blob: 2a0e90fe2abce14f049fb3c3eb083e306f4bd94c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2016-20 Intel Corporation. */
#include <linux/lockdep.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/shmem_fs.h>
#include <linux/suspend.h>
#include <linux/sched/mm.h>
#include <asm/sgx.h>
#include "encl.h"
#include "encls.h"
#include "sgx.h"
static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
struct sgx_backing *backing);
#define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
/*
* 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
* determine the page index associated with the first PCMD entry
* within a PCMD page.
*/
#define PCMD_FIRST_MASK GENMASK(4, 0)
/**
* reclaimer_writing_to_pcmd() - Query if any enclave page associated with
* a PCMD page is in process of being reclaimed.
* @encl: Enclave to which PCMD page belongs
* @start_addr: Address of enclave page using first entry within the PCMD page
*
* When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
* stored. The PCMD data of a reclaimed enclave page contains enough
* information for the processor to verify the page at the time
* it is loaded back into the Enclave Page Cache (EPC).
*
* The backing storage to which enclave pages are reclaimed is laid out as
* follows:
* Encrypted enclave pages:SECS page:PCMD pages
*
* Each PCMD page contains the PCMD metadata of
* PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
*
* A PCMD page can only be truncated if it is (a) empty, and (b) not in the
* process of getting data (and thus soon being non-empty). (b) is tested with
* a check if an enclave page sharing the PCMD page is in the process of being
* reclaimed.
*
* The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
* intends to reclaim that enclave page - it means that the PCMD page
* associated with that enclave page is about to get some data and thus
* even if the PCMD page is empty, it should not be truncated.
*
* Context: Enclave mutex (&sgx_encl->lock) must be held.
* Return: 1 if the reclaimer is about to write to the PCMD page
* 0 if the reclaimer has no intention to write to the PCMD page
*/
static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
unsigned long start_addr)
{
int reclaimed = 0;
int i;
/*
* PCMD_FIRST_MASK is based on number of PCMD entries within
* PCMD page being 32.
*/
BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
for (i = 0; i < PCMDS_PER_PAGE; i++) {
struct sgx_encl_page *entry;
unsigned long addr;
addr = start_addr + i * PAGE_SIZE;
/*
* Stop when reaching the SECS page - it does not
* have a page_array entry and its reclaim is
* started and completed with enclave mutex held so
* it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
* flag.
*/
if (addr == encl->base + encl->size)
break;
entry = xa_load(&encl->page_array, PFN_DOWN(addr));
if (!entry)
continue;
/*
* VA page slot ID uses same bit as the flag so it is important
* to ensure that the page is not already in backing store.
*/
if (entry->epc_page &&
(entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
reclaimed = 1;
break;
}
}
return reclaimed;
}
/*
* Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
* follow right after the EPC data in the backing storage. In addition to the
* visible enclave pages, there's one extra page slot for SECS, before PCMD
* structs.
*/
static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
unsigned long page_index)
{
pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
return epc_end_off + page_index * sizeof(struct sgx_pcmd);
}
/*
* Free a page from the backing storage in the given page index.
*/
static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
{
struct inode *inode = file_inode(encl->backing);
shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
}
/*
* ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
* Pages" in the SDM.
*/
static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
struct sgx_epc_page *epc_page,
struct sgx_epc_page *secs_page)
{
unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
struct sgx_encl *encl = encl_page->encl;
pgoff_t page_index, page_pcmd_off;
unsigned long pcmd_first_page;
struct sgx_pageinfo pginfo;
struct sgx_backing b;
bool pcmd_page_empty;
u8 *pcmd_page;
int ret;
if (secs_page)
page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
else
page_index = PFN_DOWN(encl->size);
/*
* Address of enclave page using the first entry within the PCMD page.
