| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * AMD SVM-SEV support |
| * |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_types.h> |
| #include <linux/kvm_host.h> |
| #include <linux/kernel.h> |
| #include <linux/highmem.h> |
| #include <linux/psp.h> |
| #include <linux/psp-sev.h> |
| #include <linux/pagemap.h> |
| #include <linux/swap.h> |
| #include <linux/misc_cgroup.h> |
| #include <linux/processor.h> |
| #include <linux/trace_events.h> |
| #include <uapi/linux/sev-guest.h> |
| |
| #include <asm/pkru.h> |
| #include <asm/trapnr.h> |
| #include <asm/fpu/xcr.h> |
| #include <asm/fpu/xstate.h> |
| #include <asm/debugreg.h> |
| #include <asm/sev.h> |
| |
| #include "mmu.h" |
| #include "x86.h" |
| #include "svm.h" |
| #include "svm_ops.h" |
| #include "cpuid.h" |
| #include "trace.h" |
| |
| #define GHCB_VERSION_MAX 2ULL |
| #define GHCB_VERSION_DEFAULT 2ULL |
| #define GHCB_VERSION_MIN 1ULL |
| |
| #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) |
| |
| /* enable/disable SEV support */ |
| static bool sev_enabled = true; |
| module_param_named(sev, sev_enabled, bool, 0444); |
| |
| /* enable/disable SEV-ES support */ |
| static bool sev_es_enabled = true; |
| module_param_named(sev_es, sev_es_enabled, bool, 0444); |
| |
| /* enable/disable SEV-SNP support */ |
| static bool sev_snp_enabled = true; |
| module_param_named(sev_snp, sev_snp_enabled, bool, 0444); |
| |
| /* enable/disable SEV-ES DebugSwap support */ |
| static bool sev_es_debug_swap_enabled = true; |
| module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); |
| static u64 sev_supported_vmsa_features; |
| |
| #define AP_RESET_HOLD_NONE 0 |
| #define AP_RESET_HOLD_NAE_EVENT 1 |
| #define AP_RESET_HOLD_MSR_PROTO 2 |
| |
| /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ |
| #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) |
| #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) |
| #define SNP_POLICY_MASK_SMT BIT_ULL(16) |
| #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) |
| #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) |
| #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) |
| |
| #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ |
| SNP_POLICY_MASK_API_MAJOR | \ |
| SNP_POLICY_MASK_SMT | \ |
| SNP_POLICY_MASK_RSVD_MBO | \ |
| SNP_POLICY_MASK_DEBUG | \ |
| SNP_POLICY_MASK_SINGLE_SOCKET) |
| |
| #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 |
| |
| static u8 sev_enc_bit; |
| static DECLARE_RWSEM(sev_deactivate_lock); |
| static DEFINE_MUTEX(sev_bitmap_lock); |
| unsigned int max_sev_asid; |
| static unsigned int min_sev_asid; |
| static unsigned long sev_me_mask; |
| static unsigned int nr_asids; |
| static unsigned long *sev_asid_bitmap; |
| static unsigned long *sev_reclaim_asid_bitmap; |
| |
| static int snp_decommission_context(struct kvm *kvm); |
| |
| struct enc_region { |
| struct list_head list; |
| unsigned long npages; |
| struct page **pages; |
| unsigned long uaddr; |
| unsigned long size; |
| }; |
| |
| /* Called with the sev_bitmap_lock held, or on shutdown */ |
| static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) |
| { |
| int ret, error = 0; |
| unsigned int asid; |
| |
| /* Check if there are any ASIDs to reclaim before performing a flush */ |
| asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); |
| if (asid > max_asid) |
| return -EBUSY; |
| |
| /* |
| * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, |
| * so it must be guarded. |
| */ |
| down_write(&sev_deactivate_lock); |
| |
| wbinvd_on_all_cpus(); |
| |
| if (sev_snp_enabled) |
| ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); |
| else |
| ret = sev_guest_df_flush(&error); |
| |
| up_write(&sev_deactivate_lock); |
| |
| if (ret) |
| pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", |
| sev_snp_enabled ? "-SNP" : "", ret, error); |
| |
| return ret; |
| } |
| |
| static inline bool is_mirroring_enc_context(struct kvm *kvm) |
| { |
| return !!to_kvm_sev_info(kvm)->enc_context_owner; |
| } |
| |
| static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; |
| |
| return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; |
| } |
| |
| /* Must be called with the sev_bitmap_lock held */ |
| static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) |
| { |
| if (sev_flush_asids(min_asid, max_asid)) |
| return false; |
| |
| /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ |
| bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, |
| nr_asids); |
| bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); |
| |
| return true; |
| } |
| |
| static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) |
| { |
| enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; |
| return misc_cg_try_charge(type, sev->misc_cg, 1); |
| } |
| |
| static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) |
| { |
| enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; |
| misc_cg_uncharge(type, sev->misc_cg, 1); |
| } |
| |
| static int sev_asid_new(struct kvm_sev_info *sev) |
| { |
| /* |
| * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. |
| * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. |
| * Note: min ASID can end up larger than the max if basic SEV support is |
| * effectively disabled by disallowing use of ASIDs for SEV guests. |
| */ |
| unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; |
| unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; |
| unsigned int asid; |
| bool retry = true; |
| int ret; |
| |
| if (min_asid > max_asid) |
| return -ENOTTY; |
| |
| WARN_ON(sev->misc_cg); |
| sev->misc_cg = get_current_misc_cg(); |
| ret = sev_misc_cg_try_charge(sev); |
| if (ret) { |
| put_misc_cg(sev->misc_cg); |
| sev->misc_cg = NULL; |
| return ret; |
| } |
| |
| mutex_lock(&sev_bitmap_lock); |
| |
| again: |
| asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); |
| if (asid > max_asid) { |
| if (retry && __sev_recycle_asids(min_asid, max_asid)) { |
| retry = false; |
| goto again; |
| } |
| mutex_unlock(&sev_bitmap_lock); |
| ret = -EBUSY; |
| goto e_uncharge; |
| } |
| |
| __set_bit(asid, sev_asid_bitmap); |
| |
| mutex_unlock(&sev_bitmap_lock); |
| |
| sev->asid = asid; |
| return 0; |
| e_uncharge: |
| sev_misc_cg_uncharge(sev); |
| put_misc_cg(sev->misc_cg); |
| sev->misc_cg = NULL; |
| return ret; |
| } |
| |
| static unsigned int sev_get_asid(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| return sev->asid; |
| } |
| |
| static void sev_asid_free(struct kvm_sev_info *sev) |
| { |
| struct svm_cpu_data *sd; |
| int cpu; |
| |
| mutex_lock(&sev_bitmap_lock); |
| |
| __set_bit(sev->asid, sev_reclaim_asid_bitmap); |
| |
| for_each_possible_cpu(cpu) { |
| sd = per_cpu_ptr(&svm_data, cpu); |
| sd->sev_vmcbs[sev->asid] = NULL; |
| } |
| |
| mutex_unlock(&sev_bitmap_lock); |
| |
| sev_misc_cg_uncharge(sev); |
| put_misc_cg(sev->misc_cg); |
| sev->misc_cg = NULL; |
| } |
| |
| static void sev_decommission(unsigned int handle) |
| { |
| struct sev_data_decommission decommission; |
| |
| if (!handle) |
| return; |
| |
| decommission.handle = handle; |
| sev_guest_decommission(&decommission, NULL); |
| } |
| |
| /* |
| * Transition a page to hypervisor-owned/shared state in the RMP table. This |
| * should not fail under normal conditions, but leak the page should that |
| * happen since it will no longer be usable by the host due to RMP protections. |
| */ |
| static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) |
| { |
| if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { |
| snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Certain page-states, such as Pre-Guest and Firmware pages (as documented |
| * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be |
| * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE |
| * unless they are reclaimed first. |
| * |
| * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they |
| * might not be usable by the host due to being set as immutable or still |
| * being associated with a guest ASID. |
| * |
| * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be |
| * converted back to shared, as the page is no longer usable due to RMP |
| * protections, and it's infeasible for the guest to continue on. |
| */ |
| static int snp_page_reclaim(struct kvm *kvm, u64 pfn) |
| { |
| struct sev_data_snp_page_reclaim data = {0}; |
| int fw_err, rc; |
| |
| data.paddr = __sme_set(pfn << PAGE_SHIFT); |
| rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); |
| if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { |
| snp_leak_pages(pfn, 1); |
| return -EIO; |
| } |
| |
| if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) |
| return -EIO; |
| |
| return rc; |
| } |
| |
| static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) |
| { |
| struct sev_data_deactivate deactivate; |
| |
| if (!handle) |
| return; |
| |
| deactivate.handle = handle; |
| |
| /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ |
| down_read(&sev_deactivate_lock); |
| sev_guest_deactivate(&deactivate, NULL); |
| up_read(&sev_deactivate_lock); |
| |
| sev_decommission(handle); |
| } |
| |
| /* |
| * This sets up bounce buffers/firmware pages to handle SNP Guest Request |
| * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB |
| * 2.0 specification for more details. |
| * |
| * Technically, when an SNP Guest Request is issued, the guest will provide its |
| * own request/response pages, which could in theory be passed along directly |
| * to firmware rather than using bounce pages. However, these pages would need |
| * special care: |
| * |
| * - Both pages are from shared guest memory, so they need to be protected |
| * from migration/etc. occurring while firmware reads/writes to them. At a |
| * minimum, this requires elevating the ref counts and potentially needing |
| * an explicit pinning of the memory. This places additional restrictions |
| * on what type of memory backends userspace can use for shared guest |
| * memory since there is some reliance on using refcounted pages. |
| * |
| * - The response page needs to be switched to Firmware-owned[1] state |
| * before the firmware can write to it, which can lead to potential |
| * host RMP #PFs if the guest is misbehaved and hands the host a |
| * guest page that KVM might write to for other reasons (e.g. virtio |
| * buffers/etc.). |
| * |
| * Both of these issues can be avoided completely by using separately-allocated |
| * bounce pages for both the request/response pages and passing those to |
| * firmware instead. So that's what is being set up here. |
| * |
| * Guest requests rely on message sequence numbers to ensure requests are |
| * issued to firmware in the order the guest issues them, so concurrent guest |
| * requests generally shouldn't happen. But a misbehaved guest could issue |
| * concurrent guest requests in theory, so a mutex is used to serialize |
| * access to the bounce buffers. |
| * |
| * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more |
| * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" |
| * in the APM for details on the related RMP restrictions. |
| */ |
| static int snp_guest_req_init(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = to_kvm_sev_info(kvm); |
| struct page *req_page; |
| |
| req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!req_page) |
| return -ENOMEM; |
| |
| sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!sev->guest_resp_buf) { |
| __free_page(req_page); |
| return -EIO; |
| } |
| |
| sev->guest_req_buf = page_address(req_page); |
| mutex_init(&sev->guest_req_mutex); |
| |
| return 0; |
| } |
| |
| static void snp_guest_req_cleanup(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = to_kvm_sev_info(kvm); |
| |
| if (sev->guest_resp_buf) |
| snp_free_firmware_page(sev->guest_resp_buf); |
| |
| if (sev->guest_req_buf) |
| __free_page(virt_to_page(sev->guest_req_buf)); |
| |
| sev->guest_req_buf = NULL; |
| sev->guest_resp_buf = NULL; |
| } |
| |
| static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, |
| struct kvm_sev_init *data, |
| unsigned long vm_type) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_platform_init_args init_args = {0}; |
| bool es_active = vm_type != KVM_X86_SEV_VM; |
| u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; |
| int ret; |
| |
| if (kvm->created_vcpus) |
| return -EINVAL; |
| |
| if (data->flags) |
| return -EINVAL; |
| |
| if (data->vmsa_features & ~valid_vmsa_features) |
| return -EINVAL; |
| |
| if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) |
| return -EINVAL; |
| |
| if (unlikely(sev->active)) |
| return -EINVAL; |
| |
| sev->active = true; |
| sev->es_active = es_active; |
| sev->vmsa_features = data->vmsa_features; |
| sev->ghcb_version = data->ghcb_version; |
| |
| /* |
| * Currently KVM supports the full range of mandatory features defined |
| * by version 2 of the GHCB protocol, so default to that for SEV-ES |
| * guests created via KVM_SEV_INIT2. |
| */ |
| if (sev->es_active && !sev->ghcb_version) |
| sev->ghcb_version = GHCB_VERSION_DEFAULT; |
| |
| if (vm_type == KVM_X86_SNP_VM) |
| sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; |
| |
| ret = sev_asid_new(sev); |
| if (ret) |
| goto e_no_asid; |
| |
| init_args.probe = false; |
| ret = sev_platform_init(&init_args); |
| if (ret) |
| goto e_free; |
| |
| /* This needs to happen after SEV/SNP firmware initialization. */ |
| if (vm_type == KVM_X86_SNP_VM && snp_guest_req_init(kvm)) |
| goto e_free; |
| |
| INIT_LIST_HEAD(&sev->regions_list); |
| INIT_LIST_HEAD(&sev->mirror_vms); |
| sev->need_init = false; |
| |
| kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); |
| |
| return 0; |
| |
| e_free: |
| argp->error = init_args.error; |
| sev_asid_free(sev); |
| sev->asid = 0; |
| e_no_asid: |
| sev->vmsa_features = 0; |
| sev->es_active = false; |
| sev->active = false; |
| return ret; |
| } |
| |
| static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_init data = { |
| .vmsa_features = 0, |
| .ghcb_version = 0, |
| }; |
| unsigned long vm_type; |
| |
| if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) |
| return -EINVAL; |
| |
| vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); |
| |
| /* |
| * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will |
| * continue to only ever support the minimal GHCB protocol version. |
| */ |
| if (vm_type == KVM_X86_SEV_ES_VM) |
| data.ghcb_version = GHCB_VERSION_MIN; |
| |
| return __sev_guest_init(kvm, argp, &data, vm_type); |
| } |
| |
| static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_init data; |
| |
| if (!sev->need_init) |
| return -EINVAL; |
| |
| if (kvm->arch.vm_type != KVM_X86_SEV_VM && |
| kvm->arch.vm_type != KVM_X86_SEV_ES_VM && |
| kvm->arch.vm_type != KVM_X86_SNP_VM) |
| return -EINVAL; |
| |
| if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) |
| return -EFAULT; |
| |
| return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); |
| } |
| |
| static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) |
| { |
| unsigned int asid = sev_get_asid(kvm); |
| struct sev_data_activate activate; |
| int ret; |
| |
| /* activate ASID on the given handle */ |
| activate.handle = handle; |
| activate.asid = asid; |
| ret = sev_guest_activate(&activate, error); |
| |
| return ret; |
| } |
| |
| static int __sev_issue_cmd(int fd, int id, void *data, int *error) |
| { |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| |
| return sev_issue_cmd_external_user(fd_file(f), id, data, error); |
| } |
| |
| static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| return __sev_issue_cmd(sev->fd, id, data, error); |
| } |
| |
| static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_start start; |
| struct kvm_sev_launch_start params; |
| void *dh_blob, *session_blob; |
| int *error = &argp->error; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) |
| return -EFAULT; |
| |
| memset(&start, 0, sizeof(start)); |
| |
| dh_blob = NULL; |
| if (params.dh_uaddr) { |
| dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); |
| if (IS_ERR(dh_blob)) |
| return PTR_ERR(dh_blob); |
| |
| start.dh_cert_address = __sme_set(__pa(dh_blob)); |
| start.dh_cert_len = params.dh_len; |
| } |
| |
| session_blob = NULL; |
| if (params.session_uaddr) { |
| session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); |
| if (IS_ERR(session_blob)) { |
| ret = PTR_ERR(session_blob); |
| goto e_free_dh; |
| } |
| |
| start.session_address = __sme_set(__pa(session_blob)); |
| start.session_len = params.session_len; |
| } |
| |
| start.handle = params.handle; |
| start.policy = params.policy; |
| |
| /* create memory encryption context */ |
| ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); |
| if (ret) |
| goto e_free_session; |
| |
| /* Bind ASID to this guest */ |
| ret = sev_bind_asid(kvm, start.handle, error); |
| if (ret) { |
| sev_decommission(start.handle); |
| goto e_free_session; |
| } |
| |
| /* return handle to userspace */ |
| params.handle = start.handle; |
| if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { |
| sev_unbind_asid(kvm, start.handle); |
| ret = -EFAULT; |
| goto e_free_session; |
| } |
| |
| sev->handle = start.handle; |
| sev->fd = argp->sev_fd; |
| |
| e_free_session: |
| kfree(session_blob); |
