blob: f0e528abb1b46f6becbfc73ab3fb7ce5a5ce05cf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
* Copyright (c) 2008, Jouni Malinen <j@w1.fi>
* Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
* Copyright (c) 2016 - 2017 Intel Deutschland GmbH
* Copyright (C) 2018 - 2024 Intel Corporation
*/
/*
* TODO:
* - Add TSF sync and fix IBSS beacon transmission by adding
* competition for "air time" at TBTT
* - RX filtering based on filter configuration (data->rx_filter)
*/
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <net/dst.h>
#include <net/xfrm.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/debugfs.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <net/genetlink.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <linux/rhashtable.h>
#include <linux/nospec.h>
#include <linux/virtio.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_config.h>
#include "mac80211_hwsim.h"
#define WARN_QUEUE 100
#define MAX_QUEUE 200
MODULE_AUTHOR("Jouni Malinen");
MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
MODULE_LICENSE("GPL");
static int radios = 2;
module_param(radios, int, 0444);
MODULE_PARM_DESC(radios, "Number of simulated radios");
static int channels = 1;
module_param(channels, int, 0444);
MODULE_PARM_DESC(channels, "Number of concurrent channels");
static bool paged_rx = false;
module_param(paged_rx, bool, 0644);
MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones");
static bool rctbl = false;
module_param(rctbl, bool, 0444);
MODULE_PARM_DESC(rctbl, "Handle rate control table");
static bool support_p2p_device = true;
module_param(support_p2p_device, bool, 0444);
MODULE_PARM_DESC(support_p2p_device, "Support P2P-Device interface type");
static bool mlo;
module_param(mlo, bool, 0444);
MODULE_PARM_DESC(mlo, "Support MLO");
static bool multi_radio;
module_param(multi_radio, bool, 0444);
MODULE_PARM_DESC(multi_radio, "Support Multiple Radios per wiphy");
/**
* enum hwsim_regtest - the type of regulatory tests we offer
*
* @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
* this is the default value.
* @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
* hint, only one driver regulatory hint will be sent as such the
* secondary radios are expected to follow.
* @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
* request with all radios reporting the same regulatory domain.
* @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
* different regulatory domains requests. Expected behaviour is for
* an intersection to occur but each device will still use their
* respective regulatory requested domains. Subsequent radios will
* use the resulting intersection.
* @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
* this by using a custom beacon-capable regulatory domain for the first
* radio. All other device world roam.
* @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
* domain requests. All radios will adhere to this custom world regulatory
* domain.
* @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
* domain requests. The first radio will adhere to the first custom world
* regulatory domain, the second one to the second custom world regulatory
* domain. All other devices will world roam.
* @HWSIM_REGTEST_STRICT_FOLLOW: Used for testing strict regulatory domain
* settings, only the first radio will send a regulatory domain request
* and use strict settings. The rest of the radios are expected to follow.
* @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
* settings. All radios will adhere to this.
* @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
* domain settings, combined with secondary driver regulatory domain
* settings. The first radio will get a strict regulatory domain setting
* using the first driver regulatory request and the second radio will use
* non-strict settings using the second driver regulatory request. All
* other devices should follow the intersection created between the
* first two.
* @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
* at least 6 radios for a complete test. We will test in this order:
* 1 - driver custom world regulatory domain
* 2 - second custom world regulatory domain
* 3 - first driver regulatory domain request
* 4 - second driver regulatory domain request
* 5 - strict regulatory domain settings using the third driver regulatory
* domain request
* 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
* regulatory requests.
*
* These are the different values you can use for the regtest
* module parameter. This is useful to help test world roaming
* and the driver regulatory_hint() call and combinations of these.
* If you want to do specific alpha2 regulatory domain tests simply
* use the userspace regulatory request as that will be respected as
* well without the need of this module parameter. This is designed
* only for testing the driver regulatory request, world roaming
* and all possible combinations.
*/
enum hwsim_regtest {
HWSIM_REGTEST_DISABLED = 0,
HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
HWSIM_REGTEST_DRIVER_REG_ALL = 2,
HWSIM_REGTEST_DIFF_COUNTRY = 3,
HWSIM_REGTEST_WORLD_ROAM = 4,
HWSIM_REGTEST_CUSTOM_WORLD = 5,
HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
HWSIM_REGTEST_STRICT_FOLLOW = 7,
HWSIM_REGTEST_STRICT_ALL = 8,
HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
HWSIM_REGTEST_ALL = 10,
};
/* Set to one of the HWSIM_REGTEST_* values above */
static int regtest = HWSIM_REGTEST_DISABLED;
module_param(regtest, int, 0444);
MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
static const char *hwsim_alpha2s[] = {
"FI",
"AL",
"US",
"DE",
"JP",
"AL",
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
.n_reg_rules = 5,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
REG_RULE(5855-10, 5925+10, 40, 0, 33, 0),
}
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
.n_reg_rules = 3,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
REG_RULE(5725-10, 5850+10, 40, 0, 30,
NL80211_RRF_NO_IR),
REG_RULE(5855-10, 5925+10, 40, 0, 33, 0),
}
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_03 = {
.n_reg_rules = 6,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412 - 10, 2462 + 10, 40, 0, 20, 0),
REG_RULE(2484 - 10, 2484 + 10, 40, 0, 20, 0),
REG_RULE(5150 - 10, 5240 + 10, 40, 0, 30, 0),
REG_RULE(5745 - 10, 5825 + 10, 40, 0, 30, 0),
REG_RULE(5855 - 10, 5925 + 10, 40, 0, 33, 0),
REG_RULE(5955 - 10, 7125 + 10, 320, 0, 33, 0),
}
};
static const struct ieee80211_regdomain hwsim_world_regdom_custom_04 = {
.n_reg_rules = 6,
.alpha2 = "99",
.reg_rules = {
REG_RULE(2412 - 10, 2462 + 10, 40, 0, 20, 0),
REG_RULE(2484 - 10, 2484 + 10, 40, 0, 20, 0),
REG_RULE(5150 - 10, 5240 + 10, 80, 0, 30, NL80211_RRF_AUTO_BW),
REG_RULE(5260 - 10, 5320 + 10, 80, 0, 30,
NL80211_RRF_DFS_CONCURRENT | NL80211_RRF_DFS |
NL80211_RRF_AUTO_BW),
REG_RULE(5500 - 10, 5720 + 10, 160, 0, 30,
NL80211_RRF_DFS_CONCURRENT | NL80211_RRF_DFS),
REG_RULE(5745 - 10, 5825 + 10, 80, 0, 30, 0),
REG_RULE(5855 - 10, 5925 + 10, 80, 0, 33, 0),
}
};
static const struct ieee80211_regdomain *hwsim_world_regdom_custom[] = {
&hwsim_world_regdom_custom_01,
&hwsim_world_regdom_custom_02,
&hwsim_world_regdom_custom_03,
&hwsim_world_regdom_custom_04,
};
struct hwsim_vif_priv {
u32 magic;
u32 skip_beacons[IEEE80211_MLD_MAX_NUM_LINKS];
u8 bssid[ETH_ALEN];
bool assoc;
bool bcn_en;
u16 aid;
};
#define HWSIM_VIF_MAGIC 0x69537748
static inline void hwsim_check_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
WARN(vp->magic != HWSIM_VIF_MAGIC,
"Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
vif, vp->magic, vif->addr, vif->type, vif->p2p);
}
static inline void hwsim_set_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
vp->magic = HWSIM_VIF_MAGIC;
}
static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
vp->magic = 0;
}
struct hwsim_sta_priv {
u32 magic;
unsigned int last_link;
u16 active_links_rx;
};
#define HWSIM_STA_MAGIC 0x6d537749
static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
WARN_ON(sp->magic != HWSIM_STA_MAGIC);
}
static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
sp->magic = HWSIM_STA_MAGIC;
}
static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
sp->magic = 0;
}
struct hwsim_chanctx_priv {
u32 magic;
};
#define HWSIM_CHANCTX_MAGIC 0x6d53774a
static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
}
static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
cp->magic = HWSIM_CHANCTX_MAGIC;
}
static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
{
struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
cp->magic = 0;
}
static unsigned int hwsim_net_id;
static DEFINE_IDA(hwsim_netgroup_ida);
struct hwsim_net {
int netgroup;
u32 wmediumd;
};
static inline int hwsim_net_get_netgroup(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
return hwsim_net->netgroup;
}
static inline int hwsim_net_set_netgroup(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
hwsim_net->netgroup = ida_alloc(&hwsim_netgroup_ida, GFP_KERNEL);
return hwsim_net->netgroup >= 0 ? 0 : -ENOMEM;
}
static inline u32 hwsim_net_get_wmediumd(struct net *net)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
return hwsim_net->wmediumd;
}
static inline void hwsim_net_set_wmediumd(struct net *net, u32 portid)
{
struct hwsim_net *hwsim_net = net_generic(net, hwsim_net_id);
hwsim_net->wmediumd = portid;
}
static struct class *hwsim_class;
static struct net_device *hwsim_mon; /* global monitor netdev */
#define CHAN2G(_freq) { \
.band = NL80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
}
#define CHAN5G(_freq) { \
.band = NL80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
}
#define CHAN6G(_freq) { \
.band = NL80211_BAND_6GHZ, \
.center_freq = (_freq), \
.hw_value = (_freq), \
}
static const struct ieee80211_channel hwsim_channels_2ghz[] = {
CHAN2G(2412), /* Channel 1 */
CHAN2G(2417), /* Channel 2 */