*/
pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
ret = sgx_encl_lookup_backing(encl, page_index, &b);
if (ret)
return ret;
pginfo.addr = encl_page->desc & PAGE_MASK;
pginfo.contents = (unsigned long)kmap_local_page(b.contents);
pcmd_page = kmap_local_page(b.pcmd);
pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
if (secs_page)
pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
else
pginfo.secs = 0;
ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
if (ret) {
if (encls_failed(ret))
ENCLS_WARN(ret, "ELDU");
ret = -EFAULT;
}
memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
set_page_dirty(b.pcmd);
/*
* The area for the PCMD in the page was zeroed above. Check if the
* whole page is now empty meaning that all PCMD's have been zeroed:
*/
pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
kunmap_local(pcmd_page);
kunmap_local((void *)(unsigned long)pginfo.contents);
get_page(b.pcmd);
sgx_encl_put_backing(&b);
sgx_encl_truncate_backing_page(encl, page_index);
if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
pcmd_page = kmap_local_page(b.pcmd);
if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
pr_warn("PCMD page not empty after truncate.\n");
kunmap_local(pcmd_page);
}
put_page(b.pcmd);
return ret;
}
static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
struct sgx_epc_page *secs_page)
{
unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
struct sgx_encl *encl = encl_page->encl;
struct sgx_epc_page *epc_page;
int ret;
epc_page = sgx_alloc_epc_page(encl_page, false);
if (IS_ERR(epc_page))
return epc_page;
ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
if (ret) {
sgx_encl_free_epc_page(epc_page);
return ERR_PTR(ret);
}
sgx_free_va_slot(encl_page->va_page, va_offset);
list_move(&encl_page->va_page->list, &encl->va_pages);
encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
encl_page->epc_page = epc_page;
return epc_page;
}
static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl,
struct sgx_encl_page *entry)
{
struct sgx_epc_page *epc_page;
/* Entry successfully located. */
if (entry->epc_page) {
if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
return ERR_PTR(-EBUSY);
return entry;
}
if (!(encl->secs.epc_page)) {
epc_page = sgx_encl_eldu(&encl->secs, NULL);
if (IS_ERR(epc_page))
return ERR_CAST(epc_page);
}
epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
if (IS_ERR(epc_page))
return ERR_CAST(epc_page);
encl->secs_child_cnt++;
sgx_mark_page_reclaimable(entry->epc_page);
return entry;
}
static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl,
unsigned long addr,
unsigned long vm_flags)
{
unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
struct sgx_encl_page *entry;
entry = xa_load(&encl->page_array, PFN_DOWN(addr));
if (!entry)
return ERR_PTR(-EFAULT);
/*
* Verify that the page has equal or higher build time
* permissions than the VMA permissions (i.e. the subset of {VM_READ,
* VM_WRITE, VM_EXECUTE} in vma->vm_flags).
*/
if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
return ERR_PTR(-EFAULT);
return __sgx_encl_load_page(encl, entry);
}
struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
unsigned long addr)
{
struct sgx_encl_page *entry;
entry = xa_load(&encl->page_array, PFN_DOWN(addr));
if (!entry)
return ERR_PTR(-EFAULT);
return __sgx_encl_load_page(encl, entry);
}
/**
* sgx_encl_eaug_page() - Dynamically add page to initialized enclave
* @vma: VMA obtained from fault info from where page is accessed
* @encl: enclave accessing the page
* @addr: address that triggered the page fault
*
* When an initialized enclave accesses a page with no backing EPC page
* on a SGX2 system then the EPC can be added dynamically via the SGX2
* ENCLS[EAUG] instruction.
*
* Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed
* successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise.
*/
static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma,
struct sgx_encl *encl, unsigned long addr)
{
vm_fault_t vmret = VM_FAULT_SIGBUS;
struct sgx_pageinfo pginfo = {0};
struct sgx_encl_page *encl_page;
struct sgx_epc_page *epc_page;
struct sgx_va_page *va_page;
unsigned long phys_addr;
u64 secinfo_flags;
int ret;
if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags))
return VM_FAULT_SIGBUS;
/*
* Ignore internal permission checking for dynamically added pages.
