blob: 4a6af42641415b258882b59955fd222b1ad046d1 [file] [log] [blame]
/* QLogic qed NIC Driver
* Copyright (c) 2015 QLogic Corporation
*
* This software is available under the terms of the GNU General Public License
* (GPL) Version 2, available from the file COPYING in the main directory of
* this source tree.
*/
#include "qed_hw.h"
#include "qed_int.h"
#include "qed_reg_addr.h"
#include "qed_sriov.h"
#include "qed_vf.h"
bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
int rel_vf_id, bool b_enabled_only)
{
if (!p_hwfn->pf_iov_info) {
DP_NOTICE(p_hwfn->cdev, "No iov info\n");
return false;
}
if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
(rel_vf_id < 0))
return false;
if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
b_enabled_only)
return false;
return true;
}
static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
u16 relative_vf_id,
bool b_enabled_only)
{
struct qed_vf_info *vf = NULL;
if (!p_hwfn->pf_iov_info) {
DP_NOTICE(p_hwfn->cdev, "No iov info\n");
return NULL;
}
if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, b_enabled_only))
vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
else
DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
relative_vf_id);
return vf;
}
static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
{
struct qed_hw_sriov_info *iov = cdev->p_iov_info;
int pos = iov->pos;
DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
if (iov->num_vfs) {
DP_VERBOSE(cdev,
QED_MSG_IOV,
"Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
iov->num_vfs = 0;
}
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
pci_read_config_dword(cdev->pdev,
pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
DP_VERBOSE(cdev,
QED_MSG_IOV,
"IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
iov->nres,
iov->cap,
iov->ctrl,
iov->total_vfs,
iov->initial_vfs,
iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
/* Some sanity checks */
if (iov->num_vfs > NUM_OF_VFS(cdev) ||
iov->total_vfs > NUM_OF_VFS(cdev)) {
/* This can happen only due to a bug. In this case we set
* num_vfs to zero to avoid memory corruption in the code that
* assumes max number of vfs
*/
DP_NOTICE(cdev,
"IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
iov->num_vfs);
iov->num_vfs = 0;
iov->total_vfs = 0;
}
return 0;
}
static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_igu_block *p_sb;
u16 sb_id;
u32 val;
if (!p_hwfn->hw_info.p_igu_info) {
DP_ERR(p_hwfn,
"qed_iov_clear_vf_igu_blocks IGU Info not initialized\n");
return;
}
for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
sb_id++) {
p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
if ((p_sb->status & QED_IGU_STATUS_FREE) &&
!(p_sb->status & QED_IGU_STATUS_PF)) {
val = qed_rd(p_hwfn, p_ptt,
IGU_REG_MAPPING_MEMORY + sb_id * 4);
SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
qed_wr(p_hwfn, p_ptt,
IGU_REG_MAPPING_MEMORY + 4 * sb_id, val);
}
}
}
static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
struct qed_bulletin_content *p_bulletin_virt;
dma_addr_t req_p, rply_p, bulletin_p;
union pfvf_tlvs *p_reply_virt_addr;
union vfpf_tlvs *p_req_virt_addr;
u8 idx = 0;
memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
req_p = p_iov_info->mbx_msg_phys_addr;
p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
rply_p = p_iov_info->mbx_reply_phys_addr;
p_bulletin_virt = p_iov_info->p_bulletins;
bulletin_p = p_iov_info->bulletins_phys;
if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
DP_ERR(p_hwfn,
"qed_iov_setup_vfdb called without allocating mem first\n");
return;
}
for (idx = 0; idx < p_iov->total_vfs; idx++) {
struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
u32 concrete;
vf->vf_mbx.req_virt = p_req_virt_addr + idx;
vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
vf->state = VF_STOPPED;
vf->b_init = false;
vf->bulletin.phys = idx *
sizeof(struct qed_bulletin_content) +