| e_free_dh: |
| kfree(dh_blob); |
| return ret; |
| } |
| |
| static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, |
| unsigned long ulen, unsigned long *n, |
| int write) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| unsigned long npages, size; |
| int npinned; |
| unsigned long locked, lock_limit; |
| struct page **pages; |
| unsigned long first, last; |
| int ret; |
| |
| lockdep_assert_held(&kvm->lock); |
| |
| if (ulen == 0 || uaddr + ulen < uaddr) |
| return ERR_PTR(-EINVAL); |
| |
| /* Calculate number of pages. */ |
| first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; |
| last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; |
| npages = (last - first + 1); |
| |
| locked = sev->pages_locked + npages; |
| lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; |
| if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { |
| pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| if (WARN_ON_ONCE(npages > INT_MAX)) |
| return ERR_PTR(-EINVAL); |
| |
| /* Avoid using vmalloc for smaller buffers. */ |
| size = npages * sizeof(struct page *); |
| if (size > PAGE_SIZE) |
| pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); |
| else |
| pages = kmalloc(size, GFP_KERNEL_ACCOUNT); |
| |
| if (!pages) |
| return ERR_PTR(-ENOMEM); |
| |
| /* Pin the user virtual address. */ |
| npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); |
| if (npinned != npages) { |
| pr_err("SEV: Failure locking %lu pages.\n", npages); |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| *n = npages; |
| sev->pages_locked = locked; |
| |
| return pages; |
| |
| err: |
| if (npinned > 0) |
| unpin_user_pages(pages, npinned); |
| |
| kvfree(pages); |
| return ERR_PTR(ret); |
| } |
| |
| static void sev_unpin_memory(struct kvm *kvm, struct page **pages, |
| unsigned long npages) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| unpin_user_pages(pages, npages); |
| kvfree(pages); |
| sev->pages_locked -= npages; |
| } |
| |
| static void sev_clflush_pages(struct page *pages[], unsigned long npages) |
| { |
| uint8_t *page_virtual; |
| unsigned long i; |
| |
| if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || |
| pages == NULL) |
| return; |
| |
| for (i = 0; i < npages; i++) { |
| page_virtual = kmap_local_page(pages[i]); |
| clflush_cache_range(page_virtual, PAGE_SIZE); |
| kunmap_local(page_virtual); |
| cond_resched(); |
| } |
| } |
| |
| static unsigned long get_num_contig_pages(unsigned long idx, |
| struct page **inpages, unsigned long npages) |
| { |
| unsigned long paddr, next_paddr; |
| unsigned long i = idx + 1, pages = 1; |
| |
| /* find the number of contiguous pages starting from idx */ |
| paddr = __sme_page_pa(inpages[idx]); |
| while (i < npages) { |
| next_paddr = __sme_page_pa(inpages[i++]); |
| if ((paddr + PAGE_SIZE) == next_paddr) { |
| pages++; |
| paddr = next_paddr; |
| continue; |
| } |
| break; |
| } |
| |
| return pages; |
| } |
| |
| static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_launch_update_data params; |
| struct sev_data_launch_update_data data; |
| struct page **inpages; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) |
| return -EFAULT; |
| |
| vaddr = params.uaddr; |
| size = params.len; |
| vaddr_end = vaddr + size; |
| |
| /* Lock the user memory. */ |
| inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); |
| if (IS_ERR(inpages)) |
| return PTR_ERR(inpages); |
| |
| /* |
| * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in |
| * place; the cache may contain the data that was written unencrypted. |
| */ |
| sev_clflush_pages(inpages, npages); |
| |
| data.reserved = 0; |
| data.handle = sev->handle; |
| |
| for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { |
| int offset, len; |
| |
| /* |
| * If the user buffer is not page-aligned, calculate the offset |
| * within the page. |
| */ |
| offset = vaddr & (PAGE_SIZE - 1); |
| |
| /* Calculate the number of pages that can be encrypted in one go. */ |
| pages = get_num_contig_pages(i, inpages, npages); |
| |
| len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); |
| |
| data.len = len; |
| data.address = __sme_page_pa(inpages[i]) + offset; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); |
| if (ret) |
| goto e_unpin; |
| |
| size -= len; |
| next_vaddr = vaddr + len; |
| } |
| |
| e_unpin: |
| /* content of memory is updated, mark pages dirty */ |
| for (i = 0; i < npages; i++) { |
| set_page_dirty_lock(inpages[i]); |
| mark_page_accessed(inpages[i]); |
| } |
| /* unlock the user pages */ |
| sev_unpin_memory(kvm, inpages, npages); |
| return ret; |
| } |
| |
| static int sev_es_sync_vmsa(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; |
| struct sev_es_save_area *save = svm->sev_es.vmsa; |
| struct xregs_state *xsave; |
| const u8 *s; |
| u8 *d; |
| int i; |
| |
| /* Check some debug related fields before encrypting the VMSA */ |
| if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) |
| return -EINVAL; |
| |
| /* |
| * SEV-ES will use a VMSA that is pointed to by the VMCB, not |
| * the traditional VMSA that is part of the VMCB. Copy the |
| * traditional VMSA as it has been built so far (in prep |
| * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. |
| */ |
| memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); |
| |
| /* Sync registgers */ |
| save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; |
| save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; |
| save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; |
| save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; |
| save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; |
| save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; |
| save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; |
| save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; |
| #ifdef CONFIG_X86_64 |
| save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; |
| save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; |
| save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; |
| save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; |
| save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; |
| save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; |
| save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; |
| save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; |
| #endif |
| save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; |
| |
| /* Sync some non-GPR registers before encrypting */ |
| save->xcr0 = svm->vcpu.arch.xcr0; |
| save->pkru = svm->vcpu.arch.pkru; |
| save->xss = svm->vcpu.arch.ia32_xss; |
| save->dr6 = svm->vcpu.arch.dr6; |
| |
| save->sev_features = sev->vmsa_features; |
| |
| /* |
| * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid |
| * breaking older measurements. |
| */ |
| if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { |
| xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; |
| save->x87_dp = xsave->i387.rdp; |
| save->mxcsr = xsave->i387.mxcsr; |
| save->x87_ftw = xsave->i387.twd; |
| save->x87_fsw = xsave->i387.swd; |
| save->x87_fcw = xsave->i387.cwd; |
| save->x87_fop = xsave->i387.fop; |
| save->x87_ds = 0; |
| save->x87_cs = 0; |
| save->x87_rip = xsave->i387.rip; |
| |
| for (i = 0; i < 8; i++) { |
| /* |
| * The format of the x87 save area is undocumented and |
| * definitely not what you would expect. It consists of |
| * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes |
| * area with bytes 8-9 of each register. |
| */ |
| d = save->fpreg_x87 + i * 8; |
| s = ((u8 *)xsave->i387.st_space) + i * 16; |
| memcpy(d, s, 8); |
| save->fpreg_x87[64 + i * 2] = s[8]; |
| save->fpreg_x87[64 + i * 2 + 1] = s[9]; |
| } |
| memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); |
| |
| s = get_xsave_addr(xsave, XFEATURE_YMM); |
| if (s) |
| memcpy(save->fpreg_ymm, s, 256); |
| else |
| memset(save->fpreg_ymm, 0, 256); |
| } |
| |
| pr_debug("Virtual Machine Save Area (VMSA):\n"); |
| print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); |
| |
| return 0; |
| } |
| |
| static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, |
| int *error) |
| { |
| struct sev_data_launch_update_vmsa vmsa; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int ret; |
| |
| if (vcpu->guest_debug) { |
| pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); |
| return -EINVAL; |
| } |
| |
| /* Perform some pre-encryption checks against the VMSA */ |
| ret = sev_es_sync_vmsa(svm); |
| if (ret) |
| return ret; |
| |
| /* |
| * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of |
| * the VMSA memory content (i.e it will write the same memory region |
| * with the guest's key), so invalidate it first. |
| */ |
| clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); |
| |
| vmsa.reserved = 0; |
| vmsa.handle = to_kvm_sev_info(kvm)->handle; |
| vmsa.address = __sme_pa(svm->sev_es.vmsa); |
| vmsa.len = PAGE_SIZE; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); |
| if (ret) |
| return ret; |
| |
| /* |
| * SEV-ES guests maintain an encrypted version of their FPU |
| * state which is restored and saved on VMRUN and VMEXIT. |
| * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't |
| * do xsave/xrstor on it. |
| */ |
| fpstate_set_confidential(&vcpu->arch.guest_fpu); |
| vcpu->arch.guest_state_protected = true; |
| |
| /* |
| * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it |
| * only after setting guest_state_protected because KVM_SET_MSRS allows |
| * dynamic toggling of LBRV (for performance reason) on write access to |
| * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. |
| */ |
| svm_enable_lbrv(vcpu); |
| return 0; |
| } |
| |
| static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| int ret; |
| |
| if (!sev_es_guest(kvm)) |
| return -ENOTTY; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| ret = mutex_lock_killable(&vcpu->mutex); |
| if (ret) |
| return ret; |
| |
| ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); |
| |
| mutex_unlock(&vcpu->mutex); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| void __user *measure = u64_to_user_ptr(argp->data); |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_measure data; |
| struct kvm_sev_launch_measure params; |
| void __user *p = NULL; |
| void *blob = NULL; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, measure, sizeof(params))) |
| return -EFAULT; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| /* User wants to query the blob length */ |
| if (!params.len) |
| goto cmd; |
| |
| p = u64_to_user_ptr(params.uaddr); |
| if (p) { |
| if (params.len > SEV_FW_BLOB_MAX_SIZE) |
| return -EINVAL; |
| |
| blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); |
| if (!blob) |
| return -ENOMEM; |
| |
| data.address = __psp_pa(blob); |
| data.len = params.len; |
| } |
| |
| cmd: |
| data.handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); |
| |
| /* |
| * If we query the session length, FW responded with expected data. |
| */ |
| if (!params.len) |
| goto done; |
| |
| if (ret) |
| goto e_free_blob; |
| |
| if (blob) { |
| if (copy_to_user(p, blob, params.len)) |
| ret = -EFAULT; |
| } |
| |
| done: |
| params.len = data.len; |
| if (copy_to_user(measure, ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| e_free_blob: |
| kfree(blob); |
| return ret; |
| } |
| |
| static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_finish data; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| data.handle = sev->handle; |
| return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); |
| } |
| |
| static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_guest_status params; |
| struct sev_data_guest_status data; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| data.handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); |
| if (ret) |
| return ret; |
| |
| params.policy = data.policy; |
| params.state = data.state; |
| params.handle = data.handle; |
| |
| if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, |
| unsigned long dst, int size, |
| int *error, bool enc) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_dbg data; |
| |
| data.reserved = 0; |
| data.handle = sev->handle; |
| data.dst_addr = dst; |
| data.src_addr = src; |
| data.len = size; |
| |
| return sev_issue_cmd(kvm, |
| enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, |
| &data, error); |
| } |
| |
| static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, |
| unsigned long dst_paddr, int sz, int *err) |
| { |
| int offset; |
| |
| /* |
| * Its safe to read more than we are asked, caller should ensure that |
| * destination has enough space. |
| */ |
| offset = src_paddr & 15; |
| src_paddr = round_down(src_paddr, 16); |
| sz = round_up(sz + offset, 16); |
| |
| return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); |
| } |
| |
| static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, |
| void __user *dst_uaddr, |
| unsigned long dst_paddr, |
| int size, int *err) |
| { |
| struct page *tpage = NULL; |
| int ret, offset; |
| |
| /* if inputs are not 16-byte then use intermediate buffer */ |
| if (!IS_ALIGNED(dst_paddr, 16) || |
| !IS_ALIGNED(paddr, 16) || |
| !IS_ALIGNED(size, 16)) { |
| tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!tpage) |
| return -ENOMEM; |
| |
| dst_paddr = __sme_page_pa(tpage); |
| } |
| |
| ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); |
| if (ret) |
| goto e_free; |
| |
| if (tpage) { |
| offset = paddr & 15; |
| if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) |
| ret = -EFAULT; |
| } |
| |
| e_free: |
| if (tpage) |
| __free_page(tpage); |
| |
| return ret; |
| } |
| |
| static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, |
| void __user *vaddr, |
| unsigned long dst_paddr, |
| void __user *dst_vaddr, |
| int size, int *error) |
| { |
| struct page *src_tpage = NULL; |
| struct page *dst_tpage = NULL; |
| int ret, len = size; |
| |
| /* If source buffer is not aligned then use an intermediate buffer */ |
| if (!IS_ALIGNED((unsigned long)vaddr, 16)) { |
| src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); |
| if (!src_tpage) |
| return -ENOMEM; |
| |
| if (copy_from_user(page_address(src_tpage), vaddr, size)) { |
| __free_page(src_tpage); |
| return -EFAULT; |
| } |
| |
| paddr = __sme_page_pa(src_tpage); |
| } |
| |
| /* |
| * If destination buffer or length is not aligned then do read-modify-write: |
| * - decrypt destination in an intermediate buffer |
| * - copy the source buffer in an intermediate buffer |
| * - use the intermediate buffer as source buffer |
| */ |
| if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { |
| int dst_offset; |
| |
| dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); |
| if (!dst_tpage) { |
| ret = -ENOMEM; |
| goto e_free; |
| } |
| |
| ret = __sev_dbg_decrypt(kvm, dst_paddr, |
| __sme_page_pa(dst_tpage), size, error); |
| if (ret) |
| goto e_free; |
| |
| /* |
| * If source is kernel buffer then use memcpy() otherwise |
| * copy_from_user(). |
| */ |
| dst_offset = dst_paddr & 15; |
| |
| if (src_tpage) |
| memcpy(page_address(dst_tpage) + dst_offset, |
| page_address(src_tpage), size); |
| else { |
| if (copy_from_user(page_address(dst_tpage) + dst_offset, |
| vaddr, size)) { |
| ret = -EFAULT; |
| goto e_free; |
| } |
| } |
| |
| paddr = __sme_page_pa(dst_tpage); |
| dst_paddr = round_down(dst_paddr, 16); |
| len = round_up(size, 16); |
| } |
| |
| ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); |
| |
| e_free: |
| if (src_tpage) |
| __free_page(src_tpage); |
| if (dst_tpage) |
| __free_page(dst_tpage); |
| return ret; |
| } |
| |
| static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) |
| { |
| unsigned long vaddr, vaddr_end, next_vaddr; |
| unsigned long dst_vaddr; |
| struct page **src_p, **dst_p; |
| struct kvm_sev_dbg debug; |
| unsigned long n; |
| unsigned int size; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) |
| return -EFAULT; |
| |
| if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) |
| return -EINVAL; |
| if (!debug.dst_uaddr) |
| return -EINVAL; |
| |
| vaddr = debug.src_uaddr; |
| size = debug.len; |
| vaddr_end = vaddr + size; |
| dst_vaddr = debug.dst_uaddr; |
| |
| for (; vaddr < vaddr_end; vaddr = next_vaddr) { |
| int len, s_off, d_off; |
| |
| /* lock userspace source and destination page */ |
| src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); |
| if (IS_ERR(src_p)) |
| return PTR_ERR(src_p); |
| |
| dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); |
| if (IS_ERR(dst_p)) { |
| sev_unpin_memory(kvm, src_p, n); |
| return PTR_ERR(dst_p); |
| } |
| |
| /* |
| * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify |
| * the pages; flush the destination too so that future accesses do not |
| * see stale data. |
| */ |
| sev_clflush_pages(src_p, 1); |
| sev_clflush_pages(dst_p, 1); |
| |
| /* |
| * Since user buffer may not be page aligned, calculate the |
| * offset within the page. |
| */ |
| s_off = vaddr & ~PAGE_MASK; |
| d_off = dst_vaddr & ~PAGE_MASK; |
| len = min_t(size_t, (PAGE_SIZE - s_off), size); |
| |
| if (dec) |
| ret = __sev_dbg_decrypt_user(kvm, |
| __sme_page_pa(src_p[0]) + s_off, |
| (void __user *)dst_vaddr, |
| __sme_page_pa(dst_p[0]) + d_off, |