* They matter only for data added during the pre-initialization
* phase. The enclave decides the permissions by the means of
* EACCEPT, EACCEPTCOPY and EMODPE.
*/
secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X;
encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags);
if (IS_ERR(encl_page))
return VM_FAULT_OOM;
mutex_lock(&encl->lock);
epc_page = sgx_alloc_epc_page(encl_page, false);
if (IS_ERR(epc_page)) {
if (PTR_ERR(epc_page) == -EBUSY)
vmret = VM_FAULT_NOPAGE;
goto err_out_unlock;
}
va_page = sgx_encl_grow(encl, false);
if (IS_ERR(va_page)) {
if (PTR_ERR(va_page) == -EBUSY)
vmret = VM_FAULT_NOPAGE;
goto err_out_epc;
}
if (va_page)
list_add(&va_page->list, &encl->va_pages);
ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc),
encl_page, GFP_KERNEL);
/*
* If ret == -EBUSY then page was created in another flow while
* running without encl->lock
*/
if (ret)
goto err_out_shrink;
pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page);
pginfo.addr = encl_page->desc & PAGE_MASK;
pginfo.metadata = 0;
ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page));
if (ret)
goto err_out;
encl_page->encl = encl;
encl_page->epc_page = epc_page;
encl_page->type = SGX_PAGE_TYPE_REG;
encl->secs_child_cnt++;
sgx_mark_page_reclaimable(encl_page->epc_page);
phys_addr = sgx_get_epc_phys_addr(epc_page);
/*
* Do not undo everything when creating PTE entry fails - next #PF
* would find page ready for a PTE.
*/
vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
if (vmret != VM_FAULT_NOPAGE) {
mutex_unlock(&encl->lock);
return VM_FAULT_SIGBUS;
}
mutex_unlock(&encl->lock);
return VM_FAULT_NOPAGE;
err_out:
xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc));
err_out_shrink:
sgx_encl_shrink(encl, va_page);
err_out_epc:
sgx_encl_free_epc_page(epc_page);
err_out_unlock:
mutex_unlock(&encl->lock);
kfree(encl_page);
return vmret;
}
static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
{
unsigned long addr = (unsigned long)vmf->address;
struct vm_area_struct *vma = vmf->vma;
struct sgx_encl_page *entry;
unsigned long phys_addr;
struct sgx_encl *encl;
vm_fault_t ret;
encl = vma->vm_private_data;
/*
* It's very unlikely but possible that allocating memory for the
* mm_list entry of a forked process failed in sgx_vma_open(). When
* this happens, vm_private_data is set to NULL.
*/
if (unlikely(!encl))
return VM_FAULT_SIGBUS;
/*
* The page_array keeps track of all enclave pages, whether they
* are swapped out or not. If there is no entry for this page and
* the system supports SGX2 then it is possible to dynamically add
* a new enclave page. This is only possible for an initialized
* enclave that will be checked for right away.
*/
if (cpu_feature_enabled(X86_FEATURE_SGX2) &&
(!xa_load(&encl->page_array, PFN_DOWN(addr))))
return sgx_encl_eaug_page(vma, encl, addr);
mutex_lock(&encl->lock);
entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags);
if (IS_ERR(entry)) {
mutex_unlock(&encl->lock);
if (PTR_ERR(entry) == -EBUSY)
return VM_FAULT_NOPAGE;
return VM_FAULT_SIGBUS;
}
phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
if (ret != VM_FAULT_NOPAGE) {
mutex_unlock(&encl->lock);
return VM_FAULT_SIGBUS;
}
sgx_encl_test_and_clear_young(vma->vm_mm, entry);
mutex_unlock(&encl->lock);
return VM_FAULT_NOPAGE;
}
static void sgx_vma_open(struct vm_area_struct *vma)
{
struct sgx_encl *encl = vma->vm_private_data;
/*
* It's possible but unlikely that vm_private_data is NULL. This can
* happen in a grandchild of a process, when sgx_encl_mm_add() had
* failed to allocate memory in this callback.
