| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019, Intel Corporation. */ |
| |
| #include <linux/bpf_trace.h> |
| #include <net/xdp_sock_drv.h> |
| #include <net/xdp.h> |
| #include "ice.h" |
| #include "ice_base.h" |
| #include "ice_type.h" |
| #include "ice_xsk.h" |
| #include "ice_txrx.h" |
| #include "ice_txrx_lib.h" |
| #include "ice_lib.h" |
| |
| static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) |
| { |
| return &rx_ring->xdp_buf[idx]; |
| } |
| |
| /** |
| * ice_qp_reset_stats - Resets all stats for rings of given index |
| * @vsi: VSI that contains rings of interest |
| * @q_idx: ring index in array |
| */ |
| static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) |
| { |
| struct ice_vsi_stats *vsi_stat; |
| struct ice_pf *pf; |
| |
| pf = vsi->back; |
| if (!pf->vsi_stats) |
| return; |
| |
| vsi_stat = pf->vsi_stats[vsi->idx]; |
| if (!vsi_stat) |
| return; |
| |
| memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, |
| sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); |
| memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, |
| sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); |
| if (ice_is_xdp_ena_vsi(vsi)) |
| memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, |
| sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); |
| } |
| |
| /** |
| * ice_qp_clean_rings - Cleans all the rings of a given index |
| * @vsi: VSI that contains rings of interest |
| * @q_idx: ring index in array |
| */ |
| static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) |
| { |
| ice_clean_tx_ring(vsi->tx_rings[q_idx]); |
| if (ice_is_xdp_ena_vsi(vsi)) { |
| synchronize_rcu(); |
| ice_clean_tx_ring(vsi->xdp_rings[q_idx]); |
| } |
| ice_clean_rx_ring(vsi->rx_rings[q_idx]); |
| } |
| |
| /** |
| * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector |
| * @vsi: VSI that has netdev |
| * @q_vector: q_vector that has NAPI context |
| * @enable: true for enable, false for disable |
| */ |
| static void |
| ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, |
| bool enable) |
| { |
| if (!vsi->netdev || !q_vector) |
| return; |
| |
| if (enable) |
| napi_enable(&q_vector->napi); |
| else |
| napi_disable(&q_vector->napi); |
| } |
| |
| /** |
| * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring |
| * @vsi: the VSI that contains queue vector being un-configured |
| * @rx_ring: Rx ring that will have its IRQ disabled |
| * @q_vector: queue vector |
| */ |
| static void |
| ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, |
| struct ice_q_vector *q_vector) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| int base = vsi->base_vector; |
| u16 reg; |
| u32 val; |
| |
| /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle |
| * here only QINT_RQCTL |
| */ |
| reg = rx_ring->reg_idx; |
| val = rd32(hw, QINT_RQCTL(reg)); |
| val &= ~QINT_RQCTL_CAUSE_ENA_M; |
| wr32(hw, QINT_RQCTL(reg), val); |
| |
| if (q_vector) { |
| u16 v_idx = q_vector->v_idx; |
| |
| wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); |
| ice_flush(hw); |
| synchronize_irq(pf->msix_entries[v_idx + base].vector); |
| } |
| } |
| |
| /** |
| * ice_qvec_cfg_msix - Enable IRQ for given queue vector |
| * @vsi: the VSI that contains queue vector |
| * @q_vector: queue vector |
| */ |
| static void |
| ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) |
| { |
| u16 reg_idx = q_vector->reg_idx; |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| struct ice_tx_ring *tx_ring; |
| struct ice_rx_ring *rx_ring; |
| |
| ice_cfg_itr(hw, q_vector); |
| |
| ice_for_each_tx_ring(tx_ring, q_vector->tx) |
| ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, |
| q_vector->tx.itr_idx); |
| |
| ice_for_each_rx_ring(rx_ring, q_vector->rx) |
| ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, |
| q_vector->rx.itr_idx); |
| |
| ice_flush(hw); |
| } |
| |
| /** |
| * ice_qvec_ena_irq - Enable IRQ for given queue vector |
| * @vsi: the VSI that contains queue vector |
| * @q_vector: queue vector |
| */ |
| static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| |
| ice_irq_dynamic_ena(hw, vsi, q_vector); |
| |
| ice_flush(hw); |
| } |
| |
| /** |
| * ice_qp_dis - Disables a queue pair |
