| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Deadline Scheduling Class (SCHED_DEADLINE) |
| * |
| * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). |
| * |
| * Tasks that periodically executes their instances for less than their |
| * runtime won't miss any of their deadlines. |
| * Tasks that are not periodic or sporadic or that tries to execute more |
| * than their reserved bandwidth will be slowed down (and may potentially |
| * miss some of their deadlines), and won't affect any other task. |
| * |
| * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, |
| * Juri Lelli <juri.lelli@gmail.com>, |
| * Michael Trimarchi <michael@amarulasolutions.com>, |
| * Fabio Checconi <fchecconi@gmail.com> |
| */ |
| #include "sched.h" |
| #include "pelt.h" |
| |
| struct dl_bandwidth def_dl_bandwidth; |
| |
| static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) |
| { |
| return container_of(dl_se, struct task_struct, dl); |
| } |
| |
| static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) |
| { |
| return container_of(dl_rq, struct rq, dl); |
| } |
| |
| static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) |
| { |
| struct task_struct *p = dl_task_of(dl_se); |
| struct rq *rq = task_rq(p); |
| |
| return &rq->dl; |
| } |
| |
| static inline int on_dl_rq(struct sched_dl_entity *dl_se) |
| { |
| return !RB_EMPTY_NODE(&dl_se->rb_node); |
| } |
| |
| #ifdef CONFIG_SMP |
| static inline struct dl_bw *dl_bw_of(int i) |
| { |
| RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), |
| "sched RCU must be held"); |
| return &cpu_rq(i)->rd->dl_bw; |
| } |
| |
| static inline int dl_bw_cpus(int i) |
| { |
| struct root_domain *rd = cpu_rq(i)->rd; |
| int cpus = 0; |
| |
| RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), |
| "sched RCU must be held"); |
| for_each_cpu_and(i, rd->span, cpu_active_mask) |
| cpus++; |
| |
| return cpus; |
| } |
| #else |
| static inline struct dl_bw *dl_bw_of(int i) |
| { |
| return &cpu_rq(i)->dl.dl_bw; |
| } |
| |
| static inline int dl_bw_cpus(int i) |
| { |
| return 1; |
| } |
| #endif |
| |
| static inline |
| void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) |
| { |
| u64 old = dl_rq->running_bw; |
| |
| lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); |
| dl_rq->running_bw += dl_bw; |
| SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ |
| SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); |
| /* kick cpufreq (see the comment in kernel/sched/sched.h). */ |
| cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); |
| } |
| |
| static inline |
| void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) |
| { |
| u64 old = dl_rq->running_bw; |
| |
| lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); |
| dl_rq->running_bw -= dl_bw; |
| SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ |
| if (dl_rq->running_bw > old) |
| dl_rq->running_bw = 0; |
| /* kick cpufreq (see the comment in kernel/sched/sched.h). */ |
| cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); |
| } |
| |
| static inline |
| void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) |
| { |
| u64 old = dl_rq->this_bw; |
| |
| lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); |
| dl_rq->this_bw += dl_bw; |
| SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ |
| } |
| |
| static inline |
| void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) |
| { |
| u64 old = dl_rq->this_bw; |
| |
| lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); |
| dl_rq->this_bw -= dl_bw; |
| SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ |
| if (dl_rq->this_bw > old) |
| dl_rq->this_bw = 0; |
| SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); |
| } |
| |
| static inline |
| void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| if (!dl_entity_is_special(dl_se)) |
| __add_rq_bw(dl_se->dl_bw, dl_rq); |
| } |
| |
| static inline |
| void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| if (!dl_entity_is_special(dl_se)) |
| __sub_rq_bw(dl_se->dl_bw, dl_rq); |
| } |
| |
| static inline |
| void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| if (!dl_entity_is_special(dl_se)) |
| __add_running_bw(dl_se->dl_bw, dl_rq); |
| } |
| |
| static inline |
| void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| if (!dl_entity_is_special(dl_se)) |
| __sub_running_bw(dl_se->dl_bw, dl_rq); |
| } |
| |
| void dl_change_utilization(struct task_struct *p, u64 new_bw) |
| { |
| struct rq *rq; |
| |
| BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); |
| |
| if (task_on_rq_queued(p)) |
| return; |
| |
| rq = task_rq(p); |
| if (p->dl.dl_non_contending) { |
| sub_running_bw(&p->dl, &rq->dl); |
| p->dl.dl_non_contending = 0; |
| /* |
| * If the timer handler is currently running and the |
| * timer cannot be cancelled, inactive_task_timer() |
| * will see that dl_not_contending is not set, and |
| * will not touch the rq's active utilization, |
| * so we are still safe. |
| */ |
| if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) |
| put_task_struct(p); |
| } |
| __sub_rq_bw(p->dl.dl_bw, &rq->dl); |
| __add_rq_bw(new_bw, &rq->dl); |
| } |
| |
| /* |
| * The utilization of a task cannot be immediately removed from |
| * the rq active utilization (running_bw) when the task blocks. |
| * Instead, we have to wait for the so called "0-lag time". |
| * |
| * If a task blocks before the "0-lag time", a timer (the inactive |
| * timer) is armed, and running_bw is decreased when the timer |
| * fires. |
| * |
| * If the task wakes up again before the inactive timer fires, |
| * the timer is cancelled, whereas if the task wakes up after the |
| * inactive timer fired (and running_bw has been decreased) the |
| * task's utilization has to be added to running_bw again. |
| * A flag in the deadline scheduling entity (dl_non_contending) |
| * is used to avoid race conditions between the inactive timer handler |
| * and task wakeups. |
| * |
| * The following diagram shows how running_bw is updated. A task is |
| * "ACTIVE" when its utilization contributes to running_bw; an |
| * "ACTIVE contending" task is in the TASK_RUNNING state, while an |
| * "ACTIVE non contending" task is a blocked task for which the "0-lag time" |
| * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" |
| * time already passed, which does not contribute to running_bw anymore. |
| * +------------------+ |
| * wakeup | ACTIVE | |
| * +------------------>+ contending | |
| * | add_running_bw | | |
| * | +----+------+------+ |
| * | | ^ |
| * | dequeue | | |
| * +--------+-------+ | | |
| * | | t >= 0-lag | | wakeup |
| * | INACTIVE |<---------------+ | |
| * | | sub_running_bw | | |
| * +--------+-------+ | | |
| * ^ | | |
| * | t < 0-lag | | |
| * | | | |
| * | V | |
| * | +----+------+------+ |
| * | sub_running_bw | ACTIVE | |
| * +-------------------+ | |
| * inactive timer | non contending | |
| * fired +------------------+ |
| * |
| * The task_non_contending() function is invoked when a task |
| * blocks, and checks if the 0-lag time already passed or |
| * not (in the first case, it directly updates running_bw; |
| * in the second case, it arms the inactive timer). |
| * |
| * The task_contending() function is invoked when a task wakes |
| * up, and checks if the task is still in the "ACTIVE non contending" |
| * state or not (in the second case, it updates running_bw). |
| */ |
| static void task_non_contending(struct task_struct *p) |
| { |
| struct sched_dl_entity *dl_se = &p->dl; |
| struct hrtimer *timer = &dl_se->inactive_timer; |
| struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| struct rq *rq = rq_of_dl_rq(dl_rq); |
| s64 zerolag_time; |
| |
| /* |
| * If this is a non-deadline task that has been boosted, |
| * do nothing |
| */ |
| if (dl_se->dl_runtime == 0) |
| return; |
| |
| if (dl_entity_is_special(dl_se)) |
| return; |
| |
| WARN_ON(dl_se->dl_non_contending); |
| |
| zerolag_time = dl_se->deadline - |
| div64_long((dl_se->runtime * dl_se->dl_period), |
| dl_se->dl_runtime); |
| |
| /* |
| * Using relative times instead of the absolute "0-lag time" |
| * allows to simplify the code |
| */ |
| zerolag_time -= rq_clock(rq); |
| |
| /* |
| * If the "0-lag time" already passed, decrease the active |
| * utilization now, instead of starting a timer |
| */ |
| if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { |
| if (dl_task(p)) |
| sub_running_bw(dl_se, dl_rq); |
| if (!dl_task(p) || p->state == TASK_DEAD) { |
| struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); |
| |
| if (p->state == TASK_DEAD) |
| sub_rq_bw(&p->dl, &rq->dl); |
| raw_spin_lock(&dl_b->lock); |
| __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); |
| __dl_clear_params(p); |
| raw_spin_unlock(&dl_b->lock); |
| } |
| |
| return; |
| } |
| |
| dl_se->dl_non_contending = 1; |
| get_task_struct(p); |
| hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL); |
| } |
| |
| static void task_contending(struct sched_dl_entity *dl_se, int flags) |
| { |
| struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| |
| /* |
| * If this is a non-deadline task that has been boosted, |
| * do nothing |
| */ |
| if (dl_se->dl_runtime == 0) |
| return; |
| |
| if (flags & ENQUEUE_MIGRATED) |
| add_rq_bw(dl_se, dl_rq); |
| |
| if (dl_se->dl_non_contending) { |
| dl_se->dl_non_contending = 0; |
| /* |
| * If the timer handler is currently running and the |
| * timer cannot be cancelled, inactive_task_timer() |
| * will see that dl_not_contending is not set, and |
| * will not touch the rq's active utilization, |
| * so we are still safe. |
| */ |
| if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) |
| put_task_struct(dl_task_of(dl_se)); |
| } else { |
| /* |
| * Since "dl_non_contending" is not set, the |
| * task's utilization has already been removed from |
| * active utilization (either when the task blocked, |
| * when the "inactive timer" fired). |
| * So, add it back. |
| */ |
| add_running_bw(dl_se, dl_rq); |
| } |
| } |
| |
| static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) |
| { |
| struct sched_dl_entity *dl_se = &p->dl; |
| |
| return dl_rq->root.rb_leftmost == &dl_se->rb_node; |
| } |
| |
| void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) |
| { |
| raw_spin_lock_init(&dl_b->dl_runtime_lock); |
| dl_b->dl_period = period; |