CHAN2G(2422), /* Channel 3 */
CHAN2G(2427), /* Channel 4 */
CHAN2G(2432), /* Channel 5 */
CHAN2G(2437), /* Channel 6 */
CHAN2G(2442), /* Channel 7 */
CHAN2G(2447), /* Channel 8 */
CHAN2G(2452), /* Channel 9 */
CHAN2G(2457), /* Channel 10 */
CHAN2G(2462), /* Channel 11 */
CHAN2G(2467), /* Channel 12 */
CHAN2G(2472), /* Channel 13 */
CHAN2G(2484), /* Channel 14 */
};
static const struct ieee80211_channel hwsim_channels_5ghz[] = {
CHAN5G(5180), /* Channel 36 */
CHAN5G(5200), /* Channel 40 */
CHAN5G(5220), /* Channel 44 */
CHAN5G(5240), /* Channel 48 */
CHAN5G(5260), /* Channel 52 */
CHAN5G(5280), /* Channel 56 */
CHAN5G(5300), /* Channel 60 */
CHAN5G(5320), /* Channel 64 */
CHAN5G(5500), /* Channel 100 */
CHAN5G(5520), /* Channel 104 */
CHAN5G(5540), /* Channel 108 */
CHAN5G(5560), /* Channel 112 */
CHAN5G(5580), /* Channel 116 */
CHAN5G(5600), /* Channel 120 */
CHAN5G(5620), /* Channel 124 */
CHAN5G(5640), /* Channel 128 */
CHAN5G(5660), /* Channel 132 */
CHAN5G(5680), /* Channel 136 */
CHAN5G(5700), /* Channel 140 */
CHAN5G(5745), /* Channel 149 */
CHAN5G(5765), /* Channel 153 */
CHAN5G(5785), /* Channel 157 */
CHAN5G(5805), /* Channel 161 */
CHAN5G(5825), /* Channel 165 */
CHAN5G(5845), /* Channel 169 */
CHAN5G(5855), /* Channel 171 */
CHAN5G(5860), /* Channel 172 */
CHAN5G(5865), /* Channel 173 */
CHAN5G(5870), /* Channel 174 */
CHAN5G(5875), /* Channel 175 */
CHAN5G(5880), /* Channel 176 */
CHAN5G(5885), /* Channel 177 */
CHAN5G(5890), /* Channel 178 */
CHAN5G(5895), /* Channel 179 */
CHAN5G(5900), /* Channel 180 */
CHAN5G(5905), /* Channel 181 */
CHAN5G(5910), /* Channel 182 */
CHAN5G(5915), /* Channel 183 */
CHAN5G(5920), /* Channel 184 */
CHAN5G(5925), /* Channel 185 */
};
static const struct ieee80211_channel hwsim_channels_6ghz[] = {
CHAN6G(5955), /* Channel 1 */
CHAN6G(5975), /* Channel 5 */
CHAN6G(5995), /* Channel 9 */
CHAN6G(6015), /* Channel 13 */
CHAN6G(6035), /* Channel 17 */
CHAN6G(6055), /* Channel 21 */
CHAN6G(6075), /* Channel 25 */
CHAN6G(6095), /* Channel 29 */
CHAN6G(6115), /* Channel 33 */
CHAN6G(6135), /* Channel 37 */
CHAN6G(6155), /* Channel 41 */
CHAN6G(6175), /* Channel 45 */
CHAN6G(6195), /* Channel 49 */
CHAN6G(6215), /* Channel 53 */
CHAN6G(6235), /* Channel 57 */
CHAN6G(6255), /* Channel 61 */
CHAN6G(6275), /* Channel 65 */
CHAN6G(6295), /* Channel 69 */
CHAN6G(6315), /* Channel 73 */
CHAN6G(6335), /* Channel 77 */
CHAN6G(6355), /* Channel 81 */
CHAN6G(6375), /* Channel 85 */
CHAN6G(6395), /* Channel 89 */
CHAN6G(6415), /* Channel 93 */
CHAN6G(6435), /* Channel 97 */
CHAN6G(6455), /* Channel 181 */
CHAN6G(6475), /* Channel 105 */
CHAN6G(6495), /* Channel 109 */
CHAN6G(6515), /* Channel 113 */
CHAN6G(6535), /* Channel 117 */
CHAN6G(6555), /* Channel 121 */
CHAN6G(6575), /* Channel 125 */
CHAN6G(6595), /* Channel 129 */
CHAN6G(6615), /* Channel 133 */
CHAN6G(6635), /* Channel 137 */
CHAN6G(6655), /* Channel 141 */
CHAN6G(6675), /* Channel 145 */
CHAN6G(6695), /* Channel 149 */
CHAN6G(6715), /* Channel 153 */
CHAN6G(6735), /* Channel 157 */
CHAN6G(6755), /* Channel 161 */
CHAN6G(6775), /* Channel 165 */
CHAN6G(6795), /* Channel 169 */
CHAN6G(6815), /* Channel 173 */
CHAN6G(6835), /* Channel 177 */
CHAN6G(6855), /* Channel 181 */
CHAN6G(6875), /* Channel 185 */
CHAN6G(6895), /* Channel 189 */
CHAN6G(6915), /* Channel 193 */
CHAN6G(6935), /* Channel 197 */
CHAN6G(6955), /* Channel 201 */
CHAN6G(6975), /* Channel 205 */
CHAN6G(6995), /* Channel 209 */
CHAN6G(7015), /* Channel 213 */
CHAN6G(7035), /* Channel 217 */
CHAN6G(7055), /* Channel 221 */
CHAN6G(7075), /* Channel 225 */
CHAN6G(7095), /* Channel 229 */
CHAN6G(7115), /* Channel 233 */
};
#define NUM_S1G_CHANS_US 51
static struct ieee80211_channel hwsim_channels_s1g[NUM_S1G_CHANS_US];
static const struct ieee80211_sta_s1g_cap hwsim_s1g_cap = {
.s1g = true,
.cap = { S1G_CAP0_SGI_1MHZ | S1G_CAP0_SGI_2MHZ,
0,
0,
S1G_CAP3_MAX_MPDU_LEN,
0,
S1G_CAP5_AMPDU,
0,
S1G_CAP7_DUP_1MHZ,
S1G_CAP8_TWT_RESPOND | S1G_CAP8_TWT_REQUEST,
0},
.nss_mcs = { 0xfc | 1, /* MCS 7 for 1 SS */
/* RX Highest Supported Long GI Data Rate 0:7 */
0,
/* RX Highest Supported Long GI Data Rate 0:7 */
/* TX S1G MCS Map 0:6 */
0xfa,
/* TX S1G MCS Map :7 */
/* TX Highest Supported Long GI Data Rate 0:6 */
0x80,
/* TX Highest Supported Long GI Data Rate 7:8 */
/* Rx Single spatial stream and S1G-MCS Map for 1MHz */
/* Tx Single spatial stream and S1G-MCS Map for 1MHz */
0 },
};
static void hwsim_init_s1g_channels(struct ieee80211_channel *chans)
{
int ch, freq;
for (ch = 0; ch < NUM_S1G_CHANS_US; ch++) {
freq = 902000 + (ch + 1) * 500;
chans[ch].band = NL80211_BAND_S1GHZ;
chans[ch].center_freq = KHZ_TO_MHZ(freq);
chans[ch].freq_offset = freq % 1000;
chans[ch].hw_value = ch + 1;
}
}
static const struct ieee80211_rate hwsim_rates[] = {
{ .bitrate = 10 },
{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60 },
{ .bitrate = 90 },
{ .bitrate = 120 },
{ .bitrate = 180 },
{ .bitrate = 240 },
{ .bitrate = 360 },
{ .bitrate = 480 },
{ .bitrate = 540 }
};
#define DEFAULT_RX_RSSI -50
static const u32 hwsim_ciphers[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_CCMP_256,
WLAN_CIPHER_SUITE_GCMP,
WLAN_CIPHER_SUITE_GCMP_256,
WLAN_CIPHER_SUITE_AES_CMAC,
WLAN_CIPHER_SUITE_BIP_CMAC_256,
WLAN_CIPHER_SUITE_BIP_GMAC_128,
WLAN_CIPHER_SUITE_BIP_GMAC_256,
};
#define OUI_QCA 0x001374
#define QCA_NL80211_SUBCMD_TEST 1
enum qca_nl80211_vendor_subcmds {
QCA_WLAN_VENDOR_ATTR_TEST = 8,
QCA_WLAN_VENDOR_ATTR_MAX = QCA_WLAN_VENDOR_ATTR_TEST
};
static const struct nla_policy
hwsim_vendor_test_policy[QCA_WLAN_VENDOR_ATTR_MAX + 1] = {
[QCA_WLAN_VENDOR_ATTR_MAX] = { .type = NLA_U32 },
};
static int mac80211_hwsim_vendor_cmd_test(struct wiphy *wiphy,
struct wireless_dev *wdev,
const void *data, int data_len)
{
struct sk_buff *skb;
struct nlattr *tb[QCA_WLAN_VENDOR_ATTR_MAX + 1];
int err;
u32 val;
err = nla_parse_deprecated(tb, QCA_WLAN_VENDOR_ATTR_MAX, data,
data_len, hwsim_vendor_test_policy, NULL);
if (err)
return err;
if (!tb[QCA_WLAN_VENDOR_ATTR_TEST])
return -EINVAL;
val = nla_get_u32(tb[QCA_WLAN_VENDOR_ATTR_TEST]);
wiphy_dbg(wiphy, "%s: test=%u\n", __func__, val);
/* Send a vendor event as a test. Note that this would not normally be
* done within a command handler, but rather, based on some other
* trigger. For simplicity, this command is used to trigger the event
* here.
*
* event_idx = 0 (index in mac80211_hwsim_vendor_commands)
*/
skb = cfg80211_vendor_event_alloc(wiphy, wdev, 100, 0, GFP_KERNEL);
if (skb) {
/* skb_put() or nla_put() will fill up data within
* NL80211_ATTR_VENDOR_DATA.
*/
/* Add vendor data */
nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_TEST, val + 1);
/* Send the event - this will call nla_nest_end() */
cfg80211_vendor_event(skb, GFP_KERNEL);
}
/* Send a response to the command */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, 10);
if (!skb)
return -ENOMEM;
/* skb_put() or nla_put() will fill up data within
* NL80211_ATTR_VENDOR_DATA
*/
nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_TEST, val + 2);
return cfg80211_vendor_cmd_reply(skb);
}
static struct wiphy_vendor_command mac80211_hwsim_vendor_commands[] = {
{
.info = { .vendor_id = OUI_QCA,
.subcmd = QCA_NL80211_SUBCMD_TEST },
.flags = WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = mac80211_hwsim_vendor_cmd_test,
.policy = hwsim_vendor_test_policy,
.maxattr = QCA_WLAN_VENDOR_ATTR_MAX,
}
};
/* Advertise support vendor specific events */
static const struct nl80211_vendor_cmd_info mac80211_hwsim_vendor_events[] = {
{ .vendor_id = OUI_QCA, .subcmd = 1 },
};
static DEFINE_SPINLOCK(hwsim_radio_lock);
static LIST_HEAD(hwsim_radios);
static struct rhashtable hwsim_radios_rht;
static int hwsim_radio_idx;
static int hwsim_radios_generation = 1;
static struct platform_driver mac80211_hwsim_driver = {
.driver = {
.name = "mac80211_hwsim",
},
};
struct mac80211_hwsim_link_data {
u32 link_id;
u64 beacon_int /* beacon interval in us */;
struct hrtimer beacon_timer;
};
struct mac80211_hwsim_data {
struct list_head list;
struct rhash_head rht;
struct ieee80211_hw *hw;
struct device *dev;
struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
struct ieee80211_channel channels_6ghz[ARRAY_SIZE(hwsim_channels_6ghz)];
struct ieee80211_channel channels_s1g[ARRAY_SIZE(hwsim_channels_s1g)];
struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
struct ieee80211_iface_combination if_combination;
struct ieee80211_iface_limit if_limits[3];
int n_if_limits;
struct ieee80211_iface_combination if_combination_radio;
struct wiphy_radio_freq_range radio_range[NUM_NL80211_BANDS];
struct wiphy_radio radio[NUM_NL80211_BANDS];
u32 ciphers[ARRAY_SIZE(hwsim_ciphers)];
struct mac_address addresses[2];
int channels, idx;
bool use_chanctx;
bool destroy_on_close;
u32 portid;
char alpha2[2];
const struct ieee80211_regdomain *regd;
struct ieee80211_channel *tmp_chan;
struct ieee80211_channel *roc_chan;
u32 roc_duration;
struct delayed_work roc_start;
struct delayed_work roc_done;
struct delayed_work hw_scan;
struct cfg80211_scan_request *hw_scan_request;
struct ieee80211_vif *hw_scan_vif;
int scan_chan_idx;
u8 scan_addr[ETH_ALEN];
struct {
struct ieee80211_channel *channel;
unsigned long next_start, start, end;
} survey_data[ARRAY_SIZE(hwsim_channels_2ghz) +
ARRAY_SIZE(hwsim_channels_5ghz) +
ARRAY_SIZE(hwsim_channels_6ghz)];
struct ieee80211_channel *channel;
enum nl80211_chan_width bw;
unsigned int rx_filter;
bool started, idle, scanning;
struct mutex mutex;
enum ps_mode {
PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
} ps;
bool ps_poll_pending;
struct dentry *debugfs;
atomic_t pending_cookie;
struct sk_buff_head pending; /* packets pending */
/*
* Only radios in the same group can communicate together (the
* channel has to match too). Each bit represents a group. A
* radio can be in more than one group.
