { |
| struct xa_node *node; |
| void __rcu **slot = &xas->xa->xa_head; |
| unsigned int offset, max; |
| int count = 0; |
| int values = 0; |
| void *first, *next; |
| bool value = xa_is_value(entry); |
| |
| if (entry) { |
| bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); |
| first = xas_create(xas, allow_root); |
| } else { |
| first = xas_load(xas); |
| } |
| |
| if (xas_invalid(xas)) |
| return first; |
| node = xas->xa_node; |
| if (node && (xas->xa_shift < node->shift)) |
| xas->xa_sibs = 0; |
| if ((first == entry) && !xas->xa_sibs) |
| return first; |
| |
| next = first; |
| offset = xas->xa_offset; |
| max = xas->xa_offset + xas->xa_sibs; |
| if (node) { |
| slot = &node->slots[offset]; |
| if (xas->xa_sibs) |
| xas_squash_marks(xas); |
| } |
| if (!entry) |
| xas_init_marks(xas); |
| |
| for (;;) { |
| /* |
| * Must clear the marks before setting the entry to NULL, |
| * otherwise xas_for_each_marked may find a NULL entry and |
| * stop early. rcu_assign_pointer contains a release barrier |
| * so the mark clearing will appear to happen before the |
| * entry is set to NULL. |
| */ |
| rcu_assign_pointer(*slot, entry); |
| if (xa_is_node(next) && (!node || node->shift)) |
| xas_free_nodes(xas, xa_to_node(next)); |
| if (!node) |
| break; |
| count += !next - !entry; |
| values += !xa_is_value(first) - !value; |
| if (entry) { |
| if (offset == max) |
| break; |
| if (!xa_is_sibling(entry)) |
| entry = xa_mk_sibling(xas->xa_offset); |
| } else { |
| if (offset == XA_CHUNK_MASK) |
| break; |
| } |
| next = xa_entry_locked(xas->xa, node, ++offset); |
| if (!xa_is_sibling(next)) { |
| if (!entry && (offset > max)) |
| break; |
| first = next; |
| } |
| slot++; |
| } |
| |
| update_node(xas, node, count, values); |
| return first; |
| } |
| EXPORT_SYMBOL_GPL(xas_store); |
| |
| /** |
| * xas_get_mark() - Returns the state of this mark. |
| * @xas: XArray operation state. |
| * @mark: Mark number. |
| * |
| * Return: true if the mark is set, false if the mark is clear or @xas |
| * is in an error state. |
| */ |
| bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) |
| { |
| if (xas_invalid(xas)) |
| return false; |
| if (!xas->xa_node) |
| return xa_marked(xas->xa, mark); |
| return node_get_mark(xas->xa_node, xas->xa_offset, mark); |
| } |
| EXPORT_SYMBOL_GPL(xas_get_mark); |
| |
| /** |
| * xas_set_mark() - Sets the mark on this entry and its parents. |
| * @xas: XArray operation state. |
| * @mark: Mark number. |
| * |
| * Sets the specified mark on this entry, and walks up the tree setting it |
| * on all the ancestor entries. Does nothing if @xas has not been walked to |
| * an entry, or is in an error state. |
| */ |
| void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) |
| { |
| struct xa_node *node = xas->xa_node; |
| unsigned int offset = xas->xa_offset; |
| |
| if (xas_invalid(xas)) |
| return; |
| |
| while (node) { |
| if (node_set_mark(node, offset, mark)) |
| return; |
| offset = node->offset; |
| node = xa_parent_locked(xas->xa, node); |
| } |
| |
| if (!xa_marked(xas->xa, mark)) |
| xa_mark_set(xas->xa, mark); |
| } |
| EXPORT_SYMBOL_GPL(xas_set_mark); |
| |
| /** |
| * xas_clear_mark() - Clears the mark on this entry and its parents. |
| * @xas: XArray operation state. |
| * @mark: Mark number. |
| * |
| * Clears the specified mark on this entry, and walks back to the head |
| * attempting to clear it on all the ancestor entries. Does nothing if |
| * @xas has not been walked to an entry, or is in an error state. |
| */ |
| void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) |
| { |
| struct xa_node *node = xas->xa_node; |
| unsigned int offset = xas->xa_offset; |
| |
| if (xas_invalid(xas)) |
| return; |
| |
| while (node) { |
| if (!node_clear_mark(node, offset, mark)) |
| return; |
| if (node_any_mark(node, mark)) |
| return; |
| |
| offset = node->offset; |
| node = xa_parent_locked(xas->xa, node); |
| } |
| |
| if (xa_marked(xas->xa, mark)) |
| xa_mark_clear(xas->xa, mark); |
| } |
| EXPORT_SYMBOL_GPL(xas_clear_mark); |
| |
| /** |
| * xas_init_marks() - Initialise all marks for the entry |
| * @xas: Array operations state. |
| * |
| * Initialise all marks for the entry specified by @xas. If we're tracking |
| * free entries with a mark, we need to set it on all entries. All other |
| * marks are cleared. |
| * |
| * This implementation is not as efficient as it could be; we may walk |
| * up the tree multiple times. |
| */ |
| void xas_init_marks(const struct xa_state *xas) |
| { |
| xa_mark_t mark = 0; |
| |
| for (;;) { |
| if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) |
| xas_set_mark(xas, mark); |
| else |
| xas_clear_mark(xas, mark); |
| if (mark == XA_MARK_MAX) |
| break; |
| mark_inc(mark); |
| } |
| } |
| EXPORT_SYMBOL_GPL(xas_init_marks); |
| |
| #ifdef CONFIG_XARRAY_MULTI |
| static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) |
| { |
| unsigned int marks = 0; |
| xa_mark_t mark = XA_MARK_0; |
| |
| for (;;) { |
| if (node_get_mark(node, offset, mark)) |
| marks |= 1 << (__force unsigned int)mark; |
| if (mark == XA_MARK_MAX) |
| break; |
| mark_inc(mark); |
| } |
| |
| return marks; |
| } |
| |
| static void node_set_marks(struct xa_node *node, unsigned int offset, |
| struct xa_node *child, unsigned int marks) |
| { |
| xa_mark_t mark = XA_MARK_0; |
| |
| for (;;) { |