| dl_b->dl_runtime = runtime; |
| } |
| |
| void init_dl_bw(struct dl_bw *dl_b) |
| { |
| raw_spin_lock_init(&dl_b->lock); |
| raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); |
| if (global_rt_runtime() == RUNTIME_INF) |
| dl_b->bw = -1; |
| else |
| dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); |
| raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); |
| dl_b->total_bw = 0; |
| } |
| |
| void init_dl_rq(struct dl_rq *dl_rq) |
| { |
| dl_rq->root = RB_ROOT_CACHED; |
| |
| #ifdef CONFIG_SMP |
| /* zero means no -deadline tasks */ |
| dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; |
| |
| dl_rq->dl_nr_migratory = 0; |
| dl_rq->overloaded = 0; |
| dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; |
| #else |
| init_dl_bw(&dl_rq->dl_bw); |
| #endif |
| |
| dl_rq->running_bw = 0; |
| dl_rq->this_bw = 0; |
| init_dl_rq_bw_ratio(dl_rq); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static inline int dl_overloaded(struct rq *rq) |
| { |
| return atomic_read(&rq->rd->dlo_count); |
| } |
| |
| static inline void dl_set_overload(struct rq *rq) |
| { |
| if (!rq->online) |
| return; |
| |
| cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); |
| /* |
| * Must be visible before the overload count is |
| * set (as in sched_rt.c). |
| * |
| * Matched by the barrier in pull_dl_task(). |
| */ |
| smp_wmb(); |
| atomic_inc(&rq->rd->dlo_count); |
| } |
| |
| static inline void dl_clear_overload(struct rq *rq) |
| { |
| if (!rq->online) |
| return; |
| |
| atomic_dec(&rq->rd->dlo_count); |
| cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); |
| } |
| |
| static void update_dl_migration(struct dl_rq *dl_rq) |
| { |
| if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { |
| if (!dl_rq->overloaded) { |
| dl_set_overload(rq_of_dl_rq(dl_rq)); |
| dl_rq->overloaded = 1; |
| } |
| } else if (dl_rq->overloaded) { |
| dl_clear_overload(rq_of_dl_rq(dl_rq)); |
| dl_rq->overloaded = 0; |
| } |
| } |
| |
| static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| struct task_struct *p = dl_task_of(dl_se); |
| |
| if (p->nr_cpus_allowed > 1) |
| dl_rq->dl_nr_migratory++; |
| |
| update_dl_migration(dl_rq); |
| } |
| |
| static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| struct task_struct *p = dl_task_of(dl_se); |
| |
| if (p->nr_cpus_allowed > 1) |
| dl_rq->dl_nr_migratory--; |
| |
| update_dl_migration(dl_rq); |
| } |
| |
| /* |
| * The list of pushable -deadline task is not a plist, like in |
| * sched_rt.c, it is an rb-tree with tasks ordered by deadline. |
| */ |
| static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| { |
| struct dl_rq *dl_rq = &rq->dl; |
| struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node; |
| struct rb_node *parent = NULL; |
| struct task_struct *entry; |
| bool leftmost = true; |
| |
| BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); |
| |
| while (*link) { |
| parent = *link; |
| entry = rb_entry(parent, struct task_struct, |
| pushable_dl_tasks); |
| if (dl_entity_preempt(&p->dl, &entry->dl)) |
| link = &parent->rb_left; |
| else { |
| link = &parent->rb_right; |
| leftmost = false; |
| } |
| } |
| |
| if (leftmost) |
| dl_rq->earliest_dl.next = p->dl.deadline; |
| |
| rb_link_node(&p->pushable_dl_tasks, parent, link); |
| rb_insert_color_cached(&p->pushable_dl_tasks, |
| &dl_rq->pushable_dl_tasks_root, leftmost); |
| } |
| |
| static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| { |
| struct dl_rq *dl_rq = &rq->dl; |
| |
| if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) |
| return; |
| |
| if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) { |
| struct rb_node *next_node; |
| |
| next_node = rb_next(&p->pushable_dl_tasks); |
| if (next_node) { |
| dl_rq->earliest_dl.next = rb_entry(next_node, |
| struct task_struct, pushable_dl_tasks)->dl.deadline; |
| } |
| } |
| |
| rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); |
| RB_CLEAR_NODE(&p->pushable_dl_tasks); |
| } |
| |
| static inline int has_pushable_dl_tasks(struct rq *rq) |
| { |
| return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); |
| } |
| |
| static int push_dl_task(struct rq *rq); |
| |
| static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) |
| { |
| return dl_task(prev); |
| } |
| |
| static DEFINE_PER_CPU(struct callback_head, dl_push_head); |
| static DEFINE_PER_CPU(struct callback_head, dl_pull_head); |
| |
| static void push_dl_tasks(struct rq *); |
| static void pull_dl_task(struct rq *); |
| |
| static inline void deadline_queue_push_tasks(struct rq *rq) |
| { |
| if (!has_pushable_dl_tasks(rq)) |
| return; |
| |
| queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); |
| } |
| |
| static inline void deadline_queue_pull_task(struct rq *rq) |
| { |
| queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); |
| } |
| |
| static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); |
| |
| static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) |
| { |
| struct rq *later_rq = NULL; |
| |
| later_rq = find_lock_later_rq(p, rq); |
| if (!later_rq) { |
| int cpu; |
| |
| /* |
| * If we cannot preempt any rq, fall back to pick any |
| * online CPU: |
| */ |
| cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); |
| if (cpu >= nr_cpu_ids) { |
| /* |
| * Failed to find any suitable CPU. |
| * The task will never come back! |
| */ |
| BUG_ON(dl_bandwidth_enabled()); |
| |
| /* |
| * If admission control is disabled we |
| * try a little harder to let the task |
| * run. |
| */ |
| cpu = cpumask_any(cpu_active_mask); |
| } |
| later_rq = cpu_rq(cpu); |
| double_lock_balance(rq, later_rq); |
| } |
| |
| set_task_cpu(p, later_rq->cpu); |
| double_unlock_balance(later_rq, rq); |
| |
| return later_rq; |
| } |
| |
| #else |
| |
| static inline |
| void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| { |
| } |
| |
| static inline |
| void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) |
| { |
| } |
| |
| static inline |
| void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| } |
| |
| static inline |
| void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| } |
| |
| static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) |
| { |
| return false; |
| } |
| |
| static inline void pull_dl_task(struct rq *rq) |
| { |
| } |
| |
| static inline void deadline_queue_push_tasks(struct rq *rq) |
| { |
| } |
| |
| static inline void deadline_queue_pull_task(struct rq *rq) |
| { |
| } |
| #endif /* CONFIG_SMP */ |
| |
| static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); |
| static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); |
| static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); |
| |
| /* |
| * We are being explicitly informed that a new instance is starting, |
| * and this means that: |
| * - the absolute deadline of the entity has to be placed at |
| * current time + relative deadline; |
| * - the runtime of the entity has to be set to the maximum value. |
| * |
| * The capability of specifying such event is useful whenever a -deadline |
| * entity wants to (try to!) synchronize its behaviour with the scheduler's |
| * one, and to (try to!) reconcile itself with its own scheduling |
| * parameters. |
| */ |
| static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) |
| { |
| struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| struct rq *rq = rq_of_dl_rq(dl_rq); |
| |
| WARN_ON(dl_se->dl_boosted); |
| WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); |
| |
| /* |
| * We are racing with the deadline timer. So, do nothing because |
| * the deadline timer handler will take care of properly recharging |
| * the runtime and postponing the deadline |
| */ |
| if (dl_se->dl_throttled) |
| return; |
| |
| /* |
| * We use the regular wall clock time to set deadlines in the |
| * future; in fact, we must consider execution overheads (time |
| * spent on hardirq context, etc.). |
| */ |
| dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; |
| dl_se->runtime = dl_se->dl_runtime; |
| } |
| |
| /* |
| * Pure Earliest Deadline First (EDF) scheduling does not deal with the |
| * possibility of a entity lasting more than what it declared, and thus |
| * exhausting its runtime. |
| * |
| * Here we are interested in making runtime overrun possible, but we do |
| * not want a entity which is misbehaving to affect the scheduling of all |
| * other entities. |
| * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) |
| * is used, in order to confine each entity within its own bandwidth. |
| * |
| * This function deals exactly with that, and ensures that when the runtime |
| * of a entity is replenished, its deadline is also postponed. That ensures |
| * the overrunning entity can't interfere with other entity in the system and |
| * can't make them miss their deadlines. Reasons why this kind of overruns |
| * could happen are, typically, a entity voluntarily trying to overcome its |
| * runtime, or it just underestimated it during sched_setattr(). |
| */ |
| static void replenish_dl_entity(struct sched_dl_entity *dl_se, |
| struct sched_dl_entity *pi_se) |
| { |
| struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| struct rq *rq = rq_of_dl_rq(dl_rq); |
| |
| BUG_ON(pi_se->dl_runtime <= 0); |
| |
| /* |
| * This could be the case for a !-dl task that is boosted. |
| * Just go with full inherited parameters. |
| */ |
| if (dl_se->dl_deadline == 0) { |
| dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| dl_se->runtime = pi_se->dl_runtime; |
| } |
| |
| if (dl_se->dl_yielded && dl_se->runtime > 0) |
| dl_se->runtime = 0; |
| |
| /* |
| * We keep moving the deadline away until we get some |
| * available runtime for the entity. This ensures correct |
| * handling of situations where the runtime overrun is |
| * arbitrary large. |
| */ |
| while (dl_se->runtime <= 0) { |
| dl_se->deadline += pi_se->dl_period; |
| dl_se->runtime += pi_se->dl_runtime; |
| } |
| |
| /* |
| * At this point, the deadline really should be "in |
| * the future" with respect to rq->clock. If it's |
| * not, we are, for some reason, lagging too much! |
| * Anyway, after having warn userspace abut that, |
| * we still try to keep the things running by |
| * resetting the deadline and the budget of the |
| * entity. |
| */ |
| if (dl_time_before(dl_se->deadline, rq_clock(rq))) { |