*/
u64 group;
/* group shared by radios created in the same netns */
int netgroup;
/* wmediumd portid responsible for netgroup of this radio */
u32 wmediumd;
/* difference between this hw's clock and the real clock, in usecs */
s64 tsf_offset;
s64 bcn_delta;
/* absolute beacon transmission time. Used to cover up "tx" delay. */
u64 abs_bcn_ts;
/* Stats */
u64 tx_pkts;
u64 rx_pkts;
u64 tx_bytes;
u64 rx_bytes;
u64 tx_dropped;
u64 tx_failed;
/* RSSI in rx status of the receiver */
int rx_rssi;
/* only used when pmsr capability is supplied */
struct cfg80211_pmsr_capabilities pmsr_capa;
struct cfg80211_pmsr_request *pmsr_request;
struct wireless_dev *pmsr_request_wdev;
struct mac80211_hwsim_link_data link_data[IEEE80211_MLD_MAX_NUM_LINKS];
};
static const struct rhashtable_params hwsim_rht_params = {
.nelem_hint = 2,
.automatic_shrinking = true,
.key_len = ETH_ALEN,
.key_offset = offsetof(struct mac80211_hwsim_data, addresses[1]),
.head_offset = offsetof(struct mac80211_hwsim_data, rht),
};
struct hwsim_radiotap_hdr {
struct ieee80211_radiotap_header hdr;
__le64 rt_tsft;
u8 rt_flags;
u8 rt_rate;
__le16 rt_channel;
__le16 rt_chbitmask;
} __packed;
struct hwsim_radiotap_ack_hdr {
struct ieee80211_radiotap_header hdr;
u8 rt_flags;
u8 pad;
__le16 rt_channel;
__le16 rt_chbitmask;
} __packed;
static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(const u8 *addr)
{
return rhashtable_lookup_fast(&hwsim_radios_rht, addr, hwsim_rht_params);
}
/* MAC80211_HWSIM netlink family */
static struct genl_family hwsim_genl_family;
enum hwsim_multicast_groups {
HWSIM_MCGRP_CONFIG,
};
static const struct genl_multicast_group hwsim_mcgrps[] = {
[HWSIM_MCGRP_CONFIG] = { .name = "config", },
};
/* MAC80211_HWSIM netlink policy */
static const struct nla_policy
hwsim_rate_info_policy[HWSIM_RATE_INFO_ATTR_MAX + 1] = {
[HWSIM_RATE_INFO_ATTR_FLAGS] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_MCS] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_LEGACY] = { .type = NLA_U16 },
[HWSIM_RATE_INFO_ATTR_NSS] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_BW] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_HE_GI] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_HE_DCM] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_HE_RU_ALLOC] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_N_BOUNDED_CH] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_EHT_GI] = { .type = NLA_U8 },
[HWSIM_RATE_INFO_ATTR_EHT_RU_ALLOC] = { .type = NLA_U8 },
};
static const struct nla_policy
hwsim_ftm_result_policy[NL80211_PMSR_FTM_RESP_ATTR_MAX + 1] = {
[NL80211_PMSR_FTM_RESP_ATTR_FAIL_REASON] = { .type = NLA_U32 },
[NL80211_PMSR_FTM_RESP_ATTR_BURST_INDEX] = { .type = NLA_U16 },
[NL80211_PMSR_FTM_RESP_ATTR_NUM_FTMR_ATTEMPTS] = { .type = NLA_U32 },
[NL80211_PMSR_FTM_RESP_ATTR_NUM_FTMR_SUCCESSES] = { .type = NLA_U32 },
[NL80211_PMSR_FTM_RESP_ATTR_BUSY_RETRY_TIME] = { .type = NLA_U8 },
[NL80211_PMSR_FTM_RESP_ATTR_NUM_BURSTS_EXP] = { .type = NLA_U8 },
[NL80211_PMSR_FTM_RESP_ATTR_BURST_DURATION] = { .type = NLA_U8 },
[NL80211_PMSR_FTM_RESP_ATTR_FTMS_PER_BURST] = { .type = NLA_U8 },
[NL80211_PMSR_FTM_RESP_ATTR_RSSI_AVG] = { .type = NLA_U32 },
[NL80211_PMSR_FTM_RESP_ATTR_RSSI_SPREAD] = { .type = NLA_U32 },
[NL80211_PMSR_FTM_RESP_ATTR_TX_RATE] = NLA_POLICY_NESTED(hwsim_rate_info_policy),
[NL80211_PMSR_FTM_RESP_ATTR_RX_RATE] = NLA_POLICY_NESTED(hwsim_rate_info_policy),
[NL80211_PMSR_FTM_RESP_ATTR_RTT_AVG] = { .type = NLA_U64 },
[NL80211_PMSR_FTM_RESP_ATTR_RTT_VARIANCE] = { .type = NLA_U64 },
[NL80211_PMSR_FTM_RESP_ATTR_RTT_SPREAD] = { .type = NLA_U64 },
[NL80211_PMSR_FTM_RESP_ATTR_DIST_AVG] = { .type = NLA_U64 },
[NL80211_PMSR_FTM_RESP_ATTR_DIST_VARIANCE] = { .type = NLA_U64 },
[NL80211_PMSR_FTM_RESP_ATTR_DIST_SPREAD] = { .type = NLA_U64 },
[NL80211_PMSR_FTM_RESP_ATTR_LCI] = { .type = NLA_STRING },
[NL80211_PMSR_FTM_RESP_ATTR_CIVICLOC] = { .type = NLA_STRING },
};
static const struct nla_policy
hwsim_pmsr_resp_type_policy[NL80211_PMSR_TYPE_MAX + 1] = {
[NL80211_PMSR_TYPE_FTM] = NLA_POLICY_NESTED(hwsim_ftm_result_policy),
};
static const struct nla_policy
hwsim_pmsr_resp_policy[NL80211_PMSR_RESP_ATTR_MAX + 1] = {
[NL80211_PMSR_RESP_ATTR_STATUS] = { .type = NLA_U32 },
[NL80211_PMSR_RESP_ATTR_HOST_TIME] = { .type = NLA_U64 },
[NL80211_PMSR_RESP_ATTR_AP_TSF] = { .type = NLA_U64 },
[NL80211_PMSR_RESP_ATTR_FINAL] = { .type = NLA_FLAG },
[NL80211_PMSR_RESP_ATTR_DATA] = NLA_POLICY_NESTED(hwsim_pmsr_resp_type_policy),
};
static const struct nla_policy
hwsim_pmsr_peer_result_policy[NL80211_PMSR_PEER_ATTR_MAX + 1] = {
[NL80211_PMSR_PEER_ATTR_ADDR] = NLA_POLICY_ETH_ADDR_COMPAT,
[NL80211_PMSR_PEER_ATTR_CHAN] = { .type = NLA_REJECT },
[NL80211_PMSR_PEER_ATTR_REQ] = { .type = NLA_REJECT },
[NL80211_PMSR_PEER_ATTR_RESP] = NLA_POLICY_NESTED(hwsim_pmsr_resp_policy),
};
static const struct nla_policy
hwsim_pmsr_peers_result_policy[NL80211_PMSR_ATTR_MAX + 1] = {
[NL80211_PMSR_ATTR_MAX_PEERS] = { .type = NLA_REJECT },
[NL80211_PMSR_ATTR_REPORT_AP_TSF] = { .type = NLA_REJECT },
[NL80211_PMSR_ATTR_RANDOMIZE_MAC_ADDR] = { .type = NLA_REJECT },
[NL80211_PMSR_ATTR_TYPE_CAPA] = { .type = NLA_REJECT },
[NL80211_PMSR_ATTR_PEERS] = NLA_POLICY_NESTED_ARRAY(hwsim_pmsr_peer_result_policy),
};
static const struct nla_policy
hwsim_ftm_capa_policy[NL80211_PMSR_FTM_CAPA_ATTR_MAX + 1] = {
[NL80211_PMSR_FTM_CAPA_ATTR_ASAP] = { .type = NLA_FLAG },
[NL80211_PMSR_FTM_CAPA_ATTR_NON_ASAP] = { .type = NLA_FLAG },
[NL80211_PMSR_FTM_CAPA_ATTR_REQ_LCI] = { .type = NLA_FLAG },
[NL80211_PMSR_FTM_CAPA_ATTR_REQ_CIVICLOC] = { .type = NLA_FLAG },
[NL80211_PMSR_FTM_CAPA_ATTR_PREAMBLES] = { .type = NLA_U32 },
[NL80211_PMSR_FTM_CAPA_ATTR_BANDWIDTHS] = { .type = NLA_U32 },
[NL80211_PMSR_FTM_CAPA_ATTR_MAX_BURSTS_EXPONENT] = NLA_POLICY_MAX(NLA_U8, 15),
[NL80211_PMSR_FTM_CAPA_ATTR_MAX_FTMS_PER_BURST] = NLA_POLICY_MAX(NLA_U8, 31),
[NL80211_PMSR_FTM_CAPA_ATTR_TRIGGER_BASED] = { .type = NLA_FLAG },
[NL80211_PMSR_FTM_CAPA_ATTR_NON_TRIGGER_BASED] = { .type = NLA_FLAG },
};
static const struct nla_policy
hwsim_pmsr_capa_type_policy[NL80211_PMSR_TYPE_MAX + 1] = {
[NL80211_PMSR_TYPE_FTM] = NLA_POLICY_NESTED(hwsim_ftm_capa_policy),
};
static const struct nla_policy
hwsim_pmsr_capa_policy[NL80211_PMSR_ATTR_MAX + 1] = {
[NL80211_PMSR_ATTR_MAX_PEERS] = { .type = NLA_U32 },
[NL80211_PMSR_ATTR_REPORT_AP_TSF] = { .type = NLA_FLAG },
[NL80211_PMSR_ATTR_RANDOMIZE_MAC_ADDR] = { .type = NLA_FLAG },
[NL80211_PMSR_ATTR_TYPE_CAPA] = NLA_POLICY_NESTED(hwsim_pmsr_capa_type_policy),
[NL80211_PMSR_ATTR_PEERS] = { .type = NLA_REJECT }, // only for request.