| if (marks & (1 << (__force unsigned int)mark)) { |
| node_set_mark(node, offset, mark); |
| if (child) |
| node_mark_all(child, mark); |
| } |
| if (mark == XA_MARK_MAX) |
| break; |
| mark_inc(mark); |
| } |
| } |
| |
| /** |
| * xas_split_alloc() - Allocate memory for splitting an entry. |
| * @xas: XArray operation state. |
| * @entry: New entry which will be stored in the array. |
| * @order: New entry order. |
| * @gfp: Memory allocation flags. |
| * |
| * This function should be called before calling xas_split(). |
| * If necessary, it will allocate new nodes (and fill them with @entry) |
| * to prepare for the upcoming split of an entry of @order size into |
| * entries of the order stored in the @xas. |
| * |
| * Context: May sleep if @gfp flags permit. |
| */ |
| void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, |
| gfp_t gfp) |
| { |
| unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; |
| unsigned int mask = xas->xa_sibs; |
| |
| /* XXX: no support for splitting really large entries yet */ |
| if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) |
| goto nomem; |
| if (xas->xa_shift + XA_CHUNK_SHIFT > order) |
| return; |
| |
| do { |
| unsigned int i; |
| void *sibling; |
| struct xa_node *node; |
| |
| node = kmem_cache_alloc(radix_tree_node_cachep, gfp); |
| if (!node) |
| goto nomem; |
| node->array = xas->xa; |
| for (i = 0; i < XA_CHUNK_SIZE; i++) { |
| if ((i & mask) == 0) { |
| RCU_INIT_POINTER(node->slots[i], entry); |
| sibling = xa_mk_sibling(0); |
| } else { |
| RCU_INIT_POINTER(node->slots[i], sibling); |
| } |
| } |
| RCU_INIT_POINTER(node->parent, xas->xa_alloc); |
| xas->xa_alloc = node; |
| } while (sibs-- > 0); |
| |
| return; |
| nomem: |
| xas_destroy(xas); |
| xas_set_err(xas, -ENOMEM); |
| } |
| EXPORT_SYMBOL_GPL(xas_split_alloc); |
| |
| /** |
| * xas_split() - Split a multi-index entry into smaller entries. |
| * @xas: XArray operation state. |
| * @entry: New entry to store in the array. |
| * @order: New entry order. |
| * |
| * The value in the entry is copied to all the replacement entries. |
| * |
| * Context: Any context. The caller should hold the xa_lock. |
| */ |
| void xas_split(struct xa_state *xas, void *entry, unsigned int order) |
| { |
| unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; |
| unsigned int offset, marks; |
| struct xa_node *node; |
| void *curr = xas_load(xas); |
| int values = 0; |
| |
| node = xas->xa_node; |
| if (xas_top(node)) |
| return; |
| |
| marks = node_get_marks(node, xas->xa_offset); |
| |
| offset = xas->xa_offset + sibs; |
| do { |
| if (xas->xa_shift < node->shift) { |
| struct xa_node *child = xas->xa_alloc; |
| |
| xas->xa_alloc = rcu_dereference_raw(child->parent); |
| child->shift = node->shift - XA_CHUNK_SHIFT; |
| child->offset = offset; |
| child->count = XA_CHUNK_SIZE; |
| child->nr_values = xa_is_value(entry) ? |
| XA_CHUNK_SIZE : 0; |
| RCU_INIT_POINTER(child->parent, node); |
| node_set_marks(node, offset, child, marks); |
| rcu_assign_pointer(node->slots[offset], |
| xa_mk_node(child)); |
| if (xa_is_value(curr)) |
| values--; |
| } else { |
| unsigned int canon = offset - xas->xa_sibs; |
| |
| node_set_marks(node, canon, NULL, marks); |
| rcu_assign_pointer(node->slots[canon], entry); |
| while (offset > canon) |
| rcu_assign_pointer(node->slots[offset--], |
| xa_mk_sibling(canon)); |
| values += (xa_is_value(entry) - xa_is_value(curr)) * |
| (xas->xa_sibs + 1); |
| } |
| } while (offset-- > xas->xa_offset); |
| |
| node->nr_values += values; |
| } |
| EXPORT_SYMBOL_GPL(xas_split); |
| #endif |
| |
| /** |
| * xas_pause() - Pause a walk to drop a lock. |
| * @xas: XArray operation state. |
| * |
| * Some users need to pause a walk and drop the lock they're holding in |
| * order to yield to a higher priority thread or carry out an operation |
| * on an entry. Those users should call this function before they drop |
| * the lock. It resets the @xas to be suitable for the next iteration |
| * of the loop after the user has reacquired the lock. If most entries |
| * found during a walk require you to call xas_pause(), the xa_for_each() |
| * iterator may be more appropriate. |
| * |
| * Note that xas_pause() only works for forward iteration. If a user needs |
| * to pause a reverse iteration, we will need a xas_pause_rev(). |
| */ |
| void xas_pause(struct xa_state *xas) |
| { |
| struct xa_node *node = xas->xa_node; |
| |
| if (xas_invalid(xas)) |
| return; |
| |
| xas->xa_node = XAS_RESTART; |
| if (node) { |
| unsigned long offset = xas->xa_offset; |
| while (++offset < XA_CHUNK_SIZE) { |
| if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) |
| break; |
| } |
| xas->xa_index += (offset - xas->xa_offset) << node->shift; |
| if (xas->xa_index == 0) |
| xas->xa_node = XAS_BOUNDS; |
| } else { |
| xas->xa_index++; |
| } |
| } |
| EXPORT_SYMBOL_GPL(xas_pause); |
| |
| /* |
| * __xas_prev() - Find the previous entry in the XArray. |
| * @xas: XArray operation state. |
| * |
| * Helper function for xas_prev() which handles all the complex cases |
| * out of line. |
| */ |
| void *__xas_prev(struct xa_state *xas) |
| { |
| void *entry; |
| |
| if (!xas_frozen(xas->xa_node)) |
| xas->xa_index--; |
| if (!xas->xa_node) |
| return set_bounds(xas); |
| if (xas_not_node(xas->xa_node)) |
| return xas_load(xas); |
| |