| printk_deferred_once("sched: DL replenish lagged too much\n"); |
| dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| dl_se->runtime = pi_se->dl_runtime; |
| } |
| |
| if (dl_se->dl_yielded) |
| dl_se->dl_yielded = 0; |
| if (dl_se->dl_throttled) |
| dl_se->dl_throttled = 0; |
| } |
| |
| /* |
| * Here we check if --at time t-- an entity (which is probably being |
| * [re]activated or, in general, enqueued) can use its remaining runtime |
| * and its current deadline _without_ exceeding the bandwidth it is |
| * assigned (function returns true if it can't). We are in fact applying |
| * one of the CBS rules: when a task wakes up, if the residual runtime |
| * over residual deadline fits within the allocated bandwidth, then we |
| * can keep the current (absolute) deadline and residual budget without |
| * disrupting the schedulability of the system. Otherwise, we should |
| * refill the runtime and set the deadline a period in the future, |
| * because keeping the current (absolute) deadline of the task would |
| * result in breaking guarantees promised to other tasks (refer to |
| * Documentation/scheduler/sched-deadline.rst for more information). |
| * |
| * This function returns true if: |
| * |
| * runtime / (deadline - t) > dl_runtime / dl_deadline , |
| * |
| * IOW we can't recycle current parameters. |
| * |
| * Notice that the bandwidth check is done against the deadline. For |
| * task with deadline equal to period this is the same of using |
| * dl_period instead of dl_deadline in the equation above. |
| */ |
| static bool dl_entity_overflow(struct sched_dl_entity *dl_se, |
| struct sched_dl_entity *pi_se, u64 t) |
| { |
| u64 left, right; |
| |
| /* |
| * left and right are the two sides of the equation above, |
| * after a bit of shuffling to use multiplications instead |
| * of divisions. |
| * |
| * Note that none of the time values involved in the two |
| * multiplications are absolute: dl_deadline and dl_runtime |
| * are the relative deadline and the maximum runtime of each |
| * instance, runtime is the runtime left for the last instance |
| * and (deadline - t), since t is rq->clock, is the time left |
| * to the (absolute) deadline. Even if overflowing the u64 type |
| * is very unlikely to occur in both cases, here we scale down |
| * as we want to avoid that risk at all. Scaling down by 10 |
| * means that we reduce granularity to 1us. We are fine with it, |
| * since this is only a true/false check and, anyway, thinking |
| * of anything below microseconds resolution is actually fiction |
| * (but still we want to give the user that illusion >;). |
| */ |
| left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); |
| right = ((dl_se->deadline - t) >> DL_SCALE) * |
| (pi_se->dl_runtime >> DL_SCALE); |
| |
| return dl_time_before(right, left); |
| } |
| |
| /* |
| * Revised wakeup rule [1]: For self-suspending tasks, rather then |
| * re-initializing task's runtime and deadline, the revised wakeup |
| * rule adjusts the task's runtime to avoid the task to overrun its |
| * density. |
| * |
| * Reasoning: a task may overrun the density if: |
| * runtime / (deadline - t) > dl_runtime / dl_deadline |
| * |
| * Therefore, runtime can be adjusted to: |
| * runtime = (dl_runtime / dl_deadline) * (deadline - t) |
| * |
| * In such way that runtime will be equal to the maximum density |
| * the task can use without breaking any rule. |
| * |
| * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant |
| * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. |
| */ |
| static void |
| update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) |
| { |
| u64 laxity = dl_se->deadline - rq_clock(rq); |
| |
| /* |
| * If the task has deadline < period, and the deadline is in the past, |
| * it should already be throttled before this check. |
| * |
| * See update_dl_entity() comments for further details. |
| */ |
| WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); |
| |
| dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; |
| } |
| |
| /* |
| * Regarding the deadline, a task with implicit deadline has a relative |
| * deadline == relative period. A task with constrained deadline has a |
| * relative deadline <= relative period. |
| * |
| * We support constrained deadline tasks. However, there are some restrictions |
| * applied only for tasks which do not have an implicit deadline. See |
| * update_dl_entity() to know more about such restrictions. |
| * |
| * The dl_is_implicit() returns true if the task has an implicit deadline. |
| */ |
| static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) |
| { |
| return dl_se->dl_deadline == dl_se->dl_period; |
| } |
| |
| /* |
| * When a deadline entity is placed in the runqueue, its runtime and deadline |
| * might need to be updated. This is done by a CBS wake up rule. There are two |
| * different rules: 1) the original CBS; and 2) the Revisited CBS. |
| * |
| * When the task is starting a new period, the Original CBS is used. In this |
| * case, the runtime is replenished and a new absolute deadline is set. |
| * |
| * When a task is queued before the begin of the next period, using the |
| * remaining runtime and deadline could make the entity to overflow, see |
| * dl_entity_overflow() to find more about runtime overflow. When such case |
| * is detected, the runtime and deadline need to be updated. |
| * |
| * If the task has an implicit deadline, i.e., deadline == period, the Original |
| * CBS is applied. the runtime is replenished and a new absolute deadline is |
| * set, as in the previous cases. |
| * |
| * However, the Original CBS does not work properly for tasks with |
| * deadline < period, which are said to have a constrained deadline. By |
| * applying the Original CBS, a constrained deadline task would be able to run |
| * runtime/deadline in a period. With deadline < period, the task would |
| * overrun the runtime/period allowed bandwidth, breaking the admission test. |
| * |
| * In order to prevent this misbehave, the Revisited CBS is used for |
| * constrained deadline tasks when a runtime overflow is detected. In the |
| * Revisited CBS, rather than replenishing & setting a new absolute deadline, |
| * the remaining runtime of the task is reduced to avoid runtime overflow. |
| * Please refer to the comments update_dl_revised_wakeup() function to find |
| * more about the Revised CBS rule. |
| */ |
| static void update_dl_entity(struct sched_dl_entity *dl_se, |
| struct sched_dl_entity *pi_se) |
| { |
| struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| struct rq *rq = rq_of_dl_rq(dl_rq); |
| |
| if (dl_time_before(dl_se->deadline, rq_clock(rq)) || |
| dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { |
| |
| if (unlikely(!dl_is_implicit(dl_se) && |
| !dl_time_before(dl_se->deadline, rq_clock(rq)) && |
| !dl_se->dl_boosted)){ |
| update_dl_revised_wakeup(dl_se, rq); |
| return; |
| } |
| |
| dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; |
| dl_se->runtime = pi_se->dl_runtime; |
| } |
| } |
| |
| static inline u64 dl_next_period(struct sched_dl_entity *dl_se) |
| { |
| return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; |
| } |
| |
| /* |
| * If the entity depleted all its runtime, and if we want it to sleep |
| * while waiting for some new execution time to become available, we |
| * set the bandwidth replenishment timer to the replenishment instant |
| * and try to activate it. |
| * |
| * Notice that it is important for the caller to know if the timer |
| * actually started or not (i.e., the replenishment instant is in |
| * the future or in the past). |
| */ |
| static int start_dl_timer(struct task_struct *p) |
| { |
| struct sched_dl_entity *dl_se = &p->dl; |
| struct hrtimer *timer = &dl_se->dl_timer; |
| struct rq *rq = task_rq(p); |
| ktime_t now, act; |
| s64 delta; |
| |
| lockdep_assert_held(&rq->lock); |
| |
| /* |
| * We want the timer to fire at the deadline, but considering |
| * that it is actually coming from rq->clock and not from |
| * hrtimer's time base reading. |
| */ |
| act = ns_to_ktime(dl_next_period(dl_se)); |
| now = hrtimer_cb_get_time(timer); |
| delta = ktime_to_ns(now) - rq_clock(rq); |
| act = ktime_add_ns(act, delta); |
| |
| /* |
| * If the expiry time already passed, e.g., because the value |
| * chosen as the deadline is too small, don't even try to |
| * start the timer in the past! |
| */ |
| if (ktime_us_delta(act, now) < 0) |
| return 0; |
| |
| /* |
| * !enqueued will guarantee another callback; even if one is already in |
| * progress. This ensures a balanced {get,put}_task_struct(). |
| * |
| * The race against __run_timer() clearing the enqueued state is |
| * harmless because we're holding task_rq()->lock, therefore the timer |
| * expiring after we've done the check will wait on its task_rq_lock() |
| * and observe our state. |
| */ |
| if (!hrtimer_is_queued(timer)) { |
| get_task_struct(p); |
| hrtimer_start(timer, act, HRTIMER_MODE_ABS); |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * This is the bandwidth enforcement timer callback. If here, we know |
| * a task is not on its dl_rq, since the fact that the timer was running |
| * means the task is throttled and needs a runtime replenishment. |
| * |
| * However, what we actually do depends on the fact the task is active, |
| * (it is on its rq) or has been removed from there by a call to |
| * dequeue_task_dl(). In the former case we must issue the runtime |
| * replenishment and add the task back to the dl_rq; in the latter, we just |
| * do nothing but clearing dl_throttled, so that runtime and deadline |
| * updating (and the queueing back to dl_rq) will be done by the |
| * next call to enqueue_task_dl(). |
| */ |
| static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) |
| { |
| struct sched_dl_entity *dl_se = container_of(timer, |
| struct sched_dl_entity, |
| dl_timer); |
| struct task_struct *p = dl_task_of(dl_se); |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| rq = task_rq_lock(p, &rf); |
| |
| /* |
| * The task might have changed its scheduling policy to something |
| * different than SCHED_DEADLINE (through switched_from_dl()). |
| */ |
| if (!dl_task(p)) |
| goto unlock; |
| |
| /* |
| * The task might have been boosted by someone else and might be in the |