| * @vsi: VSI of interest |
| * @q_idx: ring index in array |
| * |
| * Returns 0 on success, negative on failure. |
| */ |
| static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) |
| { |
| struct ice_txq_meta txq_meta = { }; |
| struct ice_q_vector *q_vector; |
| struct ice_tx_ring *tx_ring; |
| struct ice_rx_ring *rx_ring; |
| int timeout = 50; |
| int err; |
| |
| if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) |
| return -EINVAL; |
| |
| tx_ring = vsi->tx_rings[q_idx]; |
| rx_ring = vsi->rx_rings[q_idx]; |
| q_vector = rx_ring->q_vector; |
| |
| while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { |
| timeout--; |
| if (!timeout) |
| return -EBUSY; |
| usleep_range(1000, 2000); |
| } |
| netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); |
| |
| ice_qvec_dis_irq(vsi, rx_ring, q_vector); |
| |
| ice_fill_txq_meta(vsi, tx_ring, &txq_meta); |
| err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); |
| if (err) |
| return err; |
| if (ice_is_xdp_ena_vsi(vsi)) { |
| struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; |
| |
| memset(&txq_meta, 0, sizeof(txq_meta)); |
| ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); |
| err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, |
| &txq_meta); |
| if (err) |
| return err; |
| } |
| err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); |
| if (err) |
| return err; |
| ice_clean_rx_ring(rx_ring); |
| |
| ice_qvec_toggle_napi(vsi, q_vector, false); |
| ice_qp_clean_rings(vsi, q_idx); |
| ice_qp_reset_stats(vsi, q_idx); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_qp_ena - Enables a queue pair |
| * @vsi: VSI of interest |
| * @q_idx: ring index in array |
| * |
| * Returns 0 on success, negative on failure. |
| */ |
| static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) |
| { |
| struct ice_aqc_add_tx_qgrp *qg_buf; |
| struct ice_q_vector *q_vector; |
| struct ice_tx_ring *tx_ring; |
| struct ice_rx_ring *rx_ring; |
| u16 size; |
| int err; |
| |
| if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) |
| return -EINVAL; |
| |
| size = struct_size(qg_buf, txqs, 1); |
| qg_buf = kzalloc(size, GFP_KERNEL); |
| if (!qg_buf) |
| return -ENOMEM; |
| |
| qg_buf->num_txqs = 1; |
| |
| tx_ring = vsi->tx_rings[q_idx]; |
| rx_ring = vsi->rx_rings[q_idx]; |
| q_vector = rx_ring->q_vector; |
| |
| err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); |
| if (err) |
| goto free_buf; |
| |
| if (ice_is_xdp_ena_vsi(vsi)) { |
| struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; |
| |
| memset(qg_buf, 0, size); |
| qg_buf->num_txqs = 1; |
| err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); |
| if (err) |
| goto free_buf; |
| ice_set_ring_xdp(xdp_ring); |
| ice_tx_xsk_pool(vsi, q_idx); |
| } |
| |
| err = ice_vsi_cfg_rxq(rx_ring); |
| if (err) |
| goto free_buf; |
| |
| ice_qvec_cfg_msix(vsi, q_vector); |
| |
| err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); |
| if (err) |
| goto free_buf; |
| |
| clear_bit(ICE_CFG_BUSY, vsi->state); |
| ice_qvec_toggle_napi(vsi, q_vector, true); |
| ice_qvec_ena_irq(vsi, q_vector); |
| |
| netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); |
| free_buf: |
| kfree(qg_buf); |
| return err; |
| } |
| |
| /** |
| * ice_xsk_pool_disable - disable a buffer pool region |
| * @vsi: Current VSI |
| * @qid: queue ID |
| * |
| * Returns 0 on success, negative on failure |
| */ |
| static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) |
| { |
| struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); |
| |
| if (!pool) |
| return -EINVAL; |
| |
| clear_bit(qid, vsi->af_xdp_zc_qps); |
| xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_xsk_pool_enable - enable a buffer pool region |
| * @vsi: Current VSI |
| * @pool: pointer to a requested buffer pool region |
| * @qid: queue ID |
| * |
| * Returns 0 on success, negative on failure |
| */ |
| static int |
| ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) |
| { |
| int err; |
| |
| if (vsi->type != ICE_VSI_PF) |
| return -EINVAL; |
| |
| if (qid >= vsi->netdev->real_num_rx_queues || |
| qid >= vsi->netdev->real_num_tx_queues) |
| return -EINVAL; |
| |
| err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), |