| if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) |
| xas->xa_offset--; |
| |
| while (xas->xa_offset == 255) { |
| xas->xa_offset = xas->xa_node->offset - 1; |
| xas->xa_node = xa_parent(xas->xa, xas->xa_node); |
| if (!xas->xa_node) |
| return set_bounds(xas); |
| } |
| |
| for (;;) { |
| entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| if (!xa_is_node(entry)) |
| return entry; |
| |
| xas->xa_node = xa_to_node(entry); |
| xas_set_offset(xas); |
| } |
| } |
| EXPORT_SYMBOL_GPL(__xas_prev); |
| |
| /* |
| * __xas_next() - Find the next entry in the XArray. |
| * @xas: XArray operation state. |
| * |
| * Helper function for xas_next() which handles all the complex cases |
| * out of line. |
| */ |
| void *__xas_next(struct xa_state *xas) |
| { |
| void *entry; |
| |
| if (!xas_frozen(xas->xa_node)) |
| xas->xa_index++; |
| if (!xas->xa_node) |
| return set_bounds(xas); |
| if (xas_not_node(xas->xa_node)) |
| return xas_load(xas); |
| |
| if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) |
| xas->xa_offset++; |
| |
| while (xas->xa_offset == XA_CHUNK_SIZE) { |
| xas->xa_offset = xas->xa_node->offset + 1; |
| xas->xa_node = xa_parent(xas->xa, xas->xa_node); |
| if (!xas->xa_node) |
| return set_bounds(xas); |
| } |
| |
| for (;;) { |
| entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| if (!xa_is_node(entry)) |
| return entry; |
| |
| xas->xa_node = xa_to_node(entry); |
| xas_set_offset(xas); |
| } |
| } |
| EXPORT_SYMBOL_GPL(__xas_next); |
| |
| /** |
| * xas_find() - Find the next present entry in the XArray. |
| * @xas: XArray operation state. |
| * @max: Highest index to return. |
| * |
| * If the @xas has not yet been walked to an entry, return the entry |
| * which has an index >= xas.xa_index. If it has been walked, the entry |
| * currently being pointed at has been processed, and so we move to the |
| * next entry. |
| * |
| * If no entry is found and the array is smaller than @max, the iterator |
| * is set to the smallest index not yet in the array. This allows @xas |
| * to be immediately passed to xas_store(). |
| * |
| * Return: The entry, if found, otherwise %NULL. |
| */ |
| void *xas_find(struct xa_state *xas, unsigned long max) |
| { |
| void *entry; |
| |
| if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) |
| return NULL; |
| if (xas->xa_index > max) |
| return set_bounds(xas); |
| |
| if (!xas->xa_node) { |
| xas->xa_index = 1; |
| return set_bounds(xas); |
| } else if (xas->xa_node == XAS_RESTART) { |
| entry = xas_load(xas); |
| if (entry || xas_not_node(xas->xa_node)) |
| return entry; |
| } else if (!xas->xa_node->shift && |
| xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { |
| xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; |
| } |
| |
| xas_advance(xas); |
| |
| while (xas->xa_node && (xas->xa_index <= max)) { |
| if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { |
| xas->xa_offset = xas->xa_node->offset + 1; |
| xas->xa_node = xa_parent(xas->xa, xas->xa_node); |
| continue; |
| } |
| |
| entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| if (xa_is_node(entry)) { |
| xas->xa_node = xa_to_node(entry); |
| xas->xa_offset = 0; |
| continue; |
| } |
| if (entry && !xa_is_sibling(entry)) |
| return entry; |
| |
| xas_advance(xas); |
| } |
| |
| if (!xas->xa_node) |
| xas->xa_node = XAS_BOUNDS; |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(xas_find); |
| |
| /** |
| * xas_find_marked() - Find the next marked entry in the XArray. |
| * @xas: XArray operation state. |
| * @max: Highest index to return. |
| * @mark: Mark number to search for. |
| * |
| * If the @xas has not yet been walked to an entry, return the marked entry |
| * which has an index >= xas.xa_index. If it has been walked, the entry |
| * currently being pointed at has been processed, and so we return the |
| * first marked entry with an index > xas.xa_index. |
| * |
| * If no marked entry is found and the array is smaller than @max, @xas is |
| * set to the bounds state and xas->xa_index is set to the smallest index |
| * not yet in the array. This allows @xas to be immediately passed to |
| * xas_store(). |
| * |
| * If no entry is found before @max is reached, @xas is set to the restart |
| * state. |
| * |
| * Return: The entry, if found, otherwise %NULL. |
| */ |
| void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) |
| { |
| bool advance = true; |
| unsigned int offset; |
| void *entry; |
| |
| if (xas_error(xas)) |
| return NULL; |
| if (xas->xa_index > max) |
| goto max; |
| |
| if (!xas->xa_node) { |
| xas->xa_index = 1; |
| goto out; |
| } else if (xas_top(xas->xa_node)) { |
| advance = false; |
| entry = xa_head(xas->xa); |
| xas->xa_node = NULL; |
| if (xas->xa_index > max_index(entry)) |
| goto out; |
| if (!xa_is_node(entry)) { |
| if (xa_marked(xas->xa, mark)) |
| return entry; |
| xas->xa_index = 1; |
| goto out; |
| } |
| xas->xa_node = xa_to_node(entry); |
| xas->xa_offset = xas->xa_index >> xas->xa_node->shift; |
| } |
| |
| while (xas->xa_index <= max) { |
| if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { |
| xas->xa_offset = xas->xa_node->offset + 1; |
| xas->xa_node = xa_parent(xas->xa, xas->xa_node); |
| if (!xas->xa_node) |
| break; |
| advance = false; |
| continue; |
| } |
| |
| if (!advance) { |
| entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| if (xa_is_sibling(entry)) { |
