blob: 2a89a0d2e60192cd246db90711186eee63859f30 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
//
// This file is provided under a dual BSD/GPLv2 license. When using or
// redistributing this file, you may do so under either license.
//
// Copyright(c) 2021 Advanced Micro Devices, Inc.
//
// Authors: Ajit Kumar Pandey <AjitKumar.Pandey@amd.com>
//
/*
* Hardware interface for Renoir ACP block
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/io.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dai.h>
#include <linux/dma-mapping.h>
#include "amd.h"
#define DRV_NAME "acp_asoc_renoir"
#define ACP_SOFT_RST_DONE_MASK 0x00010001
#define ACP_PWR_ON_MASK 0x01
#define ACP_PWR_OFF_MASK 0x00
#define ACP_PGFSM_STAT_MASK 0x03
#define ACP_POWERED_ON 0x00
#define ACP_PWR_ON_IN_PROGRESS 0x01
#define ACP_POWERED_OFF 0x02
#define DELAY_US 5
#define ACP_TIMEOUT 500
#define ACP_ERROR_MASK 0x20000000
#define ACP_EXT_INTR_STAT_CLEAR_MASK 0xFFFFFFFF
static struct acp_resource rsrc = {
.offset = 20,
.no_of_ctrls = 1,
.irqp_used = 0,
.irq_reg_offset = 0x1800,
.i2s_pin_cfg_offset = 0x1400,
.i2s_mode = 0x04,
.scratch_reg_offset = 0x12800,
.sram_pte_offset = 0x02052800,
};
static struct snd_soc_acpi_codecs amp_rt1019 = {
.num_codecs = 1,
.codecs = {"10EC1019"}
};
static struct snd_soc_acpi_codecs amp_max = {
.num_codecs = 1,
.codecs = {"MX98360A"}
};
static struct snd_soc_acpi_mach snd_soc_acpi_amd_acp_machines[] = {
{
.id = "10EC5682",
.drv_name = "acp3xalc56821019",
.machine_quirk = snd_soc_acpi_codec_list,
.quirk_data = &amp_rt1019,
},
{
.id = "RTL5682",
.drv_name = "acp3xalc5682sm98360",
.machine_quirk = snd_soc_acpi_codec_list,
.quirk_data = &amp_max,
},
{
.id = "RTL5682",
.drv_name = "acp3xalc5682s1019",
.machine_quirk = snd_soc_acpi_codec_list,
.quirk_data = &amp_rt1019,
},
{
.id = "AMDI1019",
.drv_name = "renoir-acp",
},
{},
};
static struct snd_soc_dai_driver acp_renoir_dai[] = {
{
.name = "acp-i2s-sp",
.id = I2S_SP_INSTANCE,
.playback = {
.stream_name = "I2S SP Playback",
.rates = SNDRV_PCM_RATE_8000_96000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 8,
.rate_min = 8000,
.rate_max = 96000,
},
.capture = {
.stream_name = "I2S SP Capture",
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 2,
.rate_min = 8000,
.rate_max = 48000,
},
.ops = &asoc_acp_cpu_dai_ops,
.probe = &asoc_acp_i2s_probe,
},
{
.name = "acp-i2s-bt",
.id = I2S_BT_INSTANCE,
.playback = {
.stream_name = "I2S BT Playback",
.rates = SNDRV_PCM_RATE_8000_96000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 8,
.rate_min = 8000,
.rate_max = 96000,
},
.capture = {
.stream_name = "I2S BT Capture",
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 2,
.rate_min = 8000,
.rate_max = 48000,
},
.ops = &asoc_acp_cpu_dai_ops,
.probe = &asoc_acp_i2s_probe,
},
{
.name = "acp-pdm-dmic",
.id = DMIC_INSTANCE,
.capture = {
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 2,
.channels_max = 2,
.rate_min = 8000,
.rate_max = 48000,
},
.ops = &acp_dmic_dai_ops,
},
};
static int acp3x_power_on(void __iomem *base)
{
u32 val;
val = readl(base + ACP_PGFSM_STATUS);
if (val == ACP_POWERED_ON)
return 0;
if ((val & ACP_PGFSM_STAT_MASK) != ACP_PWR_ON_IN_PROGRESS)
writel(ACP_PWR_ON_MASK, base + ACP_PGFSM_CONTROL);
return readl_poll_timeout(base + ACP_PGFSM_STATUS, val, !val, DELAY_US, ACP_TIMEOUT);
}
static int acp3x_power_off(void __iomem *base)
{
u32 val;
writel(ACP_PWR_OFF_MASK, base + ACP_PGFSM_CONTROL);
return readl_poll_timeout(base + ACP_PGFSM_STATUS, val,