};
static const struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
[HWSIM_ATTR_ADDR_RECEIVER] = NLA_POLICY_ETH_ADDR_COMPAT,
[HWSIM_ATTR_ADDR_TRANSMITTER] = NLA_POLICY_ETH_ADDR_COMPAT,
[HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_DATA_LEN },
[HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
[HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
[HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
[HWSIM_ATTR_TX_INFO] = { .type = NLA_BINARY,
.len = IEEE80211_TX_MAX_RATES *
sizeof(struct hwsim_tx_rate)},
[HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
[HWSIM_ATTR_CHANNELS] = { .type = NLA_U32 },
[HWSIM_ATTR_RADIO_ID] = { .type = NLA_U32 },
[HWSIM_ATTR_REG_HINT_ALPHA2] = { .type = NLA_STRING, .len = 2 },
[HWSIM_ATTR_REG_CUSTOM_REG] = { .type = NLA_U32 },
[HWSIM_ATTR_REG_STRICT_REG] = { .type = NLA_FLAG },
[HWSIM_ATTR_SUPPORT_P2P_DEVICE] = { .type = NLA_FLAG },
[HWSIM_ATTR_USE_CHANCTX] = { .type = NLA_FLAG },
[HWSIM_ATTR_DESTROY_RADIO_ON_CLOSE] = { .type = NLA_FLAG },
[HWSIM_ATTR_RADIO_NAME] = { .type = NLA_STRING },
[HWSIM_ATTR_NO_VIF] = { .type = NLA_FLAG },
[HWSIM_ATTR_FREQ] = { .type = NLA_U32 },
[HWSIM_ATTR_TX_INFO_FLAGS] = { .type = NLA_BINARY },
[HWSIM_ATTR_PERM_ADDR] = NLA_POLICY_ETH_ADDR_COMPAT,
[HWSIM_ATTR_IFTYPE_SUPPORT] = { .type = NLA_U32 },
[HWSIM_ATTR_CIPHER_SUPPORT] = { .type = NLA_BINARY },
[HWSIM_ATTR_MLO_SUPPORT] = { .type = NLA_FLAG },
[HWSIM_ATTR_PMSR_SUPPORT] = NLA_POLICY_NESTED(hwsim_pmsr_capa_policy),
[HWSIM_ATTR_PMSR_RESULT] = NLA_POLICY_NESTED(hwsim_pmsr_peers_result_policy),
[HWSIM_ATTR_MULTI_RADIO] = { .type = NLA_FLAG },
};
#if IS_REACHABLE(CONFIG_VIRTIO)
/* MAC80211_HWSIM virtio queues */
static struct virtqueue *hwsim_vqs[HWSIM_NUM_VQS];
static bool hwsim_virtio_enabled;
static DEFINE_SPINLOCK(hwsim_virtio_lock);
static void hwsim_virtio_rx_work(struct work_struct *work);
static DECLARE_WORK(hwsim_virtio_rx, hwsim_virtio_rx_work);
static int hwsim_tx_virtio(struct mac80211_hwsim_data *data,
struct sk_buff *skb)
{
struct scatterlist sg[1];
unsigned long flags;
int err;
spin_lock_irqsave(&hwsim_virtio_lock, flags);
if (!hwsim_virtio_enabled) {
err = -ENODEV;
goto out_free;
}
sg_init_one(sg, skb->head, skb_end_offset(skb));
err = virtqueue_add_outbuf(hwsim_vqs[HWSIM_VQ_TX], sg, 1, skb,
GFP_ATOMIC);
if (err)
goto out_free;
virtqueue_kick(hwsim_vqs[HWSIM_VQ_TX]);
spin_unlock_irqrestore(&hwsim_virtio_lock, flags);
return 0;
out_free:
spin_unlock_irqrestore(&hwsim_virtio_lock, flags);
nlmsg_free(skb);
return err;
}
#else
/* cause a linker error if this ends up being needed */
extern int hwsim_tx_virtio(struct mac80211_hwsim_data *data,
struct sk_buff *skb);
#define hwsim_virtio_enabled false
#endif
static int hwsim_get_chanwidth(enum nl80211_chan_width bw)
{
switch (bw) {
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
return 20;
case NL80211_CHAN_WIDTH_40:
return 40;
case NL80211_CHAN_WIDTH_80:
return 80;
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
return 160;
case NL80211_CHAN_WIDTH_320:
return 320;
case NL80211_CHAN_WIDTH_5:
return 5;
case NL80211_CHAN_WIDTH_10:
return 10;
case NL80211_CHAN_WIDTH_1:
return 1;
case NL80211_CHAN_WIDTH_2:
return 2;
case NL80211_CHAN_WIDTH_4:
return 4;
case NL80211_CHAN_WIDTH_8:
return 8;
case NL80211_CHAN_WIDTH_16:
return 16;
}
return INT_MAX;
}
static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan);
/* sysfs attributes */
static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct sk_buff *skb;
struct ieee80211_pspoll *pspoll;
if (!vp->assoc)
return;
wiphy_dbg(data->hw->wiphy,
"%s: send PS-Poll to %pM for aid %d\n",
__func__, vp->bssid, vp->aid);
skb = dev_alloc_skb(sizeof(*pspoll));
if (!skb)
return;
pspoll = skb_put(skb, sizeof(*pspoll));
pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_PSPOLL |
IEEE80211_FCTL_PM);
pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
memcpy(pspoll->ta, mac, ETH_ALEN);
rcu_read_lock();
mac80211_hwsim_tx_frame(data->hw, skb,
rcu_dereference(vif->bss_conf.chanctx_conf)->def.chan);
rcu_read_unlock();
}
static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
struct ieee80211_vif *vif, int ps)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
struct ieee80211_tx_info *cb;
if (!vp->assoc)
return;
wiphy_dbg(data->hw->wiphy,
"%s: send data::nullfunc to %pM ps=%d\n",
__func__, vp->bssid, ps);
skb = dev_alloc_skb(sizeof(*hdr));
if (!skb)
return;
hdr = skb_put(skb, sizeof(*hdr) - ETH_ALEN);
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_TODS |
(ps ? IEEE80211_FCTL_PM : 0));
hdr->duration_id = cpu_to_le16(0);
memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
memcpy(hdr->addr2, mac, ETH_ALEN);
memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
cb = IEEE80211_SKB_CB(skb);
cb->control.rates[0].count = 1;
cb->control.rates[1].idx = -1;
rcu_read_lock();
mac80211_hwsim_tx_frame(data->hw, skb,
rcu_dereference(vif->bss_conf.chanctx_conf)->def.chan);
rcu_read_unlock();
}
static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
hwsim_send_nullfunc(data, mac, vif, 1);
}
static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = dat;
hwsim_send_nullfunc(data, mac, vif, 0);
}
static int hwsim_fops_ps_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->ps;
return 0;
}
static int hwsim_fops_ps_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
enum ps_mode old_ps;
if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
val != PS_MANUAL_POLL)
return -EINVAL;
if (val == PS_MANUAL_POLL) {
if (data->ps != PS_ENABLED)
return -EINVAL;
local_bh_disable();
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_ps_poll, data);
local_bh_enable();
return 0;
}
old_ps = data->ps;
data->ps = val;
local_bh_disable();
if (old_ps == PS_DISABLED && val != PS_DISABLED) {
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_nullfunc_ps, data);
} else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
hwsim_send_nullfunc_no_ps, data);
}
local_bh_enable();
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
"%llu\n");
static int hwsim_write_simulate_radar(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
ieee80211_radar_detected(data->hw, NULL);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(hwsim_simulate_radar, NULL,
hwsim_write_simulate_radar, "%llu\n");
static int hwsim_fops_group_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->group;
return 0;
}
static int hwsim_fops_group_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
data->group = val;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(hwsim_fops_group,
hwsim_fops_group_read, hwsim_fops_group_write,
"%llx\n");
static int hwsim_fops_rx_rssi_read(void *dat, u64 *val)
{
struct mac80211_hwsim_data *data = dat;
*val = data->rx_rssi;
return 0;
}
static int hwsim_fops_rx_rssi_write(void *dat, u64 val)
{
struct mac80211_hwsim_data *data = dat;
int rssi = (int)val;
if (rssi >= 0 || rssi < -100)
return -EINVAL;
data->rx_rssi = rssi;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(hwsim_fops_rx_rssi,
hwsim_fops_rx_rssi_read, hwsim_fops_rx_rssi_write,
"%lld\n");
static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
struct net_device *dev)
{
/* TODO: allow packet injection */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static inline u64 mac80211_hwsim_get_tsf_raw(void)
{
return ktime_to_us(ktime_get_real());
}
static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
{
u64 now = mac80211_hwsim_get_tsf_raw();
return cpu_to_le64(now + data->tsf_offset);
}
static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *data = hw->priv;
return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
}
static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u64 tsf)
{
struct mac80211_hwsim_data *data = hw->priv;
u64 now = mac80211_hwsim_get_tsf(hw, vif);
/* MLD not supported here */
u32 bcn_int = data->link_data[0].beacon_int;
u64 delta = abs(tsf - now);
/* adjust after beaconing with new timestamp at old TBTT */
if (tsf > now) {
data->tsf_offset += delta;
data->bcn_delta = do_div(delta, bcn_int);
} else {
data->tsf_offset -= delta;
data->bcn_delta = -(s64)do_div(delta, bcn_int);
}
}
static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
struct sk_buff *tx_skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv;
struct sk_buff *skb;
struct hwsim_radiotap_hdr *hdr;
u16 flags, bitrate;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
if (!txrate)
bitrate = 0;
else
bitrate = txrate->bitrate;
if (!netif_running(hwsim_mon))
return;
skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
if (skb == NULL)
return;
hdr = skb_push(skb, sizeof(*hdr));
hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->hdr.it_pad = 0;
hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_RATE) |
(1 << IEEE80211_RADIOTAP_TSFT) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
hdr->rt_flags = 0;
hdr->rt_rate = bitrate / 5;
hdr->rt_channel = cpu_to_le16(chan->center_freq);
flags = IEEE80211_CHAN_2GHZ;
if (txrate && txrate->flags & IEEE80211_RATE_ERP_G)
flags |= IEEE80211_CHAN_OFDM;
else
flags |= IEEE80211_CHAN_CCK;
hdr->rt_chbitmask = cpu_to_le16(flags);
skb->dev = hwsim_mon;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
const u8 *addr)
{
struct sk_buff *skb;
struct hwsim_radiotap_ack_hdr *hdr;
u16 flags;
struct ieee80211_hdr *hdr11;
if (!netif_running(hwsim_mon))
return;
skb = dev_alloc_skb(100);
if (skb == NULL)
return;
hdr = skb_put(skb, sizeof(*hdr));
hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->hdr.it_pad = 0;
hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
hdr->rt_flags = 0;
hdr->pad = 0;
hdr->rt_channel = cpu_to_le16(chan->center_freq);
flags = IEEE80211_CHAN_2GHZ;
hdr->rt_chbitmask = cpu_to_le16(flags);
hdr11 = skb_put(skb, 10);
hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_ACK);
hdr11->duration_id = cpu_to_le16(0);
memcpy(hdr11->addr1, addr, ETH_ALEN);
skb->dev = hwsim_mon;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
struct mac80211_hwsim_addr_match_data {
u8 addr[ETH_ALEN];
bool ret;
};
static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
int i;
struct mac80211_hwsim_addr_match_data *md = data;
if (memcmp(mac, md->addr, ETH_ALEN) == 0) {
md->ret = true;
return;
}
/* Match the link address */
for (i = 0; i < ARRAY_SIZE(vif->link_conf); i++) {
struct ieee80211_bss_conf *conf;
conf = rcu_dereference(vif->link_conf[i]);
if (!conf)
continue;
if (memcmp(conf->addr, md->addr, ETH_ALEN) == 0) {
md->ret = true;
return;
}
}
}
static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
const u8 *addr)
{
struct mac80211_hwsim_addr_match_data md = {
.ret = false,
};
if (data->scanning && memcmp(addr, data->scan_addr, ETH_ALEN) == 0)
return true;
memcpy(md.addr, addr, ETH_ALEN);
ieee80211_iterate_active_interfaces_atomic(data->hw,
IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_addr_iter,
&md);
return md.ret;
}