| xas->xa_offset = xa_to_sibling(entry); |
| xas_move_index(xas, xas->xa_offset); |
| } |
| } |
| |
| offset = xas_find_chunk(xas, advance, mark); |
| if (offset > xas->xa_offset) { |
| advance = false; |
| xas_move_index(xas, offset); |
| /* Mind the wrap */ |
| if ((xas->xa_index - 1) >= max) |
| goto max; |
| xas->xa_offset = offset; |
| if (offset == XA_CHUNK_SIZE) |
| continue; |
| } |
| |
| entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) |
| continue; |
| if (!xa_is_node(entry)) |
| return entry; |
| xas->xa_node = xa_to_node(entry); |
| xas_set_offset(xas); |
| } |
| |
| out: |
| if (xas->xa_index > max) |
| goto max; |
| return set_bounds(xas); |
| max: |
| xas->xa_node = XAS_RESTART; |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(xas_find_marked); |
| |
| /** |
| * xas_find_conflict() - Find the next present entry in a range. |
| * @xas: XArray operation state. |
| * |
| * The @xas describes both a range and a position within that range. |
| * |
| * Context: Any context. Expects xa_lock to be held. |
| * Return: The next entry in the range covered by @xas or %NULL. |
| */ |
| void *xas_find_conflict(struct xa_state *xas) |
| { |
| void *curr; |
| |
| if (xas_error(xas)) |
| return NULL; |
| |
| if (!xas->xa_node) |
| return NULL; |
| |
| if (xas_top(xas->xa_node)) { |
| curr = xas_start(xas); |
| if (!curr) |
| return NULL; |
| while (xa_is_node(curr)) { |
| struct xa_node *node = xa_to_node(curr); |
| curr = xas_descend(xas, node); |
| } |
| if (curr) |
| return curr; |
| } |
| |
| if (xas->xa_node->shift > xas->xa_shift) |
| return NULL; |
| |
| for (;;) { |
| if (xas->xa_node->shift == xas->xa_shift) { |
| if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) |
| break; |
| } else if (xas->xa_offset == XA_CHUNK_MASK) { |
| xas->xa_offset = xas->xa_node->offset; |
| xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); |
| if (!xas->xa_node) |
| break; |
| continue; |
| } |
| curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); |
| if (xa_is_sibling(curr)) |
| continue; |
| while (xa_is_node(curr)) { |
| xas->xa_node = xa_to_node(curr); |
| xas->xa_offset = 0; |
| curr = xa_entry_locked(xas->xa, xas->xa_node, 0); |
| } |
| if (curr) |
| return curr; |
| } |
| xas->xa_offset -= xas->xa_sibs; |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(xas_find_conflict); |
| |
| /** |
| * xa_load() - Load an entry from an XArray. |
| * @xa: XArray. |
| * @index: index into array. |
| * |
| * Context: Any context. Takes and releases the RCU lock. |
| * Return: The entry at @index in @xa. |
| */ |
| void *xa_load(struct xarray *xa, unsigned long index) |
| { |
| XA_STATE(xas, xa, index); |
| void *entry; |
| |
| rcu_read_lock(); |
| do { |
| entry = xas_load(&xas); |
| if (xa_is_zero(entry)) |
| entry = NULL; |
| } while (xas_retry(&xas, entry)); |
| rcu_read_unlock(); |
| |
| return entry; |
| } |
| EXPORT_SYMBOL(xa_load); |
| |
| static void *xas_result(struct xa_state *xas, void *curr) |
| { |
| if (xa_is_zero(curr)) |
| return NULL; |
| if (xas_error(xas)) |
| curr = xas->xa_node; |
| return curr; |
| } |
| |
| /** |
| * __xa_erase() - Erase this entry from the XArray while locked. |
| * @xa: XArray. |
| * @index: Index into array. |
| * |
| * After this function returns, loading from @index will return %NULL. |
| * If the index is part of a multi-index entry, all indices will be erased |
| * and none of the entries will be part of a multi-index entry. |
| * |
| * Context: Any context. Expects xa_lock to be held on entry. |
| * Return: The entry which used to be at this index. |
| */ |
| void *__xa_erase(struct xarray *xa, unsigned long index) |
| { |
| XA_STATE(xas, xa, index); |
| return xas_result(&xas, xas_store(&xas, NULL)); |
| } |
| EXPORT_SYMBOL(__xa_erase); |
| |
| /** |
| * xa_erase() - Erase this entry from the XArray. |
| * @xa: XArray. |
| * @index: Index of entry. |
| * |
| * After this function returns, loading from @index will return %NULL. |
| * If the index is part of a multi-index entry, all indices will be erased |
| * and none of the entries will be part of a multi-index entry. |
| * |
| * Context: Any context. Takes and releases the xa_lock. |
| * Return: The entry which used to be at this index. |
| */ |
| void *xa_erase(struct xarray *xa, unsigned long index) |
| { |
| void *entry; |
| |
| xa_lock(xa); |
| entry = __xa_erase(xa, index); |
| xa_unlock(xa); |
| |
| return entry; |
| } |
| EXPORT_SYMBOL(xa_erase); |
| |
| /** |
| * __xa_store() - Store this entry in the XArray. |
| * @xa: XArray. |
| * @index: Index into array. |
| * @entry: New entry. |
| * @gfp: Memory allocation flags. |
| * |
| * You must already be holding the xa_lock when calling this function. |
| * It will drop the lock if needed to allocate memory, and then reacquire |
| * it afterwards. |
| * |
| * Context: Any context. Expects xa_lock to be held on entry. May |
| * release and reacquire xa_lock if @gfp flags permit. |
| * Return: The old entry at this index or xa_err() if an error happened. |
| */ |
| void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) |
| { |
| XA_STATE(xas, xa, index); |
| void *curr; |
| |
| if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| return XA_ERROR(-EINVAL); |
| if (xa_track_free(xa) && !entry) |
| entry = XA_ZERO_ENTRY; |
| |
| do { |
| curr = xas_store(&xas, entry); |
