blob: 37a5cf62f88b48b12293946e311bdd5d067edbaf [file] [log] [blame]
/*
* Copyright (c) 2016 Hisilicon Limited.
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/vmalloc.h>
#include <rdma/ib_umem.h>
#include "hns_roce_device.h"
#include "hns_roce_cmd.h"
#include "hns_roce_hem.h"
static u32 hw_index_to_key(int ind)
{
return ((u32)ind >> 24) | ((u32)ind << 8);
}
unsigned long key_to_hw_index(u32 key)
{
return (key << 24) | (key >> 8);
}
static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
{
struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
struct ib_device *ibdev = &hr_dev->ib_dev;
int err;
int id;
/* Allocate a key for mr from mr_table */
id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
GFP_KERNEL);
if (id < 0) {
ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
return -ENOMEM;
}
mr->key = hw_index_to_key(id); /* MR key */
err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
(unsigned long)id);
if (err) {
ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
goto err_free_bitmap;
}
return 0;
err_free_bitmap:
ida_free(&mtpt_ida->ida, id);
return err;
}
static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
{
unsigned long obj = key_to_hw_index(mr->key);
hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
}
static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
struct ib_udata *udata, u64 start)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
bool is_fast = mr->type == MR_TYPE_FRMR;
struct hns_roce_buf_attr buf_attr = {};
int err;
mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
buf_attr.page_shift = is_fast ? PAGE_SHIFT :
hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
buf_attr.region[0].size = mr->size;
buf_attr.region[0].hopnum = mr->pbl_hop_num;
buf_attr.region_count = 1;
buf_attr.user_access = mr->access;
/* fast MR's buffer is alloced before mapping, not at creation */
buf_attr.mtt_only = is_fast;
err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
udata, start);
if (err)
ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
else
mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
return err;
}
static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
{
hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
}
static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
int ret;
if (mr->enabled) {
ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
key_to_hw_index(mr->key) &
(hr_dev->caps.num_mtpts - 1));
if (ret)
ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
ret);
}
free_mr_pbl(hr_dev, mr);
free_mr_key(hr_dev, mr);
}
static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
struct hns_roce_mr *mr)
{
unsigned long mtpt_idx = key_to_hw_index(mr->key);
struct hns_roce_cmd_mailbox *mailbox;
struct device *dev = hr_dev->dev;
int ret;
/* Allocate mailbox memory */
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return PTR_ERR(mailbox);
if (mr->type != MR_TYPE_FRMR)
ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
else
ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr);
if (ret) {
dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
goto err_page;
}
ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
mtpt_idx & (hr_dev->caps.num_mtpts - 1));
if (ret) {
dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
goto err_page;
}
mr->enabled = 1;
err_page:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return ret;
}
void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
{
struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
ida_init(&mtpt_ida->ida);
mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
mtpt_ida->min = hr_dev->caps.reserved_mrws;
}
struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
{
struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
struct hns_roce_mr *mr;
int ret;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->type = MR_TYPE_DMA;
mr->pd = to_hr_pd(pd)->pdn;
mr->access = acc;
/* Allocate memory region key */
hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
ret = alloc_mr_key(hr_dev, mr);
if (ret)
goto err_free;
ret = hns_roce_mr_enable(hr_dev, mr);
if (ret)
goto err_mr;
mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
return &mr->ibmr;
err_mr:
free_mr_key(hr_dev, mr);
err_free:
kfree(mr);
return ERR_PTR(ret);
}
struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int access_flags,
struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
struct hns_roce_mr *mr;
int ret;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->iova = virt_addr;
mr->size = length;
mr->pd = to_hr_pd(pd)->pdn;
mr->access = access_flags;
mr->type = MR_TYPE_MR;
ret = alloc_mr_key(hr_dev, mr);
if (ret)
goto err_alloc_mr;
ret = alloc_mr_pbl(hr_dev, mr, udata, start);
if (ret)
goto err_alloc_key;
ret = hns_roce_mr_enable(hr_dev, mr);
if (ret)
goto err_alloc_pbl;
mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
return &mr->ibmr;
err_alloc_pbl:
free_mr_pbl(hr_dev, mr);
err_alloc_key:
free_mr_key(hr_dev, mr);
err_alloc_mr:
kfree(mr);
return ERR_PTR(ret);
}
struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
u64 length, u64 virt_addr,
int mr_access_flags, struct ib_pd *pd,
struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
struct ib_device *ib_dev = &hr_dev->ib_dev;
struct hns_roce_mr *mr = to_hr_mr(ibmr);
struct hns_roce_cmd_mailbox *mailbox;
unsigned long mtpt_idx;
int ret;
if (!mr->enabled)
return ERR_PTR(-EINVAL);
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox))
return ERR_CAST(mailbox);
mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
mtpt_idx);
if (ret)
goto free_cmd_mbox;
ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
mtpt_idx);
if (ret)
ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
mr->enabled = 0;
mr->iova = virt_addr;
mr->size = length;
if (flags & IB_MR_REREG_PD)
mr->pd = to_hr_pd(pd)->pdn;
if (flags & IB_MR_REREG_ACCESS)
mr->access = mr_access_flags;
if (flags & IB_MR_REREG_TRANS) {
free_mr_pbl(hr_dev, mr);
ret = alloc_mr_pbl(hr_dev, mr, udata, start);
if (ret) {
ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
ret);
goto free_cmd_mbox;
}
}
ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
if (ret) {
ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
goto free_cmd_mbox;
}
ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
mtpt_idx);
if (ret) {
ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
goto free_cmd_mbox;
}
mr->enabled = 1;
free_cmd_mbox:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
if (ret)
return ERR_PTR(ret);
return NULL;
}
int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
struct hns_roce_mr *mr = to_hr_mr(ibmr);
if (hr_dev->hw->dereg_mr)
hr_dev->hw->dereg_mr(hr_dev);
hns_roce_mr_free(hr_dev, mr);
kfree(mr);
return 0;
}
struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
u32 max_num_sg)
{
struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
struct device *dev = hr_dev->dev;
struct hns_roce_mr *mr;
int ret;
if (mr_type != IB_MR_TYPE_MEM_REG)
return ERR_PTR(-EINVAL);
if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
dev_err(dev, "max_num_sg larger than %d\n",
HNS_ROCE_FRMR_MAX_PA);
return ERR_PTR(-EINVAL);
}
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->type = MR_TYPE_FRMR;
mr->pd = to_hr_pd(pd)->pdn;
mr->size = max_num_sg * (1 << PAGE_SHIFT);
/* Allocate memory region key */
ret = alloc_mr_key(hr_dev, mr);
if (ret)
goto err_free;
ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
if (ret)
goto err_key;
ret = hns_roce_mr_enable(hr_dev, mr);
if (ret)
goto err_pbl;
mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
mr->ibmr.length = mr->size;
return &mr->ibmr;
err_pbl:
free_mr_pbl(hr_dev, mr);
err_key:
free_mr_key(hr_dev, mr);
err_free:
kfree(mr);
return ERR_PTR(ret);
}
static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
{
struct hns_roce_mr *mr = to_hr_mr(ibmr);
if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
mr->page_list[mr->npages++] = addr;
return 0;
}
return -ENOBUFS;
}
int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_mr *mr = to_hr_mr(ibmr);
struct hns_roce_mtr *mtr = &mr->pbl_mtr;
int ret = 0;
mr->npages = 0;
mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
sizeof(dma_addr_t), GFP_KERNEL);
if (!mr->page_list)
return ret;
ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
if (ret < 1) {
ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret);
goto err_page_list;
}
mtr->hem_cfg.region[0].offset = 0;
mtr->hem_cfg.region[0].count = mr->npages;
mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
mtr->hem_cfg.region_count = 1;
ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
if (ret) {
ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
ret = 0;
} else {
mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
ret = mr->npages;
}
err_page_list:
kvfree(mr->page_list);
mr->page_list = NULL;
return ret;
}
static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
struct hns_roce_mw *mw)
{
struct device *dev = hr_dev->dev;
int ret;
if (mw->enabled) {
ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
key_to_hw_index(mw->rkey) &
(hr_dev->caps.num_mtpts - 1));
if (ret)
dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
key_to_hw_index(mw->rkey));
}
ida_free(&hr_dev->mr_table.mtpt_ida.ida,
(int)key_to_hw_index(mw->rkey));
}
static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
struct hns_roce_mw *mw)
{
struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
struct hns_roce_cmd_mailbox *mailbox;
struct device *dev = hr_dev->dev;
unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
int ret;
/* prepare HEM entry memory */
ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
if (ret)
return ret;
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox)) {
ret = PTR_ERR(mailbox);
goto err_table;
}
ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
if (ret) {
dev_err(dev, "MW write mtpt fail!\n");
goto err_page;
}
ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
mtpt_idx & (hr_dev->caps.num_mtpts - 1));
if (ret) {
dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
goto err_page;
}
mw->enabled = 1;
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return 0;
err_page:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
err_table:
hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
return ret;
}
int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_mw *mw = to_hr_mw(ibmw);
int ret;
int id;
/* Allocate a key for mw from mr_table */
id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
GFP_KERNEL);
if (id < 0) {
ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
return -ENOMEM;
}
mw->rkey = hw_index_to_key(id);
ibmw->rkey = mw->rkey;
mw->pdn = to_hr_pd(ibmw->pd)->pdn;
mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
ret = hns_roce_mw_enable(hr_dev, mw);
if (ret)
goto err_mw;
return 0;
err_mw:
hns_roce_mw_free(hr_dev, mw);
return ret;
}
int hns_roce_dealloc_mw(struct ib_mw *ibmw)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
struct hns_roce_mw *mw = to_hr_mw(ibmw);
hns_roce_mw_free(hr_dev, mw);
return 0;
}
static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
struct hns_roce_buf_region *region, dma_addr_t *pages,
int max_count)
{
int count, npage;
int offset, end;
__le64 *mtts;
u64 addr;
int i;
offset = region->offset;
end = offset + region->count;
npage = 0;
while (offset < end && npage < max_count) {
count = 0;
mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
offset, &count);
if (!mtts)
return -ENOBUFS;
for (i = 0; i < count && npage < max_count; i++) {
addr = pages[npage];
mtts[i] = cpu_to_le64(addr);
npage++;
}
offset += count;
}
return npage;
}
static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
{
int i;
for (i = 0; i < attr->region_count; i++)
if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
attr->region[i].hopnum > 0)
return true;
/* because the mtr only one root base address, when hopnum is 0 means
* root base address equals the first buffer address, thus all alloced
* memory must in a continuous space accessed by direct mode.
