| /* |
| * intc.c -- support for the old ColdFire interrupt controller |
| * |
| * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com> |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of this archive |
| * for more details. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <asm/traps.h> |
| #include <asm/coldfire.h> |
| #include <asm/mcfsim.h> |
| |
| /* |
| * The mapping of irq number to a mask register bit is not one-to-one. |
| * The irq numbers are either based on "level" of interrupt or fixed |
| * for an autovector-able interrupt. So we keep a local data structure |
| * that maps from irq to mask register. Not all interrupts will have |
| * an IMR bit. |
| */ |
| unsigned char mcf_irq2imr[NR_IRQS]; |
| |
| /* |
| * Define the minimum and maximum external interrupt numbers. |
| * This is also used as the "level" interrupt numbers. |
| */ |
| #define EIRQ1 25 |
| #define EIRQ7 31 |
| |
| /* |
| * In the early version 2 core ColdFire parts the IMR register was 16 bits |
| * in size. Version 3 (and later version 2) core parts have a 32 bit |
| * sized IMR register. Provide some size independent methods to access the |
| * IMR register. |
| */ |
| #ifdef MCFSIM_IMR_IS_16BITS |
| |
| void mcf_setimr(int index) |
| { |
| u16 imr; |
| imr = __raw_readw(MCFSIM_IMR); |
| __raw_writew(imr | (0x1 << index), MCFSIM_IMR); |
| } |
| |
| void mcf_clrimr(int index) |
| { |
| u16 imr; |
| imr = __raw_readw(MCFSIM_IMR); |
| __raw_writew(imr & ~(0x1 << index), MCFSIM_IMR); |
| } |
| |
| void mcf_maskimr(unsigned int mask) |
| { |
| u16 imr; |
| imr = __raw_readw(MCFSIM_IMR); |
| imr |= mask; |
| __raw_writew(imr, MCFSIM_IMR); |
| } |
| |
| #else |
| |
| void mcf_setimr(int index) |
| { |
| u32 imr; |
| imr = __raw_readl(MCFSIM_IMR); |
| __raw_writel(imr | (0x1 << index), MCFSIM_IMR); |
| } |
| |
| void mcf_clrimr(int index) |
| { |
| u32 imr; |
| imr = __raw_readl(MCFSIM_IMR); |
| __raw_writel(imr & ~(0x1 << index), MCFSIM_IMR); |
| } |
| |
| void mcf_maskimr(unsigned int mask) |
| { |
| u32 imr; |
| imr = __raw_readl(MCFSIM_IMR); |
| imr |= mask; |
| __raw_writel(imr, MCFSIM_IMR); |
| } |
| |
| #endif |
| |
| /* |
| * Interrupts can be "vectored" on the ColdFire cores that support this old |
| * interrupt controller. That is, the device raising the interrupt can also |
| * supply the vector number to interrupt through. The AVR register of the |
| * interrupt controller enables or disables this for each external interrupt, |
| * so provide generic support for this. Setting this up is out-of-band for |
| * the interrupt system API's, and needs to be done by the driver that |
| * supports this device. Very few devices actually use this. |
| */ |
| void mcf_autovector(int irq) |
| { |
| #ifdef MCFSIM_AVR |
| if ((irq >= EIRQ1) && (irq <= EIRQ7)) { |
| u8 avec; |
| avec = __raw_readb(MCFSIM_AVR); |
| avec |= (0x1 << (irq - EIRQ1 + 1)); |
| __raw_writeb(avec, MCFSIM_AVR); |
| } |
| #endif |
| } |
| |
| static void intc_irq_mask(struct irq_data *d) |
| { |
| if (mcf_irq2imr[d->irq]) |
| mcf_setimr(mcf_irq2imr[d->irq]); |
| } |
| |
| static void intc_irq_unmask(struct irq_data *d) |
| { |
| if (mcf_irq2imr[d->irq]) |
| mcf_clrimr(mcf_irq2imr[d->irq]); |
| } |
| |
| static int intc_irq_set_type(struct irq_data *d, unsigned int type) |
| { |
| return 0; |
| } |
| |
| static struct irq_chip intc_irq_chip = { |
| .name = "CF-INTC", |
| .irq_mask = intc_irq_mask, |
| .irq_unmask = intc_irq_unmask, |
| .irq_set_type = intc_irq_set_type, |
| }; |
| |
| void __init init_IRQ(void) |
| { |
| int irq; |
| |
| mcf_maskimr(0xffffffff); |
| |
| for (irq = 0; (irq < NR_IRQS); irq++) { |
| irq_set_chip(irq, &intc_irq_chip); |
| irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH); |
| irq_set_handler(irq, handle_level_irq); |
| } |
| } |
| |