bulletin_p;
vf->bulletin.p_virt = p_bulletin_virt + idx;
vf->bulletin.size = sizeof(struct qed_bulletin_content);
vf->relative_vf_id = idx;
vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
vf->concrete_fid = concrete;
vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
(vf->abs_vf_id << 8);
vf->vport_id = idx + 1;
}
}
static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
void **p_v_addr;
u16 num_vfs = 0;
num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
/* Allocate PF Mailbox buffer (per-VF) */
p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
p_v_addr = &p_iov_info->mbx_msg_virt_addr;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_msg_size,
&p_iov_info->mbx_msg_phys_addr,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
/* Allocate PF Mailbox Reply buffer (per-VF) */
p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
p_v_addr = &p_iov_info->mbx_reply_virt_addr;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_reply_size,
&p_iov_info->mbx_reply_phys_addr,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
num_vfs;
p_v_addr = &p_iov_info->p_bulletins;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->bulletins_size,
&p_iov_info->bulletins_phys,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
p_iov_info->mbx_msg_virt_addr,
(u64) p_iov_info->mbx_msg_phys_addr,
p_iov_info->mbx_reply_virt_addr,
(u64) p_iov_info->mbx_reply_phys_addr,
p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
return 0;
}
static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_msg_size,
p_iov_info->mbx_msg_virt_addr,
p_iov_info->mbx_msg_phys_addr);
if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_reply_size,
p_iov_info->mbx_reply_virt_addr,
p_iov_info->mbx_reply_phys_addr);
if (p_iov_info->p_bulletins)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->bulletins_size,
p_iov_info->p_bulletins,
p_iov_info->bulletins_phys);
}
int qed_iov_alloc(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_sriov;
if (!IS_PF_SRIOV(p_hwfn)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"No SR-IOV - no need for IOV db\n");
return 0;
}
p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
if (!p_sriov) {
DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sriov'\n");
return -ENOMEM;
}
p_hwfn->pf_iov_info = p_sriov;
return qed_iov_allocate_vfdb(p_hwfn);
}
void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
return;
qed_iov_setup_vfdb(p_hwfn);
qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt);
}
void qed_iov_free(struct qed_hwfn *p_hwfn)
{
if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
qed_iov_free_vfdb(p_hwfn);
kfree(p_hwfn->pf_iov_info);
}
}
void qed_iov_free_hw_info(struct qed_dev *cdev)
{
kfree(cdev->p_iov_info);
cdev->p_iov_info = NULL;
}
int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
{
struct qed_dev *cdev = p_hwfn->cdev;
int pos;
int rc;
/* Learn the PCI configuration */
pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
PCI_EXT_CAP_ID_SRIOV);
if (!pos) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
return 0;
}
/* Allocate a new struct for IOV information */
cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
if (!cdev->p_iov_info) {
DP_NOTICE(p_hwfn, "Can't support IOV due to lack of memory\n");
return -ENOMEM;
}
cdev->p_iov_info->pos = pos;
rc = qed_iov_pci_cfg_info(cdev);
if (rc)
return rc;
/* We want PF IOV to be synonemous with the existance of p_iov_info;
* In case the capability is published but there are no VFs, simply
* de-allocate the struct.
*/
if (!cdev->p_iov_info->total_vfs) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"IOV capabilities, but no VFs are published\n");
kfree(cdev->p_iov_info);
cdev->p_iov_info = NULL;
return 0;
}
/* Calculate the first VF index - this is a bit tricky; Basically,
* VFs start at offset 16 relative to PF0, and 2nd engine VFs begin
* after the first engine's VFs.