| len, &argp->error); |
| else |
| ret = __sev_dbg_encrypt_user(kvm, |
| __sme_page_pa(src_p[0]) + s_off, |
| (void __user *)vaddr, |
| __sme_page_pa(dst_p[0]) + d_off, |
| (void __user *)dst_vaddr, |
| len, &argp->error); |
| |
| sev_unpin_memory(kvm, src_p, n); |
| sev_unpin_memory(kvm, dst_p, n); |
| |
| if (ret) |
| goto err; |
| |
| next_vaddr = vaddr + len; |
| dst_vaddr = dst_vaddr + len; |
| size -= len; |
| } |
| err: |
| return ret; |
| } |
| |
| static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_secret data; |
| struct kvm_sev_launch_secret params; |
| struct page **pages; |
| void *blob, *hdr; |
| unsigned long n, i; |
| int ret, offset; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) |
| return -EFAULT; |
| |
| pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); |
| if (IS_ERR(pages)) |
| return PTR_ERR(pages); |
| |
| /* |
| * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in |
| * place; the cache may contain the data that was written unencrypted. |
| */ |
| sev_clflush_pages(pages, n); |
| |
| /* |
| * The secret must be copied into contiguous memory region, lets verify |
| * that userspace memory pages are contiguous before we issue command. |
| */ |
| if (get_num_contig_pages(0, pages, n) != n) { |
| ret = -EINVAL; |
| goto e_unpin_memory; |
| } |
| |
| memset(&data, 0, sizeof(data)); |
| |
| offset = params.guest_uaddr & (PAGE_SIZE - 1); |
| data.guest_address = __sme_page_pa(pages[0]) + offset; |
| data.guest_len = params.guest_len; |
| |
| blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); |
| if (IS_ERR(blob)) { |
| ret = PTR_ERR(blob); |
| goto e_unpin_memory; |
| } |
| |
| data.trans_address = __psp_pa(blob); |
| data.trans_len = params.trans_len; |
| |
| hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); |
| if (IS_ERR(hdr)) { |
| ret = PTR_ERR(hdr); |
| goto e_free_blob; |
| } |
| data.hdr_address = __psp_pa(hdr); |
| data.hdr_len = params.hdr_len; |
| |
| data.handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); |
| |
| kfree(hdr); |
| |
| e_free_blob: |
| kfree(blob); |
| e_unpin_memory: |
| /* content of memory is updated, mark pages dirty */ |
| for (i = 0; i < n; i++) { |
| set_page_dirty_lock(pages[i]); |
| mark_page_accessed(pages[i]); |
| } |
| sev_unpin_memory(kvm, pages, n); |
| return ret; |
| } |
| |
| static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| void __user *report = u64_to_user_ptr(argp->data); |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_attestation_report data; |
| struct kvm_sev_attestation_report params; |
| void __user *p; |
| void *blob = NULL; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) |
| return -EFAULT; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| /* User wants to query the blob length */ |
| if (!params.len) |
| goto cmd; |
| |
| p = u64_to_user_ptr(params.uaddr); |
| if (p) { |
| if (params.len > SEV_FW_BLOB_MAX_SIZE) |
| return -EINVAL; |
| |
| blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); |
| if (!blob) |
| return -ENOMEM; |
| |
| data.address = __psp_pa(blob); |
| data.len = params.len; |
| memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); |
| } |
| cmd: |
| data.handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); |
| /* |
| * If we query the session length, FW responded with expected data. |
| */ |
| if (!params.len) |
| goto done; |
| |
| if (ret) |
| goto e_free_blob; |
| |
| if (blob) { |
| if (copy_to_user(p, blob, params.len)) |
| ret = -EFAULT; |
| } |
| |
| done: |
| params.len = data.len; |
| if (copy_to_user(report, ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| e_free_blob: |
| kfree(blob); |
| return ret; |
| } |
| |
| /* Userspace wants to query session length. */ |
| static int |
| __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, |
| struct kvm_sev_send_start *params) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_start data; |
| int ret; |
| |
| memset(&data, 0, sizeof(data)); |
| data.handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); |
| |
| params->session_len = data.session_len; |
| if (copy_to_user(u64_to_user_ptr(argp->data), params, |
| sizeof(struct kvm_sev_send_start))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_start data; |
| struct kvm_sev_send_start params; |
| void *amd_certs, *session_data; |
| void *pdh_cert, *plat_certs; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), |
| sizeof(struct kvm_sev_send_start))) |
| return -EFAULT; |
| |
| /* if session_len is zero, userspace wants to query the session length */ |
| if (!params.session_len) |
| return __sev_send_start_query_session_length(kvm, argp, |
| ¶ms); |
| |
| /* some sanity checks */ |
| if (!params.pdh_cert_uaddr || !params.pdh_cert_len || |
| !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) |
| return -EINVAL; |
| |
| /* allocate the memory to hold the session data blob */ |
| session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); |
| if (!session_data) |
| return -ENOMEM; |
| |
| /* copy the certificate blobs from userspace */ |
| pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, |
| params.pdh_cert_len); |
| if (IS_ERR(pdh_cert)) { |
| ret = PTR_ERR(pdh_cert); |
| goto e_free_session; |
| } |
| |
| plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, |
| params.plat_certs_len); |
| if (IS_ERR(plat_certs)) { |
| ret = PTR_ERR(plat_certs); |
| goto e_free_pdh; |
| } |
| |
| amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, |
| params.amd_certs_len); |
| if (IS_ERR(amd_certs)) { |
| ret = PTR_ERR(amd_certs); |
| goto e_free_plat_cert; |
| } |
| |
| /* populate the FW SEND_START field with system physical address */ |
| memset(&data, 0, sizeof(data)); |
| data.pdh_cert_address = __psp_pa(pdh_cert); |
| data.pdh_cert_len = params.pdh_cert_len; |
| data.plat_certs_address = __psp_pa(plat_certs); |
| data.plat_certs_len = params.plat_certs_len; |
| data.amd_certs_address = __psp_pa(amd_certs); |
| data.amd_certs_len = params.amd_certs_len; |
| data.session_address = __psp_pa(session_data); |
| data.session_len = params.session_len; |
| data.handle = sev->handle; |
| |
| ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); |
| |
| if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), |
| session_data, params.session_len)) { |
| ret = -EFAULT; |
| goto e_free_amd_cert; |
| } |
| |
| params.policy = data.policy; |
| params.session_len = data.session_len; |
| if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, |
| sizeof(struct kvm_sev_send_start))) |
| ret = -EFAULT; |
| |
| e_free_amd_cert: |
| kfree(amd_certs); |
| e_free_plat_cert: |
| kfree(plat_certs); |
| e_free_pdh: |
| kfree(pdh_cert); |
| e_free_session: |
| kfree(session_data); |
| return ret; |
| } |
| |
| /* Userspace wants to query either header or trans length. */ |
| static int |
| __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, |
| struct kvm_sev_send_update_data *params) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_update_data data; |
| int ret; |
| |
| memset(&data, 0, sizeof(data)); |
| data.handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); |
| |
| params->hdr_len = data.hdr_len; |
| params->trans_len = data.trans_len; |
| |
| if (copy_to_user(u64_to_user_ptr(argp->data), params, |
| sizeof(struct kvm_sev_send_update_data))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_update_data data; |
| struct kvm_sev_send_update_data params; |
| void *hdr, *trans_data; |
| struct page **guest_page; |
| unsigned long n; |
| int ret, offset; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), |
| sizeof(struct kvm_sev_send_update_data))) |
| return -EFAULT; |
| |
| /* userspace wants to query either header or trans length */ |
| if (!params.trans_len || !params.hdr_len) |
| return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); |
| |
| if (!params.trans_uaddr || !params.guest_uaddr || |
| !params.guest_len || !params.hdr_uaddr) |
| return -EINVAL; |
| |
| /* Check if we are crossing the page boundary */ |
| offset = params.guest_uaddr & (PAGE_SIZE - 1); |
| if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) |
| return -EINVAL; |
| |
| /* Pin guest memory */ |
| guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, |
| PAGE_SIZE, &n, 0); |
| if (IS_ERR(guest_page)) |
| return PTR_ERR(guest_page); |
| |
| /* allocate memory for header and transport buffer */ |
| ret = -ENOMEM; |
| hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); |
| if (!hdr) |
| goto e_unpin; |
| |
| trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); |
| if (!trans_data) |
| goto e_free_hdr; |
| |
| memset(&data, 0, sizeof(data)); |
| data.hdr_address = __psp_pa(hdr); |
| data.hdr_len = params.hdr_len; |
| data.trans_address = __psp_pa(trans_data); |
| data.trans_len = params.trans_len; |
| |
| /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ |
| data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; |
| data.guest_address |= sev_me_mask; |
| data.guest_len = params.guest_len; |
| data.handle = sev->handle; |
| |
| ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); |
| |
| if (ret) |
| goto e_free_trans_data; |
| |
| /* copy transport buffer to user space */ |
| if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), |
| trans_data, params.trans_len)) { |
| ret = -EFAULT; |
| goto e_free_trans_data; |
| } |
| |
| /* Copy packet header to userspace. */ |
| if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, |
| params.hdr_len)) |
| ret = -EFAULT; |
| |
| e_free_trans_data: |
| kfree(trans_data); |
| e_free_hdr: |
| kfree(hdr); |
| e_unpin: |
| sev_unpin_memory(kvm, guest_page, n); |
| |
| return ret; |
| } |
| |
| static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_finish data; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| data.handle = sev->handle; |
| return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); |
| } |
| |
| static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_cancel data; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| data.handle = sev->handle; |
| return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); |
| } |
| |
| static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_receive_start start; |
| struct kvm_sev_receive_start params; |
| int *error = &argp->error; |
| void *session_data; |
| void *pdh_data; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| /* Get parameter from the userspace */ |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), |
| sizeof(struct kvm_sev_receive_start))) |
| return -EFAULT; |
| |
| /* some sanity checks */ |
| if (!params.pdh_uaddr || !params.pdh_len || |
| !params.session_uaddr || !params.session_len) |
| return -EINVAL; |
| |
| pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); |
| if (IS_ERR(pdh_data)) |
| return PTR_ERR(pdh_data); |
| |
| session_data = psp_copy_user_blob(params.session_uaddr, |
| params.session_len); |
| if (IS_ERR(session_data)) { |
| ret = PTR_ERR(session_data); |
| goto e_free_pdh; |
| } |
| |
| memset(&start, 0, sizeof(start)); |
| start.handle = params.handle; |
| start.policy = params.policy; |
| start.pdh_cert_address = __psp_pa(pdh_data); |
| start.pdh_cert_len = params.pdh_len; |
| start.session_address = __psp_pa(session_data); |
| start.session_len = params.session_len; |
| |
| /* create memory encryption context */ |
| ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, |
| error); |
| if (ret) |
| goto e_free_session; |
| |
| /* Bind ASID to this guest */ |
| ret = sev_bind_asid(kvm, start.handle, error); |
| if (ret) { |
| sev_decommission(start.handle); |
| goto e_free_session; |
| } |
| |
| params.handle = start.handle; |
| if (copy_to_user(u64_to_user_ptr(argp->data), |
| ¶ms, sizeof(struct kvm_sev_receive_start))) { |
| ret = -EFAULT; |
| sev_unbind_asid(kvm, start.handle); |
| goto e_free_session; |
| } |
| |
| sev->handle = start.handle; |
| sev->fd = argp->sev_fd; |
| |
| e_free_session: |
| kfree(session_data); |
| e_free_pdh: |
| kfree(pdh_data); |
| |
| return ret; |
| } |
| |
| static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_receive_update_data params; |
| struct sev_data_receive_update_data data; |
| void *hdr = NULL, *trans = NULL; |
| struct page **guest_page; |
| unsigned long n; |
| int ret, offset; |
| |
| if (!sev_guest(kvm)) |
| return -EINVAL; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), |
| sizeof(struct kvm_sev_receive_update_data))) |
| return -EFAULT; |
| |
| if (!params.hdr_uaddr || !params.hdr_len || |
| !params.guest_uaddr || !params.guest_len || |
| !params.trans_uaddr || !params.trans_len) |
| return -EINVAL; |
| |
| /* Check if we are crossing the page boundary */ |
| offset = params.guest_uaddr & (PAGE_SIZE - 1); |
| if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) |
| return -EINVAL; |
| |
| hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); |
| if (IS_ERR(hdr)) |
| return PTR_ERR(hdr); |
| |
| trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto e_free_hdr; |
| } |
| |
| memset(&data, 0, sizeof(data)); |
| data.hdr_address = __psp_pa(hdr); |
| data.hdr_len = params.hdr_len; |
| data.trans_address = __psp_pa(trans); |
| data.trans_len = params.trans_len; |
| |
| /* Pin guest memory */ |
| guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, |
| PAGE_SIZE, &n, 1); |
| if (IS_ERR(guest_page)) { |
| ret = PTR_ERR(guest_page); |
| goto e_free_trans; |
| } |
| |
| /* |
| * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP |
| * encrypts the written data with the guest's key, and the cache may |
| * contain dirty, unencrypted data. |
| */ |
| sev_clflush_pages(guest_page, n); |
| |
| /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ |
| data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; |
| data.guest_address |= sev_me_mask; |
| data.guest_len = params.guest_len; |
| data.handle = sev->handle; |
| |
| ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, |
| &argp->error); |
| |
| sev_unpin_memory(kvm, guest_page, n); |
| |
| e_free_trans: |
| kfree(trans); |
| e_free_hdr: |
| kfree(hdr); |
| |
| return ret; |
| } |
| |
| static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_receive_finish data; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| data.handle = sev->handle; |
| return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); |
| } |
| |
| static bool is_cmd_allowed_from_mirror(u32 cmd_id) |
| { |
| /* |
| * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES |
| * active mirror VMs. Also allow the debugging and status commands. |
| */ |
| if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || |
| cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || |
| cmd_id == KVM_SEV_DBG_ENCRYPT) |
| return true; |
| |
| return false; |
| } |
| |
| static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) |
| { |
| struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; |
| struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; |
| int r = -EBUSY; |
| |
| if (dst_kvm == src_kvm) |
| return -EINVAL; |
| |
| /* |
| * Bail if these VMs are already involved in a migration to avoid |
| * deadlock between two VMs trying to migrate to/from each other. |
| */ |
| if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) |
| return -EBUSY; |
| |
| if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) |
| goto release_dst; |
| |
| r = -EINTR; |
| if (mutex_lock_killable(&dst_kvm->lock)) |
| goto release_src; |
| if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) |
| goto unlock_dst; |
| return 0; |
| |
| unlock_dst: |
| mutex_unlock(&dst_kvm->lock); |
| release_src: |
| atomic_set_release(&src_sev->migration_in_progress, 0); |
| release_dst: |
| atomic_set_release(&dst_sev->migration_in_progress, 0); |
| return r; |
| } |
| |
| static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) |
| { |
| struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; |
| struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; |
| |
| mutex_unlock(&dst_kvm->lock); |
| mutex_unlock(&src_kvm->lock); |
| atomic_set_release(&dst_sev->migration_in_progress, 0); |
| atomic_set_release(&src_sev->migration_in_progress, 0); |
| } |
| |
| /* vCPU mutex subclasses. */ |
| enum sev_migration_role { |
| SEV_MIGRATION_SOURCE = 0, |
| SEV_MIGRATION_TARGET, |
| SEV_NR_MIGRATION_ROLES, |
| }; |
| |
| static int sev_lock_vcpus_for_migration(struct kvm *kvm, |
| enum sev_migration_role role) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long i, j; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (mutex_lock_killable_nested(&vcpu->mutex, role)) |
| goto out_unlock; |
| |
| #ifdef CONFIG_PROVE_LOCKING |
| if (!i) |
| /* |
| * Reset the role to one that avoids colliding with |
| * the role used for the first vcpu mutex. |
| */ |
| role = SEV_NR_MIGRATION_ROLES; |
| else |
| mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); |
| #endif |
| } |
| |
| return 0; |
| |
| out_unlock: |
| |
| kvm_for_each_vcpu(j, vcpu, kvm) { |
| if (i == j) |
| break; |
| |
| #ifdef CONFIG_PROVE_LOCKING |
| if (j) |
| mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); |
| #endif |
| |
| mutex_unlock(&vcpu->mutex); |
| } |
| return -EINTR; |
| } |
| |