| if (xa_track_free(xa)) |
| xas_clear_mark(&xas, XA_FREE_MARK); |
| } while (__xas_nomem(&xas, gfp)); |
| |
| return xas_result(&xas, curr); |
| } |
| EXPORT_SYMBOL(__xa_store); |
| |
| /** |
| * xa_store() - Store this entry in the XArray. |
| * @xa: XArray. |
| * @index: Index into array. |
| * @entry: New entry. |
| * @gfp: Memory allocation flags. |
| * |
| * After this function returns, loads from this index will return @entry. |
| * Storing into an existing multi-index entry updates the entry of every index. |
| * The marks associated with @index are unaffected unless @entry is %NULL. |
| * |
| * Context: Any context. Takes and releases the xa_lock. |
| * May sleep if the @gfp flags permit. |
| * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry |
| * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation |
| * failed. |
| */ |
| void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) |
| { |
| void *curr; |
| |
| xa_lock(xa); |
| curr = __xa_store(xa, index, entry, gfp); |
| xa_unlock(xa); |
| |
| return curr; |
| } |
| EXPORT_SYMBOL(xa_store); |
| |
| /** |
| * __xa_cmpxchg() - Store this entry in the XArray. |
| * @xa: XArray. |
| * @index: Index into array. |
| * @old: Old value to test against. |
| * @entry: New entry. |
| * @gfp: Memory allocation flags. |
| * |
| * You must already be holding the xa_lock when calling this function. |
| * It will drop the lock if needed to allocate memory, and then reacquire |
| * it afterwards. |
| * |
| * Context: Any context. Expects xa_lock to be held on entry. May |
| * release and reacquire xa_lock if @gfp flags permit. |
| * Return: The old entry at this index or xa_err() if an error happened. |
| */ |
| void *__xa_cmpxchg(struct xarray *xa, unsigned long index, |
| void *old, void *entry, gfp_t gfp) |
| { |
| XA_STATE(xas, xa, index); |
| void *curr; |
| |
| if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| return XA_ERROR(-EINVAL); |
| |
| do { |
| curr = xas_load(&xas); |
| if (curr == old) { |
| xas_store(&xas, entry); |
| if (xa_track_free(xa) && entry && !curr) |
| xas_clear_mark(&xas, XA_FREE_MARK); |
| } |
| } while (__xas_nomem(&xas, gfp)); |
| |
| return xas_result(&xas, curr); |
| } |
| EXPORT_SYMBOL(__xa_cmpxchg); |
| |
| /** |
| * __xa_insert() - Store this entry in the XArray if no entry is present. |
| * @xa: XArray. |
| * @index: Index into array. |
| * @entry: New entry. |
| * @gfp: Memory allocation flags. |
| * |
| * Inserting a NULL entry will store a reserved entry (like xa_reserve()) |
| * if no entry is present. Inserting will fail if a reserved entry is |
| * present, even though loading from this index will return NULL. |
| * |
| * Context: Any context. Expects xa_lock to be held on entry. May |
| * release and reacquire xa_lock if @gfp flags permit. |
| * Return: 0 if the store succeeded. -EBUSY if another entry was present. |
| * -ENOMEM if memory could not be allocated. |
| */ |
| int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) |
| { |
| XA_STATE(xas, xa, index); |
| void *curr; |
| |
| if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| return -EINVAL; |
| if (!entry) |
| entry = XA_ZERO_ENTRY; |
| |
| do { |
| curr = xas_load(&xas); |
| if (!curr) { |
| xas_store(&xas, entry); |
| if (xa_track_free(xa)) |
| xas_clear_mark(&xas, XA_FREE_MARK); |
| } else { |
| xas_set_err(&xas, -EBUSY); |
| } |
| } while (__xas_nomem(&xas, gfp)); |
| |
| return xas_error(&xas); |
| } |
| EXPORT_SYMBOL(__xa_insert); |
| |
| #ifdef CONFIG_XARRAY_MULTI |
| static void xas_set_range(struct xa_state *xas, unsigned long first, |
| unsigned long last) |
| { |
| unsigned int shift = 0; |
| unsigned long sibs = last - first; |
| unsigned int offset = XA_CHUNK_MASK; |
| |
| xas_set(xas, first); |
| |
| while ((first & XA_CHUNK_MASK) == 0) { |
| if (sibs < XA_CHUNK_MASK) |
| break; |
| if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) |
| break; |
| shift += XA_CHUNK_SHIFT; |
| if (offset == XA_CHUNK_MASK) |
| offset = sibs & XA_CHUNK_MASK; |
| sibs >>= XA_CHUNK_SHIFT; |
| first >>= XA_CHUNK_SHIFT; |
| } |
| |
| offset = first & XA_CHUNK_MASK; |
| if (offset + sibs > XA_CHUNK_MASK) |
| sibs = XA_CHUNK_MASK - offset; |
| if ((((first + sibs + 1) << shift) - 1) > last) |
| sibs -= 1; |
| |
| xas->xa_shift = shift; |
| xas->xa_sibs = sibs; |
| } |
| |
| /** |
| * xa_store_range() - Store this entry at a range of indices in the XArray. |
| * @xa: XArray. |
| * @first: First index to affect. |
| * @last: Last index to affect. |
| * @entry: New entry. |
| * @gfp: Memory allocation flags. |
| * |
| * After this function returns, loads from any index between @first and @last, |
| * inclusive will return @entry. |
| * Storing into an existing multi-index entry updates the entry of every index. |
| * The marks associated with @index are unaffected unless @entry is %NULL. |
| * |
| * Context: Process context. Takes and releases the xa_lock. May sleep |
| * if the @gfp flags permit. |
| * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in |
| * an XArray, or xa_err(-ENOMEM) if memory allocation failed. |
| */ |
| void *xa_store_range(struct xarray *xa, unsigned long first, |
| unsigned long last, void *entry, gfp_t gfp) |
| { |
| XA_STATE(xas, xa, 0); |
| |
| if (WARN_ON_ONCE(xa_is_internal(entry))) |
| return XA_ERROR(-EINVAL); |
| if (last < first) |