*/
if (unlikely(!encl))
return;
if (sgx_encl_mm_add(encl, vma->vm_mm))
vma->vm_private_data = NULL;
}
/**
* sgx_encl_may_map() - Check if a requested VMA mapping is allowed
* @encl: an enclave pointer
* @start: lower bound of the address range, inclusive
* @end: upper bound of the address range, exclusive
* @vm_flags: VMA flags
*
* Iterate through the enclave pages contained within [@start, @end) to verify
* that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
* do not contain any permissions that are not contained in the build time
* permissions of any of the enclave pages within the given address range.
*
* An enclave creator must declare the strongest permissions that will be
* needed for each enclave page. This ensures that mappings have the identical
* or weaker permissions than the earlier declared permissions.
*
* Return: 0 on success, -EACCES otherwise
*/
int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
unsigned long end, unsigned long vm_flags)
{
unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
struct sgx_encl_page *page;
unsigned long count = 0;
int ret = 0;
XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
/* Disallow mapping outside enclave's address range. */
if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) &&
(start < encl->base || end > encl->base + encl->size))
return -EACCES;
/*
* Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
* conflict with the enclave page permissions.
*/
if (current->personality & READ_IMPLIES_EXEC)
return -EACCES;
mutex_lock(&encl->lock);
xas_lock(&xas);
xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
if (~page->vm_max_prot_bits & vm_prot_bits) {
ret = -EACCES;
break;
}
/* Reschedule on every XA_CHECK_SCHED iteration. */
if (!(++count % XA_CHECK_SCHED)) {
xas_pause(&xas);
xas_unlock(&xas);
mutex_unlock(&encl->lock);
cond_resched();
mutex_lock(&encl->lock);
xas_lock(&xas);
}
}
xas_unlock(&xas);
mutex_unlock(&encl->lock);
return ret;
}
static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
unsigned long end, unsigned long newflags)
{
return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
}
static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
unsigned long addr, void *data)
{
unsigned long offset = addr & ~PAGE_MASK;
int ret;
ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
if (ret)
return -EIO;
return 0;
}
static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
unsigned long addr, void *data)
{
unsigned long offset = addr & ~PAGE_MASK;
int ret;
ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
if (ret)
return -EIO;
return 0;
}
/*
* Load an enclave page to EPC if required, and take encl->lock.
*/
static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
unsigned long addr,
unsigned long vm_flags)
{
struct sgx_encl_page *entry;
for ( ; ; ) {
mutex_lock(&encl->lock);
entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags);
if (PTR_ERR(entry) != -EBUSY)
break;
mutex_unlock(&encl->lock);
}
if (IS_ERR(entry))
mutex_unlock(&encl->lock);
return entry;
}
static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write)
{
struct sgx_encl *encl = vma->vm_private_data;
struct sgx_encl_page *entry = NULL;
char data[sizeof(unsigned long)];
unsigned long align;
int offset;
int cnt;
int ret = 0;
int i;
/*
* If process was forked, VMA is still there but vm_private_data is set
* to NULL.
*/
if (!encl)
return -EFAULT;
if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
return -EFAULT;
for (i = 0; i < len; i += cnt) {
entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
vma->vm_flags);
if (IS_ERR(entry)) {
ret = PTR_ERR(entry);
break;
}
align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
offset = (addr + i) & (sizeof(unsigned long) - 1);
cnt = sizeof(unsigned long) - offset;
cnt = min(cnt, len - i);
ret = sgx_encl_debug_read(encl, entry, align, data);
if (ret)
goto out;
if (write) {
memcpy(data + offset, buf + i, cnt);
ret = sgx_encl_debug_write(encl, entry, align, data);
if (ret)
goto out;
} else {
memcpy(buf + i, data + offset, cnt);
}
out:
mutex_unlock(&encl->lock);
if (ret)
break;
}
return ret < 0 ? ret : i;
}
const struct vm_operations_struct sgx_vm_ops = {
.fault = sgx_vma_fault,
.mprotect = sgx_vma_mprotect,
.open = sgx_vma_open,
.access = sgx_vma_access,
};
/**
* sgx_encl_release - Destroy an enclave instance
* @ref: address of a kref inside &sgx_encl
*
* Used together with kref_put(). Frees all the resources associated with the
* enclave and the instance itself.