| static void sev_unlock_vcpus_for_migration(struct kvm *kvm) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| bool first = true; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (first) |
| first = false; |
| else |
| mutex_acquire(&vcpu->mutex.dep_map, |
| SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); |
| |
| mutex_unlock(&vcpu->mutex); |
| } |
| } |
| |
| static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) |
| { |
| struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; |
| struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; |
| struct kvm_vcpu *dst_vcpu, *src_vcpu; |
| struct vcpu_svm *dst_svm, *src_svm; |
| struct kvm_sev_info *mirror; |
| unsigned long i; |
| |
| dst->active = true; |
| dst->asid = src->asid; |
| dst->handle = src->handle; |
| dst->pages_locked = src->pages_locked; |
| dst->enc_context_owner = src->enc_context_owner; |
| dst->es_active = src->es_active; |
| dst->vmsa_features = src->vmsa_features; |
| |
| src->asid = 0; |
| src->active = false; |
| src->handle = 0; |
| src->pages_locked = 0; |
| src->enc_context_owner = NULL; |
| src->es_active = false; |
| |
| list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); |
| |
| /* |
| * If this VM has mirrors, "transfer" each mirror's refcount of the |
| * source to the destination (this KVM). The caller holds a reference |
| * to the source, so there's no danger of use-after-free. |
| */ |
| list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); |
| list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { |
| kvm_get_kvm(dst_kvm); |
| kvm_put_kvm(src_kvm); |
| mirror->enc_context_owner = dst_kvm; |
| } |
| |
| /* |
| * If this VM is a mirror, remove the old mirror from the owners list |
| * and add the new mirror to the list. |
| */ |
| if (is_mirroring_enc_context(dst_kvm)) { |
| struct kvm_sev_info *owner_sev_info = |
| &to_kvm_svm(dst->enc_context_owner)->sev_info; |
| |
| list_del(&src->mirror_entry); |
| list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); |
| } |
| |
| kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { |
| dst_svm = to_svm(dst_vcpu); |
| |
| sev_init_vmcb(dst_svm); |
| |
| if (!dst->es_active) |
| continue; |
| |
| /* |
| * Note, the source is not required to have the same number of |
| * vCPUs as the destination when migrating a vanilla SEV VM. |
| */ |
| src_vcpu = kvm_get_vcpu(src_kvm, i); |
| src_svm = to_svm(src_vcpu); |
| |
| /* |
| * Transfer VMSA and GHCB state to the destination. Nullify and |
| * clear source fields as appropriate, the state now belongs to |
| * the destination. |
| */ |
| memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); |
| dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; |
| dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; |
| dst_vcpu->arch.guest_state_protected = true; |
| |
| memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); |
| src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; |
| src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; |
| src_vcpu->arch.guest_state_protected = false; |
| } |
| } |
| |
| static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) |
| { |
| struct kvm_vcpu *src_vcpu; |
| unsigned long i; |
| |
| if (!sev_es_guest(src)) |
| return 0; |
| |
| if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) |
| return -EINVAL; |
| |
| kvm_for_each_vcpu(i, src_vcpu, src) { |
| if (!src_vcpu->arch.guest_state_protected) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) |
| { |
| struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_info *src_sev, *cg_cleanup_sev; |
| CLASS(fd, f)(source_fd); |
| struct kvm *source_kvm; |
| bool charged = false; |
| int ret; |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| |
| if (!file_is_kvm(fd_file(f))) |
| return -EBADF; |
| |
| source_kvm = fd_file(f)->private_data; |
| ret = sev_lock_two_vms(kvm, source_kvm); |
| if (ret) |
| return ret; |
| |
| if (kvm->arch.vm_type != source_kvm->arch.vm_type || |
| sev_guest(kvm) || !sev_guest(source_kvm)) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| src_sev = &to_kvm_svm(source_kvm)->sev_info; |
| |
| dst_sev->misc_cg = get_current_misc_cg(); |
| cg_cleanup_sev = dst_sev; |
| if (dst_sev->misc_cg != src_sev->misc_cg) { |
| ret = sev_misc_cg_try_charge(dst_sev); |
| if (ret) |
| goto out_dst_cgroup; |
| charged = true; |
| } |
| |
| ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); |
| if (ret) |
| goto out_dst_cgroup; |
| ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); |
| if (ret) |
| goto out_dst_vcpu; |
| |
| ret = sev_check_source_vcpus(kvm, source_kvm); |
| if (ret) |
| goto out_source_vcpu; |
| |
| sev_migrate_from(kvm, source_kvm); |
| kvm_vm_dead(source_kvm); |
| cg_cleanup_sev = src_sev; |
| ret = 0; |
| |
| out_source_vcpu: |
| sev_unlock_vcpus_for_migration(source_kvm); |
| out_dst_vcpu: |
| sev_unlock_vcpus_for_migration(kvm); |
| out_dst_cgroup: |
| /* Operates on the source on success, on the destination on failure. */ |
| if (charged) |
| sev_misc_cg_uncharge(cg_cleanup_sev); |
| put_misc_cg(cg_cleanup_sev->misc_cg); |
| cg_cleanup_sev->misc_cg = NULL; |
| out_unlock: |
| sev_unlock_two_vms(kvm, source_kvm); |
| return ret; |
| } |
| |
| int sev_dev_get_attr(u32 group, u64 attr, u64 *val) |
| { |
| if (group != KVM_X86_GRP_SEV) |
| return -ENXIO; |
| |
| switch (attr) { |
| case KVM_X86_SEV_VMSA_FEATURES: |
| *val = sev_supported_vmsa_features; |
| return 0; |
| |
| default: |
| return -ENXIO; |
| } |
| } |
| |
| /* |
| * The guest context contains all the information, keys and metadata |
| * associated with the guest that the firmware tracks to implement SEV |
| * and SNP features. The firmware stores the guest context in hypervisor |
| * provide page via the SNP_GCTX_CREATE command. |
| */ |
| static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct sev_data_snp_addr data = {}; |
| void *context; |
| int rc; |
| |
| /* Allocate memory for context page */ |
| context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); |
| if (!context) |
| return NULL; |
| |
| data.address = __psp_pa(context); |
| rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); |
| if (rc) { |
| pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", |
| rc, argp->error); |
| snp_free_firmware_page(context); |
| return NULL; |
| } |
| |
| return context; |
| } |
| |
| static int snp_bind_asid(struct kvm *kvm, int *error) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_snp_activate data = {0}; |
| |
| data.gctx_paddr = __psp_pa(sev->snp_context); |
| data.asid = sev_get_asid(kvm); |
| return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); |
| } |
| |
| static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_snp_launch_start start = {0}; |
| struct kvm_sev_snp_launch_start params; |
| int rc; |
| |
| if (!sev_snp_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) |
| return -EFAULT; |
| |
| /* Don't allow userspace to allocate memory for more than 1 SNP context. */ |
| if (sev->snp_context) |
| return -EINVAL; |
| |
| sev->snp_context = snp_context_create(kvm, argp); |
| if (!sev->snp_context) |
| return -ENOTTY; |
| |
| if (params.flags) |
| return -EINVAL; |
| |
| if (params.policy & ~SNP_POLICY_MASK_VALID) |
| return -EINVAL; |
| |
| /* Check for policy bits that must be set */ |
| if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || |
| !(params.policy & SNP_POLICY_MASK_SMT)) |
| return -EINVAL; |
| |
| if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) |
| return -EINVAL; |
| |
| start.gctx_paddr = __psp_pa(sev->snp_context); |
| start.policy = params.policy; |
| memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); |
| rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); |
| if (rc) { |
| pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", |
| __func__, rc); |
| goto e_free_context; |
| } |
| |
| sev->fd = argp->sev_fd; |
| rc = snp_bind_asid(kvm, &argp->error); |
| if (rc) { |
| pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", |
| __func__, rc); |
| goto e_free_context; |
| } |
| |
| return 0; |
| |
| e_free_context: |
| snp_decommission_context(kvm); |
| |
| return rc; |
| } |
| |
| struct sev_gmem_populate_args { |
| __u8 type; |
| int sev_fd; |
| int fw_error; |
| }; |
| |
| static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, |
| void __user *src, int order, void *opaque) |
| { |
| struct sev_gmem_populate_args *sev_populate_args = opaque; |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| int n_private = 0, ret, i; |
| int npages = (1 << order); |
| gfn_t gfn; |
| |
| if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) |
| return -EINVAL; |
| |
| for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { |
| struct sev_data_snp_launch_update fw_args = {0}; |
| bool assigned = false; |
| int level; |
| |
| ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); |
| if (ret || assigned) { |
| pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", |
| __func__, gfn, ret, assigned); |
| ret = ret ? -EINVAL : -EEXIST; |
| goto err; |
| } |
| |
| if (src) { |
| void *vaddr = kmap_local_pfn(pfn + i); |
| |
| if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { |
| ret = -EFAULT; |
| goto err; |
| } |
| kunmap_local(vaddr); |
| } |
| |
| ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, |
| sev_get_asid(kvm), true); |
| if (ret) |
| goto err; |
| |
| n_private++; |
| |
| fw_args.gctx_paddr = __psp_pa(sev->snp_context); |
| fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); |
| fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); |
| fw_args.page_type = sev_populate_args->type; |
| |
| ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, |
| &fw_args, &sev_populate_args->fw_error); |
| if (ret) |
| goto fw_err; |
| } |
| |
| return 0; |
| |
| fw_err: |
| /* |
| * If the firmware command failed handle the reclaim and cleanup of that |
| * PFN specially vs. prior pages which can be cleaned up below without |
| * needing to reclaim in advance. |
| * |
| * Additionally, when invalid CPUID function entries are detected, |
| * firmware writes the expected values into the page and leaves it |
| * unencrypted so it can be used for debugging and error-reporting. |
| * |
| * Copy this page back into the source buffer so userspace can use this |
| * information to provide information on which CPUID leaves/fields |
| * failed CPUID validation. |
| */ |
| if (!snp_page_reclaim(kvm, pfn + i) && |
| sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && |
| sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { |
| void *vaddr = kmap_local_pfn(pfn + i); |
| |
| if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) |
| pr_debug("Failed to write CPUID page back to userspace\n"); |
| |
| kunmap_local(vaddr); |
| } |
| |
| /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ |
| n_private--; |
| |
| err: |
| pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", |
| __func__, ret, sev_populate_args->fw_error, n_private); |
| for (i = 0; i < n_private; i++) |
| kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); |
| |
| return ret; |
| } |
| |
| static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_gmem_populate_args sev_populate_args = {0}; |
| struct kvm_sev_snp_launch_update params; |
| struct kvm_memory_slot *memslot; |
| long npages, count; |
| void __user *src; |
| int ret = 0; |
| |
| if (!sev_snp_guest(kvm) || !sev->snp_context) |
| return -EINVAL; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) |
| return -EFAULT; |
| |
| pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, |
| params.gfn_start, params.len, params.type, params.flags); |
| |
| if (!PAGE_ALIGNED(params.len) || params.flags || |
| (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && |
| params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && |
| params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && |
| params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && |
| params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) |
| return -EINVAL; |
| |
| npages = params.len / PAGE_SIZE; |
| |
| /* |
| * For each GFN that's being prepared as part of the initial guest |
| * state, the following pre-conditions are verified: |
| * |
| * 1) The backing memslot is a valid private memslot. |
| * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES |
| * beforehand. |
| * 3) The PFN of the guest_memfd has not already been set to private |
| * in the RMP table. |
| * |
| * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page |
| * faults if there's a race between a fault and an attribute update via |
| * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized |
| * here. However, kvm->slots_lock guards against both this as well as |
| * concurrent memslot updates occurring while these checks are being |
| * performed, so use that here to make it easier to reason about the |
| * initial expected state and better guard against unexpected |
| * situations. |
| */ |
| mutex_lock(&kvm->slots_lock); |
| |
| memslot = gfn_to_memslot(kvm, params.gfn_start); |
| if (!kvm_slot_can_be_private(memslot)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| sev_populate_args.sev_fd = argp->sev_fd; |
| sev_populate_args.type = params.type; |
| src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); |
| |
| count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, |
| sev_gmem_post_populate, &sev_populate_args); |
| if (count < 0) { |
| argp->error = sev_populate_args.fw_error; |
| pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", |
| __func__, count, argp->error); |
| ret = -EIO; |
| } else { |
| params.gfn_start += count; |
| params.len -= count * PAGE_SIZE; |
| if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) |
| params.uaddr += count * PAGE_SIZE; |
| |
| ret = 0; |
| if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| } |
| |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| |
| return ret; |
| } |
| |
| static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_snp_launch_update data = {}; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| int ret; |
| |
| data.gctx_paddr = __psp_pa(sev->snp_context); |
| data.page_type = SNP_PAGE_TYPE_VMSA; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; |
| |
| ret = sev_es_sync_vmsa(svm); |
| if (ret) |
| return ret; |
| |
| /* Transition the VMSA page to a firmware state. */ |
| ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); |
| if (ret) |
| return ret; |
| |
| /* Issue the SNP command to encrypt the VMSA */ |
| data.address = __sme_pa(svm->sev_es.vmsa); |
| ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, |
| &data, &argp->error); |
| if (ret) { |
| snp_page_reclaim(kvm, pfn); |
| |
| return ret; |
| } |
| |
| svm->vcpu.arch.guest_state_protected = true; |
| /* |
| * SEV-ES (and thus SNP) guest mandates LBR Virtualization to |
| * be _always_ ON. Enable it only after setting |
| * guest_state_protected because KVM_SET_MSRS allows dynamic |
| * toggling of LBRV (for performance reason) on write access to |
| * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. |
| */ |
| svm_enable_lbrv(vcpu); |
| } |
| |
| return 0; |
| } |
| |
| static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_snp_launch_finish params; |
| struct sev_data_snp_launch_finish *data; |
| void *id_block = NULL, *id_auth = NULL; |
| int ret; |
| |
| if (!sev_snp_guest(kvm)) |
| return -ENOTTY; |
| |
| if (!sev->snp_context) |
| return -EINVAL; |
| |
| if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) |
| return -EFAULT; |
| |
| if (params.flags) |
| return -EINVAL; |
| |
| /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ |
| ret = snp_launch_update_vmsa(kvm, argp); |
| if (ret) |
| return ret; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| if (params.id_block_en) { |
| id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); |
| if (IS_ERR(id_block)) { |
| ret = PTR_ERR(id_block); |
| goto e_free; |
| } |
| |
| data->id_block_en = 1; |
| data->id_block_paddr = __sme_pa(id_block); |
| |
| id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); |
| if (IS_ERR(id_auth)) { |
| ret = PTR_ERR(id_auth); |
| goto e_free_id_block; |
| } |
| |
| data->id_auth_paddr = __sme_pa(id_auth); |
| |
| if (params.auth_key_en) |
| data->auth_key_en = 1; |
| } |
| |
| data->vcek_disabled = params.vcek_disabled; |
| |
| memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); |
| data->gctx_paddr = __psp_pa(sev->snp_context); |
| ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); |
| |
| /* |
| * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages |
| * can be given to the guest simply by marking the RMP entry as private. |
| * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. |
| */ |
| if (!ret) |
| kvm->arch.pre_fault_allowed = true; |
| |
| kfree(id_auth); |
| |
| e_free_id_block: |
| kfree(id_block); |
| |
| e_free: |
| kfree(data); |
| |
| return ret; |
| } |
| |
| int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) |
| { |
| struct kvm_sev_cmd sev_cmd; |
| int r; |
| |
| if (!sev_enabled) |
| return -ENOTTY; |
| |
| if (!argp) |
| return 0; |
| |
| if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) |
| return -EFAULT; |
| |
| mutex_lock(&kvm->lock); |
| |
| /* Only the enc_context_owner handles some memory enc operations. */ |