*/
cdev->p_iov_info->first_vf_in_pf = p_hwfn->cdev->p_iov_info->offset +
p_hwfn->abs_pf_id - 16;
if (QED_PATH_ID(p_hwfn))
cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"First VF in hwfn 0x%08x\n",
cdev->p_iov_info->first_vf_in_pf);
return 0;
}
static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
{
/* Check PF supports sriov */
if (!IS_QED_SRIOV(p_hwfn->cdev) || !IS_PF_SRIOV_ALLOC(p_hwfn))
return false;
/* Check VF validity */
if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true))
return false;
return true;
}
static bool qed_iov_tlv_supported(u16 tlvtype)
{
return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
}
/* place a given tlv on the tlv buffer, continuing current tlv list */
void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
{
struct channel_tlv *tl = (struct channel_tlv *)*offset;
tl->type = type;
tl->length = length;
/* Offset should keep pointing to next TLV (the end of the last) */
*offset += length;
/* Return a pointer to the start of the added tlv */
return *offset - length;
}
/* list the types and lengths of the tlvs on the buffer */
void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
{
u16 i = 1, total_length = 0;
struct channel_tlv *tlv;
do {
tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
/* output tlv */
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"TLV number %d: type %d, length %d\n",
i, tlv->type, tlv->length);
if (tlv->type == CHANNEL_TLV_LIST_END)
return;
/* Validate entry - protect against malicious VFs */
if (!tlv->length) {
DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
return;
}
total_length += tlv->length;
if (total_length >= sizeof(struct tlv_buffer_size)) {
DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
return;
}
i++;
} while (1);
}
static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
u16 length, u8 status)
{
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct qed_dmae_params params;
u8 eng_vf_id;
mbx->reply_virt->default_resp.hdr.status = status;
qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
eng_vf_id = p_vf->abs_vf_id;
memset(&params, 0, sizeof(struct qed_dmae_params));
params.flags = QED_DMAE_FLAG_VF_DST;
params.dst_vfid = eng_vf_id;
qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
mbx->req_virt->first_tlv.reply_address +
sizeof(u64),
(sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
&params);
qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
mbx->req_virt->first_tlv.reply_address,
sizeof(u64) / 4, &params);
REG_WR(p_hwfn,
GTT_BAR0_MAP_REG_USDM_RAM +
USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
}
static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf_info,
u16 type, u16 length, u8 status)
{
struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
mbx->offset = (u8 *)mbx->reply_virt;
qed_add_tlv(p_hwfn, &mbx->offset, type, length);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
}
static void qed_iov_process_mbx_dummy_resp(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_NONE,
sizeof(struct pfvf_def_resp_tlv),
PFVF_STATUS_SUCCESS);
}
static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, int vfid)
{
struct qed_iov_vf_mbx *mbx;
struct qed_vf_info *p_vf;
int i;
p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf)
return;
mbx = &p_vf->vf_mbx;
/* qed_iov_process_mbx_request */
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"qed_iov_process_mbx_req vfid %d\n", p_vf->abs_vf_id);
mbx->first_tlv = mbx->req_virt->first_tlv;
/* check if tlv type is known */
if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
qed_iov_process_mbx_dummy_resp(p_hwfn, p_ptt, p_vf);
} else {
/* unknown TLV - this may belong to a VF driver from the future
* - a version written after this PF driver was written, which
* supports features unknown as of yet. Too bad since we don't
* support them. Or this may be because someone wrote a crappy
* VF driver and is sending garbage over the channel.
*/
DP_ERR(p_hwfn,
"unknown TLV. type %d length %d. first 20 bytes of mailbox buffer:\n",
mbx->first_tlv.tl.type, mbx->first_tlv.tl.length);
for (i = 0; i < 20; i++) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"%x ",
mbx->req_virt->tlv_buf_size.tlv_buffer[i]);
}
}
}
void qed_iov_pf_add_pending_events(struct qed_hwfn *p_hwfn, u8 vfid)
{
u64 add_bit = 1ULL << (vfid % 64);
p_hwfn->pf_iov_info->pending_events[vfid / 64] |= add_bit;
}
static void qed_iov_pf_get_and_clear_pending_events(struct qed_hwfn *p_hwfn,
u64 *events)
{
u64 *p_pending_events = p_hwfn->pf_iov_info->pending_events;
memcpy(events, p_pending_events, sizeof(u64) * QED_VF_ARRAY_LENGTH);
memset(p_pending_events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
}
static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
u16 abs_vfid, struct regpair *vf_msg)
{
u8 min = (u8)p_hwfn->cdev->p_iov_info->first_vf_in_pf;
struct qed_vf_info *p_vf;
if (!qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min)) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"Got a message from VF [abs 0x%08x] that cannot be handled by PF\n",
abs_vfid);
return 0;
}
p_vf = &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min];
/* List the physical address of the request so that handler
* could later on copy the message from it.