*/
void sgx_encl_release(struct kref *ref)
{
struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1);
struct sgx_va_page *va_page;
struct sgx_encl_page *entry;
unsigned long count = 0;
XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base));
xas_lock(&xas);
xas_for_each(&xas, entry, max_page_index) {
if (entry->epc_page) {
/*
* The page and its radix tree entry cannot be freed
* if the page is being held by the reclaimer.
*/
if (sgx_unmark_page_reclaimable(entry->epc_page))
continue;
sgx_encl_free_epc_page(entry->epc_page);
encl->secs_child_cnt--;
entry->epc_page = NULL;
}
kfree(entry);
/*
* Invoke scheduler on every XA_CHECK_SCHED iteration
* to prevent soft lockups.
*/
if (!(++count % XA_CHECK_SCHED)) {
xas_pause(&xas);
xas_unlock(&xas);
cond_resched();
xas_lock(&xas);
}
}
xas_unlock(&xas);
xa_destroy(&encl->page_array);
if (!encl->secs_child_cnt && encl->secs.epc_page) {
sgx_encl_free_epc_page(encl->secs.epc_page);
encl->secs.epc_page = NULL;
}
while (!list_empty(&encl->va_pages)) {
va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
list);
list_del(&va_page->list);
sgx_encl_free_epc_page(va_page->epc_page);
kfree(va_page);
}
if (encl->backing)
fput(encl->backing);
cleanup_srcu_struct(&encl->srcu);
WARN_ON_ONCE(!list_empty(&encl->mm_list));
/* Detect EPC page leak's. */
WARN_ON_ONCE(encl->secs_child_cnt);
WARN_ON_ONCE(encl->secs.epc_page);
kfree(encl);
}
/*
* 'mm' is exiting and no longer needs mmu notifications.
*/
static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
struct sgx_encl_mm *tmp = NULL;
/*
* The enclave itself can remove encl_mm. Note, objects can't be moved
* off an RCU protected list, but deletion is ok.
*/
spin_lock(&encl_mm->encl->mm_lock);
list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
if (tmp == encl_mm) {
list_del_rcu(&encl_mm->list);
break;
}
}
spin_unlock(&encl_mm->encl->mm_lock);
if (tmp == encl_mm) {
synchronize_srcu(&encl_mm->encl->srcu);
mmu_notifier_put(mn);
}
}
static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
{
struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
/* 'encl_mm' is going away, put encl_mm->encl reference: */
kref_put(&encl_mm->encl->refcount, sgx_encl_release);
kfree(encl_mm);
}
static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
.release = sgx_mmu_notifier_release,
.free_notifier = sgx_mmu_notifier_free,
};
static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
struct mm_struct *mm)
{
struct sgx_encl_mm *encl_mm = NULL;
struct sgx_encl_mm *tmp;
int idx;
idx = srcu_read_lock(&encl->srcu);
list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
if (tmp->mm == mm) {
encl_mm = tmp;
break;
}
}
srcu_read_unlock(&encl->srcu, idx);
return encl_mm;
}
int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
{
struct sgx_encl_mm *encl_mm;
int ret;
/*
* Even though a single enclave may be mapped into an mm more than once,
* each 'mm' only appears once on encl->mm_list. This is guaranteed by
* holding the mm's mmap lock for write before an mm can be added or
* remove to an encl->mm_list.
*/
mmap_assert_write_locked(mm);
/*
* It's possible that an entry already exists in the mm_list, because it
* is removed only on VFS release or process exit.