static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
struct sk_buff *skb)
{
switch (data->ps) {
case PS_DISABLED:
return true;
case PS_ENABLED:
return false;
case PS_AUTO_POLL:
/* TODO: accept (some) Beacons by default and other frames only
* if pending PS-Poll has been sent */
return true;
case PS_MANUAL_POLL:
/* Allow unicast frames to own address if there is a pending
* PS-Poll */
if (data->ps_poll_pending &&
mac80211_hwsim_addr_match(data, skb->data + 4)) {
data->ps_poll_pending = false;
return true;
}
return false;
}
return true;
}
static int hwsim_unicast_netgroup(struct mac80211_hwsim_data *data,
struct sk_buff *skb, int portid)
{
struct net *net;
bool found = false;
int res = -ENOENT;
rcu_read_lock();
for_each_net_rcu(net) {
if (data->netgroup == hwsim_net_get_netgroup(net)) {
res = genlmsg_unicast(net, skb, portid);
found = true;
break;
}
}
rcu_read_unlock();
if (!found)
nlmsg_free(skb);
return res;
}
static void mac80211_hwsim_config_mac_nl(struct ieee80211_hw *hw,
const u8 *addr, bool add)
{
struct mac80211_hwsim_data *data = hw->priv;
u32 _portid = READ_ONCE(data->wmediumd);
struct sk_buff *skb;
void *msg_head;
WARN_ON(!is_valid_ether_addr(addr));
if (!_portid && !hwsim_virtio_enabled)
return;
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!skb)
return;
msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
add ? HWSIM_CMD_ADD_MAC_ADDR :
HWSIM_CMD_DEL_MAC_ADDR);
if (!msg_head) {
pr_debug("mac80211_hwsim: problem with msg_head\n");
goto nla_put_failure;
}
if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
ETH_ALEN, data->addresses[1].addr))
goto nla_put_failure;
if (nla_put(skb, HWSIM_ATTR_ADDR_RECEIVER, ETH_ALEN, addr))
goto nla_put_failure;
genlmsg_end(skb, msg_head);
if (hwsim_virtio_enabled)
hwsim_tx_virtio(data, skb);
else
hwsim_unicast_netgroup(data, skb, _portid);
return;
nla_put_failure:
nlmsg_free(skb);
}
static inline u16 trans_tx_rate_flags_ieee2hwsim(struct ieee80211_tx_rate *rate)
{
u16 result = 0;
if (rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)
result |= MAC80211_HWSIM_TX_RC_USE_RTS_CTS;
if (rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
result |= MAC80211_HWSIM_TX_RC_USE_CTS_PROTECT;
if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
result |= MAC80211_HWSIM_TX_RC_USE_SHORT_PREAMBLE;
if (rate->flags & IEEE80211_TX_RC_MCS)
result |= MAC80211_HWSIM_TX_RC_MCS;
if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
result |= MAC80211_HWSIM_TX_RC_GREEN_FIELD;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_40_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_DUP_DATA)
result |= MAC80211_HWSIM_TX_RC_DUP_DATA;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
result |= MAC80211_HWSIM_TX_RC_SHORT_GI;
if (rate->flags & IEEE80211_TX_RC_VHT_MCS)
result |= MAC80211_HWSIM_TX_RC_VHT_MCS;
if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_80_MHZ_WIDTH;
if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
result |= MAC80211_HWSIM_TX_RC_160_MHZ_WIDTH;
return result;
}
static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
struct sk_buff *my_skb,
int dst_portid,
struct ieee80211_channel *channel)
{
struct sk_buff *skb;
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
void *msg_head;
unsigned int hwsim_flags = 0;
int i;
struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
struct hwsim_tx_rate_flag tx_attempts_flags[IEEE80211_TX_MAX_RATES];
uintptr_t cookie;
if (data->ps != PS_DISABLED)
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
/* If the queue contains MAX_QUEUE skb's drop some */
if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
/* Dropping until WARN_QUEUE level */
while (skb_queue_len(&data->pending) >= WARN_QUEUE) {
ieee80211_free_txskb(hw, skb_dequeue(&data->pending));
data->tx_dropped++;
}
}
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (skb == NULL)
goto nla_put_failure;
msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_FRAME);
if (msg_head == NULL) {
pr_debug("mac80211_hwsim: problem with msg_head\n");
goto nla_put_failure;
}
if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
ETH_ALEN, data->addresses[1].addr))
goto nla_put_failure;
/* We get the skb->data */
if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
goto nla_put_failure;
/* We get the flags for this transmission, and we translate them to
wmediumd flags */
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
goto nla_put_failure;
if (nla_put_u32(skb, HWSIM_ATTR_FREQ, channel->center_freq))
goto nla_put_failure;
/* We get the tx control (rate and retries) info*/
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
tx_attempts[i].idx = info->status.rates[i].idx;
tx_attempts_flags[i].idx = info->status.rates[i].idx;
tx_attempts[i].count = info->status.rates[i].count;
tx_attempts_flags[i].flags =
trans_tx_rate_flags_ieee2hwsim(
&info->status.rates[i]);
}
if (nla_put(skb, HWSIM_ATTR_TX_INFO,
sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
tx_attempts))
goto nla_put_failure;
if (nla_put(skb, HWSIM_ATTR_TX_INFO_FLAGS,
sizeof(struct hwsim_tx_rate_flag) * IEEE80211_TX_MAX_RATES,
tx_attempts_flags))
goto nla_put_failure;
/* We create a cookie to identify this skb */
cookie = atomic_inc_return(&data->pending_cookie);
info->rate_driver_data[0] = (void *)cookie;
if (nla_put_u64_64bit(skb, HWSIM_ATTR_COOKIE, cookie, HWSIM_ATTR_PAD))
goto nla_put_failure;
genlmsg_end(skb, msg_head);
if (hwsim_virtio_enabled) {
if (hwsim_tx_virtio(data, skb))
goto err_free_txskb;
} else {
if (hwsim_unicast_netgroup(data, skb, dst_portid))
goto err_free_txskb;
}
/* Enqueue the packet */
skb_queue_tail(&data->pending, my_skb);
data->tx_pkts++;
data->tx_bytes += my_skb->len;
return;
nla_put_failure:
nlmsg_free(skb);
err_free_txskb:
pr_debug("mac80211_hwsim: error occurred in %s\n", __func__);
ieee80211_free_txskb(hw, my_skb);
data->tx_failed++;
}
static bool hwsim_chans_compat(struct ieee80211_channel *c1,
struct ieee80211_channel *c2)
{
if (!c1 || !c2)
return false;
return c1->center_freq == c2->center_freq;
}
struct tx_iter_data {
struct ieee80211_channel *channel;
bool receive;
};
static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
struct ieee80211_vif *vif)
{
struct tx_iter_data *data = _data;
int i;
for (i = 0; i < ARRAY_SIZE(vif->link_conf); i++) {
struct ieee80211_bss_conf *conf;
struct ieee80211_chanctx_conf *chanctx;
conf = rcu_dereference(vif->link_conf[i]);
if (!conf)
continue;
chanctx = rcu_dereference(conf->chanctx_conf);
if (!chanctx)
continue;
if (!hwsim_chans_compat(data->channel, chanctx->def.chan))
continue;
data->receive = true;
return;
}
}
static void mac80211_hwsim_add_vendor_rtap(struct sk_buff *skb)
{
/*
* To enable this code, #define the HWSIM_RADIOTAP_OUI,
* e.g. like this:
* #define HWSIM_RADIOTAP_OUI "\x02\x00\x00"
* (but you should use a valid OUI, not that)
*
* If anyone wants to 'donate' a radiotap OUI/subns code
* please send a patch removing this #ifdef and changing
* the values accordingly.
*/
#ifdef HWSIM_RADIOTAP_OUI
struct ieee80211_radiotap_vendor_tlv *rtap;
static const char vendor_data[8] = "ABCDEFGH";
// Make sure no padding is needed
BUILD_BUG_ON(sizeof(vendor_data) % 4);
/* this is last radiotap info before the mac header, so
* skb_reset_mac_header for mac8022 to know the end of
* the radiotap TLV/beginning of the 802.11 header
*/
skb_reset_mac_header(skb);
/*
* Note that this code requires the headroom in the SKB
* that was allocated earlier.
*/
rtap = skb_push(skb, sizeof(*rtap) + sizeof(vendor_data));
rtap->len = cpu_to_le16(sizeof(*rtap) -
sizeof(struct ieee80211_radiotap_tlv) +
sizeof(vendor_data));
rtap->type = cpu_to_le16(IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
rtap->content.oui[0] = HWSIM_RADIOTAP_OUI[0];
rtap->content.oui[1] = HWSIM_RADIOTAP_OUI[1];
rtap->content.oui[2] = HWSIM_RADIOTAP_OUI[2];
rtap->content.oui_subtype = 127;
/* clear reserved field */
rtap->content.reserved = 0;
rtap->content.vendor_type = 0;
memcpy(rtap->content.data, vendor_data, sizeof(vendor_data));
IEEE80211_SKB_RXCB(skb)->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
#endif
}
static void mac80211_hwsim_rx(struct mac80211_hwsim_data *data,
struct ieee80211_rx_status *rx_status,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (void *)skb->data;
if (!ieee80211_has_morefrags(hdr->frame_control) &&
!is_multicast_ether_addr(hdr->addr1) &&
(ieee80211_is_mgmt(hdr->frame_control) ||
ieee80211_is_data(hdr->frame_control))) {
struct ieee80211_sta *sta;
unsigned int link_id;
rcu_read_lock();
sta = ieee80211_find_sta_by_link_addrs(data->hw, hdr->addr2,
hdr->addr1, &link_id);
if (sta) {
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
if (ieee80211_has_pm(hdr->frame_control))
sp->active_links_rx &= ~BIT(link_id);
else
sp->active_links_rx |= BIT(link_id);
rx_status->link_valid = true;
rx_status->link_id = link_id;
}
rcu_read_unlock();
}
memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status));
mac80211_hwsim_add_vendor_rtap(skb);
data->rx_pkts++;
data->rx_bytes += skb->len;
ieee80211_rx_irqsafe(data->hw, skb);
}
static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv, *data2;
bool ack = false;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_rx_status rx_status;
u64 now;
memset(&rx_status, 0, sizeof(rx_status));
rx_status.flag |= RX_FLAG_MACTIME_START;
rx_status.freq = chan->center_freq;
rx_status.freq_offset = chan->freq_offset ? 1 : 0;
rx_status.band = chan->band;
if (info->control.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) {
rx_status.rate_idx =
ieee80211_rate_get_vht_mcs(&info->control.rates[0]);
rx_status.nss =
ieee80211_rate_get_vht_nss(&info->control.rates[0]);
rx_status.encoding = RX_ENC_VHT;
} else {
rx_status.rate_idx = info->control.rates[0].idx;
if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
rx_status.encoding = RX_ENC_HT;
}
if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_40;
else if (info->control.rates[0].flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_80;
else if (info->control.rates[0].flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
rx_status.bw = RATE_INFO_BW_160;
else
rx_status.bw = RATE_INFO_BW_20;
if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
/* TODO: simulate optional packet loss */
rx_status.signal = data->rx_rssi;
if (info->control.vif)
rx_status.signal += info->control.vif->bss_conf.txpower;
if (data->ps != PS_DISABLED)
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
/* release the skb's source info */
skb_orphan(skb);
skb_dst_drop(skb);
skb->mark = 0;
skb_ext_reset(skb);
nf_reset_ct(skb);
/*
* Get absolute mactime here so all HWs RX at the "same time", and
* absolute TX time for beacon mactime so the timestamp matches.
* Giving beacons a different mactime than non-beacons looks messy, but
* it helps the Toffset be exact and a ~10us mactime discrepancy
* probably doesn't really matter.