| * boosting/deboosting path, its not throttled. |
| */ |
| if (dl_se->dl_boosted) |
| goto unlock; |
| |
| /* |
| * Spurious timer due to start_dl_timer() race; or we already received |
| * a replenishment from rt_mutex_setprio(). |
| */ |
| if (!dl_se->dl_throttled) |
| goto unlock; |
| |
| sched_clock_tick(); |
| update_rq_clock(rq); |
| |
| /* |
| * If the throttle happened during sched-out; like: |
| * |
| * schedule() |
| * deactivate_task() |
| * dequeue_task_dl() |
| * update_curr_dl() |
| * start_dl_timer() |
| * __dequeue_task_dl() |
| * prev->on_rq = 0; |
| * |
| * We can be both throttled and !queued. Replenish the counter |
| * but do not enqueue -- wait for our wakeup to do that. |
| */ |
| if (!task_on_rq_queued(p)) { |
| replenish_dl_entity(dl_se, dl_se); |
| goto unlock; |
| } |
| |
| #ifdef CONFIG_SMP |
| if (unlikely(!rq->online)) { |
| /* |
| * If the runqueue is no longer available, migrate the |
| * task elsewhere. This necessarily changes rq. |
| */ |
| lockdep_unpin_lock(&rq->lock, rf.cookie); |
| rq = dl_task_offline_migration(rq, p); |
| rf.cookie = lockdep_pin_lock(&rq->lock); |
| update_rq_clock(rq); |
| |
| /* |
| * Now that the task has been migrated to the new RQ and we |
| * have that locked, proceed as normal and enqueue the task |
| * there. |
| */ |
| } |
| #endif |
| |
| enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); |
| if (dl_task(rq->curr)) |
| check_preempt_curr_dl(rq, p, 0); |
| else |
| resched_curr(rq); |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Queueing this task back might have overloaded rq, check if we need |
| * to kick someone away. |
| */ |
| if (has_pushable_dl_tasks(rq)) { |
| /* |
| * Nothing relies on rq->lock after this, so its safe to drop |
| * rq->lock. |
| */ |
| rq_unpin_lock(rq, &rf); |
| push_dl_task(rq); |
| rq_repin_lock(rq, &rf); |
| } |
| #endif |
| |
| unlock: |
| task_rq_unlock(rq, p, &rf); |
| |
| /* |
| * This can free the task_struct, including this hrtimer, do not touch |
| * anything related to that after this. |
| */ |
| put_task_struct(p); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| void init_dl_task_timer(struct sched_dl_entity *dl_se) |
| { |
| struct hrtimer *timer = &dl_se->dl_timer; |
| |
| hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| timer->function = dl_task_timer; |
| } |
| |
| /* |
| * During the activation, CBS checks if it can reuse the current task's |
| * runtime and period. If the deadline of the task is in the past, CBS |
| * cannot use the runtime, and so it replenishes the task. This rule |
| * works fine for implicit deadline tasks (deadline == period), and the |
| * CBS was designed for implicit deadline tasks. However, a task with |
| * constrained deadline (deadine < period) might be awakened after the |
| * deadline, but before the next period. In this case, replenishing the |
| * task would allow it to run for runtime / deadline. As in this case |
| * deadline < period, CBS enables a task to run for more than the |
| * runtime / period. In a very loaded system, this can cause a domino |
| * effect, making other tasks miss their deadlines. |
| * |
| * To avoid this problem, in the activation of a constrained deadline |
| * task after the deadline but before the next period, throttle the |
| * task and set the replenishing timer to the begin of the next period, |
| * unless it is boosted. |
| */ |
| static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) |
| { |
| struct task_struct *p = dl_task_of(dl_se); |
| struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); |
| |
| if (dl_time_before(dl_se->deadline, rq_clock(rq)) && |
| dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { |
| if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) |
| return; |
| dl_se->dl_throttled = 1; |
| if (dl_se->runtime > 0) |
| dl_se->runtime = 0; |
| } |
| } |
| |
| static |
| int dl_runtime_exceeded(struct sched_dl_entity *dl_se) |
| { |
| return (dl_se->runtime <= 0); |
| } |
| |
| extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); |
| |
| /* |
| * This function implements the GRUB accounting rule: |
| * according to the GRUB reclaiming algorithm, the runtime is |
| * not decreased as "dq = -dt", but as |
| * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", |
| * where u is the utilization of the task, Umax is the maximum reclaimable |
| * utilization, Uinact is the (per-runqueue) inactive utilization, computed |
| * as the difference between the "total runqueue utilization" and the |
| * runqueue active utilization, and Uextra is the (per runqueue) extra |
| * reclaimable utilization. |
| * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations |
| * multiplied by 2^BW_SHIFT, the result has to be shifted right by |
| * BW_SHIFT. |
| * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, |
| * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. |
| * Since delta is a 64 bit variable, to have an overflow its value |
| * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. |
| * So, overflow is not an issue here. |
| */ |
| static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) |
| { |
| u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ |
| u64 u_act; |
| u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; |
| |
| /* |
| * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, |
| * we compare u_inact + rq->dl.extra_bw with |
| * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because |
| * u_inact + rq->dl.extra_bw can be larger than |
| * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative |
| * leading to wrong results) |
| */ |
| if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) |
| u_act = u_act_min; |
| else |
| u_act = BW_UNIT - u_inact - rq->dl.extra_bw; |
| |
| return (delta * u_act) >> BW_SHIFT; |
| } |
| |
| /* |
| * Update the current task's runtime statistics (provided it is still |
| * a -deadline task and has not been removed from the dl_rq). |
| */ |
| static void update_curr_dl(struct rq *rq) |
| { |
| struct task_struct *curr = rq->curr; |
| struct sched_dl_entity *dl_se = &curr->dl; |
| u64 delta_exec, scaled_delta_exec; |
| int cpu = cpu_of(rq); |
| u64 now; |
| |
| if (!dl_task(curr) || !on_dl_rq(dl_se)) |
| return; |
| |
| /* |
| * Consumed budget is computed considering the time as |
| * observed by schedulable tasks (excluding time spent |
| * in hardirq context, etc.). Deadlines are instead |
| * computed using hard walltime. This seems to be the more |
| * natural solution, but the full ramifications of this |
| * approach need further study. |
| */ |
| now = rq_clock_task(rq); |
| delta_exec = now - curr->se.exec_start; |
| if (unlikely((s64)delta_exec <= 0)) { |
| if (unlikely(dl_se->dl_yielded)) |
| goto throttle; |
| return; |
| } |
| |
| schedstat_set(curr->se.statistics.exec_max, |
| max(curr->se.statistics.exec_max, delta_exec)); |
| |
| curr->se.sum_exec_runtime += delta_exec; |
| account_group_exec_runtime(curr, delta_exec); |
| |
| curr->se.exec_start = now; |
| cgroup_account_cputime(curr, delta_exec); |
| |
| if (dl_entity_is_special(dl_se)) |
| return; |
| |
| /* |
| * For tasks that participate in GRUB, we implement GRUB-PA: the |
| * spare reclaimed bandwidth is used to clock down frequency. |
| * |
| * For the others, we still need to scale reservation parameters |
| * according to current frequency and CPU maximum capacity. |
| */ |
| if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { |
| scaled_delta_exec = grub_reclaim(delta_exec, |
| rq, |
| &curr->dl); |
| } else { |
| unsigned long scale_freq = arch_scale_freq_capacity(cpu); |
| unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); |
| |
| scaled_delta_exec = cap_scale(delta_exec, scale_freq); |
| scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); |
| } |
| |
| dl_se->runtime -= scaled_delta_exec; |
| |
| throttle: |
| if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { |
| dl_se->dl_throttled = 1; |
| |
| /* If requested, inform the user about runtime overruns. */ |
| if (dl_runtime_exceeded(dl_se) && |
| (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) |
| dl_se->dl_overrun = 1; |
| |
| __dequeue_task_dl(rq, curr, 0); |
| if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) |
| enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); |
| |
| if (!is_leftmost(curr, &rq->dl)) |
| resched_curr(rq); |
| } |
| |
| /* |
| * Because -- for now -- we share the rt bandwidth, we need to |
| * account our runtime there too, otherwise actual rt tasks |
| * would be able to exceed the shared quota. |
| * |
| * Account to the root rt group for now. |
| * |
| * The solution we're working towards is having the RT groups scheduled |
| * using deadline servers -- however there's a few nasties to figure |
| * out before that can happen. |
| */ |
| if (rt_bandwidth_enabled()) { |
| struct rt_rq *rt_rq = &rq->rt; |
| |
| raw_spin_lock(&rt_rq->rt_runtime_lock); |
| /* |
| * We'll let actual RT tasks worry about the overflow here, we |
| * have our own CBS to keep us inline; only account when RT |
| * bandwidth is relevant. |
| */ |
| if (sched_rt_bandwidth_account(rt_rq)) |
| rt_rq->rt_time += delta_exec; |
| raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| } |
| } |
| |
| static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) |
| { |
| struct sched_dl_entity *dl_se = container_of(timer, |
| struct sched_dl_entity, |
| inactive_timer); |
| struct task_struct *p = dl_task_of(dl_se); |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| rq = task_rq_lock(p, &rf); |
| |
| sched_clock_tick(); |
| update_rq_clock(rq); |
| |
| if (!dl_task(p) || p->state == TASK_DEAD) { |
| struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); |
| |
| if (p->state == TASK_DEAD && dl_se->dl_non_contending) { |
| sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); |
| sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); |
| dl_se->dl_non_contending = 0; |
| } |
| |
| raw_spin_lock(&dl_b->lock); |
| __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); |
| raw_spin_unlock(&dl_b->lock); |
| __dl_clear_params(p); |
| |
| goto unlock; |
| } |
| if (dl_se->dl_non_contending == 0) |
| goto unlock; |
| |
| sub_running_bw(dl_se, &rq->dl); |
| dl_se->dl_non_contending = 0; |