*/
if (sgx_encl_find_mm(encl, mm))
return 0;
encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
if (!encl_mm)
return -ENOMEM;
/* Grab a refcount for the encl_mm->encl reference: */
kref_get(&encl->refcount);
encl_mm->encl = encl;
encl_mm->mm = mm;
encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
if (ret) {
kfree(encl_mm);
return ret;
}
spin_lock(&encl->mm_lock);
list_add_rcu(&encl_mm->list, &encl->mm_list);
/* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */
smp_wmb();
encl->mm_list_version++;
spin_unlock(&encl->mm_lock);
return 0;
}
/**
* sgx_encl_cpumask() - Query which CPUs might be accessing the enclave
* @encl: the enclave
*
* Some SGX functions require that no cached linear-to-physical address
* mappings are present before they can succeed. For example, ENCLS[EWB]
* copies a page from the enclave page cache to regular main memory but
* it fails if it cannot ensure that there are no cached
* linear-to-physical address mappings referring to the page.
*
* SGX hardware flushes all cached linear-to-physical mappings on a CPU
* when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave
* Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical
* address mappings are cleared but coordination with the tracking done within
* the SGX hardware is needed to support the SGX functions that depend on this
* cache clearing.
*
* When the ENCLS[ETRACK] function is issued on an enclave the hardware
* tracks threads operating inside the enclave at that time. The SGX
* hardware tracking require that all the identified threads must have
* exited the enclave in order to flush the mappings before a function such
* as ENCLS[EWB] will be permitted
*
* The following flow is used to support SGX functions that require that
* no cached linear-to-physical address mappings are present:
* 1) Execute ENCLS[ETRACK] to initiate hardware tracking.
* 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be
* accessing the enclave.
* 3) Send IPI to identified CPUs, kicking them out of the enclave and
* thus flushing all locally cached linear-to-physical address mappings.
* 4) Execute SGX function.
*
* Context: It is required to call this function after ENCLS[ETRACK].
* This will ensure that if any new mm appears (racing with
* sgx_encl_mm_add()) then the new mm will enter into the
* enclave with fresh linear-to-physical address mappings.
*
* It is required that all IPIs are completed before a new
* ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3
* of the above flow with the enclave's mutex.
*
* Return: cpumask of CPUs that might be accessing @encl
*/
const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl)
{
cpumask_t *cpumask = &encl->cpumask;
struct sgx_encl_mm *encl_mm;
int idx;
cpumask_clear(cpumask);
idx = srcu_read_lock(&encl->srcu);
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
if (!mmget_not_zero(encl_mm->mm))
continue;
cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
mmput_async(encl_mm->mm);
}
srcu_read_unlock(&encl->srcu, idx);
return cpumask;
}
static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
pgoff_t index)
{
struct address_space *mapping = encl->backing->f_mapping;
gfp_t gfpmask = mapping_gfp_mask(mapping);
return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
}
/**
* __sgx_encl_get_backing() - Pin the backing storage
* @encl: an enclave pointer
* @page_index: enclave page index
* @backing: data for accessing backing storage for the page
*
* Pin the backing storage pages for storing the encrypted contents and Paging
* Crypto MetaData (PCMD) of an enclave page.
*
* Return:
* 0 on success,
* -errno otherwise.
*/
static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
struct sgx_backing *backing)
{
pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
struct page *contents;
struct page *pcmd;
contents = sgx_encl_get_backing_page(encl, page_index);
if (IS_ERR(contents))
return PTR_ERR(contents);
pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
if (IS_ERR(pcmd)) {
put_page(contents);
return PTR_ERR(pcmd);
}
backing->contents = contents;
backing->pcmd = pcmd;
backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
return 0;
}
/*
* When called from ksgxd, returns the mem_cgroup of a struct mm stored
* in the enclave's mm_list. When not called from ksgxd, just returns
* the mem_cgroup of the current task.
*/
static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
{
struct mem_cgroup *memcg = NULL;
struct sgx_encl_mm *encl_mm;
int idx;
/*
* If called from normal task context, return the mem_cgroup
* of the current task's mm. The remainder of the handling is for
* ksgxd.