*/
p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
/* Mark the event and schedule the workqueue */
qed_iov_pf_add_pending_events(p_hwfn, p_vf->relative_vf_id);
qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
return 0;
}
int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
u8 opcode, __le16 echo, union event_ring_data *data)
{
switch (opcode) {
case COMMON_EVENT_VF_PF_CHANNEL:
return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
&data->vf_pf_channel.msg_addr);
default:
DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
opcode);
return -EINVAL;
}
}
u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
{
struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
u16 i;
if (!p_iov)
goto out;
for (i = rel_vf_id; i < p_iov->total_vfs; i++)
if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true))
return i;
out:
return MAX_NUM_VFS;
}
static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
int vfid)
{
struct qed_dmae_params params;
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info)
return -EINVAL;
memset(&params, 0, sizeof(struct qed_dmae_params));
params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
params.src_vfid = vf_info->abs_vf_id;
if (qed_dmae_host2host(p_hwfn, ptt,
vf_info->vf_mbx.pending_req,
vf_info->vf_mbx.req_phys,
sizeof(union vfpf_tlvs) / 4, &params)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Failed to copy message from VF 0x%02x\n", vfid);
return -EIO;
}
return 0;
}
/**
* qed_schedule_iov - schedules IOV task for VF and PF
* @hwfn: hardware function pointer
* @flag: IOV flag for VF/PF
*/
void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
{
smp_mb__before_atomic();
set_bit(flag, &hwfn->iov_task_flags);
smp_mb__after_atomic();
DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
}
static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
{
u64 events[QED_VF_ARRAY_LENGTH];
struct qed_ptt *ptt;
int i;
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Can't acquire PTT; re-scheduling\n");
qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
return;
}
qed_iov_pf_get_and_clear_pending_events(hwfn, events);
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
events[0], events[1], events[2]);
qed_for_each_vf(hwfn, i) {
/* Skip VFs with no pending messages */
if (!(events[i / 64] & (1ULL << (i % 64))))
continue;
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
/* Copy VF's message to PF's request buffer for that VF */
if (qed_iov_copy_vf_msg(hwfn, ptt, i))
continue;
qed_iov_process_mbx_req(hwfn, ptt, i);
}
qed_ptt_release(hwfn, ptt);
}
void qed_iov_pf_task(struct work_struct *work)
{
struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
iov_task.work);
if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
return;
if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
qed_handle_vf_msg(hwfn);
}
void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
{
int i;
for_each_hwfn(cdev, i) {
if (!cdev->hwfns[i].iov_wq)
continue;
if (schedule_first) {
qed_schedule_iov(&cdev->hwfns[i],
QED_IOV_WQ_STOP_WQ_FLAG);
cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
}
flush_workqueue(cdev->hwfns[i].iov_wq);
destroy_workqueue(cdev->hwfns[i].iov_wq);
}
}
int qed_iov_wq_start(struct qed_dev *cdev)
{
char name[NAME_SIZE];
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
/* PFs needs a dedicated workqueue only if they support IOV. */
if (!IS_PF_SRIOV(p_hwfn))
continue;
snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
cdev->pdev->bus->number,
PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
p_hwfn->iov_wq = create_singlethread_workqueue(name);
if (!p_hwfn->iov_wq) {
DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
return -ENOMEM;
}
INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
}
return 0;
}