| unlock: |
| task_rq_unlock(rq, p, &rf); |
| put_task_struct(p); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) |
| { |
| struct hrtimer *timer = &dl_se->inactive_timer; |
| |
| hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| timer->function = inactive_task_timer; |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) |
| { |
| struct rq *rq = rq_of_dl_rq(dl_rq); |
| |
| if (dl_rq->earliest_dl.curr == 0 || |
| dl_time_before(deadline, dl_rq->earliest_dl.curr)) { |
| dl_rq->earliest_dl.curr = deadline; |
| cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); |
| } |
| } |
| |
| static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) |
| { |
| struct rq *rq = rq_of_dl_rq(dl_rq); |
| |
| /* |
| * Since we may have removed our earliest (and/or next earliest) |
| * task we must recompute them. |
| */ |
| if (!dl_rq->dl_nr_running) { |
| dl_rq->earliest_dl.curr = 0; |
| dl_rq->earliest_dl.next = 0; |
| cpudl_clear(&rq->rd->cpudl, rq->cpu); |
| } else { |
| struct rb_node *leftmost = dl_rq->root.rb_leftmost; |
| struct sched_dl_entity *entry; |
| |
| entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); |
| dl_rq->earliest_dl.curr = entry->deadline; |
| cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); |
| } |
| } |
| |
| #else |
| |
| static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} |
| static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} |
| |
| #endif /* CONFIG_SMP */ |
| |
| static inline |
| void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| int prio = dl_task_of(dl_se)->prio; |
| u64 deadline = dl_se->deadline; |
| |
| WARN_ON(!dl_prio(prio)); |
| dl_rq->dl_nr_running++; |
| add_nr_running(rq_of_dl_rq(dl_rq), 1); |
| |
| inc_dl_deadline(dl_rq, deadline); |
| inc_dl_migration(dl_se, dl_rq); |
| } |
| |
| static inline |
| void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) |
| { |
| int prio = dl_task_of(dl_se)->prio; |
| |
| WARN_ON(!dl_prio(prio)); |
| WARN_ON(!dl_rq->dl_nr_running); |
| dl_rq->dl_nr_running--; |
| sub_nr_running(rq_of_dl_rq(dl_rq), 1); |
| |
| dec_dl_deadline(dl_rq, dl_se->deadline); |
| dec_dl_migration(dl_se, dl_rq); |
| } |
| |
| static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) |
| { |
| struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| struct rb_node **link = &dl_rq->root.rb_root.rb_node; |
| struct rb_node *parent = NULL; |
| struct sched_dl_entity *entry; |
| int leftmost = 1; |
| |
| BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); |
| |
| while (*link) { |
| parent = *link; |
| entry = rb_entry(parent, struct sched_dl_entity, rb_node); |
| if (dl_time_before(dl_se->deadline, entry->deadline)) |
| link = &parent->rb_left; |
| else { |
| link = &parent->rb_right; |
| leftmost = 0; |
| } |
| } |
| |
| rb_link_node(&dl_se->rb_node, parent, link); |
| rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost); |
| |
| inc_dl_tasks(dl_se, dl_rq); |
| } |
| |
| static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) |
| { |
| struct dl_rq *dl_rq = dl_rq_of_se(dl_se); |
| |
| if (RB_EMPTY_NODE(&dl_se->rb_node)) |
| return; |
| |
| rb_erase_cached(&dl_se->rb_node, &dl_rq->root); |
| RB_CLEAR_NODE(&dl_se->rb_node); |
| |
| dec_dl_tasks(dl_se, dl_rq); |
| } |
| |
| static void |
| enqueue_dl_entity(struct sched_dl_entity *dl_se, |
| struct sched_dl_entity *pi_se, int flags) |
| { |
| BUG_ON(on_dl_rq(dl_se)); |
| |
| /* |
| * If this is a wakeup or a new instance, the scheduling |
| * parameters of the task might need updating. Otherwise, |
| * we want a replenishment of its runtime. |
| */ |
| if (flags & ENQUEUE_WAKEUP) { |
| task_contending(dl_se, flags); |
| update_dl_entity(dl_se, pi_se); |
| } else if (flags & ENQUEUE_REPLENISH) { |
| replenish_dl_entity(dl_se, pi_se); |
| } else if ((flags & ENQUEUE_RESTORE) && |
| dl_time_before(dl_se->deadline, |
| rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { |
| setup_new_dl_entity(dl_se); |
| } |
| |
| __enqueue_dl_entity(dl_se); |
| } |
| |
| static void dequeue_dl_entity(struct sched_dl_entity *dl_se) |
| { |
| __dequeue_dl_entity(dl_se); |
| } |
| |
| static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| { |
| struct task_struct *pi_task = rt_mutex_get_top_task(p); |
| struct sched_dl_entity *pi_se = &p->dl; |
| |
| /* |
| * Use the scheduling parameters of the top pi-waiter task if: |
| * - we have a top pi-waiter which is a SCHED_DEADLINE task AND |
| * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is |
| * smaller than our deadline OR we are a !SCHED_DEADLINE task getting |
| * boosted due to a SCHED_DEADLINE pi-waiter). |
| * Otherwise we keep our runtime and deadline. |
| */ |
| if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) { |
| pi_se = &pi_task->dl; |
| } else if (!dl_prio(p->normal_prio)) { |
| /* |
| * Special case in which we have a !SCHED_DEADLINE task |
| * that is going to be deboosted, but exceeds its |
| * runtime while doing so. No point in replenishing |
| * it, as it's going to return back to its original |
| * scheduling class after this. |
| */ |
| BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); |
| return; |
| } |
| |
| /* |
| * Check if a constrained deadline task was activated |
| * after the deadline but before the next period. |
| * If that is the case, the task will be throttled and |
| * the replenishment timer will be set to the next period. |
| */ |
| if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) |
| dl_check_constrained_dl(&p->dl); |
| |
| if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { |
| add_rq_bw(&p->dl, &rq->dl); |
| add_running_bw(&p->dl, &rq->dl); |
| } |
| |
| /* |
| * If p is throttled, we do not enqueue it. In fact, if it exhausted |
| * its budget it needs a replenishment and, since it now is on |
| * its rq, the bandwidth timer callback (which clearly has not |
| * run yet) will take care of this. |
| * However, the active utilization does not depend on the fact |
| * that the task is on the runqueue or not (but depends on the |
| * task's state - in GRUB parlance, "inactive" vs "active contending"). |
| * In other words, even if a task is throttled its utilization must |
| * be counted in the active utilization; hence, we need to call |
| * add_running_bw(). |
| */ |
| if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { |
| if (flags & ENQUEUE_WAKEUP) |
| task_contending(&p->dl, flags); |
| |
| return; |
| } |
| |
| enqueue_dl_entity(&p->dl, pi_se, flags); |
| |
| if (!task_current(rq, p) && p->nr_cpus_allowed > 1) |
| enqueue_pushable_dl_task(rq, p); |
| } |
| |
| static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| { |
| dequeue_dl_entity(&p->dl); |
| dequeue_pushable_dl_task(rq, p); |
| } |
| |
| static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) |
| { |
| update_curr_dl(rq); |
| __dequeue_task_dl(rq, p, flags); |
| |
| if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { |
| sub_running_bw(&p->dl, &rq->dl); |
| sub_rq_bw(&p->dl, &rq->dl); |
| } |
| |
| /* |
| * This check allows to start the inactive timer (or to immediately |
| * decrease the active utilization, if needed) in two cases: |
| * when the task blocks and when it is terminating |
| * (p->state == TASK_DEAD). We can handle the two cases in the same |
| * way, because from GRUB's point of view the same thing is happening |
| * (the task moves from "active contending" to "active non contending" |
| * or "inactive") |
| */ |
| if (flags & DEQUEUE_SLEEP) |
| task_non_contending(p); |
| } |
| |
| /* |
| * Yield task semantic for -deadline tasks is: |
| * |
| * get off from the CPU until our next instance, with |
| * a new runtime. This is of little use now, since we |
| * don't have a bandwidth reclaiming mechanism. Anyway, |
| * bandwidth reclaiming is planned for the future, and |
| * yield_task_dl will indicate that some spare budget |
| * is available for other task instances to use it. |
| */ |
| static void yield_task_dl(struct rq *rq) |
| { |
| /* |
| * We make the task go to sleep until its current deadline by |
| * forcing its runtime to zero. This way, update_curr_dl() stops |
| * it and the bandwidth timer will wake it up and will give it |
| * new scheduling parameters (thanks to dl_yielded=1). |
| */ |
| rq->curr->dl.dl_yielded = 1; |
| |
| update_rq_clock(rq); |
| update_curr_dl(rq); |
| /* |
| * Tell update_rq_clock() that we've just updated, |
| * so we don't do microscopic update in schedule() |
| * and double the fastpath cost. |
| */ |
| rq_clock_skip_update(rq); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static int find_later_rq(struct task_struct *task); |
| |
| static int |
| select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) |
| { |
| struct task_struct *curr; |
| struct rq *rq; |
| |
| if (sd_flag != SD_BALANCE_WAKE) |
| goto out; |
| |
| rq = cpu_rq(cpu); |
| |
| rcu_read_lock(); |
| curr = READ_ONCE(rq->curr); /* unlocked access */ |
| |
| /* |
| * If we are dealing with a -deadline task, we must |
| * decide where to wake it up. |
| * If it has a later deadline and the current task |
| * on this rq can't move (provided the waking task |
| * can!) we prefer to send it somewhere else. On the |
| * other hand, if it has a shorter deadline, we |
| * try to make it stay here, it might be important. |
| */ |
| if (unlikely(dl_task(curr)) && |
| (curr->nr_cpus_allowed < 2 || |
| !dl_entity_preempt(&p->dl, &curr->dl)) && |
| (p->nr_cpus_allowed > 1)) { |
| int target = find_later_rq(p); |
| |
| if (target != -1 && |
| (dl_time_before(p->dl.deadline, |
| cpu_rq(target)->dl.earliest_dl.curr) || |
| (cpu_rq(target)->dl.dl_nr_running == 0))) |
| cpu = target; |
| } |
| rcu_read_unlock(); |
| |
| out: |
| return cpu; |
| } |
| |
| static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) |
| { |
| struct rq *rq; |
| |
| if (p->state != TASK_WAKING) |
| return; |
| |
| rq = task_rq(p); |
| /* |
| * Since p->state == TASK_WAKING, set_task_cpu() has been called |
| * from try_to_wake_up(). Hence, p->pi_lock is locked, but |
| * rq->lock is not... So, lock it |
| */ |
| raw_spin_lock(&rq->lock); |
| if (p->dl.dl_non_contending) { |
| sub_running_bw(&p->dl, &rq->dl); |
| p->dl.dl_non_contending = 0; |
| /* |
| * If the timer handler is currently running and the |
| * timer cannot be cancelled, inactive_task_timer() |