| if (is_mirroring_enc_context(kvm) && |
| !is_cmd_allowed_from_mirror(sev_cmd.id)) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only |
| * allow the use of SNP-specific commands. |
| */ |
| if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { |
| r = -EPERM; |
| goto out; |
| } |
| |
| switch (sev_cmd.id) { |
| case KVM_SEV_ES_INIT: |
| if (!sev_es_enabled) { |
| r = -ENOTTY; |
| goto out; |
| } |
| fallthrough; |
| case KVM_SEV_INIT: |
| r = sev_guest_init(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_INIT2: |
| r = sev_guest_init2(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_START: |
| r = sev_launch_start(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_UPDATE_DATA: |
| r = sev_launch_update_data(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_UPDATE_VMSA: |
| r = sev_launch_update_vmsa(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_MEASURE: |
| r = sev_launch_measure(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_FINISH: |
| r = sev_launch_finish(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_GUEST_STATUS: |
| r = sev_guest_status(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_DBG_DECRYPT: |
| r = sev_dbg_crypt(kvm, &sev_cmd, true); |
| break; |
| case KVM_SEV_DBG_ENCRYPT: |
| r = sev_dbg_crypt(kvm, &sev_cmd, false); |
| break; |
| case KVM_SEV_LAUNCH_SECRET: |
| r = sev_launch_secret(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_GET_ATTESTATION_REPORT: |
| r = sev_get_attestation_report(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SEND_START: |
| r = sev_send_start(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SEND_UPDATE_DATA: |
| r = sev_send_update_data(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SEND_FINISH: |
| r = sev_send_finish(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SEND_CANCEL: |
| r = sev_send_cancel(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_RECEIVE_START: |
| r = sev_receive_start(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_RECEIVE_UPDATE_DATA: |
| r = sev_receive_update_data(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_RECEIVE_FINISH: |
| r = sev_receive_finish(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SNP_LAUNCH_START: |
| r = snp_launch_start(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SNP_LAUNCH_UPDATE: |
| r = snp_launch_update(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SNP_LAUNCH_FINISH: |
| r = snp_launch_finish(kvm, &sev_cmd); |
| break; |
| default: |
| r = -EINVAL; |
| goto out; |
| } |
| |
| if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) |
| r = -EFAULT; |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| int sev_mem_enc_register_region(struct kvm *kvm, |
| struct kvm_enc_region *range) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct enc_region *region; |
| int ret = 0; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| /* If kvm is mirroring encryption context it isn't responsible for it */ |
| if (is_mirroring_enc_context(kvm)) |
| return -EINVAL; |
| |
| if (range->addr > ULONG_MAX || range->size > ULONG_MAX) |
| return -EINVAL; |
| |
| region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); |
| if (!region) |
| return -ENOMEM; |
| |
| mutex_lock(&kvm->lock); |
| region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); |
| if (IS_ERR(region->pages)) { |
| ret = PTR_ERR(region->pages); |
| mutex_unlock(&kvm->lock); |
| goto e_free; |
| } |
| |
| /* |
| * The guest may change the memory encryption attribute from C=0 -> C=1 |
| * or vice versa for this memory range. Lets make sure caches are |
| * flushed to ensure that guest data gets written into memory with |
| * correct C-bit. Note, this must be done before dropping kvm->lock, |
| * as region and its array of pages can be freed by a different task |
| * once kvm->lock is released. |
| */ |
| sev_clflush_pages(region->pages, region->npages); |
| |
| region->uaddr = range->addr; |
| region->size = range->size; |
| |
| list_add_tail(®ion->list, &sev->regions_list); |
| mutex_unlock(&kvm->lock); |
| |
| return ret; |
| |
| e_free: |
| kfree(region); |
| return ret; |
| } |
| |
| static struct enc_region * |
| find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct list_head *head = &sev->regions_list; |
| struct enc_region *i; |
| |
| list_for_each_entry(i, head, list) { |
| if (i->uaddr == range->addr && |
| i->size == range->size) |
| return i; |
| } |
| |
| return NULL; |
| } |
| |
| static void __unregister_enc_region_locked(struct kvm *kvm, |
| struct enc_region *region) |
| { |
| sev_unpin_memory(kvm, region->pages, region->npages); |
| list_del(®ion->list); |
| kfree(region); |
| } |
| |
| int sev_mem_enc_unregister_region(struct kvm *kvm, |
| struct kvm_enc_region *range) |
| { |
| struct enc_region *region; |
| int ret; |
| |
| /* If kvm is mirroring encryption context it isn't responsible for it */ |
| if (is_mirroring_enc_context(kvm)) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (!sev_guest(kvm)) { |
| ret = -ENOTTY; |
| goto failed; |
| } |
| |
| region = find_enc_region(kvm, range); |
| if (!region) { |
| ret = -EINVAL; |
| goto failed; |
| } |
| |
| /* |
| * Ensure that all guest tagged cache entries are flushed before |
| * releasing the pages back to the system for use. CLFLUSH will |
| * not do this, so issue a WBINVD. |
| */ |
| wbinvd_on_all_cpus(); |
| |
| __unregister_enc_region_locked(kvm, region); |
| |
| mutex_unlock(&kvm->lock); |
| return 0; |
| |
| failed: |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) |
| { |
| CLASS(fd, f)(source_fd); |
| struct kvm *source_kvm; |
| struct kvm_sev_info *source_sev, *mirror_sev; |
| int ret; |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| |
| if (!file_is_kvm(fd_file(f))) |
| return -EBADF; |
| |
| source_kvm = fd_file(f)->private_data; |
| ret = sev_lock_two_vms(kvm, source_kvm); |
| if (ret) |
| return ret; |
| |
| /* |
| * Mirrors of mirrors should work, but let's not get silly. Also |
| * disallow out-of-band SEV/SEV-ES init if the target is already an |
| * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being |
| * created after SEV/SEV-ES initialization, e.g. to init intercepts. |
| */ |
| if (sev_guest(kvm) || !sev_guest(source_kvm) || |
| is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { |
| ret = -EINVAL; |
| goto e_unlock; |
| } |
| |
| /* |
| * The mirror kvm holds an enc_context_owner ref so its asid can't |
| * disappear until we're done with it |
| */ |
| source_sev = &to_kvm_svm(source_kvm)->sev_info; |
| kvm_get_kvm(source_kvm); |
| mirror_sev = &to_kvm_svm(kvm)->sev_info; |
| list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); |
| |
| /* Set enc_context_owner and copy its encryption context over */ |
| mirror_sev->enc_context_owner = source_kvm; |
| mirror_sev->active = true; |
| mirror_sev->asid = source_sev->asid; |
| mirror_sev->fd = source_sev->fd; |
| mirror_sev->es_active = source_sev->es_active; |
| mirror_sev->need_init = false; |
| mirror_sev->handle = source_sev->handle; |
| INIT_LIST_HEAD(&mirror_sev->regions_list); |
| INIT_LIST_HEAD(&mirror_sev->mirror_vms); |
| ret = 0; |
| |
| /* |
| * Do not copy ap_jump_table. Since the mirror does not share the same |
| * KVM contexts as the original, and they may have different |
| * memory-views. |
| */ |
| |
| e_unlock: |
| sev_unlock_two_vms(kvm, source_kvm); |
| return ret; |
| } |
| |
| static int snp_decommission_context(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_snp_addr data = {}; |
| int ret; |
| |
| /* If context is not created then do nothing */ |
| if (!sev->snp_context) |
| return 0; |
| |
| /* Do the decommision, which will unbind the ASID from the SNP context */ |
| data.address = __sme_pa(sev->snp_context); |
| down_write(&sev_deactivate_lock); |
| ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); |
| up_write(&sev_deactivate_lock); |
| |
| if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) |
| return ret; |
| |
| snp_free_firmware_page(sev->snp_context); |
| sev->snp_context = NULL; |
| |
| return 0; |
| } |
| |
| void sev_vm_destroy(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct list_head *head = &sev->regions_list; |
| struct list_head *pos, *q; |
| |
| if (!sev_guest(kvm)) |
| return; |
| |
| WARN_ON(!list_empty(&sev->mirror_vms)); |
| |
| /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ |
| if (is_mirroring_enc_context(kvm)) { |
| struct kvm *owner_kvm = sev->enc_context_owner; |
| |
| mutex_lock(&owner_kvm->lock); |
| list_del(&sev->mirror_entry); |
| mutex_unlock(&owner_kvm->lock); |
| kvm_put_kvm(owner_kvm); |
| return; |
| } |
| |
| /* |
| * Ensure that all guest tagged cache entries are flushed before |
| * releasing the pages back to the system for use. CLFLUSH will |
| * not do this, so issue a WBINVD. |
| */ |
| wbinvd_on_all_cpus(); |
| |
| /* |
| * if userspace was terminated before unregistering the memory regions |
| * then lets unpin all the registered memory. |
| */ |
| if (!list_empty(head)) { |
| list_for_each_safe(pos, q, head) { |
| __unregister_enc_region_locked(kvm, |
| list_entry(pos, struct enc_region, list)); |
| cond_resched(); |
| } |
| } |
| |
| if (sev_snp_guest(kvm)) { |
| snp_guest_req_cleanup(kvm); |
| |
| /* |
| * Decomission handles unbinding of the ASID. If it fails for |
| * some unexpected reason, just leak the ASID. |
| */ |
| if (snp_decommission_context(kvm)) |
| return; |
| } else { |
| sev_unbind_asid(kvm, sev->handle); |
| } |
| |
| sev_asid_free(sev); |
| } |
| |
| void __init sev_set_cpu_caps(void) |
| { |
| if (sev_enabled) { |
| kvm_cpu_cap_set(X86_FEATURE_SEV); |
| kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); |
| } |
| if (sev_es_enabled) { |
| kvm_cpu_cap_set(X86_FEATURE_SEV_ES); |
| kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); |
| } |
| if (sev_snp_enabled) { |
| kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); |
| kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); |
| } |
| } |
| |
| void __init sev_hardware_setup(void) |
| { |
| unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; |
| bool sev_snp_supported = false; |
| bool sev_es_supported = false; |
| bool sev_supported = false; |
| |
| if (!sev_enabled || !npt_enabled || !nrips) |
| goto out; |
| |
| /* |
| * SEV must obviously be supported in hardware. Sanity check that the |
| * CPU supports decode assists, which is mandatory for SEV guests to |
| * support instruction emulation. Ditto for flushing by ASID, as SEV |
| * guests are bound to a single ASID, i.e. KVM can't rotate to a new |
| * ASID to effect a TLB flush. |
| */ |
| if (!boot_cpu_has(X86_FEATURE_SEV) || |
| WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || |
| WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) |
| goto out; |
| |
| /* Retrieve SEV CPUID information */ |
| cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); |
| |
| /* Set encryption bit location for SEV-ES guests */ |
| sev_enc_bit = ebx & 0x3f; |
| |
| /* Maximum number of encrypted guests supported simultaneously */ |
| max_sev_asid = ecx; |
| if (!max_sev_asid) |
| goto out; |
| |
| /* Minimum ASID value that should be used for SEV guest */ |
| min_sev_asid = edx; |
| sev_me_mask = 1UL << (ebx & 0x3f); |
| |
| /* |
| * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, |
| * even though it's never used, so that the bitmap is indexed by the |
| * actual ASID. |
| */ |
| nr_asids = max_sev_asid + 1; |
| sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); |
| if (!sev_asid_bitmap) |
| goto out; |
| |
| sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); |
| if (!sev_reclaim_asid_bitmap) { |
| bitmap_free(sev_asid_bitmap); |
| sev_asid_bitmap = NULL; |
| goto out; |
| } |
| |
| if (min_sev_asid <= max_sev_asid) { |
| sev_asid_count = max_sev_asid - min_sev_asid + 1; |
| WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); |
| } |
| sev_supported = true; |
| |
| /* SEV-ES support requested? */ |
| if (!sev_es_enabled) |
| goto out; |
| |
| /* |
| * SEV-ES requires MMIO caching as KVM doesn't have access to the guest |
| * instruction stream, i.e. can't emulate in response to a #NPF and |
| * instead relies on #NPF(RSVD) being reflected into the guest as #VC |
| * (the guest can then do a #VMGEXIT to request MMIO emulation). |
| */ |
| if (!enable_mmio_caching) |
| goto out; |
| |
| /* Does the CPU support SEV-ES? */ |
| if (!boot_cpu_has(X86_FEATURE_SEV_ES)) |
| goto out; |
| |
| if (!lbrv) { |
| WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), |
| "LBRV must be present for SEV-ES support"); |
| goto out; |
| } |
| |
| /* Has the system been allocated ASIDs for SEV-ES? */ |
| if (min_sev_asid == 1) |
| goto out; |
| |
| sev_es_asid_count = min_sev_asid - 1; |
| WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); |
| sev_es_supported = true; |
| sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); |
| |
| out: |
| if (boot_cpu_has(X86_FEATURE_SEV)) |
| pr_info("SEV %s (ASIDs %u - %u)\n", |
| sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : |
| "unusable" : |
| "disabled", |
| min_sev_asid, max_sev_asid); |
| if (boot_cpu_has(X86_FEATURE_SEV_ES)) |
| pr_info("SEV-ES %s (ASIDs %u - %u)\n", |
| sev_es_supported ? "enabled" : "disabled", |
| min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); |
| if (boot_cpu_has(X86_FEATURE_SEV_SNP)) |
| pr_info("SEV-SNP %s (ASIDs %u - %u)\n", |
| sev_snp_supported ? "enabled" : "disabled", |
| min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); |
| |
| sev_enabled = sev_supported; |
| sev_es_enabled = sev_es_supported; |
| sev_snp_enabled = sev_snp_supported; |
| |
| if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || |
| !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) |
| sev_es_debug_swap_enabled = false; |
| |
| sev_supported_vmsa_features = 0; |
| if (sev_es_debug_swap_enabled) |
| sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; |
| } |
| |
| void sev_hardware_unsetup(void) |
| { |
| if (!sev_enabled) |
| return; |
| |
| /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ |
| sev_flush_asids(1, max_sev_asid); |
| |
| bitmap_free(sev_asid_bitmap); |
| bitmap_free(sev_reclaim_asid_bitmap); |
| |
| misc_cg_set_capacity(MISC_CG_RES_SEV, 0); |
| misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); |
| } |
| |
| int sev_cpu_init(struct svm_cpu_data *sd) |
| { |
| if (!sev_enabled) |
| return 0; |
| |
| sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); |
| if (!sd->sev_vmcbs) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* |
| * Pages used by hardware to hold guest encrypted state must be flushed before |
| * returning them to the system. |
| */ |
| static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) |
| { |
| unsigned int asid = sev_get_asid(vcpu->kvm); |
| |
| /* |
| * Note! The address must be a kernel address, as regular page walk |
| * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user |
| * address is non-deterministic and unsafe. This function deliberately |
| * takes a pointer to deter passing in a user address. |
| */ |
| unsigned long addr = (unsigned long)va; |
| |
| /* |
| * If CPU enforced cache coherency for encrypted mappings of the |
| * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache |
| * flush is still needed in order to work properly with DMA devices. |
| */ |
| if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { |
| clflush_cache_range(va, PAGE_SIZE); |
| return; |
| } |
| |
| /* |
| * VM Page Flush takes a host virtual address and a guest ASID. Fall |
| * back to WBINVD if this faults so as not to make any problems worse |
| * by leaving stale encrypted data in the cache. |
| */ |
| if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) |
| goto do_wbinvd; |
| |
| return; |
| |
| do_wbinvd: |
| wbinvd_on_all_cpus(); |
| } |
| |
| void sev_guest_memory_reclaimed(struct kvm *kvm) |
| { |
| /* |
| * With SNP+gmem, private/encrypted memory is unreachable via the |
| * hva-based mmu notifiers, so these events are only actually |
| * pertaining to shared pages where there is no need to perform |
| * the WBINVD to flush associated caches. |
| */ |
| if (!sev_guest(kvm) || sev_snp_guest(kvm)) |
| return; |
| |
| wbinvd_on_all_cpus(); |
| } |
| |
| void sev_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm; |
| |
| if (!sev_es_guest(vcpu->kvm)) |
| return; |
| |
| svm = to_svm(vcpu); |
| |
| /* |
| * If it's an SNP guest, then the VMSA was marked in the RMP table as |
| * a guest-owned page. Transition the page to hypervisor state before |
| * releasing it back to the system. |
| */ |
| if (sev_snp_guest(vcpu->kvm)) { |
| u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; |
| |
| if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) |
| goto skip_vmsa_free; |
| } |
| |
| if (vcpu->arch.guest_state_protected) |
| sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); |
| |
| __free_page(virt_to_page(svm->sev_es.vmsa)); |
| |
| skip_vmsa_free: |
| if (svm->sev_es.ghcb_sa_free) |
| kvfree(svm->sev_es.ghcb_sa); |
| } |
| |
| static void dump_ghcb(struct vcpu_svm *svm) |
| { |
| struct ghcb *ghcb = svm->sev_es.ghcb; |
| unsigned int nbits; |
| |
| /* Re-use the dump_invalid_vmcb module parameter */ |
| if (!dump_invalid_vmcb) { |
| pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); |
| return; |
| } |
| |
| nbits = sizeof(ghcb->save.valid_bitmap) * 8; |
| |
| pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); |
| pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", |
| ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); |
| pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", |
| ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); |
| pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", |
| ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); |
| pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", |
| ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); |
| pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); |
| } |
| |
| static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct ghcb *ghcb = svm->sev_es.ghcb; |
| |
| /* |
| * The GHCB protocol so far allows for the following data |
| * to be returned: |
| * GPRs RAX, RBX, RCX, RDX |
| * |
| * Copy their values, even if they may not have been written during the |
| * VM-Exit. It's the guest's responsibility to not consume random data. |
| */ |
| ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); |
| ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); |
| ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); |
| ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); |
| } |
| |
| static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) |
| { |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct ghcb *ghcb = svm->sev_es.ghcb; |
| u64 exit_code; |
| |
| /* |
| * The GHCB protocol so far allows for the following data |
| * to be supplied: |
| * GPRs RAX, RBX, RCX, RDX |
| * XCR0 |
| * CPL |
| * |
| * VMMCALL allows the guest to provide extra registers. KVM also |
| * expects RSI for hypercalls, so include that, too. |
| * |
| * Copy their values to the appropriate location if supplied. |
| */ |
| memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
| |
| BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); |
| memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); |
| |
| vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); |
| vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); |
| vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); |
| vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); |
| vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); |
| |
| svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); |
| |
| if (kvm_ghcb_xcr0_is_valid(svm)) { |
| vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); |
| kvm_update_cpuid_runtime(vcpu); |
| } |
| |
| /* Copy the GHCB exit information into the VMCB fields */ |
| exit_code = ghcb_get_sw_exit_code(ghcb); |
| control->exit_code = lower_32_bits(exit_code); |
| control->exit_code_hi = upper_32_bits(exit_code); |
| control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); |
| control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); |
| svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); |
| |
| /* Clear the valid entries fields */ |
| memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); |
| } |
| |
| static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) |
| { |
| return (((u64)control->exit_code_hi) << 32) | control->exit_code; |
| } |
| |
| static int sev_es_validate_vmgexit(struct vcpu_svm *svm) |
| { |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| u64 exit_code; |
| u64 reason; |
| |
| /* |
| * Retrieve the exit code now even though it may not be marked valid |
| * as it could help with debugging. |
| */ |
| exit_code = kvm_ghcb_get_sw_exit_code(control); |
| |
| /* Only GHCB Usage code 0 is supported */ |
| if (svm->sev_es.ghcb->ghcb_usage) { |
| reason = GHCB_ERR_INVALID_USAGE; |
| goto vmgexit_err; |
| } |
| |
| reason = GHCB_ERR_MISSING_INPUT; |
| |
| if (!kvm_ghcb_sw_exit_code_is_valid(svm) || |
| !kvm_ghcb_sw_exit_info_1_is_valid(svm) || |
| !kvm_ghcb_sw_exit_info_2_is_valid(svm)) |
| goto vmgexit_err; |
| |
| switch (exit_code) { |
| case SVM_EXIT_READ_DR7: |
| break; |
| case SVM_EXIT_WRITE_DR7: |
| if (!kvm_ghcb_rax_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_RDTSC: |
| break; |
| case SVM_EXIT_RDPMC: |
| if (!kvm_ghcb_rcx_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_CPUID: |
| if (!kvm_ghcb_rax_is_valid(svm) || |
| !kvm_ghcb_rcx_is_valid(svm)) |
| goto vmgexit_err; |
| if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) |
| if (!kvm_ghcb_xcr0_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_INVD: |
| break; |
| case SVM_EXIT_IOIO: |
| if (control->exit_info_1 & SVM_IOIO_STR_MASK) { |
| if (!kvm_ghcb_sw_scratch_is_valid(svm)) |
| goto vmgexit_err; |
| } else { |
| if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) |
| if (!kvm_ghcb_rax_is_valid(svm)) |
| goto vmgexit_err; |
| } |
| break; |
| case SVM_EXIT_MSR: |
| if (!kvm_ghcb_rcx_is_valid(svm)) |
| goto vmgexit_err; |
| if (control->exit_info_1) { |
| if (!kvm_ghcb_rax_is_valid(svm) || |
| !kvm_ghcb_rdx_is_valid(svm)) |
| goto vmgexit_err; |
| } |
| break; |
| case SVM_EXIT_VMMCALL: |
| if (!kvm_ghcb_rax_is_valid(svm) || |
| !kvm_ghcb_cpl_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_RDTSCP: |
| break; |
| case SVM_EXIT_WBINVD: |
| break; |
| case SVM_EXIT_MONITOR: |
| if (!kvm_ghcb_rax_is_valid(svm) || |
| !kvm_ghcb_rcx_is_valid(svm) || |
| !kvm_ghcb_rdx_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_MWAIT: |
| if (!kvm_ghcb_rax_is_valid(svm) || |
| !kvm_ghcb_rcx_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_VMGEXIT_MMIO_READ: |
| case SVM_VMGEXIT_MMIO_WRITE: |
| if (!kvm_ghcb_sw_scratch_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_VMGEXIT_AP_CREATION: |
| if (!sev_snp_guest(vcpu->kvm)) |
| goto vmgexit_err; |
| if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) |
| if (!kvm_ghcb_rax_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_VMGEXIT_NMI_COMPLETE: |
| case SVM_VMGEXIT_AP_HLT_LOOP: |
| case SVM_VMGEXIT_AP_JUMP_TABLE: |
| case SVM_VMGEXIT_UNSUPPORTED_EVENT: |
| case SVM_VMGEXIT_HV_FEATURES: |
| case SVM_VMGEXIT_TERM_REQUEST: |
| break; |
| case SVM_VMGEXIT_PSC: |
| if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) |
| goto vmgexit_err; |
| break; |
| case SVM_VMGEXIT_GUEST_REQUEST: |
| case SVM_VMGEXIT_EXT_GUEST_REQUEST: |
| if (!sev_snp_guest(vcpu->kvm) || |
| !PAGE_ALIGNED(control->exit_info_1) || |
| !PAGE_ALIGNED(control->exit_info_2) || |
| control->exit_info_1 == control->exit_info_2) |
| goto vmgexit_err; |
| break; |
| default: |
| reason = GHCB_ERR_INVALID_EVENT; |
| goto vmgexit_err; |
| } |
| |
| return 0; |
| |
| vmgexit_err: |
| if (reason == GHCB_ERR_INVALID_USAGE) { |
| vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", |
| svm->sev_es.ghcb->ghcb_usage); |
| } else if (reason == GHCB_ERR_INVALID_EVENT) { |
| vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", |
| exit_code); |
| } else { |
| vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", |
| exit_code); |
| dump_ghcb(svm); |
| } |
| |
| ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); |
| |
| /* Resume the guest to "return" the error code. */ |
| return 1; |
| } |
| |
| void sev_es_unmap_ghcb(struct vcpu_svm *svm) |
| { |
| /* Clear any indication that the vCPU is in a type of AP Reset Hold */ |
| svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; |
| |
| if (!svm->sev_es.ghcb) |
| return; |
| |
| if (svm->sev_es.ghcb_sa_free) { |
| /* |
| * The scratch area lives outside the GHCB, so there is a |
| * buffer that, depending on the operation performed, may |
| * need to be synced, then freed. |
| */ |
| if (svm->sev_es.ghcb_sa_sync) { |
| kvm_write_guest(svm->vcpu.kvm, |
| svm->sev_es.sw_scratch, |
| svm->sev_es.ghcb_sa, |
| svm->sev_es.ghcb_sa_len); |
| svm->sev_es.ghcb_sa_sync = false; |
| } |
| |
| kvfree(svm->sev_es.ghcb_sa); |
| svm->sev_es.ghcb_sa = NULL; |
| svm->sev_es.ghcb_sa_free = false; |
| } |
| |
| trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); |
| |
| sev_es_sync_to_ghcb(svm); |
| |
| kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); |
| svm->sev_es.ghcb = NULL; |
| } |
| |
| void pre_sev_run(struct vcpu_svm *svm, int cpu) |
| { |
| struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); |
| unsigned int asid = sev_get_asid(svm->vcpu.kvm); |
| |
| /* Assign the asid allocated with this SEV guest */ |
| svm->asid = asid; |
| |
| /* |
| * Flush guest TLB: |
| * |
| * 1) when different VMCB for the same ASID is to be run on the same host CPU. |
| * 2) or this VMCB was executed on different host CPU in previous VMRUNs. |
| */ |
| if (sd->sev_vmcbs[asid] == svm->vmcb && |
| svm->vcpu.arch.last_vmentry_cpu == cpu) |
| return; |
| |
| sd->sev_vmcbs[asid] = svm->vmcb; |
| svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; |
| vmcb_mark_dirty(svm->vmcb, VMCB_ASID); |
| } |
| |
| #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) |
| static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) |
| { |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| u64 ghcb_scratch_beg, ghcb_scratch_end; |
| u64 scratch_gpa_beg, scratch_gpa_end; |
| void *scratch_va; |
| |
| scratch_gpa_beg = svm->sev_es.sw_scratch; |
| if (!scratch_gpa_beg) { |
| pr_err("vmgexit: scratch gpa not provided\n"); |
| goto e_scratch; |
| } |
| |
| scratch_gpa_end = scratch_gpa_beg + len; |
| if (scratch_gpa_end < scratch_gpa_beg) { |
| pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", |
| len, scratch_gpa_beg); |
| goto e_scratch; |
| } |
| |
| if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { |
| /* Scratch area begins within GHCB */ |
| ghcb_scratch_beg = control->ghcb_gpa + |
| offsetof(struct ghcb, shared_buffer); |
| ghcb_scratch_end = control->ghcb_gpa + |
| offsetof(struct ghcb, reserved_0xff0); |
| |
| /* |
| * If the scratch area begins within the GHCB, it must be |
| * completely contained in the GHCB shared buffer area. |
| */ |
| if (scratch_gpa_beg < ghcb_scratch_beg || |
| scratch_gpa_end > ghcb_scratch_end) { |
| pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", |
| scratch_gpa_beg, scratch_gpa_end); |
| goto e_scratch; |
| } |
| |
| scratch_va = (void *)svm->sev_es.ghcb; |
| scratch_va += (scratch_gpa_beg - control->ghcb_gpa); |
| } else { |
| /* |
| * The guest memory must be read into a kernel buffer, so |
| * limit the size |
| */ |
| if (len > GHCB_SCRATCH_AREA_LIMIT) { |
| pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", |
| len, GHCB_SCRATCH_AREA_LIMIT); |
| goto e_scratch; |
| } |
| scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); |
| if (!scratch_va) |
| return -ENOMEM; |
| |
| if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { |
| /* Unable to copy scratch area from guest */ |
| pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); |
| |
| kvfree(scratch_va); |
| return -EFAULT; |
| } |
| |
| /* |
| * The scratch area is outside the GHCB. The operation will |
| * dictate whether the buffer needs to be synced before running |
| * the vCPU next time (i.e. a read was requested so the data |
| * must be written back to the guest memory). |
| */ |
| svm->sev_es.ghcb_sa_sync = sync; |
| svm->sev_es.ghcb_sa_free = true; |
| } |
| |
| svm->sev_es.ghcb_sa = scratch_va; |
| svm->sev_es.ghcb_sa_len = len; |
| |
| return 0; |
| |
| e_scratch: |
| ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); |
| |
| return 1; |
| } |
| |
| static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, |
| unsigned int pos) |
| { |
| svm->vmcb->control.ghcb_gpa &= ~(mask << pos); |
| svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; |
| } |
| |
| static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) |
| { |
| return (svm->vmcb->control.ghcb_gpa >> pos) & mask; |
| } |
| |
| static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) |
| { |
| svm->vmcb->control.ghcb_gpa = value; |
| } |
| |
| static int snp_rmptable_psmash(kvm_pfn_t pfn) |
| { |
| int ret; |
| |
| pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); |
| |
| /* |
| * PSMASH_FAIL_INUSE indicates another processor is modifying the |
| * entry, so retry until that's no longer the case. |
| */ |
| do { |
| ret = psmash(pfn); |
| } while (ret == PSMASH_FAIL_INUSE); |
| |
| return ret; |
| } |
| |
| static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (vcpu->run->hypercall.ret) |
| set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); |
| else |
| set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); |
| |
| return 1; /* resume guest */ |
| } |
| |
| static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) |
| { |
| u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); |
| u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| |
| if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { |
| set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); |
| return 1; /* resume guest */ |
| } |
| |
| if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { |
| set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); |
| return 1; /* resume guest */ |
| } |
| |
| vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; |
| vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; |
| vcpu->run->hypercall.args[0] = gpa; |
| vcpu->run->hypercall.args[1] = 1; |
| vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) |
| ? KVM_MAP_GPA_RANGE_ENCRYPTED |
| : KVM_MAP_GPA_RANGE_DECRYPTED; |
| vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; |
| |
| vcpu->arch.complete_userspace_io = snp_complete_psc_msr; |
| |
| return 0; /* forward request to userspace */ |
| } |
| |
| struct psc_buffer { |
| struct psc_hdr hdr; |
| struct psc_entry entries[]; |
| } __packed; |
| |
| static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); |
| |
| static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) |
| { |
| svm->sev_es.psc_inflight = 0; |
| svm->sev_es.psc_idx = 0; |
| svm->sev_es.psc_2m = false; |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret); |
| } |
| |
| static void __snp_complete_one_psc(struct vcpu_svm *svm) |
| { |
| struct psc_buffer *psc = svm->sev_es.ghcb_sa; |
| struct psc_entry *entries = psc->entries; |
| struct psc_hdr *hdr = &psc->hdr; |
| __u16 idx; |
| |
| /* |
| * Everything in-flight has been processed successfully. Update the |
| * corresponding entries in the guest's PSC buffer and zero out the |
| * count of in-flight PSC entries. |
| */ |
| for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; |
| svm->sev_es.psc_inflight--, idx++) { |
| struct psc_entry *entry = &entries[idx]; |
| |
| entry->cur_page = entry->pagesize ? 512 : 1; |
| } |
| |
| hdr->cur_entry = idx; |
| } |
| |
| static int snp_complete_one_psc(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct psc_buffer *psc = svm->sev_es.ghcb_sa; |
| |
| if (vcpu->run->hypercall.ret) { |
| snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); |
| return 1; /* resume guest */ |
| } |
| |
| __snp_complete_one_psc(svm); |
| |
| /* Handle the next range (if any). */ |
| return snp_begin_psc(svm, psc); |
| } |
| |
| static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) |
| { |
| struct psc_entry *entries = psc->entries; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct psc_hdr *hdr = &psc->hdr; |
| struct psc_entry entry_start; |
| u16 idx, idx_start, idx_end; |
| int npages; |
| bool huge; |
| u64 gfn; |
| |
| if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { |
| snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); |
| return 1; |
| } |
| |
| next_range: |
| /* There should be no other PSCs in-flight at this point. */ |
| if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { |
| snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); |
| return 1; |
| } |
| |
| /* |
| * The PSC descriptor buffer can be modified by a misbehaved guest after |
| * validation, so take care to only use validated copies of values used |
| * for things like array indexing. |
| */ |
| idx_start = hdr->cur_entry; |
| idx_end = hdr->end_entry; |
| |
| if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { |
| snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); |
| return 1; |
| } |
| |
| /* Find the start of the next range which needs processing. */ |
| for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { |
| entry_start = entries[idx]; |
| |
| gfn = entry_start.gfn; |
| huge = entry_start.pagesize; |
| npages = huge ? 512 : 1; |
| |
| if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { |
| snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); |
| return 1; |
| } |
| |
| if (entry_start.cur_page) { |
| /* |
| * If this is a partially-completed 2M range, force 4K handling |
| * for the remaining pages since they're effectively split at |
| * this point. Subsequent code should ensure this doesn't get |
| * combined with adjacent PSC entries where 2M handling is still |
| * possible. |
| */ |
| npages -= entry_start.cur_page; |
| gfn += entry_start.cur_page; |
| huge = false; |
| } |
| |
| if (npages) |
| break; |
| } |
| |
| if (idx > idx_end) { |
| /* Nothing more to process. */ |
| snp_complete_psc(svm, 0); |
| return 1; |
| } |
| |
| svm->sev_es.psc_2m = huge; |
| svm->sev_es.psc_idx = idx; |
| svm->sev_es.psc_inflight = 1; |
| |
| /* |
