| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * A fast, small, non-recursive O(nlog n) sort for the Linux kernel |
| * |
| * Jan 23 2005 Matt Mackall <mpm@selenic.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/types.h> |
| #include <linux/export.h> |
| #include <linux/sort.h> |
| |
| /** |
| * is_aligned - is this pointer & size okay for word-wide copying? |
| * @base: pointer to data |
| * @size: size of each element |
| * @align: required aignment (typically 4 or 8) |
| * |
| * Returns true if elements can be copied using word loads and stores. |
| * The size must be a multiple of the alignment, and the base address must |
| * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. |
| * |
| * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" |
| * to "if ((a | b) & mask)", so we do that by hand. |
| */ |
| __attribute_const__ __always_inline |
| static bool is_aligned(const void *base, size_t size, unsigned char align) |
| { |
| unsigned char lsbits = (unsigned char)size; |
| |
| (void)base; |
| #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| lsbits |= (unsigned char)(uintptr_t)base; |
| #endif |
| return (lsbits & (align - 1)) == 0; |
| } |
| |
| /** |
| * swap_words_32 - swap two elements in 32-bit chunks |
| * @a, @b: pointers to the elements |
| * @size: element size (must be a multiple of 4) |
| * |
| * Exchange the two objects in memory. This exploits base+index addressing, |
| * which basically all CPUs have, to minimize loop overhead computations. |
| * |
| * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the |
| * bottom of the loop, even though the zero flag is stil valid from the |
| * subtract (since the intervening mov instructions don't alter the flags). |
| * Gcc 8.1.0 doesn't have that problem. |
| */ |
| static void swap_words_32(void *a, void *b, int size) |
| { |
| size_t n = (unsigned int)size; |
| |
| do { |
| u32 t = *(u32 *)(a + (n -= 4)); |
| *(u32 *)(a + n) = *(u32 *)(b + n); |
| *(u32 *)(b + n) = t; |
| } while (n); |
| } |
| |
| /** |
| * swap_words_64 - swap two elements in 64-bit chunks |
| * @a, @b: pointers to the elements |
| * @size: element size (must be a multiple of 8) |
| * |
| * Exchange the two objects in memory. This exploits base+index |
| * addressing, which basically all CPUs have, to minimize loop overhead |
| * computations. |
| * |
| * We'd like to use 64-bit loads if possible. If they're not, emulating |
| * one requires base+index+4 addressing which x86 has but most other |
| * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, |
| * but it's possible to have 64-bit loads without 64-bit pointers (e.g. |
| * x32 ABI). Are there any cases the kernel needs to worry about? |
| */ |
| static void swap_words_64(void *a, void *b, int size) |
| { |
| size_t n = (unsigned int)size; |
| |
| do { |
| #ifdef CONFIG_64BIT |
| u64 t = *(u64 *)(a + (n -= 8)); |
| *(u64 *)(a + n) = *(u64 *)(b + n); |
| *(u64 *)(b + n) = t; |
| #else |
| /* Use two 32-bit transfers to avoid base+index+4 addressing */ |
| u32 t = *(u32 *)(a + (n -= 4)); |
| *(u32 *)(a + n) = *(u32 *)(b + n); |
| *(u32 *)(b + n) = t; |
| |
| t = *(u32 *)(a + (n -= 4)); |
| *(u32 *)(a + n) = *(u32 *)(b + n); |
| *(u32 *)(b + n) = t; |
| #endif |
| } while (n); |
| } |
| |
| /** |
| * swap_bytes - swap two elements a byte at a time |
| * @a, @b: pointers to the elements |
| * @size: element size |
| * |
| * This is the fallback if alignment doesn't allow using larger chunks. |
| */ |
| static void swap_bytes(void *a, void *b, int size) |
| { |
| size_t n = (unsigned int)size; |
| |
| do { |
| char t = ((char *)a)[--n]; |
| ((char *)a)[n] = ((char *)b)[n]; |
| ((char *)b)[n] = t; |
| } while (n); |
| } |
| |
| /** |
| * sort - sort an array of elements |
| * @base: pointer to data to sort |
| * @num: number of elements |
| * @size: size of each element |
| * @cmp_func: pointer to comparison function |
| * @swap_func: pointer to swap function or NULL |
| * |
| * This function does a heapsort on the given array. You may provide |
| * a swap_func function if you need to do something more than a memory |
| * copy (e.g. fix up pointers or auxiliary data), but the built-in swap |
| * isn't usually a bottleneck. |
| * |
| * Sorting time is O(n log n) both on average and worst-case. While |
| * qsort is about 20% faster on average, it suffers from exploitable |
| * O(n*n) worst-case behavior and extra memory requirements that make |
| * it less suitable for kernel use. |
| */ |
| |
| void sort(void *base, size_t num, size_t size, |
| int (*cmp_func)(const void *, const void *), |
| void (*swap_func)(void *, void *, int size)) |
| { |
| /* pre-scale counters for performance */ |
| int i = (num/2 - 1) * size, n = num * size, c, r; |
| |
| if (!swap_func) { |
| if (is_aligned(base, size, 8)) |
| swap_func = swap_words_64; |
| else if (is_aligned(base, size, 4)) |
| swap_func = swap_words_32; |
| else |
| swap_func = swap_bytes; |
| } |
| |
| /* heapify */ |
| for ( ; i >= 0; i -= size) { |
| for (r = i; r * 2 + size < n; r = c) { |
| c = r * 2 + size; |
| if (c < n - size && |
| cmp_func(base + c, base + c + size) < 0) |
| c += size; |
| if (cmp_func(base + r, base + c) >= 0) |
| break; |
| swap_func(base + r, base + c, size); |
| } |
| } |
| |
| /* sort */ |
| for (i = n - size; i > 0; i -= size) { |
| swap_func(base, base + i, size); |
| for (r = 0; r * 2 + size < i; r = c) { |
| c = r * 2 + size; |
| if (c < i - size && |
| cmp_func(base + c, base + c + size) < 0) |
| c += size; |
| if (cmp_func(base + r, base + c) >= 0) |
| break; |
| swap_func(base + r, base + c, size); |
| } |
| } |
| } |
| |
| EXPORT_SYMBOL(sort); |