| return XA_ERROR(-EINVAL); |
| |
| do { |
| xas_lock(&xas); |
| if (entry) { |
| unsigned int order = BITS_PER_LONG; |
| if (last + 1) |
| order = __ffs(last + 1); |
| xas_set_order(&xas, last, order); |
| xas_create(&xas, true); |
| if (xas_error(&xas)) |
| goto unlock; |
| } |
| do { |
| xas_set_range(&xas, first, last); |
| xas_store(&xas, entry); |
| if (xas_error(&xas)) |
| goto unlock; |
| first += xas_size(&xas); |
| } while (first <= last); |
| unlock: |
| xas_unlock(&xas); |
| } while (xas_nomem(&xas, gfp)); |
| |
| return xas_result(&xas, NULL); |
| } |
| EXPORT_SYMBOL(xa_store_range); |
| |
| /** |
| * xa_get_order() - Get the order of an entry. |
| * @xa: XArray. |
| * @index: Index of the entry. |
| * |
| * Return: A number between 0 and 63 indicating the order of the entry. |
| */ |
| int xa_get_order(struct xarray *xa, unsigned long index) |
| { |
| XA_STATE(xas, xa, index); |
| void *entry; |
| int order = 0; |
| |
| rcu_read_lock(); |
| entry = xas_load(&xas); |
| |
| if (!entry) |
| goto unlock; |
| |
| if (!xas.xa_node) |
| goto unlock; |
| |
| for (;;) { |
| unsigned int slot = xas.xa_offset + (1 << order); |
| |
| if (slot >= XA_CHUNK_SIZE) |
| break; |
| if (!xa_is_sibling(xas.xa_node->slots[slot])) |
| break; |
| order++; |
| } |
| |
| order += xas.xa_node->shift; |
| unlock: |
| rcu_read_unlock(); |
| |
| return order; |
| } |
| EXPORT_SYMBOL(xa_get_order); |
| #endif /* CONFIG_XARRAY_MULTI */ |
| |
| /** |
| * __xa_alloc() - Find somewhere to store this entry in the XArray. |
| * @xa: XArray. |
| * @id: Pointer to ID. |
| * @limit: Range for allocated ID. |
| * @entry: New entry. |
| * @gfp: Memory allocation flags. |
| * |
| * Finds an empty entry in @xa between @limit.min and @limit.max, |
| * stores the index into the @id pointer, then stores the entry at |
| * that index. A concurrent lookup will not see an uninitialised @id. |
| * |
| * Context: Any context. Expects xa_lock to be held on entry. May |
| * release and reacquire xa_lock if @gfp flags permit. |
| * Return: 0 on success, -ENOMEM if memory could not be allocated or |
| * -EBUSY if there are no free entries in @limit. |
| */ |
| int __xa_alloc(struct xarray *xa, u32 *id, void *entry, |
| struct xa_limit limit, gfp_t gfp) |
| { |
| XA_STATE(xas, xa, 0); |
| |
| if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| return -EINVAL; |
| if (WARN_ON_ONCE(!xa_track_free(xa))) |
| return -EINVAL; |
| |
| if (!entry) |
| entry = XA_ZERO_ENTRY; |
| |
| do { |
| xas.xa_index = limit.min; |
| xas_find_marked(&xas, limit.max, XA_FREE_MARK); |
| if (xas.xa_node == XAS_RESTART) |
| xas_set_err(&xas, -EBUSY); |
| else |
| *id = xas.xa_index; |
| xas_store(&xas, entry); |
| xas_clear_mark(&xas, XA_FREE_MARK); |
| } while (__xas_nomem(&xas, gfp)); |
| |
| return xas_error(&xas); |
| } |
| EXPORT_SYMBOL(__xa_alloc); |
| |
| /** |
| * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. |
| * @xa: XArray. |
| * @id: Pointer to ID. |
| * @entry: New entry. |
| * @limit: Range of allocated ID. |
| * @next: Pointer to next ID to allocate. |
| * @gfp: Memory allocation flags. |
| * |
| * Finds an empty entry in @xa between @limit.min and @limit.max, |
| * stores the index into the @id pointer, then stores the entry at |
| * that index. A concurrent lookup will not see an uninitialised @id. |
| * The search for an empty entry will start at @next and will wrap |
| * around if necessary. |
| * |
| * Context: Any context. Expects xa_lock to be held on entry. May |
| * release and reacquire xa_lock if @gfp flags permit. |
| * Return: 0 if the allocation succeeded without wrapping. 1 if the |
| * allocation succeeded after wrapping, -ENOMEM if memory could not be |
| * allocated or -EBUSY if there are no free entries in @limit. |
| */ |
| int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, |
| struct xa_limit limit, u32 *next, gfp_t gfp) |
| { |
| u32 min = limit.min; |
| int ret; |
| |
| limit.min = max(min, *next); |
| ret = __xa_alloc(xa, id, entry, limit, gfp); |
| if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { |
| xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; |
| ret = 1; |
| } |
| |
| if (ret < 0 && limit.min > min) { |
| limit.min = min; |
| ret = __xa_alloc(xa, id, entry, limit, gfp); |
| if (ret == 0) |
| ret = 1; |
| } |
| |
| if (ret >= 0) { |
| *next = *id + 1; |
| if (*next == 0) |
| xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(__xa_alloc_cyclic); |
| |
| /** |
| * __xa_set_mark() - Set this mark on this entry while locked. |
| * @xa: XArray. |
| * @index: Index of entry. |
| * @mark: Mark number. |
| * |
| * Attempting to set a mark on a %NULL entry does not succeed. |
| * |
| * Context: Any context. Expects xa_lock to be held on entry. |
| */ |
| void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| { |
| XA_STATE(xas, xa, index); |
| void *entry = xas_load(&xas); |
| |
| if (entry) |
| xas_set_mark(&xas, mark); |
| } |
| EXPORT_SYMBOL(__xa_set_mark); |
| |
| /** |
| * __xa_clear_mark() - Clear this mark on this entry while locked. |
| * @xa: XArray. |
| * @index: Index of entry. |
| * @mark: Mark number. |
| * |
| * Context: Any context. Expects xa_lock to be held on entry. |
| */ |
| void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| { |
| XA_STATE(xas, xa, index); |
| void *entry = xas_load(&xas); |
| |
| if (entry) |