| * Find all subsequent PSC entries that contain adjacent GPA |
| * ranges/operations and can be combined into a single |
| * KVM_HC_MAP_GPA_RANGE exit. |
| */ |
| while (++idx <= idx_end) { |
| struct psc_entry entry = entries[idx]; |
| |
| if (entry.operation != entry_start.operation || |
| entry.gfn != entry_start.gfn + npages || |
| entry.cur_page || !!entry.pagesize != huge) |
| break; |
| |
| svm->sev_es.psc_inflight++; |
| npages += huge ? 512 : 1; |
| } |
| |
| switch (entry_start.operation) { |
| case VMGEXIT_PSC_OP_PRIVATE: |
| case VMGEXIT_PSC_OP_SHARED: |
| vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; |
| vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; |
| vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); |
| vcpu->run->hypercall.args[1] = npages; |
| vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE |
| ? KVM_MAP_GPA_RANGE_ENCRYPTED |
| : KVM_MAP_GPA_RANGE_DECRYPTED; |
| vcpu->run->hypercall.args[2] |= entry_start.pagesize |
| ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M |
| : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; |
| vcpu->arch.complete_userspace_io = snp_complete_one_psc; |
| return 0; /* forward request to userspace */ |
| default: |
| /* |
| * Only shared/private PSC operations are currently supported, so if the |
| * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), |
| * then consider the entire range completed and avoid exiting to |
| * userspace. In theory snp_complete_psc() can always be called directly |
| * at this point to complete the current range and start the next one, |
| * but that could lead to unexpected levels of recursion. |
| */ |
| __snp_complete_one_psc(svm); |
| goto next_range; |
| } |
| |
| unreachable(); |
| } |
| |
| static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex)); |
| |
| /* Mark the vCPU as offline and not runnable */ |
| vcpu->arch.pv.pv_unhalted = false; |
| vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
| |
| /* Clear use of the VMSA */ |
| svm->vmcb->control.vmsa_pa = INVALID_PAGE; |
| |
| if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) { |
| gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); |
| struct kvm_memory_slot *slot; |
| kvm_pfn_t pfn; |
| |
| slot = gfn_to_memslot(vcpu->kvm, gfn); |
| if (!slot) |
| return -EINVAL; |
| |
| /* |
| * The new VMSA will be private memory guest memory, so |
| * retrieve the PFN from the gmem backend. |
| */ |
| if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL)) |
| return -EINVAL; |
| |
| /* |
| * From this point forward, the VMSA will always be a |
| * guest-mapped page rather than the initial one allocated |
| * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa |
| * could be free'd and cleaned up here, but that involves |
| * cleanups like wbinvd_on_all_cpus() which would ideally |
| * be handled during teardown rather than guest boot. |
| * Deferring that also allows the existing logic for SEV-ES |
| * VMSAs to be re-used with minimal SNP-specific changes. |
| */ |
| svm->sev_es.snp_has_guest_vmsa = true; |
| |
| /* Use the new VMSA */ |
| svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); |
| |
| /* Mark the vCPU as runnable */ |
| vcpu->arch.pv.pv_unhalted = false; |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; |
| |
| /* |
| * gmem pages aren't currently migratable, but if this ever |
| * changes then care should be taken to ensure |
| * svm->sev_es.vmsa is pinned through some other means. |
| */ |
| kvm_release_pfn_clean(pfn); |
| } |
| |
| /* |
| * When replacing the VMSA during SEV-SNP AP creation, |
| * mark the VMCB dirty so that full state is always reloaded. |
| */ |
| vmcb_mark_all_dirty(svm->vmcb); |
| |
| return 0; |
| } |
| |
| /* |
| * Invoked as part of svm_vcpu_reset() processing of an init event. |
| */ |
| void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int ret; |
| |
| if (!sev_snp_guest(vcpu->kvm)) |
| return; |
| |
| mutex_lock(&svm->sev_es.snp_vmsa_mutex); |
| |
| if (!svm->sev_es.snp_ap_waiting_for_reset) |
| goto unlock; |
| |
| svm->sev_es.snp_ap_waiting_for_reset = false; |
| |
| ret = __sev_snp_update_protected_guest_state(vcpu); |
| if (ret) |
| vcpu_unimpl(vcpu, "snp: AP state update on init failed\n"); |
| |
| unlock: |
| mutex_unlock(&svm->sev_es.snp_vmsa_mutex); |
| } |
| |
| static int sev_snp_ap_creation(struct vcpu_svm *svm) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct kvm_vcpu *target_vcpu; |
| struct vcpu_svm *target_svm; |
| unsigned int request; |
| unsigned int apic_id; |
| bool kick; |
| int ret; |
| |
| request = lower_32_bits(svm->vmcb->control.exit_info_1); |
| apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); |
| |
| /* Validate the APIC ID */ |
| target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); |
| if (!target_vcpu) { |
| vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", |
| apic_id); |
| return -EINVAL; |
| } |
| |
| ret = 0; |
| |
| target_svm = to_svm(target_vcpu); |
| |
| /* |
| * The target vCPU is valid, so the vCPU will be kicked unless the |
| * request is for CREATE_ON_INIT. For any errors at this stage, the |
| * kick will place the vCPU in an non-runnable state. |
| */ |
| kick = true; |
| |
| mutex_lock(&target_svm->sev_es.snp_vmsa_mutex); |
| |
| target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; |
| target_svm->sev_es.snp_ap_waiting_for_reset = true; |
| |
| /* Interrupt injection mode shouldn't change for AP creation */ |
| if (request < SVM_VMGEXIT_AP_DESTROY) { |
| u64 sev_features; |
| |
| sev_features = vcpu->arch.regs[VCPU_REGS_RAX]; |
| sev_features ^= sev->vmsa_features; |
| |
| if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) { |
| vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n", |
| vcpu->arch.regs[VCPU_REGS_RAX]); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| |
| switch (request) { |
| case SVM_VMGEXIT_AP_CREATE_ON_INIT: |
| kick = false; |
| fallthrough; |
| case SVM_VMGEXIT_AP_CREATE: |
| if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { |
| vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", |
| svm->vmcb->control.exit_info_2); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Malicious guest can RMPADJUST a large page into VMSA which |
| * will hit the SNP erratum where the CPU will incorrectly signal |
| * an RMP violation #PF if a hugepage collides with the RMP entry |
| * of VMSA page, reject the AP CREATE request if VMSA address from |
| * guest is 2M aligned. |
| */ |
| if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { |
| vcpu_unimpl(vcpu, |
| "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", |
| svm->vmcb->control.exit_info_2); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; |
| break; |
| case SVM_VMGEXIT_AP_DESTROY: |
| break; |
| default: |
| vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", |
| request); |
| ret = -EINVAL; |
| break; |
| } |
| |
| out: |
| if (kick) { |
| kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); |
| kvm_vcpu_kick(target_vcpu); |
| } |
| |
| mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex); |
| |
| return ret; |
| } |
| |
| static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) |
| { |
| struct sev_data_snp_guest_request data = {0}; |
| struct kvm *kvm = svm->vcpu.kvm; |
| struct kvm_sev_info *sev = to_kvm_sev_info(kvm); |
| sev_ret_code fw_err = 0; |
| int ret; |
| |
| if (!sev_snp_guest(kvm)) |
| return -EINVAL; |
| |
| mutex_lock(&sev->guest_req_mutex); |
| |
| if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { |
| ret = -EIO; |
| goto out_unlock; |
| } |
| |
| data.gctx_paddr = __psp_pa(sev->snp_context); |
| data.req_paddr = __psp_pa(sev->guest_req_buf); |
| data.res_paddr = __psp_pa(sev->guest_resp_buf); |
| |
| /* |
| * Firmware failures are propagated on to guest, but any other failure |
| * condition along the way should be reported to userspace. E.g. if |
| * the PSP is dead and commands are timing out. |
| */ |
| ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); |
| if (ret && !fw_err) |
| goto out_unlock; |
| |
| if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { |
| ret = -EIO; |
| goto out_unlock; |
| } |
| |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err)); |
| |
| ret = 1; /* resume guest */ |
| |
| out_unlock: |
| mutex_unlock(&sev->guest_req_mutex); |
| return ret; |
| } |
| |
| static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) |
| { |
| struct kvm *kvm = svm->vcpu.kvm; |
| u8 msg_type; |
| |
| if (!sev_snp_guest(kvm)) |
| return -EINVAL; |
| |
| if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), |
| &msg_type, 1)) |
| return -EIO; |
| |
| /* |
| * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for |
| * additional certificate data to be provided alongside the attestation |
| * report via the guest-provided data pages indicated by RAX/RBX. The |
| * certificate data is optional and requires additional KVM enablement |
| * to provide an interface for userspace to provide it, but KVM still |
| * needs to be able to handle extended guest requests either way. So |
| * provide a stub implementation that will always return an empty |
| * certificate table in the guest-provided data pages. |
| */ |
| if (msg_type == SNP_MSG_REPORT_REQ) { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| u64 data_npages; |
| gpa_t data_gpa; |
| |
| if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) |
| goto request_invalid; |
| |
| data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; |
| data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; |
| |
| if (!PAGE_ALIGNED(data_gpa)) |
| goto request_invalid; |
| |
| /* |
| * As per GHCB spec (see "SNP Extended Guest Request"), the |
| * certificate table is terminated by 24-bytes of zeroes. |
| */ |
| if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) |
| return -EIO; |
| } |
| |
| return snp_handle_guest_req(svm, req_gpa, resp_gpa); |
| |
| request_invalid: |
| ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); |
| return 1; /* resume guest */ |
| } |
| |
| static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) |
| { |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; |
| u64 ghcb_info; |
| int ret = 1; |
| |
| ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; |
| |
| trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, |
| control->ghcb_gpa); |
| |
| switch (ghcb_info) { |
| case GHCB_MSR_SEV_INFO_REQ: |
| set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, |
| GHCB_VERSION_MIN, |
| sev_enc_bit)); |
| break; |
| case GHCB_MSR_CPUID_REQ: { |
| u64 cpuid_fn, cpuid_reg, cpuid_value; |
| |
| cpuid_fn = get_ghcb_msr_bits(svm, |
| GHCB_MSR_CPUID_FUNC_MASK, |
| GHCB_MSR_CPUID_FUNC_POS); |
| |
| /* Initialize the registers needed by the CPUID intercept */ |
| vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; |
| vcpu->arch.regs[VCPU_REGS_RCX] = 0; |
| |
| ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); |
| if (!ret) { |
| /* Error, keep GHCB MSR value as-is */ |
| break; |
| } |
| |
| cpuid_reg = get_ghcb_msr_bits(svm, |
| GHCB_MSR_CPUID_REG_MASK, |
| GHCB_MSR_CPUID_REG_POS); |
| if (cpuid_reg == 0) |
| cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; |
| else if (cpuid_reg == 1) |
| cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; |
| else if (cpuid_reg == 2) |
| cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; |
| else |
| cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; |
| |
| set_ghcb_msr_bits(svm, cpuid_value, |
| GHCB_MSR_CPUID_VALUE_MASK, |
| GHCB_MSR_CPUID_VALUE_POS); |
| |
| set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, |
| GHCB_MSR_INFO_MASK, |
| GHCB_MSR_INFO_POS); |
| break; |
| } |
| case GHCB_MSR_AP_RESET_HOLD_REQ: |
| svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; |
| ret = kvm_emulate_ap_reset_hold(&svm->vcpu); |
| |
| /* |
| * Preset the result to a non-SIPI return and then only set |
| * the result to non-zero when delivering a SIPI. |
| */ |
| set_ghcb_msr_bits(svm, 0, |
| GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, |
| GHCB_MSR_AP_RESET_HOLD_RESULT_POS); |
| |
| set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, |
| GHCB_MSR_INFO_MASK, |
| GHCB_MSR_INFO_POS); |
| break; |
| case GHCB_MSR_HV_FT_REQ: |
| set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, |
| GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); |
| set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, |
| GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); |
| break; |
| case GHCB_MSR_PREF_GPA_REQ: |
| if (!sev_snp_guest(vcpu->kvm)) |
| goto out_terminate; |
| |
| set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, |
| GHCB_MSR_GPA_VALUE_POS); |
| set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, |
| GHCB_MSR_INFO_POS); |
| break; |
| case GHCB_MSR_REG_GPA_REQ: { |
| u64 gfn; |
| |
| if (!sev_snp_guest(vcpu->kvm)) |
| goto out_terminate; |
| |
| gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, |
| GHCB_MSR_GPA_VALUE_POS); |
| |
| svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); |
| |
| set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, |
| GHCB_MSR_GPA_VALUE_POS); |
| set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, |
| GHCB_MSR_INFO_POS); |
| break; |
| } |
| case GHCB_MSR_PSC_REQ: |
| if (!sev_snp_guest(vcpu->kvm)) |
| goto out_terminate; |
| |
| ret = snp_begin_psc_msr(svm, control->ghcb_gpa); |
| break; |
| case GHCB_MSR_TERM_REQ: { |
| u64 reason_set, reason_code; |
| |
| reason_set = get_ghcb_msr_bits(svm, |
| GHCB_MSR_TERM_REASON_SET_MASK, |
| GHCB_MSR_TERM_REASON_SET_POS); |
| reason_code = get_ghcb_msr_bits(svm, |
| GHCB_MSR_TERM_REASON_MASK, |
| GHCB_MSR_TERM_REASON_POS); |
| pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", |
| reason_set, reason_code); |
| |
| goto out_terminate; |
| } |
| default: |
| /* Error, keep GHCB MSR value as-is */ |
| break; |
| } |
| |
| trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, |
| control->ghcb_gpa, ret); |
| |
| return ret; |
| |
| out_terminate: |
| vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; |
| vcpu->run->system_event.ndata = 1; |
| vcpu->run->system_event.data[0] = control->ghcb_gpa; |
| |
| return 0; |
| } |
| |
| int sev_handle_vmgexit(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| u64 ghcb_gpa, exit_code; |
| int ret; |
| |
| /* Validate the GHCB */ |
| ghcb_gpa = control->ghcb_gpa; |
| if (ghcb_gpa & GHCB_MSR_INFO_MASK) |
| return sev_handle_vmgexit_msr_protocol(svm); |
| |
| if (!ghcb_gpa) { |
| vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); |
| |
| /* Without a GHCB, just return right back to the guest */ |
| return 1; |
| } |
| |
| if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { |
| /* Unable to map GHCB from guest */ |
| vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", |
| ghcb_gpa); |
| |
| /* Without a GHCB, just return right back to the guest */ |
| return 1; |
| } |
| |
| svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; |
| |
| trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); |
| |
| sev_es_sync_from_ghcb(svm); |
| |
| /* SEV-SNP guest requires that the GHCB GPA must be registered */ |
| if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { |
| vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); |
| return -EINVAL; |
| } |
| |
| ret = sev_es_validate_vmgexit(svm); |
| if (ret) |
| return ret; |
| |
| ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); |
| |
| exit_code = kvm_ghcb_get_sw_exit_code(control); |
| switch (exit_code) { |
| case SVM_VMGEXIT_MMIO_READ: |
| ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); |
| if (ret) |
| break; |
| |
| ret = kvm_sev_es_mmio_read(vcpu, |
| control->exit_info_1, |
| control->exit_info_2, |
| svm->sev_es.ghcb_sa); |
| break; |
| case SVM_VMGEXIT_MMIO_WRITE: |
| ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); |
| if (ret) |
| break; |
| |
| ret = kvm_sev_es_mmio_write(vcpu, |
| control->exit_info_1, |
| control->exit_info_2, |
| svm->sev_es.ghcb_sa); |
| break; |
| case SVM_VMGEXIT_NMI_COMPLETE: |
| ++vcpu->stat.nmi_window_exits; |
| svm->nmi_masked = false; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| ret = 1; |
| break; |
| case SVM_VMGEXIT_AP_HLT_LOOP: |
| svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; |
| ret = kvm_emulate_ap_reset_hold(vcpu); |
| break; |
| case SVM_VMGEXIT_AP_JUMP_TABLE: { |
| struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; |
| |
| switch (control->exit_info_1) { |
| case 0: |
| /* Set AP jump table address */ |
| sev->ap_jump_table = control->exit_info_2; |
| break; |
| case 1: |
| /* Get AP jump table address */ |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); |
| break; |
| default: |
| pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", |
| control->exit_info_1); |
| ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); |
| } |
| |
| ret = 1; |
| break; |
| } |
| case SVM_VMGEXIT_HV_FEATURES: |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED); |
| |
| ret = 1; |
| break; |
| case SVM_VMGEXIT_TERM_REQUEST: |
| pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", |
| control->exit_info_1, control->exit_info_2); |
| vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; |
| vcpu->run->system_event.ndata = 1; |