*/
if (ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control)) {
rx_status.boottime_ns = ktime_get_boottime_ns();
now = data->abs_bcn_ts;
} else {
now = mac80211_hwsim_get_tsf_raw();
}
/* Copy skb to all enabled radios that are on the current frequency */
spin_lock(&hwsim_radio_lock);
list_for_each_entry(data2, &hwsim_radios, list) {
struct sk_buff *nskb;
struct tx_iter_data tx_iter_data = {
.receive = false,
.channel = chan,
};
if (data == data2)
continue;
if (!data2->started || (data2->idle && !data2->tmp_chan) ||
!hwsim_ps_rx_ok(data2, skb))
continue;
if (!(data->group & data2->group))
continue;
if (data->netgroup != data2->netgroup)
continue;
if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
!hwsim_chans_compat(chan, data2->channel)) {
ieee80211_iterate_active_interfaces_atomic(
data2->hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_tx_iter, &tx_iter_data);
if (!tx_iter_data.receive)
continue;
}
/*
* reserve some space for our vendor and the normal
* radiotap header, since we're copying anyway
*/
if (skb->len < PAGE_SIZE && paged_rx) {
struct page *page = alloc_page(GFP_ATOMIC);
if (!page)
continue;
nskb = dev_alloc_skb(128);
if (!nskb) {
__free_page(page);
continue;
}
memcpy(page_address(page), skb->data, skb->len);
skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len);
} else {
nskb = skb_copy(skb, GFP_ATOMIC);
if (!nskb)
continue;
}
if (mac80211_hwsim_addr_match(data2, hdr->addr1))
ack = true;
rx_status.mactime = now + data2->tsf_offset;
mac80211_hwsim_rx(data2, &rx_status, nskb);
}
spin_unlock(&hwsim_radio_lock);
return ack;
}
static struct ieee80211_bss_conf *
mac80211_hwsim_select_tx_link(struct mac80211_hwsim_data *data,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_hdr *hdr,
struct ieee80211_link_sta **link_sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
int i;
if (!ieee80211_vif_is_mld(vif))
return &vif->bss_conf;
WARN_ON(is_multicast_ether_addr(hdr->addr1));
if (WARN_ON_ONCE(!sta || !sta->valid_links))
return &vif->bss_conf;
for (i = 0; i < ARRAY_SIZE(vif->link_conf); i++) {
struct ieee80211_bss_conf *bss_conf;
unsigned int link_id;
/* round-robin the available link IDs */
link_id = (sp->last_link + i + 1) % ARRAY_SIZE(vif->link_conf);
if (!(vif->active_links & BIT(link_id)))
continue;
if (!(sp->active_links_rx & BIT(link_id)))
continue;
*link_sta = rcu_dereference(sta->link[link_id]);
if (!*link_sta)
continue;
bss_conf = rcu_dereference(vif->link_conf[link_id]);
if (WARN_ON_ONCE(!bss_conf))
continue;
/* can happen while switching links */
if (!rcu_access_pointer(bss_conf->chanctx_conf))
continue;
sp->last_link = link_id;
return bss_conf;
}
return NULL;
}
static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_channel *channel;
bool ack;
enum nl80211_chan_width confbw = NL80211_CHAN_WIDTH_20_NOHT;
u32 _portid, i;
if (WARN_ON(skb->len < 10)) {
/* Should not happen; just a sanity check for addr1 use */
ieee80211_free_txskb(hw, skb);
return;
}
if (!data->use_chanctx) {
channel = data->channel;
confbw = data->bw;
} else if (txi->hw_queue == 4) {
channel = data->tmp_chan;
} else {
u8 link = u32_get_bits(IEEE80211_SKB_CB(skb)->control.flags,
IEEE80211_TX_CTRL_MLO_LINK);
struct ieee80211_vif *vif = txi->control.vif;
struct ieee80211_link_sta *link_sta = NULL;
struct ieee80211_sta *sta = control->sta;
struct ieee80211_bss_conf *bss_conf;
if (link != IEEE80211_LINK_UNSPECIFIED) {
bss_conf = rcu_dereference(txi->control.vif->link_conf[link]);
if (sta)
link_sta = rcu_dereference(sta->link[link]);
} else {
bss_conf = mac80211_hwsim_select_tx_link(data, vif, sta,
hdr, &link_sta);
}
if (unlikely(!bss_conf)) {
/* if it's an MLO STA, it might have deactivated all
* links temporarily - but we don't handle real PS in
* this code yet, so just drop the frame in that case
*/
WARN(link != IEEE80211_LINK_UNSPECIFIED || !sta || !sta->mlo,
"link:%d, sta:%pM, sta->mlo:%d\n",
link, sta ? sta->addr : NULL, sta ? sta->mlo : -1);
ieee80211_free_txskb(hw, skb);
return;
}
if (sta && sta->mlo) {
if (WARN_ON(!link_sta)) {
ieee80211_free_txskb(hw, skb);
return;
}
/* address translation to link addresses on TX */
ether_addr_copy(hdr->addr1, link_sta->addr);
ether_addr_copy(hdr->addr2, bss_conf->addr);
/* translate A3 only if it's the BSSID */
if (!ieee80211_has_tods(hdr->frame_control) &&
!ieee80211_has_fromds(hdr->frame_control)) {
if (ether_addr_equal(hdr->addr3, sta->addr))
ether_addr_copy(hdr->addr3, link_sta->addr);
else if (ether_addr_equal(hdr->addr3, vif->addr))
ether_addr_copy(hdr->addr3, bss_conf->addr);
}
/* no need to look at A4, if present it's SA */
}
chanctx_conf = rcu_dereference(bss_conf->chanctx_conf);
if (chanctx_conf) {
channel = chanctx_conf->def.chan;
confbw = chanctx_conf->def.width;
} else {
channel = NULL;
}
}
if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
ieee80211_free_txskb(hw, skb);
return;
}
if (data->idle && !data->tmp_chan) {
wiphy_dbg(hw->wiphy, "Trying to TX when idle - reject\n");
ieee80211_free_txskb(hw, skb);
return;
}
if (txi->control.vif)
hwsim_check_magic(txi->control.vif);
if (control->sta)
hwsim_check_sta_magic(control->sta);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE))
ieee80211_get_tx_rates(txi->control.vif, control->sta, skb,
txi->control.rates,
ARRAY_SIZE(txi->control.rates));
for (i = 0; i < ARRAY_SIZE(txi->control.rates); i++) {
u16 rflags = txi->control.rates[i].flags;
/* initialize to data->bw for 5/10 MHz handling */
enum nl80211_chan_width bw = data->bw;
if (txi->control.rates[i].idx == -1)
break;
if (rflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
bw = NL80211_CHAN_WIDTH_40;
else if (rflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
bw = NL80211_CHAN_WIDTH_80;
else if (rflags & IEEE80211_TX_RC_160_MHZ_WIDTH)
bw = NL80211_CHAN_WIDTH_160;
if (WARN_ON(hwsim_get_chanwidth(bw) > hwsim_get_chanwidth(confbw)))
return;
}
if (skb->len >= 24 + 8 &&
ieee80211_is_probe_resp(hdr->frame_control)) {
/* fake header transmission time */
struct ieee80211_mgmt *mgmt;
struct ieee80211_rate *txrate;
/* TODO: get MCS */
int bitrate = 100;
u64 ts;
mgmt = (struct ieee80211_mgmt *)skb->data;
txrate = ieee80211_get_tx_rate(hw, txi);
if (txrate)
bitrate = txrate->bitrate;
ts = mac80211_hwsim_get_tsf_raw();
mgmt->u.probe_resp.timestamp =
cpu_to_le64(ts + data->tsf_offset +
24 * 8 * 10 / bitrate);
}
mac80211_hwsim_monitor_rx(hw, skb, channel);
/* wmediumd mode check */
_portid = READ_ONCE(data->wmediumd);
if (_portid || hwsim_virtio_enabled)
return mac80211_hwsim_tx_frame_nl(hw, skb, _portid, channel);
/* NO wmediumd detected, perfect medium simulation */
data->tx_pkts++;
data->tx_bytes += skb->len;
ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
if (ack && skb->len >= 16)
mac80211_hwsim_monitor_ack(channel, hdr->addr2);
ieee80211_tx_info_clear_status(txi);
/* frame was transmitted at most favorable rate at first attempt */
txi->control.rates[0].count = 1;
txi->control.rates[1].idx = -1;
if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
txi->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
}
static int mac80211_hwsim_start(struct ieee80211_hw *hw)
{
struct mac80211_hwsim_data *data = hw->priv;
wiphy_dbg(hw->wiphy, "%s\n", __func__);
data->started = true;
return 0;
}
static void mac80211_hwsim_stop(struct ieee80211_hw *hw, bool suspend)
{
struct mac80211_hwsim_data *data = hw->priv;
int i;
data->started = false;
for (i = 0; i < ARRAY_SIZE(data->link_data); i++)
hrtimer_cancel(&data->link_data[i].beacon_timer);
while (!skb_queue_empty(&data->pending))
ieee80211_free_txskb(hw, skb_dequeue(&data->pending));
wiphy_dbg(hw->wiphy, "%s\n", __func__);
}
static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
wiphy_dbg(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
vif->addr);
hwsim_set_magic(vif);
if (vif->type != NL80211_IFTYPE_MONITOR)
mac80211_hwsim_config_mac_nl(hw, vif->addr, true);
vif->cab_queue = 0;
vif->hw_queue[IEEE80211_AC_VO] = 0;
vif->hw_queue[IEEE80211_AC_VI] = 1;
vif->hw_queue[IEEE80211_AC_BE] = 2;
vif->hw_queue[IEEE80211_AC_BK] = 3;
return 0;
}
#ifdef CONFIG_MAC80211_DEBUGFS
static void
mac80211_hwsim_link_add_debugfs(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *link_conf,
struct dentry *dir)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
debugfs_create_u32("skip_beacons", 0600, dir,
&vp->skip_beacons[link_conf->link_id]);
}
#endif
static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum nl80211_iftype newtype,
bool newp2p)
{
newtype = ieee80211_iftype_p2p(newtype, newp2p);
wiphy_dbg(hw->wiphy,
"%s (old type=%d, new type=%d, mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
newtype, vif->addr);
hwsim_check_magic(vif);
/*
* interface may change from non-AP to AP in
* which case this needs to be set up again
*/
vif->cab_queue = 0;
return 0;
}
static void mac80211_hwsim_remove_interface(
struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
wiphy_dbg(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
__func__, ieee80211_vif_type_p2p(vif),
vif->addr);
hwsim_check_magic(vif);
hwsim_clear_magic(vif);
if (vif->type != NL80211_IFTYPE_MONITOR)
mac80211_hwsim_config_mac_nl(hw, vif->addr, false);
}
static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_channel *chan)
{
struct mac80211_hwsim_data *data = hw->priv;
u32 _portid = READ_ONCE(data->wmediumd);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE)) {
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
ieee80211_get_tx_rates(txi->control.vif, NULL, skb,
txi->control.rates,
ARRAY_SIZE(txi->control.rates));
}
mac80211_hwsim_monitor_rx(hw, skb, chan);
if (_portid || hwsim_virtio_enabled)
return mac80211_hwsim_tx_frame_nl(hw, skb, _portid, chan);
data->tx_pkts++;
data->tx_bytes += skb->len;
mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
dev_kfree_skb(skb);
}
static void __mac80211_hwsim_beacon_tx(struct ieee80211_bss_conf *link_conf,
struct mac80211_hwsim_data *data,
struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct sk_buff *skb)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct ieee80211_tx_info *info;
struct ieee80211_rate *txrate;
struct ieee80211_mgmt *mgmt;
/* TODO: get MCS */
int bitrate = 100;
if (vp->skip_beacons[link_conf->link_id]) {
vp->skip_beacons[link_conf->link_id]--;
dev_kfree_skb(skb);
return;
}
info = IEEE80211_SKB_CB(skb);
if (ieee80211_hw_check(hw, SUPPORTS_RC_TABLE))
ieee80211_get_tx_rates(vif, NULL, skb,
info->control.rates,
ARRAY_SIZE(info->control.rates));
txrate = ieee80211_get_tx_rate(hw, info);
if (txrate)
bitrate = txrate->bitrate;
mgmt = (struct ieee80211_mgmt *) skb->data;
/* fake header transmission time */
data->abs_bcn_ts = mac80211_hwsim_get_tsf_raw();
if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
struct ieee80211_ext *ext = (void *) mgmt;
ext->u.s1g_beacon.timestamp = cpu_to_le32(data->abs_bcn_ts +
data->tsf_offset +
10 * 8 * 10 /
bitrate);
} else {
mgmt->u.beacon.timestamp = cpu_to_le64(data->abs_bcn_ts +
data->tsf_offset +
24 * 8 * 10 /
bitrate);
}
mac80211_hwsim_tx_frame(hw, skb,
rcu_dereference(link_conf->chanctx_conf)->def.chan);
}
static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_link_data *link_data = arg;
u32 link_id = link_data->link_id;
struct ieee80211_bss_conf *link_conf;
struct mac80211_hwsim_data *data =
container_of(link_data, struct mac80211_hwsim_data,
link_data[link_id]);
struct ieee80211_hw *hw = data->hw;
struct sk_buff *skb;
hwsim_check_magic(vif);
link_conf = rcu_dereference(vif->link_conf[link_id]);