| xas_clear_mark(&xas, mark); |
| } |
| EXPORT_SYMBOL(__xa_clear_mark); |
| |
| /** |
| * xa_get_mark() - Inquire whether this mark is set on this entry. |
| * @xa: XArray. |
| * @index: Index of entry. |
| * @mark: Mark number. |
| * |
| * This function uses the RCU read lock, so the result may be out of date |
| * by the time it returns. If you need the result to be stable, use a lock. |
| * |
| * Context: Any context. Takes and releases the RCU lock. |
| * Return: True if the entry at @index has this mark set, false if it doesn't. |
| */ |
| bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| { |
| XA_STATE(xas, xa, index); |
| void *entry; |
| |
| rcu_read_lock(); |
| entry = xas_start(&xas); |
| while (xas_get_mark(&xas, mark)) { |
| if (!xa_is_node(entry)) |
| goto found; |
| entry = xas_descend(&xas, xa_to_node(entry)); |
| } |
| rcu_read_unlock(); |
| return false; |
| found: |
| rcu_read_unlock(); |
| return true; |
| } |
| EXPORT_SYMBOL(xa_get_mark); |
| |
| /** |
| * xa_set_mark() - Set this mark on this entry. |
| * @xa: XArray. |
| * @index: Index of entry. |
| * @mark: Mark number. |
| * |
| * Attempting to set a mark on a %NULL entry does not succeed. |
| * |
| * Context: Process context. Takes and releases the xa_lock. |
| */ |
| void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| { |
| xa_lock(xa); |
| __xa_set_mark(xa, index, mark); |
| xa_unlock(xa); |
| } |
| EXPORT_SYMBOL(xa_set_mark); |
| |
| /** |
| * xa_clear_mark() - Clear this mark on this entry. |
| * @xa: XArray. |
| * @index: Index of entry. |
| * @mark: Mark number. |
| * |
| * Clearing a mark always succeeds. |
| * |
| * Context: Process context. Takes and releases the xa_lock. |
| */ |
| void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| { |
| xa_lock(xa); |
| __xa_clear_mark(xa, index, mark); |
| xa_unlock(xa); |
| } |
| EXPORT_SYMBOL(xa_clear_mark); |
| |
| /** |
| * xa_find() - Search the XArray for an entry. |
| * @xa: XArray. |
| * @indexp: Pointer to an index. |
| * @max: Maximum index to search to. |
| * @filter: Selection criterion. |
| * |
| * Finds the entry in @xa which matches the @filter, and has the lowest |
| * index that is at least @indexp and no more than @max. |
| * If an entry is found, @indexp is updated to be the index of the entry. |
| * This function is protected by the RCU read lock, so it may not find |
| * entries which are being simultaneously added. It will not return an |
| * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). |
| * |
| * Context: Any context. Takes and releases the RCU lock. |
| * Return: The entry, if found, otherwise %NULL. |
| */ |
| void *xa_find(struct xarray *xa, unsigned long *indexp, |
| unsigned long max, xa_mark_t filter) |
| { |
| XA_STATE(xas, xa, *indexp); |
| void *entry; |
| |
| rcu_read_lock(); |
| do { |
| if ((__force unsigned int)filter < XA_MAX_MARKS) |
| entry = xas_find_marked(&xas, max, filter); |
| else |
| entry = xas_find(&xas, max); |
| } while (xas_retry(&xas, entry)); |
| rcu_read_unlock(); |
| |
| if (entry) |
| *indexp = xas.xa_index; |
| return entry; |
| } |
| EXPORT_SYMBOL(xa_find); |
| |
| static bool xas_sibling(struct xa_state *xas) |
| { |
| struct xa_node *node = xas->xa_node; |
| unsigned long mask; |
| |
| if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) |
| return false; |
| mask = (XA_CHUNK_SIZE << node->shift) - 1; |
| return (xas->xa_index & mask) > |
| ((unsigned long)xas->xa_offset << node->shift); |
| } |
| |
| /** |
| * xa_find_after() - Search the XArray for a present entry. |
| * @xa: XArray. |
| * @indexp: Pointer to an index. |
| * @max: Maximum index to search to. |
| * @filter: Selection criterion. |
| * |
| * Finds the entry in @xa which matches the @filter and has the lowest |
| * index that is above @indexp and no more than @max. |
| * If an entry is found, @indexp is updated to be the index of the entry. |
| * This function is protected by the RCU read lock, so it may miss entries |
| * which are being simultaneously added. It will not return an |
| * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). |
| * |
| * Context: Any context. Takes and releases the RCU lock. |
| * Return: The pointer, if found, otherwise %NULL. |
| */ |
| void *xa_find_after(struct xarray *xa, unsigned long *indexp, |
| unsigned long max, xa_mark_t filter) |
| { |
| XA_STATE(xas, xa, *indexp + 1); |
| void *entry; |
| |
| if (xas.xa_index == 0) |
| return NULL; |
| |
| rcu_read_lock(); |
| for (;;) { |
| if ((__force unsigned int)filter < XA_MAX_MARKS) |
| entry = xas_find_marked(&xas, max, filter); |
| else |
| entry = xas_find(&xas, max); |
| |
| if (xas_invalid(&xas)) |
| break; |
| if (xas_sibling(&xas)) |
| continue; |
| if (!xas_retry(&xas, entry)) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| if (entry) |
| *indexp = xas.xa_index; |
| return entry; |
| } |
| EXPORT_SYMBOL(xa_find_after); |
| |
| static unsigned int xas_extract_present(struct xa_state *xas, void **dst, |
| unsigned long max, unsigned int n) |
| { |
| void *entry; |
| unsigned int i = 0; |
| |
| rcu_read_lock(); |
| xas_for_each(xas, entry, max) { |
| if (xas_retry(xas, entry)) |
| continue; |
| dst[i++] = entry; |
| if (i == n) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| return i; |
| } |
| |
| static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, |