| vcpu->run->system_event.data[0] = control->ghcb_gpa; |
| break; |
| case SVM_VMGEXIT_PSC: |
| ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); |
| if (ret) |
| break; |
| |
| ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); |
| break; |
| case SVM_VMGEXIT_AP_CREATION: |
| ret = sev_snp_ap_creation(svm); |
| if (ret) { |
| ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); |
| } |
| |
| ret = 1; |
| break; |
| case SVM_VMGEXIT_GUEST_REQUEST: |
| ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); |
| break; |
| case SVM_VMGEXIT_EXT_GUEST_REQUEST: |
| ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); |
| break; |
| case SVM_VMGEXIT_UNSUPPORTED_EVENT: |
| vcpu_unimpl(vcpu, |
| "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", |
| control->exit_info_1, control->exit_info_2); |
| ret = -EINVAL; |
| break; |
| default: |
| ret = svm_invoke_exit_handler(vcpu, exit_code); |
| } |
| |
| return ret; |
| } |
| |
| int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) |
| { |
| int count; |
| int bytes; |
| int r; |
| |
| if (svm->vmcb->control.exit_info_2 > INT_MAX) |
| return -EINVAL; |
| |
| count = svm->vmcb->control.exit_info_2; |
| if (unlikely(check_mul_overflow(count, size, &bytes))) |
| return -EINVAL; |
| |
| r = setup_vmgexit_scratch(svm, in, bytes); |
| if (r) |
| return r; |
| |
| return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, |
| count, in); |
| } |
| |
| static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| |
| if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { |
| bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || |
| guest_cpuid_has(vcpu, X86_FEATURE_RDPID); |
| |
| set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); |
| } |
| |
| /* |
| * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if |
| * the host/guest supports its use. |
| * |
| * guest_can_use() checks a number of requirements on the host/guest to |
| * ensure that MSR_IA32_XSS is available, but it might report true even |
| * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host |
| * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better |
| * to further check that the guest CPUID actually supports |
| * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved |
| * guests will still get intercepted and caught in the normal |
| * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. |
| */ |
| if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && |
| guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); |
| else |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); |
| } |
| |
| void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct kvm_cpuid_entry2 *best; |
| |
| /* For sev guests, the memory encryption bit is not reserved in CR3. */ |
| best = kvm_find_cpuid_entry(vcpu, 0x8000001F); |
| if (best) |
| vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); |
| |
| if (sev_es_guest(svm->vcpu.kvm)) |
| sev_es_vcpu_after_set_cpuid(svm); |
| } |
| |
| static void sev_es_init_vmcb(struct vcpu_svm *svm) |
| { |
| struct vmcb *vmcb = svm->vmcb01.ptr; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| |
| svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; |
| |
| /* |
| * An SEV-ES guest requires a VMSA area that is a separate from the |
| * VMCB page. Do not include the encryption mask on the VMSA physical |
| * address since hardware will access it using the guest key. Note, |
| * the VMSA will be NULL if this vCPU is the destination for intrahost |
| * migration, and will be copied later. |
| */ |
| if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) |
| svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); |
| |
| /* Can't intercept CR register access, HV can't modify CR registers */ |
| svm_clr_intercept(svm, INTERCEPT_CR0_READ); |
| svm_clr_intercept(svm, INTERCEPT_CR4_READ); |
| svm_clr_intercept(svm, INTERCEPT_CR8_READ); |
| svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); |
| svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); |
| svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); |
| |
| svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); |
| |
| /* Track EFER/CR register changes */ |
| svm_set_intercept(svm, TRAP_EFER_WRITE); |
| svm_set_intercept(svm, TRAP_CR0_WRITE); |
| svm_set_intercept(svm, TRAP_CR4_WRITE); |
| svm_set_intercept(svm, TRAP_CR8_WRITE); |
| |
| vmcb->control.intercepts[INTERCEPT_DR] = 0; |
| if (!sev_vcpu_has_debug_swap(svm)) { |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); |
| recalc_intercepts(svm); |
| } else { |
| /* |
| * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't |
| * allow debugging SEV-ES guests, and enables DebugSwap iff |
| * NO_NESTED_DATA_BP is supported, so there's no reason to |
| * intercept #DB when DebugSwap is enabled. For simplicity |
| * with respect to guest debug, intercept #DB for other VMs |
| * even if NO_NESTED_DATA_BP is supported, i.e. even if the |
| * guest can't DoS the CPU with infinite #DB vectoring. |
| */ |
| clr_exception_intercept(svm, DB_VECTOR); |
| } |
| |
| /* Can't intercept XSETBV, HV can't modify XCR0 directly */ |
| svm_clr_intercept(svm, INTERCEPT_XSETBV); |
| |
| /* Clear intercepts on selected MSRs */ |
| set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); |
| } |
| |
| void sev_init_vmcb(struct vcpu_svm *svm) |
| { |
| svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; |
| clr_exception_intercept(svm, UD_VECTOR); |
| |
| /* |
| * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as |
| * KVM can't decrypt guest memory to decode the faulting instruction. |
| */ |
| clr_exception_intercept(svm, GP_VECTOR); |
| |
| if (sev_es_guest(svm->vcpu.kvm)) |
| sev_es_init_vmcb(svm); |
| } |
| |
| void sev_es_vcpu_reset(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; |
| |
| /* |
| * Set the GHCB MSR value as per the GHCB specification when emulating |
| * vCPU RESET for an SEV-ES guest. |
| */ |
| set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, |
| GHCB_VERSION_MIN, |
| sev_enc_bit)); |
| |
| mutex_init(&svm->sev_es.snp_vmsa_mutex); |
| } |
| |
| void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) |
| { |
| /* |
| * All host state for SEV-ES guests is categorized into three swap types |
| * based on how it is handled by hardware during a world switch: |
| * |
| * A: VMRUN: Host state saved in host save area |
| * VMEXIT: Host state loaded from host save area |
| * |
| * B: VMRUN: Host state _NOT_ saved in host save area |
| * VMEXIT: Host state loaded from host save area |
| * |
| * C: VMRUN: Host state _NOT_ saved in host save area |
| * VMEXIT: Host state initialized to default(reset) values |
| * |
| * Manually save type-B state, i.e. state that is loaded by VMEXIT but |
| * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed |
| * by common SVM code). |
| */ |
| hostsa->xcr0 = kvm_host.xcr0; |
| hostsa->pkru = read_pkru(); |
| hostsa->xss = kvm_host.xss; |
| |
| /* |
| * If DebugSwap is enabled, debug registers are loaded but NOT saved by |
| * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both |
| * saves and loads debug registers (Type-A). |
| */ |
| if (sev_vcpu_has_debug_swap(svm)) { |
| hostsa->dr0 = native_get_debugreg(0); |
| hostsa->dr1 = native_get_debugreg(1); |
| hostsa->dr2 = native_get_debugreg(2); |
| hostsa->dr3 = native_get_debugreg(3); |
| hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); |
| hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); |
| hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); |
| hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); |
| } |
| } |
| |
| void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* First SIPI: Use the values as initially set by the VMM */ |
| if (!svm->sev_es.received_first_sipi) { |
| svm->sev_es.received_first_sipi = true; |
| return; |
| } |
| |
| /* Subsequent SIPI */ |
| switch (svm->sev_es.ap_reset_hold_type) { |
| case AP_RESET_HOLD_NAE_EVENT: |
| /* |
| * Return from an AP Reset Hold VMGEXIT, where the guest will |
| * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. |
| */ |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); |
| break; |
| case AP_RESET_HOLD_MSR_PROTO: |
| /* |
| * Return from an AP Reset Hold VMGEXIT, where the guest will |
| * set the CS and RIP. Set GHCB data field to a non-zero value. |
| */ |
| set_ghcb_msr_bits(svm, 1, |
| GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, |
| GHCB_MSR_AP_RESET_HOLD_RESULT_POS); |
| |
| set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, |
| GHCB_MSR_INFO_MASK, |
| GHCB_MSR_INFO_POS); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) |
| { |
| unsigned long pfn; |
| struct page *p; |
| |
| if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) |
| return alloc_pages_node(node, gfp | __GFP_ZERO, 0); |
| |
| /* |
| * Allocate an SNP-safe page to workaround the SNP erratum where |
| * the CPU will incorrectly signal an RMP violation #PF if a |
| * hugepage (2MB or 1GB) collides with the RMP entry of a |
| * 2MB-aligned VMCB, VMSA, or AVIC backing page. |
| * |
| * Allocate one extra page, choose a page which is not |
| * 2MB-aligned, and free the other. |
| */ |
| p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); |
| if (!p) |
| return NULL; |
| |
| split_page(p, 1); |
| |
| pfn = page_to_pfn(p); |
| if (IS_ALIGNED(pfn, PTRS_PER_PMD)) |
| __free_page(p++); |
| else |
| __free_page(p + 1); |
| |
| return p; |
| } |
| |
| void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) |
| { |
| struct kvm_memory_slot *slot; |
| struct kvm *kvm = vcpu->kvm; |
| int order, rmp_level, ret; |
| bool assigned; |
| kvm_pfn_t pfn; |
| gfn_t gfn; |
| |
| gfn = gpa >> PAGE_SHIFT; |
| |
| /* |
| * The only time RMP faults occur for shared pages is when the guest is |
| * triggering an RMP fault for an implicit page-state change from |
| * shared->private. Implicit page-state changes are forwarded to |
| * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults |
| * for shared pages should not end up here. |
| */ |
| if (!kvm_mem_is_private(kvm, gfn)) { |
| pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", |
| gpa); |
| return; |
| } |
| |
| slot = gfn_to_memslot(kvm, gfn); |
| if (!kvm_slot_can_be_private(slot)) { |
| pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", |
| gpa); |
| return; |
| } |
| |
| ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order); |
| if (ret) { |
| pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", |
| gpa); |
| return; |
| } |
| |
| ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); |
| if (ret || !assigned) { |
| pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", |
| gpa, pfn, ret); |
| goto out_no_trace; |
| } |
| |
| /* |
| * There are 2 cases where a PSMASH may be needed to resolve an #NPF |
| * with PFERR_GUEST_RMP_BIT set: |
| * |
| * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM |
| * bit set if the guest issues them with a smaller granularity than |
| * what is indicated by the page-size bit in the 2MB RMP entry for |
| * the PFN that backs the GPA. |
| * |
| * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is |
| * smaller than what is indicated by the 2MB RMP entry for the PFN |
| * that backs the GPA. |
| * |
| * In both these cases, the corresponding 2M RMP entry needs to |
| * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already |
| * split into 4K RMP entries, then this is likely a spurious case which |
| * can occur when there are concurrent accesses by the guest to a 2MB |
| * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in |
| * the process of being PMASH'd into 4K entries. These cases should |
| * resolve automatically on subsequent accesses, so just ignore them |
| * here. |
| */ |
| if (rmp_level == PG_LEVEL_4K) |
| goto out; |
| |
| ret = snp_rmptable_psmash(pfn); |
| if (ret) { |
| /* |
| * Look it up again. If it's 4K now then the PSMASH may have |
| * raced with another process and the issue has already resolved |
| * itself. |
| */ |
| if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && |
| assigned && rmp_level == PG_LEVEL_4K) |
| goto out; |
| |
| pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", |
| gpa, pfn, ret); |
| } |
| |
| kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); |
| out: |
| trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); |
| out_no_trace: |
| put_page(pfn_to_page(pfn)); |
| } |
| |
| static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) |
| { |
| kvm_pfn_t pfn = start; |
| |
| while (pfn < end) { |
| int ret, rmp_level; |
| bool assigned; |
| |
| ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); |
| if (ret) { |
| pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", |
| pfn, start, end, rmp_level, ret); |
| return false; |
| } |
| |
| if (assigned) { |
| pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", |
| __func__, pfn, start, end, rmp_level); |
| return false; |
| } |
| |
| pfn++; |
| } |
| |
| return true; |
| } |
| |
| static u8 max_level_for_order(int order) |
| { |
| if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) |
| return PG_LEVEL_2M; |
| |
| return PG_LEVEL_4K; |
| } |
| |
| static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) |
| { |
| kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); |
| |
| /* |
| * If this is a large folio, and the entire 2M range containing the |
| * PFN is currently shared, then the entire 2M-aligned range can be |
| * set to private via a single 2M RMP entry. |
| */ |
| if (max_level_for_order(order) > PG_LEVEL_4K && |
| is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) |
| return true; |
| |
| return false; |
| } |
| |
| int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| kvm_pfn_t pfn_aligned; |
| gfn_t gfn_aligned; |
| int level, rc; |
| bool assigned; |
| |
| if (!sev_snp_guest(kvm)) |
| return 0; |
| |
| rc = snp_lookup_rmpentry(pfn, &assigned, &level); |
| if (rc) { |
| pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", |
| gfn, pfn, rc); |
| return -ENOENT; |
| } |
| |
| if (assigned) { |
| pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", |
| __func__, gfn, pfn, max_order, level); |
| return 0; |
| } |
| |
| if (is_large_rmp_possible(kvm, pfn, max_order)) { |
| level = PG_LEVEL_2M; |
| pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); |
| gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); |
| } else { |
| level = PG_LEVEL_4K; |
| pfn_aligned = pfn; |
| gfn_aligned = gfn; |
| } |
| |
| rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); |
| if (rc) { |
| pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", |
| gfn, pfn, level, rc); |
| return -EINVAL; |
| } |
| |
| pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", |
| __func__, gfn, pfn, pfn_aligned, max_order, level); |
| |
| return 0; |
| } |
| |
| void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) |
| { |
| kvm_pfn_t pfn; |
| |
| if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) |
| return; |
| |
| pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); |
| |
| for (pfn = start; pfn < end;) { |
| bool use_2m_update = false; |
| int rc, rmp_level; |
| bool assigned; |
| |
| rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); |
| if (rc || !assigned) |
| goto next_pfn; |
| |
| use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && |
| end >= (pfn + PTRS_PER_PMD) && |
| rmp_level > PG_LEVEL_4K; |
| |
| /* |
| * If an unaligned PFN corresponds to a 2M region assigned as a |
| * large page in the RMP table, PSMASH the region into individual |
| * 4K RMP entries before attempting to convert a 4K sub-page. |
| */ |
| if (!use_2m_update && rmp_level > PG_LEVEL_4K) { |
| /* |
| * This shouldn't fail, but if it does, report it, but |
| * still try to update RMP entry to shared and pray this |
| * was a spurious error that can be addressed later. |
| */ |
| rc = snp_rmptable_psmash(pfn); |
| WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", |
| pfn, rc); |
| } |
| |
| rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); |
| if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", |
| pfn, rc)) |
| goto next_pfn; |
| |
| /* |
| * SEV-ES avoids host/guest cache coherency issues through |
| * WBINVD hooks issued via MMU notifiers during run-time, and |
| * KVM's VM destroy path at shutdown. Those MMU notifier events |
| * don't cover gmem since there is no requirement to map pages |
| * to a HVA in order to use them for a running guest. While the |
| * shutdown path would still likely cover things for SNP guests, |
| * userspace may also free gmem pages during run-time via |
| * hole-punching operations on the guest_memfd, so flush the |
| * cache entries for these pages before free'ing them back to |
| * the host. |
| */ |
| clflush_cache_range(__va(pfn_to_hpa(pfn)), |
| use_2m_update ? PMD_SIZE : PAGE_SIZE); |
| next_pfn: |
| pfn += use_2m_update ? PTRS_PER_PMD : 1; |
| cond_resched(); |
| } |
| } |
| |
| int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) |
| { |
| int level, rc; |
| bool assigned; |
| |
| if (!sev_snp_guest(kvm)) |
| return 0; |
| |
| rc = snp_lookup_rmpentry(pfn, &assigned, &level); |
| if (rc || !assigned) |
| return PG_LEVEL_4K; |
| |
| return level; |
| } |