*/
return false;
}
static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
{
size_t size = 0;
int i;
for (i = 0; i < attr->region_count; i++)
size += attr->region[i].size;
return size;
}
/*
* check the given pages in continuous address space
* Returns 0 on success, or the error page num.
*/
static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
unsigned int page_shift)
{
size_t page_size = 1 << page_shift;
int i;
for (i = 1; i < page_count; i++)
if (pages[i] - pages[i - 1] != page_size)
return i;
return 0;
}
static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
{
/* release user buffers */
if (mtr->umem) {
ib_umem_release(mtr->umem);
mtr->umem = NULL;
}
/* release kernel buffers */
if (mtr->kmem) {
hns_roce_buf_free(hr_dev, mtr->kmem);
mtr->kmem = NULL;
}
}
static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
struct hns_roce_buf_attr *buf_attr,
struct ib_udata *udata, unsigned long user_addr)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
size_t total_size;
total_size = mtr_bufs_size(buf_attr);
if (udata) {
mtr->kmem = NULL;
mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
buf_attr->user_access);
if (IS_ERR_OR_NULL(mtr->umem)) {
ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
PTR_ERR(mtr->umem));
return -ENOMEM;
}
} else {
mtr->umem = NULL;
mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
buf_attr->page_shift,
mtr->hem_cfg.is_direct ?
HNS_ROCE_BUF_DIRECT : 0);
if (IS_ERR(mtr->kmem)) {
ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
PTR_ERR(mtr->kmem));
return PTR_ERR(mtr->kmem);
}
}
return 0;
}
static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
int page_count, unsigned int page_shift)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
dma_addr_t *pages;
int npage;
int ret;
/* alloc a tmp array to store buffer's dma address */
pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
if (!pages)
return -ENOMEM;
if (mtr->umem)
npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count,
mtr->umem, page_shift);
else
npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
mtr->kmem, page_shift);
if (npage != page_count) {
ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
page_count);
ret = -ENOBUFS;
goto err_alloc_list;
}
if (mtr->hem_cfg.is_direct && npage > 1) {
ret = mtr_check_direct_pages(pages, npage, page_shift);
if (ret) {
ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
mtr->umem ? "umtr" : "kmtr", ret, npage);
ret = -ENOBUFS;
goto err_alloc_list;
}
}
ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
if (ret)
ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
err_alloc_list:
kvfree(pages);
return ret;
}
int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
dma_addr_t *pages, unsigned int page_cnt)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_buf_region *r;
unsigned int i, mapped_cnt;
int ret = 0;
/*
* Only use the first page address as root ba when hopnum is 0, this
* is because the addresses of all pages are consecutive in this case.