| ICE_RX_DMA_ATTR); |
| if (err) |
| return err; |
| |
| set_bit(qid, vsi->af_xdp_zc_qps); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer |
| * @rx_ring: Rx ring |
| * @pool_present: is pool for XSK present |
| * |
| * Try allocating memory and return ENOMEM, if failed to allocate. |
| * If allocation was successful, substitute buffer with allocated one. |
| * Returns 0 on success, negative on failure |
| */ |
| static int |
| ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) |
| { |
| size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : |
| sizeof(*rx_ring->rx_buf); |
| void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); |
| |
| if (!sw_ring) |
| return -ENOMEM; |
| |
| if (pool_present) { |
| kfree(rx_ring->rx_buf); |
| rx_ring->rx_buf = NULL; |
| rx_ring->xdp_buf = sw_ring; |
| } else { |
| kfree(rx_ring->xdp_buf); |
| rx_ring->xdp_buf = NULL; |
| rx_ring->rx_buf = sw_ring; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_realloc_zc_buf - reallocate XDP ZC queue pairs |
| * @vsi: Current VSI |
| * @zc: is zero copy set |
| * |
| * Reallocate buffer for rx_rings that might be used by XSK. |
| * XDP requires more memory, than rx_buf provides. |
| * Returns 0 on success, negative on failure |
| */ |
| int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) |
| { |
| struct ice_rx_ring *rx_ring; |
| unsigned long q; |
| |
| for_each_set_bit(q, vsi->af_xdp_zc_qps, |
| max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { |
| rx_ring = vsi->rx_rings[q]; |
| if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state |
| * @vsi: Current VSI |
| * @pool: buffer pool to enable/associate to a ring, NULL to disable |
| * @qid: queue ID |
| * |
| * Returns 0 on success, negative on failure |
| */ |
| int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) |
| { |
| bool if_running, pool_present = !!pool; |
| int ret = 0, pool_failure = 0; |
| |
| if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { |
| netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); |
| pool_failure = -EINVAL; |
| goto failure; |
| } |
| |
| if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); |
| |
| if (if_running) { |
| struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; |
| |
| ret = ice_qp_dis(vsi, qid); |
| if (ret) { |
| netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); |
| goto xsk_pool_if_up; |
| } |
| |
| ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); |
| if (ret) |
| goto xsk_pool_if_up; |
| } |
| |
| pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : |
| ice_xsk_pool_disable(vsi, qid); |
| |
| xsk_pool_if_up: |
| if (if_running) { |
| ret = ice_qp_ena(vsi, qid); |
| if (!ret && pool_present) |
| napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); |
| else if (ret) |
| netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); |
| } |
| |
| failure: |
| if (pool_failure) { |
| netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", |
| pool_present ? "en" : "dis", pool_failure); |
| return pool_failure; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it |
| * @pool: XSK Buffer pool to pull the buffers from |
| * @xdp: SW ring of xdp_buff that will hold the buffers |
| * @rx_desc: Pointer to Rx descriptors that will be filled |
| * @count: The number of buffers to allocate |
| * |
| * This function allocates a number of Rx buffers from the fill ring |
| * or the internal recycle mechanism and places them on the Rx ring. |
| * |
| * Note that ring wrap should be handled by caller of this function. |
| * |
| * Returns the amount of allocated Rx descriptors |
| */ |
| static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, |
| union ice_32b_rx_flex_desc *rx_desc, u16 count) |
| { |
| dma_addr_t dma; |
| u16 buffs; |
| int i; |
| |
| buffs = xsk_buff_alloc_batch(pool, xdp, count); |
| for (i = 0; i < buffs; i++) { |
| dma = xsk_buff_xdp_get_dma(*xdp); |
| rx_desc->read.pkt_addr = cpu_to_le64(dma); |
| rx_desc->wb.status_error0 = 0; |
| |
| rx_desc++; |
| xdp++; |
| } |
| |
| return buffs; |
| } |
| |
| /** |
| * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers |
| * @rx_ring: Rx ring |
| * @count: The number of buffers to allocate |