| * will see that dl_not_contending is not set, and |
| * will not touch the rq's active utilization, |
| * so we are still safe. |
| */ |
| if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) |
| put_task_struct(p); |
| } |
| sub_rq_bw(&p->dl, &rq->dl); |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) |
| { |
| /* |
| * Current can't be migrated, useless to reschedule, |
| * let's hope p can move out. |
| */ |
| if (rq->curr->nr_cpus_allowed == 1 || |
| !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) |
| return; |
| |
| /* |
| * p is migratable, so let's not schedule it and |
| * see if it is pushed or pulled somewhere else. |
| */ |
| if (p->nr_cpus_allowed != 1 && |
| cpudl_find(&rq->rd->cpudl, p, NULL)) |
| return; |
| |
| resched_curr(rq); |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * Only called when both the current and waking task are -deadline |
| * tasks. |
| */ |
| static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, |
| int flags) |
| { |
| if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { |
| resched_curr(rq); |
| return; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * In the unlikely case current and p have the same deadline |
| * let us try to decide what's the best thing to do... |
| */ |
| if ((p->dl.deadline == rq->curr->dl.deadline) && |
| !test_tsk_need_resched(rq->curr)) |
| check_preempt_equal_dl(rq, p); |
| #endif /* CONFIG_SMP */ |
| } |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| static void start_hrtick_dl(struct rq *rq, struct task_struct *p) |
| { |
| hrtick_start(rq, p->dl.runtime); |
| } |
| #else /* !CONFIG_SCHED_HRTICK */ |
| static void start_hrtick_dl(struct rq *rq, struct task_struct *p) |
| { |
| } |
| #endif |
| |
| static inline void set_next_task(struct rq *rq, struct task_struct *p) |
| { |
| p->se.exec_start = rq_clock_task(rq); |
| |
| /* You can't push away the running task */ |
| dequeue_pushable_dl_task(rq, p); |
| } |
| |
| static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, |
| struct dl_rq *dl_rq) |
| { |
| struct rb_node *left = rb_first_cached(&dl_rq->root); |
| |
| if (!left) |
| return NULL; |
| |
| return rb_entry(left, struct sched_dl_entity, rb_node); |
| } |
| |
| static struct task_struct * |
| pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| { |
| struct sched_dl_entity *dl_se; |
| struct task_struct *p; |
| struct dl_rq *dl_rq; |
| |
| dl_rq = &rq->dl; |
| |
| if (need_pull_dl_task(rq, prev)) { |
| /* |
| * This is OK, because current is on_cpu, which avoids it being |
| * picked for load-balance and preemption/IRQs are still |
| * disabled avoiding further scheduler activity on it and we're |
| * being very careful to re-start the picking loop. |
| */ |
| rq_unpin_lock(rq, rf); |
| pull_dl_task(rq); |
| rq_repin_lock(rq, rf); |
| /* |
| * pull_dl_task() can drop (and re-acquire) rq->lock; this |
| * means a stop task can slip in, in which case we need to |
| * re-start task selection. |
| */ |
| if (rq->stop && task_on_rq_queued(rq->stop)) |
| return RETRY_TASK; |
| } |
| |
| /* |
| * When prev is DL, we may throttle it in put_prev_task(). |
| * So, we update time before we check for dl_nr_running. |
| */ |
| if (prev->sched_class == &dl_sched_class) |
| update_curr_dl(rq); |
| |
| if (unlikely(!dl_rq->dl_nr_running)) |
| return NULL; |
| |
| put_prev_task(rq, prev); |
| |
| dl_se = pick_next_dl_entity(rq, dl_rq); |
| BUG_ON(!dl_se); |
| |
| p = dl_task_of(dl_se); |
| |
| set_next_task(rq, p); |
| |
| if (hrtick_enabled(rq)) |
| start_hrtick_dl(rq, p); |
| |
| deadline_queue_push_tasks(rq); |
| |
| if (rq->curr->sched_class != &dl_sched_class) |
| update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); |
| |
| return p; |
| } |
| |
| static void put_prev_task_dl(struct rq *rq, struct task_struct *p) |
| { |
| update_curr_dl(rq); |
| |
| update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); |
| if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) |
| enqueue_pushable_dl_task(rq, p); |
| } |
| |
| /* |
| * scheduler tick hitting a task of our scheduling class. |
| * |
| * NOTE: This function can be called remotely by the tick offload that |
| * goes along full dynticks. Therefore no local assumption can be made |
| * and everything must be accessed through the @rq and @curr passed in |
| * parameters. |
| */ |
| static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) |
| { |
| update_curr_dl(rq); |
| |
| update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); |
| /* |
| * Even when we have runtime, update_curr_dl() might have resulted in us |
| * not being the leftmost task anymore. In that case NEED_RESCHED will |
| * be set and schedule() will start a new hrtick for the next task. |
| */ |
| if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && |
| is_leftmost(p, &rq->dl)) |
| start_hrtick_dl(rq, p); |
| } |
| |
| static void task_fork_dl(struct task_struct *p) |
| { |
| /* |
| * SCHED_DEADLINE tasks cannot fork and this is achieved through |
| * sched_fork() |
| */ |
| } |
| |
| static void set_curr_task_dl(struct rq *rq) |
| { |
| set_next_task(rq, rq->curr); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| /* Only try algorithms three times */ |
| #define DL_MAX_TRIES 3 |
| |
| static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) |
| { |
| if (!task_running(rq, p) && |
| cpumask_test_cpu(cpu, p->cpus_ptr)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Return the earliest pushable rq's task, which is suitable to be executed |
| * on the CPU, NULL otherwise: |
| */ |
| static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) |
| { |
| struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; |
| struct task_struct *p = NULL; |
| |
| if (!has_pushable_dl_tasks(rq)) |
| return NULL; |
| |
| next_node: |
| if (next_node) { |
| p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); |
| |
| if (pick_dl_task(rq, p, cpu)) |
| return p; |
| |
| next_node = rb_next(next_node); |
| goto next_node; |
| } |
| |
| return NULL; |
| } |
| |
| static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); |
| |
| static int find_later_rq(struct task_struct *task) |
| { |
| struct sched_domain *sd; |
| struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); |
| int this_cpu = smp_processor_id(); |
| int cpu = task_cpu(task); |
| |
| /* Make sure the mask is initialized first */ |
| if (unlikely(!later_mask)) |
| return -1; |
| |
| if (task->nr_cpus_allowed == 1) |
| return -1; |
| |
| /* |
| * We have to consider system topology and task affinity |
| * first, then we can look for a suitable CPU. |
| */ |
| if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) |
| return -1; |
| |
| /* |
| * If we are here, some targets have been found, including |
| * the most suitable which is, among the runqueues where the |
| * current tasks have later deadlines than the task's one, the |
| * rq with the latest possible one. |
| * |
| * Now we check how well this matches with task's |
| * affinity and system topology. |
| * |
| * The last CPU where the task run is our first |
| * guess, since it is most likely cache-hot there. |
| */ |
| if (cpumask_test_cpu(cpu, later_mask)) |
| return cpu; |
| /* |
| * Check if this_cpu is to be skipped (i.e., it is |
| * not in the mask) or not. |
| */ |
| if (!cpumask_test_cpu(this_cpu, later_mask)) |
| this_cpu = -1; |
| |
| rcu_read_lock(); |
| for_each_domain(cpu, sd) { |
| if (sd->flags & SD_WAKE_AFFINE) { |
| int best_cpu; |
| |
| /* |
| * If possible, preempting this_cpu is |
| * cheaper than migrating. |
| */ |
| if (this_cpu != -1 && |
| cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { |
| rcu_read_unlock(); |
| return this_cpu; |
| } |
| |
| best_cpu = cpumask_first_and(later_mask, |
| sched_domain_span(sd)); |
| /* |
| * Last chance: if a CPU being in both later_mask |
| * and current sd span is valid, that becomes our |
| * choice. Of course, the latest possible CPU is |
| * already under consideration through later_mask. |
| */ |
| if (best_cpu < nr_cpu_ids) { |
| rcu_read_unlock(); |
| return best_cpu; |
| } |
| } |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * At this point, all our guesses failed, we just return |
| * 'something', and let the caller sort the things out. |
| */ |
| if (this_cpu != -1) |
| return this_cpu; |
| |
| cpu = cpumask_any(later_mask); |
| if (cpu < nr_cpu_ids) |
| return cpu; |
| |
| return -1; |
| } |
| |
| /* Locks the rq it finds */ |
| static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) |
| { |
| struct rq *later_rq = NULL; |
| int tries; |
| int cpu; |
| |
| for (tries = 0; tries < DL_MAX_TRIES; tries++) { |
| cpu = find_later_rq(task); |
| |
| if ((cpu == -1) || (cpu == rq->cpu)) |
| break; |
| |
| later_rq = cpu_rq(cpu); |
| |
| if (later_rq->dl.dl_nr_running && |
| !dl_time_before(task->dl.deadline, |
| later_rq->dl.earliest_dl.curr)) { |
| /* |
| * Target rq has tasks of equal or earlier deadline, |
| * retrying does not release any lock and is unlikely |
| * to yield a different result. |
| */ |
| later_rq = NULL; |
| break; |
| } |
| |
| /* Retry if something changed. */ |
| if (double_lock_balance(rq, later_rq)) { |
| if (unlikely(task_rq(task) != rq || |
| !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) || |
| task_running(rq, task) || |
| !dl_task(task) || |
| !task_on_rq_queued(task))) { |
| double_unlock_balance(rq, later_rq); |
| later_rq = NULL; |
| break; |
| } |
| } |
| |
| /* |
| * If the rq we found has no -deadline task, or |
| * its earliest one has a later deadline than our |
| * task, the rq is a good one. |
| */ |
| if (!later_rq->dl.dl_nr_running || |
| dl_time_before(task->dl.deadline, |
| later_rq->dl.earliest_dl.curr)) |
| break; |
| |
| /* Otherwise we try again. */ |
| double_unlock_balance(rq, later_rq); |
| later_rq = NULL; |
| } |
| |
| return later_rq; |
| } |
| |
| static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) |
| { |
| struct task_struct *p; |
| |
| if (!has_pushable_dl_tasks(rq)) |
| return NULL; |
| |
| p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, |
| struct task_struct, pushable_dl_tasks); |
| |
| BUG_ON(rq->cpu != task_cpu(p)); |
| BUG_ON(task_current(rq, p)); |
| BUG_ON(p->nr_cpus_allowed <= 1); |
| |
| BUG_ON(!task_on_rq_queued(p)); |
| BUG_ON(!dl_task(p)); |
| |
| return p; |