| unsigned long max, unsigned int n, xa_mark_t mark) |
| { |
| void *entry; |
| unsigned int i = 0; |
| |
| rcu_read_lock(); |
| xas_for_each_marked(xas, entry, max, mark) { |
| if (xas_retry(xas, entry)) |
| continue; |
| dst[i++] = entry; |
| if (i == n) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| return i; |
| } |
| |
| /** |
| * xa_extract() - Copy selected entries from the XArray into a normal array. |
| * @xa: The source XArray to copy from. |
| * @dst: The buffer to copy entries into. |
| * @start: The first index in the XArray eligible to be selected. |
| * @max: The last index in the XArray eligible to be selected. |
| * @n: The maximum number of entries to copy. |
| * @filter: Selection criterion. |
| * |
| * Copies up to @n entries that match @filter from the XArray. The |
| * copied entries will have indices between @start and @max, inclusive. |
| * |
| * The @filter may be an XArray mark value, in which case entries which are |
| * marked with that mark will be copied. It may also be %XA_PRESENT, in |
| * which case all entries which are not %NULL will be copied. |
| * |
| * The entries returned may not represent a snapshot of the XArray at a |
| * moment in time. For example, if another thread stores to index 5, then |
| * index 10, calling xa_extract() may return the old contents of index 5 |
| * and the new contents of index 10. Indices not modified while this |
| * function is running will not be skipped. |
| * |
| * If you need stronger guarantees, holding the xa_lock across calls to this |
| * function will prevent concurrent modification. |
| * |
| * Context: Any context. Takes and releases the RCU lock. |
| * Return: The number of entries copied. |
| */ |
| unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, |
| unsigned long max, unsigned int n, xa_mark_t filter) |
| { |
| XA_STATE(xas, xa, start); |
| |
| if (!n) |
| return 0; |
| |
| if ((__force unsigned int)filter < XA_MAX_MARKS) |
| return xas_extract_marked(&xas, dst, max, n, filter); |
| return xas_extract_present(&xas, dst, max, n); |
| } |
| EXPORT_SYMBOL(xa_extract); |
| |
| /** |
| * xa_destroy() - Free all internal data structures. |
| * @xa: XArray. |
| * |
| * After calling this function, the XArray is empty and has freed all memory |
| * allocated for its internal data structures. You are responsible for |
| * freeing the objects referenced by the XArray. |
| * |
| * Context: Any context. Takes and releases the xa_lock, interrupt-safe. |
| */ |
| void xa_destroy(struct xarray *xa) |
| { |
| XA_STATE(xas, xa, 0); |
| unsigned long flags; |
| void *entry; |
| |
| xas.xa_node = NULL; |
| xas_lock_irqsave(&xas, flags); |
| entry = xa_head_locked(xa); |
| RCU_INIT_POINTER(xa->xa_head, NULL); |
| xas_init_marks(&xas); |
| if (xa_zero_busy(xa)) |
| xa_mark_clear(xa, XA_FREE_MARK); |
| /* lockdep checks we're still holding the lock in xas_free_nodes() */ |
| if (xa_is_node(entry)) |
| xas_free_nodes(&xas, xa_to_node(entry)); |
| xas_unlock_irqrestore(&xas, flags); |
| } |
| EXPORT_SYMBOL(xa_destroy); |
| |
| #ifdef XA_DEBUG |
| void xa_dump_node(const struct xa_node *node) |
| { |
| unsigned i, j; |
| |
| if (!node) |
| return; |
| if ((unsigned long)node & 3) { |
| pr_cont("node %px\n", node); |
| return; |
| } |
| |
| pr_cont("node %px %s %d parent %px shift %d count %d values %d " |
| "array %px list %px %px marks", |
| node, node->parent ? "offset" : "max", node->offset, |
| node->parent, node->shift, node->count, node->nr_values, |
| node->array, node->private_list.prev, node->private_list.next); |
| for (i = 0; i < XA_MAX_MARKS; i++) |
| for (j = 0; j < XA_MARK_LONGS; j++) |
| pr_cont(" %lx", node->marks[i][j]); |
| pr_cont("\n"); |
| } |
| |
| void xa_dump_index(unsigned long index, unsigned int shift) |
| { |
| if (!shift) |
| pr_info("%lu: ", index); |
| else if (shift >= BITS_PER_LONG) |
| pr_info("0-%lu: ", ~0UL); |
| else |
| pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); |
| } |
| |
| void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) |
| { |
| if (!entry) |
| return; |
| |
| xa_dump_index(index, shift); |
| |
| if (xa_is_node(entry)) { |
| if (shift == 0) { |
| pr_cont("%px\n", entry); |
| } else { |
| unsigned long i; |
| struct xa_node *node = xa_to_node(entry); |
| xa_dump_node(node); |
| for (i = 0; i < XA_CHUNK_SIZE; i++) |
| xa_dump_entry(node->slots[i], |
| index + (i << node->shift), node->shift); |
| } |
| } else if (xa_is_value(entry)) |
| pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), |
| xa_to_value(entry), entry); |
| else if (!xa_is_internal(entry)) |
| pr_cont("%px\n", entry); |
| else if (xa_is_retry(entry)) |
| pr_cont("retry (%ld)\n", xa_to_internal(entry)); |
| else if (xa_is_sibling(entry)) |
| pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); |
| else if (xa_is_zero(entry)) |
| pr_cont("zero (%ld)\n", xa_to_internal(entry)); |
| else |
| pr_cont("UNKNOWN ENTRY (%px)\n", entry); |
| } |
| |
| void xa_dump(const struct xarray *xa) |
| { |
| void *entry = xa->xa_head; |
| unsigned int shift = 0; |
| |
| pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, |
| xa->xa_flags, xa_marked(xa, XA_MARK_0), |
| xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); |
| if (xa_is_node(entry)) |
| shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; |
| xa_dump_entry(entry, 0, shift); |
| } |
| #endif |