| * |
| * Place the @count of descriptors onto Rx ring. Handle the ring wrap |
| * for case where space from next_to_use up to the end of ring is less |
| * than @count. Finally do a tail bump. |
| * |
| * Returns true if all allocations were successful, false if any fail. |
| */ |
| static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) |
| { |
| u32 nb_buffs_extra = 0, nb_buffs = 0; |
| union ice_32b_rx_flex_desc *rx_desc; |
| u16 ntu = rx_ring->next_to_use; |
| u16 total_count = count; |
| struct xdp_buff **xdp; |
| |
| rx_desc = ICE_RX_DESC(rx_ring, ntu); |
| xdp = ice_xdp_buf(rx_ring, ntu); |
| |
| if (ntu + count >= rx_ring->count) { |
| nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, |
| rx_desc, |
| rx_ring->count - ntu); |
| if (nb_buffs_extra != rx_ring->count - ntu) { |
| ntu += nb_buffs_extra; |
| goto exit; |
| } |
| rx_desc = ICE_RX_DESC(rx_ring, 0); |
| xdp = ice_xdp_buf(rx_ring, 0); |
| ntu = 0; |
| count -= nb_buffs_extra; |
| ice_release_rx_desc(rx_ring, 0); |
| } |
| |
| nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); |
| |
| ntu += nb_buffs; |
| if (ntu == rx_ring->count) |
| ntu = 0; |
| |
| exit: |
| if (rx_ring->next_to_use != ntu) |
| ice_release_rx_desc(rx_ring, ntu); |
| |
| return total_count == (nb_buffs_extra + nb_buffs); |
| } |
| |
| /** |
| * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers |
| * @rx_ring: Rx ring |
| * @count: The number of buffers to allocate |
| * |
| * Wrapper for internal allocation routine; figure out how many tail |
| * bumps should take place based on the given threshold |
| * |
| * Returns true if all calls to internal alloc routine succeeded |
| */ |
| bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) |
| { |
| u16 rx_thresh = ICE_RING_QUARTER(rx_ring); |
| u16 leftover, i, tail_bumps; |
| |
| tail_bumps = count / rx_thresh; |
| leftover = count - (tail_bumps * rx_thresh); |
| |
| for (i = 0; i < tail_bumps; i++) |
| if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) |
| return false; |
| return __ice_alloc_rx_bufs_zc(rx_ring, leftover); |
| } |
| |
| /** |
| * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring |
| * @rx_ring: Rx ring |
| */ |
| static void ice_bump_ntc(struct ice_rx_ring *rx_ring) |
| { |
| int ntc = rx_ring->next_to_clean + 1; |
| |
| ntc = (ntc < rx_ring->count) ? ntc : 0; |
| rx_ring->next_to_clean = ntc; |
| prefetch(ICE_RX_DESC(rx_ring, ntc)); |
| } |
| |
| /** |
| * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer |
| * @rx_ring: Rx ring |
| * @xdp: Pointer to XDP buffer |
| * |
| * This function allocates a new skb from a zero-copy Rx buffer. |
| * |
| * Returns the skb on success, NULL on failure. |
| */ |
| static struct sk_buff * |
| ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) |
| { |
| unsigned int totalsize = xdp->data_end - xdp->data_meta; |
| unsigned int metasize = xdp->data - xdp->data_meta; |
| struct sk_buff *skb; |
| |
| net_prefetch(xdp->data_meta); |
| |
| skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, |
| GFP_ATOMIC | __GFP_NOWARN); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| memcpy(__skb_put(skb, totalsize), xdp->data_meta, |
| ALIGN(totalsize, sizeof(long))); |
| |
| if (metasize) { |
| skb_metadata_set(skb, metasize); |
| __skb_pull(skb, metasize); |
| } |
| |
| xsk_buff_free(xdp); |
| return skb; |
| } |
| |
| /** |
| * ice_run_xdp_zc - Executes an XDP program in zero-copy path |
| * @rx_ring: Rx ring |
| * @xdp: xdp_buff used as input to the XDP program |
| * @xdp_prog: XDP program to run |
| * @xdp_ring: ring to be used for XDP_TX action |
| * |
| * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} |
| */ |
| static int |
| ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, |
| struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) |
| { |
| int err, result = ICE_XDP_PASS; |
| u32 act; |
| |
| act = bpf_prog_run_xdp(xdp_prog, xdp); |
| |
| if (likely(act == XDP_REDIRECT)) { |
| err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); |
| if (!err) |
| return ICE_XDP_REDIR; |
| if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) |
| result = ICE_XDP_EXIT; |
| else |
| result = ICE_XDP_CONSUMED; |