| } |
| |
| /* |
| * See if the non running -deadline tasks on this rq |
| * can be sent to some other CPU where they can preempt |
| * and start executing. |
| */ |
| static int push_dl_task(struct rq *rq) |
| { |
| struct task_struct *next_task; |
| struct rq *later_rq; |
| int ret = 0; |
| |
| if (!rq->dl.overloaded) |
| return 0; |
| |
| next_task = pick_next_pushable_dl_task(rq); |
| if (!next_task) |
| return 0; |
| |
| retry: |
| if (WARN_ON(next_task == rq->curr)) |
| return 0; |
| |
| /* |
| * If next_task preempts rq->curr, and rq->curr |
| * can move away, it makes sense to just reschedule |
| * without going further in pushing next_task. |
| */ |
| if (dl_task(rq->curr) && |
| dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && |
| rq->curr->nr_cpus_allowed > 1) { |
| resched_curr(rq); |
| return 0; |
| } |
| |
| /* We might release rq lock */ |
| get_task_struct(next_task); |
| |
| /* Will lock the rq it'll find */ |
| later_rq = find_lock_later_rq(next_task, rq); |
| if (!later_rq) { |
| struct task_struct *task; |
| |
| /* |
| * We must check all this again, since |
| * find_lock_later_rq releases rq->lock and it is |
| * then possible that next_task has migrated. |
| */ |
| task = pick_next_pushable_dl_task(rq); |
| if (task == next_task) { |
| /* |
| * The task is still there. We don't try |
| * again, some other CPU will pull it when ready. |
| */ |
| goto out; |
| } |
| |
| if (!task) |
| /* No more tasks */ |
| goto out; |
| |
| put_task_struct(next_task); |
| next_task = task; |
| goto retry; |
| } |
| |
| deactivate_task(rq, next_task, 0); |
| sub_running_bw(&next_task->dl, &rq->dl); |
| sub_rq_bw(&next_task->dl, &rq->dl); |
| set_task_cpu(next_task, later_rq->cpu); |
| add_rq_bw(&next_task->dl, &later_rq->dl); |
| |
| /* |
| * Update the later_rq clock here, because the clock is used |
| * by the cpufreq_update_util() inside __add_running_bw(). |
| */ |
| update_rq_clock(later_rq); |
| add_running_bw(&next_task->dl, &later_rq->dl); |
| activate_task(later_rq, next_task, ENQUEUE_NOCLOCK); |
| ret = 1; |
| |
| resched_curr(later_rq); |
| |
| double_unlock_balance(rq, later_rq); |
| |
| out: |
| put_task_struct(next_task); |
| |
| return ret; |
| } |
| |
| static void push_dl_tasks(struct rq *rq) |
| { |
| /* push_dl_task() will return true if it moved a -deadline task */ |
| while (push_dl_task(rq)) |
| ; |
| } |
| |
| static void pull_dl_task(struct rq *this_rq) |
| { |
| int this_cpu = this_rq->cpu, cpu; |
| struct task_struct *p; |
| bool resched = false; |
| struct rq *src_rq; |
| u64 dmin = LONG_MAX; |
| |
| if (likely(!dl_overloaded(this_rq))) |
| return; |
| |
| /* |
| * Match the barrier from dl_set_overloaded; this guarantees that if we |
| * see overloaded we must also see the dlo_mask bit. |
| */ |
| smp_rmb(); |
| |
| for_each_cpu(cpu, this_rq->rd->dlo_mask) { |
| if (this_cpu == cpu) |
| continue; |
| |
| src_rq = cpu_rq(cpu); |
| |
| /* |
| * It looks racy, abd it is! However, as in sched_rt.c, |
| * we are fine with this. |
| */ |
| if (this_rq->dl.dl_nr_running && |
| dl_time_before(this_rq->dl.earliest_dl.curr, |
| src_rq->dl.earliest_dl.next)) |
| continue; |
| |
| /* Might drop this_rq->lock */ |
| double_lock_balance(this_rq, src_rq); |
| |
| /* |
| * If there are no more pullable tasks on the |
| * rq, we're done with it. |
| */ |
| if (src_rq->dl.dl_nr_running <= 1) |
| goto skip; |
| |
| p = pick_earliest_pushable_dl_task(src_rq, this_cpu); |
| |
| /* |
| * We found a task to be pulled if: |
| * - it preempts our current (if there's one), |
| * - it will preempt the last one we pulled (if any). |
| */ |
| if (p && dl_time_before(p->dl.deadline, dmin) && |
| (!this_rq->dl.dl_nr_running || |
| dl_time_before(p->dl.deadline, |
| this_rq->dl.earliest_dl.curr))) { |
| WARN_ON(p == src_rq->curr); |
| WARN_ON(!task_on_rq_queued(p)); |
| |
| /* |
| * Then we pull iff p has actually an earlier |
| * deadline than the current task of its runqueue. |
| */ |
| if (dl_time_before(p->dl.deadline, |
| src_rq->curr->dl.deadline)) |
| goto skip; |
| |
| resched = true; |
| |
| deactivate_task(src_rq, p, 0); |
| sub_running_bw(&p->dl, &src_rq->dl); |
| sub_rq_bw(&p->dl, &src_rq->dl); |
| set_task_cpu(p, this_cpu); |
| add_rq_bw(&p->dl, &this_rq->dl); |
| add_running_bw(&p->dl, &this_rq->dl); |
| activate_task(this_rq, p, 0); |
| dmin = p->dl.deadline; |
| |
| /* Is there any other task even earlier? */ |
| } |
| skip: |
| double_unlock_balance(this_rq, src_rq); |
| } |
| |
| if (resched) |
| resched_curr(this_rq); |
| } |
| |
| /* |
| * Since the task is not running and a reschedule is not going to happen |
| * anytime soon on its runqueue, we try pushing it away now. |
| */ |
| static void task_woken_dl(struct rq *rq, struct task_struct *p) |
| { |
| if (!task_running(rq, p) && |
| !test_tsk_need_resched(rq->curr) && |
| p->nr_cpus_allowed > 1 && |
| dl_task(rq->curr) && |
| (rq->curr->nr_cpus_allowed < 2 || |
| !dl_entity_preempt(&p->dl, &rq->curr->dl))) { |
| push_dl_tasks(rq); |
| } |
| } |
| |
| static void set_cpus_allowed_dl(struct task_struct *p, |
| const struct cpumask *new_mask) |
| { |
| struct root_domain *src_rd; |
| struct rq *rq; |
| |
| BUG_ON(!dl_task(p)); |
| |
| rq = task_rq(p); |
| src_rd = rq->rd; |
| /* |
| * Migrating a SCHED_DEADLINE task between exclusive |
| * cpusets (different root_domains) entails a bandwidth |
| * update. We already made space for us in the destination |
| * domain (see cpuset_can_attach()). |
| */ |
| if (!cpumask_intersects(src_rd->span, new_mask)) { |
| struct dl_bw *src_dl_b; |
| |
| src_dl_b = dl_bw_of(cpu_of(rq)); |
| /* |
| * We now free resources of the root_domain we are migrating |
| * off. In the worst case, sched_setattr() may temporary fail |
| * until we complete the update. |
| */ |
| raw_spin_lock(&src_dl_b->lock); |
| __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); |
| raw_spin_unlock(&src_dl_b->lock); |
| } |
| |
| set_cpus_allowed_common(p, new_mask); |
| } |
| |
| /* Assumes rq->lock is held */ |
| static void rq_online_dl(struct rq *rq) |
| { |
| if (rq->dl.overloaded) |
| dl_set_overload(rq); |
| |
| cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); |
| if (rq->dl.dl_nr_running > 0) |
| cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); |
| } |
| |
| /* Assumes rq->lock is held */ |
| static void rq_offline_dl(struct rq *rq) |
| { |
| if (rq->dl.overloaded) |
| dl_clear_overload(rq); |
| |
| cpudl_clear(&rq->rd->cpudl, rq->cpu); |
| cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); |
| } |
| |
| void __init init_sched_dl_class(void) |
| { |
| unsigned int i; |
| |
| for_each_possible_cpu(i) |
| zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), |
| GFP_KERNEL, cpu_to_node(i)); |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| static void switched_from_dl(struct rq *rq, struct task_struct *p) |
| { |
| /* |
| * task_non_contending() can start the "inactive timer" (if the 0-lag |
| * time is in the future). If the task switches back to dl before |
| * the "inactive timer" fires, it can continue to consume its current |
| * runtime using its current deadline. If it stays outside of |
| * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() |
| * will reset the task parameters. |
| */ |
| if (task_on_rq_queued(p) && p->dl.dl_runtime) |
| task_non_contending(p); |
| |
| if (!task_on_rq_queued(p)) { |
| /* |
| * Inactive timer is armed. However, p is leaving DEADLINE and |
| * might migrate away from this rq while continuing to run on |
| * some other class. We need to remove its contribution from |
| * this rq running_bw now, or sub_rq_bw (below) will complain. |
| */ |
| if (p->dl.dl_non_contending) |
| sub_running_bw(&p->dl, &rq->dl); |
| sub_rq_bw(&p->dl, &rq->dl); |
| } |
| |
| /* |
| * We cannot use inactive_task_timer() to invoke sub_running_bw() |
| * at the 0-lag time, because the task could have been migrated |
| * while SCHED_OTHER in the meanwhile. |
| */ |
| if (p->dl.dl_non_contending) |
| p->dl.dl_non_contending = 0; |
| |
| /* |
| * Since this might be the only -deadline task on the rq, |
| * this is the right place to try to pull some other one |
| * from an overloaded CPU, if any. |
| */ |
| if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) |
| return; |
| |
| deadline_queue_pull_task(rq); |
| } |
| |
| /* |
| * When switching to -deadline, we may overload the rq, then |
| * we try to push someone off, if possible. |
| */ |
| static void switched_to_dl(struct rq *rq, struct task_struct *p) |
| { |
| if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) |
| put_task_struct(p); |
| |
| /* If p is not queued we will update its parameters at next wakeup. */ |
| if (!task_on_rq_queued(p)) { |
| add_rq_bw(&p->dl, &rq->dl); |
| |
| return; |
| } |
| |
| if (rq->curr != p) { |
| #ifdef CONFIG_SMP |
| if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) |
| deadline_queue_push_tasks(rq); |
| #endif |
| if (dl_task(rq->curr)) |
| check_preempt_curr_dl(rq, p, 0); |
| else |
| resched_curr(rq); |
| } |
| } |
| |
| /* |
| * If the scheduling parameters of a -deadline task changed, |
| * a push or pull operation might be needed. |
| */ |
| static void prio_changed_dl(struct rq *rq, struct task_struct *p, |
| int oldprio) |
| { |
| if (task_on_rq_queued(p) || rq->curr == p) { |
| #ifdef CONFIG_SMP |
| /* |
| * This might be too much, but unfortunately |
| * we don't have the old deadline value, and |
| * we can't argue if the task is increasing |
| * or lowering its prio, so... |
| */ |
| if (!rq->dl.overloaded) |
| deadline_queue_pull_task(rq); |
| |
| /* |
| * If we now have a earlier deadline task than p, |
| * then reschedule, provided p is still on this |
| * runqueue. |
| */ |
| if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) |
| resched_curr(rq); |
| #else |
| /* |
| * Again, we don't know if p has a earlier |
| * or later deadline, so let's blindly set a |
| * (maybe not needed) rescheduling point. |
| */ |
| resched_curr(rq); |
| #endif /* CONFIG_SMP */ |
| } |
| } |
| |
| const struct sched_class dl_sched_class = { |
| .next = &rt_sched_class, |
| .enqueue_task = enqueue_task_dl, |
| .dequeue_task = dequeue_task_dl, |
| .yield_task = yield_task_dl, |
| |
| .check_preempt_curr = check_preempt_curr_dl, |
| |
| .pick_next_task = pick_next_task_dl, |