*/
if (!current_is_ksgxd())
return get_mem_cgroup_from_mm(current->mm);
/*
* Search the enclave's mm_list to find an mm associated with
* this enclave to charge the allocation to.
*/
idx = srcu_read_lock(&encl->srcu);
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
if (!mmget_not_zero(encl_mm->mm))
continue;
memcg = get_mem_cgroup_from_mm(encl_mm->mm);
mmput_async(encl_mm->mm);
break;
}
srcu_read_unlock(&encl->srcu, idx);
/*
* In the rare case that there isn't an mm associated with
* the enclave, set memcg to the current active mem_cgroup.
* This will be the root mem_cgroup if there is no active
* mem_cgroup.
*/
if (!memcg)
return get_mem_cgroup_from_mm(NULL);
return memcg;
}
/**
* sgx_encl_alloc_backing() - create a new backing storage page
* @encl: an enclave pointer
* @page_index: enclave page index
* @backing: data for accessing backing storage for the page
*
* When called from ksgxd, sets the active memcg from one of the
* mms in the enclave's mm_list prior to any backing page allocation,
* in order to ensure that shmem page allocations are charged to the
* enclave. Create a backing page for loading data back into an EPC page with
* ELDU. This function takes a reference on a new backing page which
* must be dropped with a corresponding call to sgx_encl_put_backing().
*
* Return:
* 0 on success,
* -errno otherwise.
*/
int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
struct sgx_backing *backing)
{
struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
int ret;
ret = __sgx_encl_get_backing(encl, page_index, backing);
set_active_memcg(memcg);
mem_cgroup_put(encl_memcg);
return ret;
}
/**
* sgx_encl_lookup_backing() - retrieve an existing backing storage page
* @encl: an enclave pointer
* @page_index: enclave page index
* @backing: data for accessing backing storage for the page
*
* Retrieve a backing page for loading data back into an EPC page with ELDU.
* It is the caller's responsibility to ensure that it is appropriate to use
* sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
* not used correctly, this will cause an allocation which is not accounted for.
* This function takes a reference on an existing backing page which must be
* dropped with a corresponding call to sgx_encl_put_backing().
*
* Return:
* 0 on success,
* -errno otherwise.
*/
static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
struct sgx_backing *backing)
{
return __sgx_encl_get_backing(encl, page_index, backing);
}
/**
* sgx_encl_put_backing() - Unpin the backing storage
* @backing: data for accessing backing storage for the page
*/
void sgx_encl_put_backing(struct sgx_backing *backing)
{
put_page(backing->pcmd);
put_page(backing->contents);
}
static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
void *data)
{
pte_t pte;
int ret;
ret = pte_young(*ptep);
if (ret) {
pte = pte_mkold(*ptep);
set_pte_at((struct mm_struct *)data, addr, ptep, pte);
}
return ret;
}
/**
* sgx_encl_test_and_clear_young() - Test and reset the accessed bit
* @mm: mm_struct that is checked
* @page: enclave page to be tested for recent access
*
* Checks the Access (A) bit from the PTE corresponding to the enclave page and
* clears it.
*
* Return: 1 if the page has been recently accessed and 0 if not.
*/
int sgx_encl_test_and_clear_young(struct mm_struct *mm,
struct sgx_encl_page *page)
{
unsigned long addr = page->desc & PAGE_MASK;
struct sgx_encl *encl = page->encl;
struct vm_area_struct *vma;
int ret;
ret = sgx_encl_find(mm, addr, &vma);
if (ret)
return 0;
if (encl != vma->vm_private_data)
return 0;
ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
sgx_encl_test_and_clear_young_cb, vma->vm_mm);
if (ret < 0)
return 0;
return ret;
}
struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl,
unsigned long offset,
u64 secinfo_flags)
{
struct sgx_encl_page *encl_page;
unsigned long prot;
encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL);
if (!encl_page)
return ERR_PTR(-ENOMEM);
encl_page->desc = encl->base + offset;
encl_page->encl = encl;
prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ) |
_calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) |
_calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC);
/*
* TCS pages must always RW set for CPU access while the SECINFO
* permissions are *always* zero - the CPU ignores the user provided
* values and silently overwrites them with zero permissions.