| goto out_failure; |
| } |
| |
| switch (act) { |
| case XDP_PASS: |
| break; |
| case XDP_TX: |
| result = ice_xmit_xdp_buff(xdp, xdp_ring); |
| if (result == ICE_XDP_CONSUMED) |
| goto out_failure; |
| break; |
| case XDP_DROP: |
| result = ICE_XDP_CONSUMED; |
| break; |
| default: |
| bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); |
| fallthrough; |
| case XDP_ABORTED: |
| result = ICE_XDP_CONSUMED; |
| out_failure: |
| trace_xdp_exception(rx_ring->netdev, xdp_prog, act); |
| break; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * ice_clean_rx_irq_zc - consumes packets from the hardware ring |
| * @rx_ring: AF_XDP Rx ring |
| * @budget: NAPI budget |
| * |
| * Returns number of processed packets on success, remaining budget on failure. |
| */ |
| int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) |
| { |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| struct ice_tx_ring *xdp_ring; |
| unsigned int xdp_xmit = 0; |
| struct bpf_prog *xdp_prog; |
| bool failure = false; |
| int entries_to_alloc; |
| |
| /* ZC patch is enabled only when XDP program is set, |
| * so here it can not be NULL |
| */ |
| xdp_prog = READ_ONCE(rx_ring->xdp_prog); |
| xdp_ring = rx_ring->xdp_ring; |
| |
| while (likely(total_rx_packets < (unsigned int)budget)) { |
| union ice_32b_rx_flex_desc *rx_desc; |
| unsigned int size, xdp_res = 0; |
| struct xdp_buff *xdp; |
| struct sk_buff *skb; |
| u16 stat_err_bits; |
| u16 vlan_tag = 0; |
| u16 rx_ptype; |
| |
| rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| |
| stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); |
| if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) |
| break; |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we have |
| * verified the descriptor has been written back. |
| */ |
| dma_rmb(); |
| |
| if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) |
| break; |
| |
| xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); |
| |
| size = le16_to_cpu(rx_desc->wb.pkt_len) & |
| ICE_RX_FLX_DESC_PKT_LEN_M; |
| if (!size) { |
| xdp->data = NULL; |
| xdp->data_end = NULL; |
| xdp->data_hard_start = NULL; |
| xdp->data_meta = NULL; |
| goto construct_skb; |
| } |
| |
| xsk_buff_set_size(xdp, size); |
| xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); |
| |
| xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); |
| if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { |
| xdp_xmit |= xdp_res; |
| } else if (xdp_res == ICE_XDP_EXIT) { |
| failure = true; |
| break; |
| } else if (xdp_res == ICE_XDP_CONSUMED) { |
| xsk_buff_free(xdp); |
| } else if (xdp_res == ICE_XDP_PASS) { |
| goto construct_skb; |
| } |
| |
| total_rx_bytes += size; |
| total_rx_packets++; |
| |
| ice_bump_ntc(rx_ring); |
| continue; |
| |
| construct_skb: |
| /* XDP_PASS path */ |
| skb = ice_construct_skb_zc(rx_ring, xdp); |
| if (!skb) { |
| rx_ring->ring_stats->rx_stats.alloc_buf_failed++; |
| break; |
| } |
| |
| ice_bump_ntc(rx_ring); |
| |
| if (eth_skb_pad(skb)) { |
| skb = NULL; |
| continue; |
| } |
| |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); |
| |
| rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & |
| ICE_RX_FLEX_DESC_PTYPE_M; |
| |
| ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); |
| ice_receive_skb(rx_ring, skb, vlan_tag); |
| } |
| |
| entries_to_alloc = ICE_DESC_UNUSED(rx_ring); |
| if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) |
| failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); |
| |
| ice_finalize_xdp_rx(xdp_ring, xdp_xmit); |
| ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); |
| |
| if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { |
| if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) |
| xsk_set_rx_need_wakeup(rx_ring->xsk_pool); |
| else |
| xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); |
| |
| return (int)total_rx_packets; |
| } |
| |
| return failure ? budget : (int)total_rx_packets; |
| } |
| |
| /** |
| * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer |
| * @xdp_ring: XDP Tx ring |
| * @tx_buf: Tx buffer to clean |
| */ |
| static void |
| ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) |
| { |
| page_frag_free(tx_buf->raw_buf); |