if (!link_conf)
return;
if (vif->type != NL80211_IFTYPE_AP &&
vif->type != NL80211_IFTYPE_MESH_POINT &&
vif->type != NL80211_IFTYPE_ADHOC &&
vif->type != NL80211_IFTYPE_OCB)
return;
if (vif->mbssid_tx_vif && vif->mbssid_tx_vif != vif)
return;
if (vif->bss_conf.ema_ap) {
struct ieee80211_ema_beacons *ema;
u8 i = 0;
ema = ieee80211_beacon_get_template_ema_list(hw, vif, link_id);
if (!ema || !ema->cnt)
return;
for (i = 0; i < ema->cnt; i++) {
__mac80211_hwsim_beacon_tx(link_conf, data, hw, vif,
ema->bcn[i].skb);
ema->bcn[i].skb = NULL; /* Already freed */
}
ieee80211_beacon_free_ema_list(ema);
} else {
skb = ieee80211_beacon_get(hw, vif, link_id);
if (!skb)
return;
__mac80211_hwsim_beacon_tx(link_conf, data, hw, vif, skb);
}
while ((skb = ieee80211_get_buffered_bc(hw, vif)) != NULL) {
mac80211_hwsim_tx_frame(hw, skb,
rcu_dereference(link_conf->chanctx_conf)->def.chan);
}
if (link_conf->csa_active && ieee80211_beacon_cntdwn_is_complete(vif, link_id))
ieee80211_csa_finish(vif, link_id);
if (link_conf->color_change_active &&
ieee80211_beacon_cntdwn_is_complete(vif, link_id))
ieee80211_color_change_finish(vif, link_id);
}
static enum hrtimer_restart
mac80211_hwsim_beacon(struct hrtimer *timer)
{
struct mac80211_hwsim_link_data *link_data =
container_of(timer, struct mac80211_hwsim_link_data, beacon_timer);
struct mac80211_hwsim_data *data =
container_of(link_data, struct mac80211_hwsim_data,
link_data[link_data->link_id]);
struct ieee80211_hw *hw = data->hw;
u64 bcn_int = link_data->beacon_int;
if (!data->started)
return HRTIMER_NORESTART;
ieee80211_iterate_active_interfaces_atomic(
hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_beacon_tx, link_data);
/* beacon at new TBTT + beacon interval */
if (data->bcn_delta) {
bcn_int -= data->bcn_delta;
data->bcn_delta = 0;
}
hrtimer_forward_now(&link_data->beacon_timer,
ns_to_ktime(bcn_int * NSEC_PER_USEC));
return HRTIMER_RESTART;
}
static const char * const hwsim_chanwidths[] = {
[NL80211_CHAN_WIDTH_5] = "ht5",
[NL80211_CHAN_WIDTH_10] = "ht10",
[NL80211_CHAN_WIDTH_20_NOHT] = "noht",
[NL80211_CHAN_WIDTH_20] = "ht20",
[NL80211_CHAN_WIDTH_40] = "ht40",
[NL80211_CHAN_WIDTH_80] = "vht80",
[NL80211_CHAN_WIDTH_80P80] = "vht80p80",
[NL80211_CHAN_WIDTH_160] = "vht160",
[NL80211_CHAN_WIDTH_1] = "1MHz",
[NL80211_CHAN_WIDTH_2] = "2MHz",
[NL80211_CHAN_WIDTH_4] = "4MHz",
[NL80211_CHAN_WIDTH_8] = "8MHz",
[NL80211_CHAN_WIDTH_16] = "16MHz",
[NL80211_CHAN_WIDTH_320] = "eht320",
};
static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
{
struct mac80211_hwsim_data *data = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
[IEEE80211_SMPS_AUTOMATIC] = "auto",
[IEEE80211_SMPS_OFF] = "off",
[IEEE80211_SMPS_STATIC] = "static",
[IEEE80211_SMPS_DYNAMIC] = "dynamic",
};
int idx;
if (conf->chandef.chan)
wiphy_dbg(hw->wiphy,
"%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n",
__func__,
conf->chandef.chan->center_freq,
conf->chandef.center_freq1,
conf->chandef.center_freq2,
hwsim_chanwidths[conf->chandef.width],
!!(conf->flags & IEEE80211_CONF_IDLE),
!!(conf->flags & IEEE80211_CONF_PS),
smps_modes[conf->smps_mode]);
else
wiphy_dbg(hw->wiphy,
"%s (freq=0 idle=%d ps=%d smps=%s)\n",
__func__,
!!(conf->flags & IEEE80211_CONF_IDLE),
!!(conf->flags & IEEE80211_CONF_PS),
smps_modes[conf->smps_mode]);
data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
WARN_ON(conf->chandef.chan && data->use_chanctx);
mutex_lock(&data->mutex);
if (data->scanning && conf->chandef.chan) {
for (idx = 0; idx < ARRAY_SIZE(data->survey_data); idx++) {
if (data->survey_data[idx].channel == data->channel) {
data->survey_data[idx].start =
data->survey_data[idx].next_start;
data->survey_data[idx].end = jiffies;
break;
}
}
data->channel = conf->chandef.chan;
data->bw = conf->chandef.width;
for (idx = 0; idx < ARRAY_SIZE(data->survey_data); idx++) {
if (data->survey_data[idx].channel &&
data->survey_data[idx].channel != data->channel)
continue;
data->survey_data[idx].channel = data->channel;
data->survey_data[idx].next_start = jiffies;
break;
}
} else {
data->channel = conf->chandef.chan;
data->bw = conf->chandef.width;
}
mutex_unlock(&data->mutex);
for (idx = 0; idx < ARRAY_SIZE(data->link_data); idx++) {
struct mac80211_hwsim_link_data *link_data =
&data->link_data[idx];
if (!data->started || !link_data->beacon_int) {
hrtimer_cancel(&link_data->beacon_timer);
} else if (!hrtimer_is_queued(&link_data->beacon_timer)) {
u64 tsf = mac80211_hwsim_get_tsf(hw, NULL);
u32 bcn_int = link_data->beacon_int;
u64 until_tbtt = bcn_int - do_div(tsf, bcn_int);
hrtimer_start(&link_data->beacon_timer,
ns_to_ktime(until_tbtt * NSEC_PER_USEC),
HRTIMER_MODE_REL_SOFT);
}
}
return 0;
}
static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,u64 multicast)
{
struct mac80211_hwsim_data *data = hw->priv;
wiphy_dbg(hw->wiphy, "%s\n", __func__);
data->rx_filter = 0;
if (*total_flags & FIF_ALLMULTI)
data->rx_filter |= FIF_ALLMULTI;
if (*total_flags & FIF_MCAST_ACTION)
data->rx_filter |= FIF_MCAST_ACTION;
*total_flags = data->rx_filter;
}
static void mac80211_hwsim_bcn_en_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
unsigned int *count = data;
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
if (vp->bcn_en)
(*count)++;
}
static void mac80211_hwsim_vif_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u64 changed)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
hwsim_check_magic(vif);
wiphy_dbg(hw->wiphy, "%s(changed=0x%llx vif->addr=%pM)\n",
__func__, changed, vif->addr);
if (changed & BSS_CHANGED_ASSOC) {
wiphy_dbg(hw->wiphy, " ASSOC: assoc=%d aid=%d\n",
vif->cfg.assoc, vif->cfg.aid);
vp->assoc = vif->cfg.assoc;
vp->aid = vif->cfg.aid;
}
if (vif->type == NL80211_IFTYPE_STATION &&
changed & (BSS_CHANGED_MLD_VALID_LINKS | BSS_CHANGED_MLD_TTLM)) {
u16 usable_links = ieee80211_vif_usable_links(vif);
if (vif->active_links != usable_links)
ieee80211_set_active_links_async(vif, usable_links);
}
}
static void mac80211_hwsim_link_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u64 changed)
{
struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
struct mac80211_hwsim_data *data = hw->priv;
unsigned int link_id = info->link_id;
struct mac80211_hwsim_link_data *link_data = &data->link_data[link_id];
hwsim_check_magic(vif);
wiphy_dbg(hw->wiphy, "%s(changed=0x%llx vif->addr=%pM, link id %u)\n",
__func__, (unsigned long long)changed, vif->addr, link_id);
if (changed & BSS_CHANGED_BSSID) {
wiphy_dbg(hw->wiphy, "%s: BSSID changed: %pM\n",
__func__, info->bssid);
memcpy(vp->bssid, info->bssid, ETH_ALEN);
}
if (changed & BSS_CHANGED_BEACON_ENABLED) {
wiphy_dbg(hw->wiphy, " BCN EN: %d (BI=%u)\n",
info->enable_beacon, info->beacon_int);
vp->bcn_en = info->enable_beacon;
if (data->started &&
!hrtimer_is_queued(&link_data->beacon_timer) &&
info->enable_beacon) {
u64 tsf, until_tbtt;
u32 bcn_int;
link_data->beacon_int = info->beacon_int * 1024;
tsf = mac80211_hwsim_get_tsf(hw, vif);
bcn_int = link_data->beacon_int;
until_tbtt = bcn_int - do_div(tsf, bcn_int);
hrtimer_start(&link_data->beacon_timer,
ns_to_ktime(until_tbtt * NSEC_PER_USEC),
HRTIMER_MODE_REL_SOFT);
} else if (!info->enable_beacon) {
unsigned int count = 0;
ieee80211_iterate_active_interfaces_atomic(
data->hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_bcn_en_iter, &count);
wiphy_dbg(hw->wiphy, " beaconing vifs remaining: %u",
count);
if (count == 0) {
hrtimer_cancel(&link_data->beacon_timer);
link_data->beacon_int = 0;
}
}
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
wiphy_dbg(hw->wiphy, " ERP_CTS_PROT: %d\n",
info->use_cts_prot);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
wiphy_dbg(hw->wiphy, " ERP_PREAMBLE: %d\n",
info->use_short_preamble);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
wiphy_dbg(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot);
}
if (changed & BSS_CHANGED_HT) {
wiphy_dbg(hw->wiphy, " HT: op_mode=0x%x\n",
info->ht_operation_mode);
}
if (changed & BSS_CHANGED_BASIC_RATES) {
wiphy_dbg(hw->wiphy, " BASIC_RATES: 0x%llx\n",
(unsigned long long) info->basic_rates);
}
if (changed & BSS_CHANGED_TXPOWER)
wiphy_dbg(hw->wiphy, " TX Power: %d dBm\n", info->txpower);
}
static void
mac80211_hwsim_sta_rc_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u32 changed)
{
struct mac80211_hwsim_data *data = hw->priv;
u32 bw = U32_MAX;
int link_id;
rcu_read_lock();
for (link_id = 0;
link_id < ARRAY_SIZE(vif->link_conf);
link_id++) {
enum nl80211_chan_width confbw = NL80211_CHAN_WIDTH_20_NOHT;
struct ieee80211_bss_conf *vif_conf;
struct ieee80211_link_sta *link_sta;
link_sta = rcu_dereference(sta->link[link_id]);
if (!link_sta)
continue;
switch (link_sta->bandwidth) {
#define C(_bw) case IEEE80211_STA_RX_BW_##_bw: bw = _bw; break
C(20);
C(40);
C(80);
C(160);
C(320);
#undef C
}
if (!data->use_chanctx) {
confbw = data->bw;
} else {
struct ieee80211_chanctx_conf *chanctx_conf;
vif_conf = rcu_dereference(vif->link_conf[link_id]);
if (WARN_ON(!vif_conf))
continue;
chanctx_conf = rcu_dereference(vif_conf->chanctx_conf);
if (!WARN_ON(!chanctx_conf))
confbw = chanctx_conf->def.width;
}
WARN(bw > hwsim_get_chanwidth(confbw),
"intf %pM [link=%d]: bad STA %pM bandwidth %d MHz (%d) > channel config %d MHz (%d)\n",
vif->addr, link_id, sta->addr, bw, sta->deflink.bandwidth,
hwsim_get_chanwidth(data->bw), data->bw);
}
rcu_read_unlock();
}
static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
hwsim_check_magic(vif);
hwsim_set_sta_magic(sta);
mac80211_hwsim_sta_rc_update(hw, vif, sta, 0);
if (sta->valid_links) {
WARN(hweight16(sta->valid_links) > 1,
"expect to add STA with single link, have 0x%x\n",
sta->valid_links);
sp->active_links_rx = sta->valid_links;
}
return 0;
}
static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
hwsim_clear_sta_magic(sta);
return 0;
}
static int mac80211_hwsim_sta_state(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state)
{
if (new_state == IEEE80211_STA_NOTEXIST)
return mac80211_hwsim_sta_remove(hw, vif, sta);
if (old_state == IEEE80211_STA_NOTEXIST)
return mac80211_hwsim_sta_add(hw, vif, sta);
/*
* in an MLO connection, when client is authorized
* (AP station marked as such), enable all links
*/
if (ieee80211_vif_is_mld(vif) &&
vif->type == NL80211_IFTYPE_STATION &&
new_state == IEEE80211_STA_AUTHORIZED && !sta->tdls)
ieee80211_set_active_links_async(vif,
ieee80211_vif_usable_links(vif));
return 0;
}
static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
hwsim_check_magic(vif);
switch (cmd) {
case STA_NOTIFY_SLEEP:
case STA_NOTIFY_AWAKE:
/* TODO: make good use of these flags */
break;
default:
WARN(1, "Invalid sta notify: %d\n", cmd);
break;
}
}
static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
bool set)
{
hwsim_check_sta_magic(sta);
return 0;
}
static int mac80211_hwsim_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
unsigned int link_id, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
wiphy_dbg(hw->wiphy,
"%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
__func__, queue,
params->txop, params->cw_min,
params->cw_max, params->aifs);
return 0;
}
static int mac80211_hwsim_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
if (idx < 0 || idx >= ARRAY_SIZE(hwsim->survey_data))
return -ENOENT;
mutex_lock(&hwsim->mutex);
survey->channel = hwsim->survey_data[idx].channel;
if (!survey->channel) {
mutex_unlock(&hwsim->mutex);
return -ENOENT;
}
/*
* Magically conjured dummy values --- this is only ok for simulated hardware.