*/
if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS)
prot |= PROT_READ | PROT_WRITE;
/* Calculate maximum of the VM flags for the page. */
encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0);
return encl_page;
}
/**
* sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave
* @encl: the enclave
* @addr: page aligned pointer to single page for which PTEs will be removed
*
* Multiple VMAs may have an enclave page mapped. Remove the PTE mapping
* @addr from each VMA. Ensure that page fault handler is ready to handle
* new mappings of @addr before calling this function.
*/
void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr)
{
unsigned long mm_list_version;
struct sgx_encl_mm *encl_mm;
struct vm_area_struct *vma;
int idx, ret;
do {
mm_list_version = encl->mm_list_version;
/* Pairs with smp_wmb() in sgx_encl_mm_add(). */
smp_rmb();
idx = srcu_read_lock(&encl->srcu);
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
if (!mmget_not_zero(encl_mm->mm))
continue;
mmap_read_lock(encl_mm->mm);
ret = sgx_encl_find(encl_mm->mm, addr, &vma);
if (!ret && encl == vma->vm_private_data)
zap_vma_ptes(vma, addr, PAGE_SIZE);
mmap_read_unlock(encl_mm->mm);
mmput_async(encl_mm->mm);
}
srcu_read_unlock(&encl->srcu, idx);
} while (unlikely(encl->mm_list_version != mm_list_version));
}
/**
* sgx_alloc_va_page() - Allocate a Version Array (VA) page
* @reclaim: Reclaim EPC pages directly if none available. Enclave
* mutex should not be held if this is set.
*
* Allocate a free EPC page and convert it to a Version Array (VA) page.
*
* Return:
* a VA page,
* -errno otherwise
*/
struct sgx_epc_page *sgx_alloc_va_page(bool reclaim)
{
struct sgx_epc_page *epc_page;
int ret;
epc_page = sgx_alloc_epc_page(NULL, reclaim);
if (IS_ERR(epc_page))
return ERR_CAST(epc_page);
ret = __epa(sgx_get_epc_virt_addr(epc_page));
if (ret) {
WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
sgx_encl_free_epc_page(epc_page);
return ERR_PTR(-EFAULT);
}
return epc_page;
}
/**
* sgx_alloc_va_slot - allocate a VA slot
* @va_page: a &struct sgx_va_page instance
*
* Allocates a slot from a &struct sgx_va_page instance.
*
* Return: offset of the slot inside the VA page
*/
unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
{
int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
if (slot < SGX_VA_SLOT_COUNT)
set_bit(slot, va_page->slots);
return slot << 3;
}
/**
* sgx_free_va_slot - free a VA slot
* @va_page: a &struct sgx_va_page instance
* @offset: offset of the slot inside the VA page
*
* Frees a slot from a &struct sgx_va_page instance.
*/
void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
{
clear_bit(offset >> 3, va_page->slots);
}
/**
* sgx_va_page_full - is the VA page full?
* @va_page: a &struct sgx_va_page instance
*
* Return: true if all slots have been taken
*/
bool sgx_va_page_full(struct sgx_va_page *va_page)
{
int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
return slot == SGX_VA_SLOT_COUNT;
}
/**
* sgx_encl_free_epc_page - free an EPC page assigned to an enclave
* @page: EPC page to be freed
*
* Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
* only upon success, it puts the page back to free page list. Otherwise, it
* gives a WARNING to indicate page is leaked.
*/
void sgx_encl_free_epc_page(struct sgx_epc_page *page)
{
int ret;
WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
ret = __eremove(sgx_get_epc_virt_addr(page));
if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
return;
sgx_free_epc_page(page);
}