| xdp_ring->xdp_tx_active--; |
| dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buf, len, 0); |
| } |
| |
| /** |
| * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ |
| * @xdp_ring: XDP Tx ring |
| */ |
| static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) |
| { |
| u16 ntc = xdp_ring->next_to_clean; |
| struct ice_tx_desc *tx_desc; |
| u16 cnt = xdp_ring->count; |
| struct ice_tx_buf *tx_buf; |
| u16 xsk_frames = 0; |
| u16 last_rs; |
| int i; |
| |
| last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; |
| tx_desc = ICE_TX_DESC(xdp_ring, last_rs); |
| if ((tx_desc->cmd_type_offset_bsz & |
| cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) { |
| if (last_rs >= ntc) |
| xsk_frames = last_rs - ntc + 1; |
| else |
| xsk_frames = last_rs + cnt - ntc + 1; |
| } |
| |
| if (!xsk_frames) |
| return; |
| |
| if (likely(!xdp_ring->xdp_tx_active)) |
| goto skip; |
| |
| ntc = xdp_ring->next_to_clean; |
| for (i = 0; i < xsk_frames; i++) { |
| tx_buf = &xdp_ring->tx_buf[ntc]; |
| |
| if (tx_buf->raw_buf) { |
| ice_clean_xdp_tx_buf(xdp_ring, tx_buf); |
| tx_buf->raw_buf = NULL; |
| } else { |
| xsk_frames++; |
| } |
| |
| ntc++; |
| if (ntc >= xdp_ring->count) |
| ntc = 0; |
| } |
| skip: |
| tx_desc->cmd_type_offset_bsz = 0; |
| xdp_ring->next_to_clean += xsk_frames; |
| if (xdp_ring->next_to_clean >= cnt) |
| xdp_ring->next_to_clean -= cnt; |
| if (xsk_frames) |
| xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); |
| } |
| |
| /** |
| * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor |
| * @xdp_ring: XDP ring to produce the HW Tx descriptor on |
| * @desc: AF_XDP descriptor to pull the DMA address and length from |
| * @total_bytes: bytes accumulator that will be used for stats update |
| */ |
| static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, |
| unsigned int *total_bytes) |
| { |
| struct ice_tx_desc *tx_desc; |
| dma_addr_t dma; |
| |
| dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); |
| xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); |
| |
| tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); |
| tx_desc->buf_addr = cpu_to_le64(dma); |
| tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, |
| 0, desc->len, 0); |
| |
| *total_bytes += desc->len; |
| } |
| |
| /** |
| * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors |
| * @xdp_ring: XDP ring to produce the HW Tx descriptors on |
| * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from |
| * @total_bytes: bytes accumulator that will be used for stats update |
| */ |
| static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, |
| unsigned int *total_bytes) |
| { |
| u16 ntu = xdp_ring->next_to_use; |
| struct ice_tx_desc *tx_desc; |
| u32 i; |
| |
| loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { |
| dma_addr_t dma; |
| |
| dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); |
| xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); |
| |
| tx_desc = ICE_TX_DESC(xdp_ring, ntu++); |
| tx_desc->buf_addr = cpu_to_le64(dma); |
| tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, |
| 0, descs[i].len, 0); |
| |
| *total_bytes += descs[i].len; |
| } |
| |
| xdp_ring->next_to_use = ntu; |
| } |
| |
| /** |
| * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring |
| * @xdp_ring: XDP ring to produce the HW Tx descriptors on |
| * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from |
| * @nb_pkts: count of packets to be send |
| * @total_bytes: bytes accumulator that will be used for stats update |
| */ |
| static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, |
| u32 nb_pkts, unsigned int *total_bytes) |
| { |
| u32 batched, leftover, i; |
| |
| batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); |
| leftover = nb_pkts & (PKTS_PER_BATCH - 1); |
| for (i = 0; i < batched; i += PKTS_PER_BATCH) |
| ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); |
| for (; i < batched + leftover; i++) |
| ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); |
| } |
| |
| /** |
| * ice_set_rs_bit - set RS bit on last produced descriptor (one behind current NTU) |
| * @xdp_ring: XDP ring to produce the HW Tx descriptors on |
| */ |
| static void ice_set_rs_bit(struct ice_tx_ring *xdp_ring) |