(val & ACP_PGFSM_STAT_MASK) == ACP_POWERED_OFF,
DELAY_US, ACP_TIMEOUT);
}
static int acp3x_reset(void __iomem *base)
{
u32 val;
int ret;
writel(1, base + ACP_SOFT_RESET);
ret = readl_poll_timeout(base + ACP_SOFT_RESET, val, val & ACP_SOFT_RST_DONE_MASK,
DELAY_US, ACP_TIMEOUT);
if (ret)
return ret;
writel(0, base + ACP_SOFT_RESET);
return readl_poll_timeout(base + ACP_SOFT_RESET, val, !val, DELAY_US, ACP_TIMEOUT);
}
static void acp3x_enable_interrupts(struct acp_dev_data *adata)
{
struct acp_resource *rsrc = adata->rsrc;
u32 ext_intr_ctrl;
writel(0x01, ACP_EXTERNAL_INTR_ENB(adata));
ext_intr_ctrl = readl(ACP_EXTERNAL_INTR_CNTL(adata, rsrc->irqp_used));
ext_intr_ctrl |= ACP_ERROR_MASK;
writel(ext_intr_ctrl, ACP_EXTERNAL_INTR_CNTL(adata, rsrc->irqp_used));
}
static void acp3x_disable_interrupts(struct acp_dev_data *adata)
{
struct acp_resource *rsrc = adata->rsrc;
writel(ACP_EXT_INTR_STAT_CLEAR_MASK,
ACP_EXTERNAL_INTR_STAT(adata, rsrc->irqp_used));
writel(0x00, ACP_EXTERNAL_INTR_ENB(adata));
}
static int rn_acp_init(void __iomem *base)
{
int ret;
/* power on */
ret = acp3x_power_on(base);
if (ret)
return ret;
writel(0x01, base + ACP_CONTROL);
/* Reset */
ret = acp3x_reset(base);
if (ret)
return ret;
return 0;
}
static int rn_acp_deinit(void __iomem *base)
{
int ret = 0;
/* Reset */
ret = acp3x_reset(base);
if (ret)
return ret;
writel(0x00, base + ACP_CONTROL);
/* power off */
ret = acp3x_power_off(base);
if (ret)
return ret;
return 0;
}
static int renoir_audio_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct acp_chip_info *chip;
struct acp_dev_data *adata;
struct resource *res;
int ret;
chip = dev_get_platdata(&pdev->dev);
if (!chip || !chip->base) {
dev_err(&pdev->dev, "ACP chip data is NULL\n");
return -ENODEV;
}
if (chip->acp_rev != ACP3X_DEV) {
dev_err(&pdev->dev, "Un-supported ACP Revision %d\n", chip->acp_rev);
return -ENODEV;
}
ret = rn_acp_init(chip->base);
if (ret) {
dev_err(&pdev->dev, "ACP Init failed\n");
return -EINVAL;
}
adata = devm_kzalloc(dev, sizeof(struct acp_dev_data), GFP_KERNEL);
if (!adata)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acp_mem");
if (!res) {
dev_err(&pdev->dev, "IORESOURCE_MEM FAILED\n");
return -ENODEV;
}
adata->acp_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!adata->acp_base)
return -ENOMEM;
ret = platform_get_irq_byname(pdev, "acp_dai_irq");
if (ret < 0)
return ret;
adata->i2s_irq = ret;
adata->dev = dev;
adata->dai_driver = acp_renoir_dai;
adata->num_dai = ARRAY_SIZE(acp_renoir_dai);
adata->rsrc = &rsrc;
adata->machines = snd_soc_acpi_amd_acp_machines;
acp_machine_select(adata);
dev_set_drvdata(dev, adata);
acp3x_enable_interrupts(adata);
acp_platform_register(dev);
return 0;
}
static int renoir_audio_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct acp_dev_data *adata = dev_get_drvdata(dev);
struct acp_chip_info *chip;
int ret;
chip = dev_get_platdata(&pdev->dev);
acp3x_disable_interrupts(adata);
ret = rn_acp_deinit(chip->base);
if (ret)
dev_err(&pdev->dev, "ACP de-init Failed (%pe)\n", ERR_PTR(ret));
acp_platform_unregister(dev);
return 0;
}
static struct platform_driver renoir_driver = {
.probe = renoir_audio_probe,
.remove = renoir_audio_remove,
.driver = {
.name = "acp_asoc_renoir",
},
};
module_platform_driver(renoir_driver);
MODULE_DESCRIPTION("AMD ACP Renoir Driver");
MODULE_IMPORT_NS(SND_SOC_ACP_COMMON);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_ALIAS("platform:" DRV_NAME);