*/
if (mtr->hem_cfg.is_direct) {
mtr->hem_cfg.root_ba = pages[0];
return 0;
}
for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
mapped_cnt < page_cnt; i++) {
r = &mtr->hem_cfg.region[i];
/* if hopnum is 0, no need to map pages in this region */
if (!r->hopnum) {
mapped_cnt += r->count;
continue;
}
if (r->offset + r->count > page_cnt) {
ret = -EINVAL;
ibdev_err(ibdev,
"failed to check mtr%u count %u + %u > %u.\n",
i, r->offset, r->count, page_cnt);
return ret;
}
ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
page_cnt - mapped_cnt);
if (ret < 0) {
ibdev_err(ibdev,
"failed to map mtr%u offset %u, ret = %d.\n",
i, r->offset, ret);
return ret;
}
mapped_cnt += ret;
ret = 0;
}
if (mapped_cnt < page_cnt) {
ret = -ENOBUFS;
ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
mapped_cnt, page_cnt);
}
return ret;
}
int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr)
{
struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
int mtt_count, left;
u32 start_index;
int total = 0;
__le64 *mtts;
u32 npage;
u64 addr;
if (!mtt_buf || mtt_max < 1)
goto done;
/* no mtt memory in direct mode, so just return the buffer address */
if (cfg->is_direct) {
start_index = offset >> HNS_HW_PAGE_SHIFT;
for (mtt_count = 0; mtt_count < cfg->region_count &&
total < mtt_max; mtt_count++) {
npage = cfg->region[mtt_count].offset;
if (npage < start_index)
continue;
addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
mtt_buf[total] = addr;
total++;
}
goto done;
}
start_index = offset >> cfg->buf_pg_shift;
left = mtt_max;
while (left > 0) {
mtt_count = 0;
mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
start_index + total,
&mtt_count);
if (!mtts || !mtt_count)
goto done;
npage = min(mtt_count, left);
left -= npage;
for (mtt_count = 0; mtt_count < npage; mtt_count++)
mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
}
done:
if (base_addr)
*base_addr = cfg->root_ba;
return total;
}
static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
struct hns_roce_buf_attr *attr,
struct hns_roce_hem_cfg *cfg,
unsigned int *buf_page_shift, u64 unalinged_size)
{
struct hns_roce_buf_region *r;
u64 first_region_padding;
int page_cnt, region_cnt;
unsigned int page_shift;
size_t buf_size;
/* If mtt is disabled, all pages must be within a continuous range */
cfg->is_direct = !mtr_has_mtt(attr);
buf_size = mtr_bufs_size(attr);
if (cfg->is_direct) {
/* When HEM buffer uses 0-level addressing, the page size is
* equal to the whole buffer size, and we split the buffer into
* small pages which is used to check whether the adjacent
* units are in the continuous space and its size is fixed to
* 4K based on hns ROCEE's requirement.
*/
page_shift = HNS_HW_PAGE_SHIFT;
/* The ROCEE requires the page size to be 4K * 2 ^ N. */
cfg->buf_pg_count = 1;
cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
first_region_padding = 0;
} else {
page_shift = attr->page_shift;
cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size,
1 << page_shift);
cfg->buf_pg_shift = page_shift;
first_region_padding = unalinged_size;
}
/* Convert buffer size to page index and page count for each region and
* the buffer's offset needs to be appended to the first region.
*/
for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count &&
region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) {
r = &cfg->region[region_cnt];
r->offset = page_cnt;
buf_size = hr_hw_page_align(attr->region[region_cnt].size +
first_region_padding);
r->count = DIV_ROUND_UP(buf_size, 1 << page_shift);
first_region_padding = 0;
page_cnt += r->count;
r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum,
r->count);
}
cfg->region_count = region_cnt;
*buf_page_shift = page_shift;
return page_cnt;
}
static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
unsigned int ba_page_shift)
{
struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
int ret;
hns_roce_hem_list_init(&mtr->hem_list);
if (!cfg->is_direct) {
ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
cfg->region, cfg->region_count,
ba_page_shift);
if (ret)
return ret;
cfg->root_ba = mtr->hem_list.root_ba;
cfg->ba_pg_shift = ba_page_shift;
} else {
cfg->ba_pg_shift = cfg->buf_pg_shift;
}
return 0;
}
static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
{
hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
}
/**
* hns_roce_mtr_create - Create hns memory translate region.
*
* @hr_dev: RoCE device struct pointer
* @mtr: memory translate region
* @buf_attr: buffer attribute for creating mtr
* @ba_page_shift: page shift for multi-hop base address table
* @udata: user space context, if it's NULL, means kernel space
* @user_addr: userspace virtual address to start at
*/
int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
struct hns_roce_buf_attr *buf_attr,
unsigned int ba_page_shift, struct ib_udata *udata,
unsigned long user_addr)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
unsigned int buf_page_shift = 0;
int buf_page_cnt;
int ret;
buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg,
&buf_page_shift,
udata ? user_addr & ~PAGE_MASK : 0);
if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) {
ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n",
buf_page_cnt, buf_page_shift);
return -EINVAL;
}
ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
if (ret) {
ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
return ret;
}
/* The caller has its own buffer list and invokes the hns_roce_mtr_map()
* to finish the MTT configuration.
*/
if (buf_attr->mtt_only) {
mtr->umem = NULL;
mtr->kmem = NULL;
return 0;
}
ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
if (ret) {
ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret);
goto err_alloc_mtt;
}
/* Write buffer's dma address to MTT */
ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift);
if (ret)
ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
else
return 0;
mtr_free_bufs(hr_dev, mtr);
err_alloc_mtt:
mtr_free_mtt(hr_dev, mtr);
return ret;
}
void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
{
/* release multi-hop addressing resource */
hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
/* free buffers */
mtr_free_bufs(hr_dev, mtr);
}