| { |
| u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1; |
| struct ice_tx_desc *tx_desc; |
| |
| tx_desc = ICE_TX_DESC(xdp_ring, ntu); |
| tx_desc->cmd_type_offset_bsz |= |
| cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); |
| } |
| |
| /** |
| * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring |
| * @xdp_ring: XDP ring to produce the HW Tx descriptors on |
| * |
| * Returns true if there is no more work that needs to be done, false otherwise |
| */ |
| bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) |
| { |
| struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; |
| u32 nb_pkts, nb_processed = 0; |
| unsigned int total_bytes = 0; |
| int budget; |
| |
| ice_clean_xdp_irq_zc(xdp_ring); |
| |
| budget = ICE_DESC_UNUSED(xdp_ring); |
| budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); |
| |
| nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); |
| if (!nb_pkts) |
| return true; |
| |
| if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { |
| nb_processed = xdp_ring->count - xdp_ring->next_to_use; |
| ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); |
| xdp_ring->next_to_use = 0; |
| } |
| |
| ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, |
| &total_bytes); |
| |
| ice_set_rs_bit(xdp_ring); |
| ice_xdp_ring_update_tail(xdp_ring); |
| ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); |
| |
| if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) |
| xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); |
| |
| return nb_pkts < budget; |
| } |
| |
| /** |
| * ice_xsk_wakeup - Implements ndo_xsk_wakeup |
| * @netdev: net_device |
| * @queue_id: queue to wake up |
| * @flags: ignored in our case, since we have Rx and Tx in the same NAPI |
| * |
| * Returns negative on error, zero otherwise. |
| */ |
| int |
| ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, |
| u32 __always_unused flags) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_q_vector *q_vector; |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_tx_ring *ring; |
| |
| if (test_bit(ICE_VSI_DOWN, vsi->state)) |
| return -ENETDOWN; |
| |
| if (!ice_is_xdp_ena_vsi(vsi)) |
| return -EINVAL; |
| |
| if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) |
| return -EINVAL; |
| |
| ring = vsi->rx_rings[queue_id]->xdp_ring; |
| |
| if (!ring->xsk_pool) |
| return -EINVAL; |
| |
| /* The idea here is that if NAPI is running, mark a miss, so |
| * it will run again. If not, trigger an interrupt and |
| * schedule the NAPI from interrupt context. If NAPI would be |
| * scheduled here, the interrupt affinity would not be |
| * honored. |
| */ |
| q_vector = ring->q_vector; |
| if (!napi_if_scheduled_mark_missed(&q_vector->napi)) |
| ice_trigger_sw_intr(&vsi->back->hw, q_vector); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached |
| * @vsi: VSI to be checked |
| * |
| * Returns true if any of the Rx rings has an AF_XDP buff pool attached |
| */ |
| bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) |
| { |
| int i; |
| |
| ice_for_each_rxq(vsi, i) { |
| if (xsk_get_pool_from_qid(vsi->netdev, i)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring |
| * @rx_ring: ring to be cleaned |
| */ |
| void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) |
| { |
| u16 ntc = rx_ring->next_to_clean; |
| u16 ntu = rx_ring->next_to_use; |
| |
| while (ntc != ntu) { |
| struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); |
| |
| xsk_buff_free(xdp); |
| ntc++; |
| if (ntc >= rx_ring->count) |
| ntc = 0; |
| } |
| } |
| |
| /** |
| * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues |
| * @xdp_ring: XDP_Tx ring |
| */ |
| void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) |
| { |
| u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; |
| u32 xsk_frames = 0; |
| |
| while (ntc != ntu) { |
| struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; |
| |
| if (tx_buf->raw_buf) |
| ice_clean_xdp_tx_buf(xdp_ring, tx_buf); |
| else |
| xsk_frames++; |
| |
| tx_buf->raw_buf = NULL; |
| |
| ntc++; |
| if (ntc >= xdp_ring->count) |
| ntc = 0; |
| } |
| |
| if (xsk_frames) |
| xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); |
| } |