| .put_prev_task = put_prev_task_dl, |
| |
| #ifdef CONFIG_SMP |
| .select_task_rq = select_task_rq_dl, |
| .migrate_task_rq = migrate_task_rq_dl, |
| .set_cpus_allowed = set_cpus_allowed_dl, |
| .rq_online = rq_online_dl, |
| .rq_offline = rq_offline_dl, |
| .task_woken = task_woken_dl, |
| #endif |
| |
| .set_curr_task = set_curr_task_dl, |
| .task_tick = task_tick_dl, |
| .task_fork = task_fork_dl, |
| |
| .prio_changed = prio_changed_dl, |
| .switched_from = switched_from_dl, |
| .switched_to = switched_to_dl, |
| |
| .update_curr = update_curr_dl, |
| }; |
| |
| int sched_dl_global_validate(void) |
| { |
| u64 runtime = global_rt_runtime(); |
| u64 period = global_rt_period(); |
| u64 new_bw = to_ratio(period, runtime); |
| struct dl_bw *dl_b; |
| int cpu, ret = 0; |
| unsigned long flags; |
| |
| /* |
| * Here we want to check the bandwidth not being set to some |
| * value smaller than the currently allocated bandwidth in |
| * any of the root_domains. |
| * |
| * FIXME: Cycling on all the CPUs is overdoing, but simpler than |
| * cycling on root_domains... Discussion on different/better |
| * solutions is welcome! |
| */ |
| for_each_possible_cpu(cpu) { |
| rcu_read_lock_sched(); |
| dl_b = dl_bw_of(cpu); |
| |
| raw_spin_lock_irqsave(&dl_b->lock, flags); |
| if (new_bw < dl_b->total_bw) |
| ret = -EBUSY; |
| raw_spin_unlock_irqrestore(&dl_b->lock, flags); |
| |
| rcu_read_unlock_sched(); |
| |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) |
| { |
| if (global_rt_runtime() == RUNTIME_INF) { |
| dl_rq->bw_ratio = 1 << RATIO_SHIFT; |
| dl_rq->extra_bw = 1 << BW_SHIFT; |
| } else { |
| dl_rq->bw_ratio = to_ratio(global_rt_runtime(), |
| global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); |
| dl_rq->extra_bw = to_ratio(global_rt_period(), |
| global_rt_runtime()); |
| } |
| } |
| |
| void sched_dl_do_global(void) |
| { |
| u64 new_bw = -1; |
| struct dl_bw *dl_b; |
| int cpu; |
| unsigned long flags; |
| |
| def_dl_bandwidth.dl_period = global_rt_period(); |
| def_dl_bandwidth.dl_runtime = global_rt_runtime(); |
| |
| if (global_rt_runtime() != RUNTIME_INF) |
| new_bw = to_ratio(global_rt_period(), global_rt_runtime()); |
| |
| /* |
| * FIXME: As above... |
| */ |
| for_each_possible_cpu(cpu) { |
| rcu_read_lock_sched(); |
| dl_b = dl_bw_of(cpu); |
| |
| raw_spin_lock_irqsave(&dl_b->lock, flags); |
| dl_b->bw = new_bw; |
| raw_spin_unlock_irqrestore(&dl_b->lock, flags); |
| |
| rcu_read_unlock_sched(); |
| init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); |
| } |
| } |
| |
| /* |
| * We must be sure that accepting a new task (or allowing changing the |
| * parameters of an existing one) is consistent with the bandwidth |
| * constraints. If yes, this function also accordingly updates the currently |
| * allocated bandwidth to reflect the new situation. |
| * |
| * This function is called while holding p's rq->lock. |
| */ |
| int sched_dl_overflow(struct task_struct *p, int policy, |
| const struct sched_attr *attr) |
| { |
| struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); |
| u64 period = attr->sched_period ?: attr->sched_deadline; |
| u64 runtime = attr->sched_runtime; |
| u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; |
| int cpus, err = -1; |
| |
| if (attr->sched_flags & SCHED_FLAG_SUGOV) |
| return 0; |
| |
| /* !deadline task may carry old deadline bandwidth */ |
| if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) |
| return 0; |
| |
| /* |
| * Either if a task, enters, leave, or stays -deadline but changes |
| * its parameters, we may need to update accordingly the total |
| * allocated bandwidth of the container. |
| */ |
| raw_spin_lock(&dl_b->lock); |
| cpus = dl_bw_cpus(task_cpu(p)); |
| if (dl_policy(policy) && !task_has_dl_policy(p) && |
| !__dl_overflow(dl_b, cpus, 0, new_bw)) { |
| if (hrtimer_active(&p->dl.inactive_timer)) |
| __dl_sub(dl_b, p->dl.dl_bw, cpus); |
| __dl_add(dl_b, new_bw, cpus); |
| err = 0; |
| } else if (dl_policy(policy) && task_has_dl_policy(p) && |
| !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { |
| /* |
| * XXX this is slightly incorrect: when the task |
| * utilization decreases, we should delay the total |
| * utilization change until the task's 0-lag point. |
| * But this would require to set the task's "inactive |
| * timer" when the task is not inactive. |
| */ |
| __dl_sub(dl_b, p->dl.dl_bw, cpus); |
| __dl_add(dl_b, new_bw, cpus); |
| dl_change_utilization(p, new_bw); |
| err = 0; |
| } else if (!dl_policy(policy) && task_has_dl_policy(p)) { |
| /* |
| * Do not decrease the total deadline utilization here, |
| * switched_from_dl() will take care to do it at the correct |
| * (0-lag) time. |
| */ |
| err = 0; |
| } |
| raw_spin_unlock(&dl_b->lock); |
| |
| return err; |
| } |
| |
| /* |
| * This function initializes the sched_dl_entity of a newly becoming |
| * SCHED_DEADLINE task. |
| * |
| * Only the static values are considered here, the actual runtime and the |
| * absolute deadline will be properly calculated when the task is enqueued |
| * for the first time with its new policy. |
| */ |
| void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) |
| { |
| struct sched_dl_entity *dl_se = &p->dl; |
| |
| dl_se->dl_runtime = attr->sched_runtime; |
| dl_se->dl_deadline = attr->sched_deadline; |
| dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; |
| dl_se->flags = attr->sched_flags; |
| dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); |
| dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); |
| } |
| |
| void __getparam_dl(struct task_struct *p, struct sched_attr *attr) |
| { |
| struct sched_dl_entity *dl_se = &p->dl; |
| |
| attr->sched_priority = p->rt_priority; |
| attr->sched_runtime = dl_se->dl_runtime; |
| attr->sched_deadline = dl_se->dl_deadline; |
| attr->sched_period = dl_se->dl_period; |
| attr->sched_flags = dl_se->flags; |
| } |
| |
| /* |
| * This function validates the new parameters of a -deadline task. |
| * We ask for the deadline not being zero, and greater or equal |
| * than the runtime, as well as the period of being zero or |
| * greater than deadline. Furthermore, we have to be sure that |
| * user parameters are above the internal resolution of 1us (we |
| * check sched_runtime only since it is always the smaller one) and |
| * below 2^63 ns (we have to check both sched_deadline and |
| * sched_period, as the latter can be zero). |
| */ |
| bool __checkparam_dl(const struct sched_attr *attr) |
| { |
| /* special dl tasks don't actually use any parameter */ |
| if (attr->sched_flags & SCHED_FLAG_SUGOV) |
| return true; |
| |
| /* deadline != 0 */ |
| if (attr->sched_deadline == 0) |
| return false; |
| |
| /* |
| * Since we truncate DL_SCALE bits, make sure we're at least |
| * that big. |
| */ |
| if (attr->sched_runtime < (1ULL << DL_SCALE)) |
| return false; |
| |
| /* |
| * Since we use the MSB for wrap-around and sign issues, make |
| * sure it's not set (mind that period can be equal to zero). |
| */ |
| if (attr->sched_deadline & (1ULL << 63) || |
| attr->sched_period & (1ULL << 63)) |
| return false; |
| |
| /* runtime <= deadline <= period (if period != 0) */ |
| if ((attr->sched_period != 0 && |
| attr->sched_period < attr->sched_deadline) || |
| attr->sched_deadline < attr->sched_runtime) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * This function clears the sched_dl_entity static params. |
| */ |
| void __dl_clear_params(struct task_struct *p) |
| { |
| struct sched_dl_entity *dl_se = &p->dl; |
| |
| dl_se->dl_runtime = 0; |
| dl_se->dl_deadline = 0; |
| dl_se->dl_period = 0; |
| dl_se->flags = 0; |
| dl_se->dl_bw = 0; |
| dl_se->dl_density = 0; |
| |
| dl_se->dl_throttled = 0; |
| dl_se->dl_yielded = 0; |
| dl_se->dl_non_contending = 0; |
| dl_se->dl_overrun = 0; |
| } |
| |
| bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) |
| { |
| struct sched_dl_entity *dl_se = &p->dl; |
| |
| if (dl_se->dl_runtime != attr->sched_runtime || |
| dl_se->dl_deadline != attr->sched_deadline || |
| dl_se->dl_period != attr->sched_period || |
| dl_se->flags != attr->sched_flags) |
| return true; |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_SMP |
| int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) |
| { |
| unsigned int dest_cpu; |
| struct dl_bw *dl_b; |
| bool overflow; |
| int cpus, ret; |
| unsigned long flags; |
| |
| dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); |
| |
| rcu_read_lock_sched(); |
| dl_b = dl_bw_of(dest_cpu); |
| raw_spin_lock_irqsave(&dl_b->lock, flags); |
| cpus = dl_bw_cpus(dest_cpu); |
| overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); |
| if (overflow) { |
| ret = -EBUSY; |
| } else { |
| /* |
| * We reserve space for this task in the destination |
| * root_domain, as we can't fail after this point. |
| * We will free resources in the source root_domain |
| * later on (see set_cpus_allowed_dl()). |
| */ |
| __dl_add(dl_b, p->dl.dl_bw, cpus); |
| ret = 0; |
| } |
| raw_spin_unlock_irqrestore(&dl_b->lock, flags); |
| rcu_read_unlock_sched(); |
| |
| return ret; |
| } |
| |
| int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, |
| const struct cpumask *trial) |
| { |
| int ret = 1, trial_cpus; |
| struct dl_bw *cur_dl_b; |
| unsigned long flags; |
| |
| rcu_read_lock_sched(); |
| cur_dl_b = dl_bw_of(cpumask_any(cur)); |
| trial_cpus = cpumask_weight(trial); |
| |
| raw_spin_lock_irqsave(&cur_dl_b->lock, flags); |
| if (cur_dl_b->bw != -1 && |
| cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) |
| ret = 0; |
| raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); |
| rcu_read_unlock_sched(); |
| |
| return ret; |
| } |
| |
| bool dl_cpu_busy(unsigned int cpu) |
| { |
| unsigned long flags; |
| struct dl_bw *dl_b; |
| bool overflow; |
| int cpus; |
| |
| rcu_read_lock_sched(); |
| dl_b = dl_bw_of(cpu); |
| raw_spin_lock_irqsave(&dl_b->lock, flags); |
| cpus = dl_bw_cpus(cpu); |
| overflow = __dl_overflow(dl_b, cpus, 0, 0); |
| raw_spin_unlock_irqrestore(&dl_b->lock, flags); |
| rcu_read_unlock_sched(); |
| |
| return overflow; |
| } |
| #endif |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| void print_dl_stats(struct seq_file *m, int cpu) |
| { |
| print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); |
| } |
| #endif /* CONFIG_SCHED_DEBUG */ |