*
* A real driver which cannot determine real values noise MUST NOT
* report any, especially not a magically conjured ones :-)
*/
survey->filled = SURVEY_INFO_NOISE_DBM |
SURVEY_INFO_TIME |
SURVEY_INFO_TIME_BUSY;
survey->noise = -92;
survey->time =
jiffies_to_msecs(hwsim->survey_data[idx].end -
hwsim->survey_data[idx].start);
/* report 12.5% of channel time is used */
survey->time_busy = survey->time/8;
mutex_unlock(&hwsim->mutex);
return 0;
}
static enum ieee80211_neg_ttlm_res
mac80211_hwsim_can_neg_ttlm(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_neg_ttlm *neg_ttlm)
{
u32 i;
/* For testing purposes, accept if all TIDs are mapped to the same links
* set, otherwise reject.
*/
for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) {
if (neg_ttlm->downlink[i] != neg_ttlm->uplink[i] ||
neg_ttlm->downlink[i] != neg_ttlm->downlink[0])
return NEG_TTLM_RES_REJECT;
}
return NEG_TTLM_RES_ACCEPT;
}
#ifdef CONFIG_NL80211_TESTMODE
/*
* This section contains example code for using netlink
* attributes with the testmode command in nl80211.
*/
/* These enums need to be kept in sync with userspace */
enum hwsim_testmode_attr {
__HWSIM_TM_ATTR_INVALID = 0,
HWSIM_TM_ATTR_CMD = 1,
HWSIM_TM_ATTR_PS = 2,
/* keep last */
__HWSIM_TM_ATTR_AFTER_LAST,
HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1
};
enum hwsim_testmode_cmd {
HWSIM_TM_CMD_SET_PS = 0,
HWSIM_TM_CMD_GET_PS = 1,
HWSIM_TM_CMD_STOP_QUEUES = 2,
HWSIM_TM_CMD_WAKE_QUEUES = 3,
};
static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
[HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
[HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
};
static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
void *data, int len)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
struct sk_buff *skb;
int err, ps;
err = nla_parse_deprecated(tb, HWSIM_TM_ATTR_MAX, data, len,
hwsim_testmode_policy, NULL);
if (err)
return err;
if (!tb[HWSIM_TM_ATTR_CMD])
return -EINVAL;
switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
case HWSIM_TM_CMD_SET_PS:
if (!tb[HWSIM_TM_ATTR_PS])
return -EINVAL;
ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
return hwsim_fops_ps_write(hwsim, ps);
case HWSIM_TM_CMD_GET_PS:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case HWSIM_TM_CMD_STOP_QUEUES:
ieee80211_stop_queues(hw);
return 0;
case HWSIM_TM_CMD_WAKE_QUEUES:
ieee80211_wake_queues(hw);
return 0;
default:
return -EOPNOTSUPP;
}
nla_put_failure:
kfree_skb(skb);
return -ENOBUFS;
}
#endif
static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
struct ieee80211_sta *sta = params->sta;
enum ieee80211_ampdu_mlme_action action = params->action;
u16 tid = params->tid;
switch (action) {
case IEEE80211_AMPDU_TX_START:
return IEEE80211_AMPDU_TX_START_IMMEDIATE;
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
break;
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static void mac80211_hwsim_flush(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 queues, bool drop)
{
/* Not implemented, queues only on kernel side */
}
static void hw_scan_work(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, hw_scan.work);
struct cfg80211_scan_request *req = hwsim->hw_scan_request;
int dwell, i;
mutex_lock(&hwsim->mutex);
if (hwsim->scan_chan_idx >= req->n_channels) {
struct cfg80211_scan_info info = {
.aborted = false,
};
wiphy_dbg(hwsim->hw->wiphy, "hw scan complete\n");
ieee80211_scan_completed(hwsim->hw, &info);
hwsim->hw_scan_request = NULL;
hwsim->hw_scan_vif = NULL;
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
mac80211_hwsim_config_mac_nl(hwsim->hw, hwsim->scan_addr,
false);
return;
}
wiphy_dbg(hwsim->hw->wiphy, "hw scan %d MHz\n",
req->channels[hwsim->scan_chan_idx]->center_freq);
hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
if (hwsim->tmp_chan->flags & (IEEE80211_CHAN_NO_IR |
IEEE80211_CHAN_RADAR) ||
!req->n_ssids) {
dwell = 120;
} else {
dwell = 30;
/* send probes */
for (i = 0; i < req->n_ssids; i++) {
struct sk_buff *probe;
struct ieee80211_mgmt *mgmt;
probe = ieee80211_probereq_get(hwsim->hw,
hwsim->scan_addr,
req->ssids[i].ssid,
req->ssids[i].ssid_len,
req->ie_len);
if (!probe)
continue;
mgmt = (struct ieee80211_mgmt *) probe->data;
memcpy(mgmt->da, req->bssid, ETH_ALEN);
memcpy(mgmt->bssid, req->bssid, ETH_ALEN);
if (req->ie_len)
skb_put_data(probe, req->ie, req->ie_len);
rcu_read_lock();
if (!ieee80211_tx_prepare_skb(hwsim->hw,
hwsim->hw_scan_vif,
probe,
hwsim->tmp_chan->band,
NULL)) {
rcu_read_unlock();
kfree_skb(probe);
continue;
}
local_bh_disable();
mac80211_hwsim_tx_frame(hwsim->hw, probe,
hwsim->tmp_chan);
rcu_read_unlock();
local_bh_enable();
}
}
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
msecs_to_jiffies(dwell));
hwsim->survey_data[hwsim->scan_chan_idx].channel = hwsim->tmp_chan;
hwsim->survey_data[hwsim->scan_chan_idx].start = jiffies;
hwsim->survey_data[hwsim->scan_chan_idx].end =
jiffies + msecs_to_jiffies(dwell);
hwsim->scan_chan_idx++;
mutex_unlock(&hwsim->mutex);
}
static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_scan_request *hw_req)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct cfg80211_scan_request *req = &hw_req->req;
mutex_lock(&hwsim->mutex);
if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
mutex_unlock(&hwsim->mutex);
return -EBUSY;
}
hwsim->hw_scan_request = req;
hwsim->hw_scan_vif = vif;
hwsim->scan_chan_idx = 0;
if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR)
get_random_mask_addr(hwsim->scan_addr,
hw_req->req.mac_addr,
hw_req->req.mac_addr_mask);
else
memcpy(hwsim->scan_addr, vif->addr, ETH_ALEN);
memset(hwsim->survey_data, 0, sizeof(hwsim->survey_data));
mutex_unlock(&hwsim->mutex);
mac80211_hwsim_config_mac_nl(hw, hwsim->scan_addr, true);
wiphy_dbg(hw->wiphy, "hwsim hw_scan request\n");
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
return 0;
}
static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
struct cfg80211_scan_info info = {
.aborted = true,
};
wiphy_dbg(hw->wiphy, "hwsim cancel_hw_scan\n");
cancel_delayed_work_sync(&hwsim->hw_scan);
mutex_lock(&hwsim->mutex);
ieee80211_scan_completed(hwsim->hw, &info);
hwsim->tmp_chan = NULL;
hwsim->hw_scan_request = NULL;
hwsim->hw_scan_vif = NULL;
mutex_unlock(&hwsim->mutex);
}
static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const u8 *mac_addr)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (hwsim->scanning) {
pr_debug("two hwsim sw_scans detected!\n");
goto out;
}
pr_debug("hwsim sw_scan request, prepping stuff\n");
memcpy(hwsim->scan_addr, mac_addr, ETH_ALEN);
mac80211_hwsim_config_mac_nl(hw, hwsim->scan_addr, true);
hwsim->scanning = true;
memset(hwsim->survey_data, 0, sizeof(hwsim->survey_data));
out:
mutex_unlock(&hwsim->mutex);
}
static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
pr_debug("hwsim sw_scan_complete\n");
hwsim->scanning = false;
mac80211_hwsim_config_mac_nl(hw, hwsim->scan_addr, false);
eth_zero_addr(hwsim->scan_addr);
mutex_unlock(&hwsim->mutex);
}
static void hw_roc_start(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, roc_start.work);
mutex_lock(&hwsim->mutex);
wiphy_dbg(hwsim->hw->wiphy, "hwsim ROC begins\n");
hwsim->tmp_chan = hwsim->roc_chan;
ieee80211_ready_on_channel(hwsim->hw);
ieee80211_queue_delayed_work(hwsim->hw, &hwsim->roc_done,
msecs_to_jiffies(hwsim->roc_duration));
mutex_unlock(&hwsim->mutex);
}
static void hw_roc_done(struct work_struct *work)
{
struct mac80211_hwsim_data *hwsim =
container_of(work, struct mac80211_hwsim_data, roc_done.work);
mutex_lock(&hwsim->mutex);
ieee80211_remain_on_channel_expired(hwsim->hw);
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hwsim->hw->wiphy, "hwsim ROC expired\n");
}
static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
mutex_lock(&hwsim->mutex);
if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
mutex_unlock(&hwsim->mutex);
return -EBUSY;
}
hwsim->roc_chan = chan;
hwsim->roc_duration = duration;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
chan->center_freq, duration);
ieee80211_queue_delayed_work(hw, &hwsim->roc_start, HZ/50);
return 0;
}
static int mac80211_hwsim_croc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mac80211_hwsim_data *hwsim = hw->priv;
cancel_delayed_work_sync(&hwsim->roc_start);
cancel_delayed_work_sync(&hwsim->roc_done);
mutex_lock(&hwsim->mutex);
hwsim->tmp_chan = NULL;
mutex_unlock(&hwsim->mutex);
wiphy_dbg(hw->wiphy, "hwsim ROC canceled\n");
return 0;
}
static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_set_chanctx_magic(ctx);
wiphy_dbg(hw->wiphy,
"add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
return 0;
}
static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
wiphy_dbg(hw->wiphy,
"remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
hwsim_check_chanctx_magic(ctx);
hwsim_clear_chanctx_magic(ctx);
}
static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx,
u32 changed)
{
hwsim_check_chanctx_magic(ctx);
wiphy_dbg(hw->wiphy,
"change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
ctx->def.chan->center_freq, ctx->def.width,
ctx->def.center_freq1, ctx->def.center_freq2);
}
static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *link_conf,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_check_magic(vif);
hwsim_check_chanctx_magic(ctx);
/* if we activate a link while already associated wake it up */
if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc) {
struct sk_buff *skb;
skb = ieee80211_nullfunc_get(hw, vif, link_conf->link_id, true);
if (skb) {
local_bh_disable();
mac80211_hwsim_tx_frame(hw, skb, ctx->def.chan);
local_bh_enable();
}
}
return 0;
}
static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *link_conf,
struct ieee80211_chanctx_conf *ctx)
{
hwsim_check_magic(vif);
hwsim_check_chanctx_magic(ctx);
/* if we deactivate a link while associated suspend it first */
if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc) {
struct sk_buff *skb;
skb = ieee80211_nullfunc_get(hw, vif, link_conf->link_id, true);
if (skb) {
struct ieee80211_hdr *hdr = (void *)skb->data;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
local_bh_disable();
mac80211_hwsim_tx_frame(hw, skb, ctx->def.chan);
local_bh_enable();
}
}
}
static int mac80211_hwsim_switch_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif_chanctx_switch *vifs,
int n_vifs,
enum ieee80211_chanctx_switch_mode mode)
{
int i;
if (n_vifs <= 0)
return -EINVAL;
wiphy_dbg(hw->wiphy,
"switch vif channel context mode: %u\n", mode);
for (i = 0; i < n_vifs; i++) {
hwsim_check_chanctx_magic(vifs[i].old_ctx);
wiphy_dbg(hw->wiphy,
"switch vif channel context: %d MHz/width: %d/cfreqs:%d/%d MHz -> %d MHz/width: %d/cfreqs:%d/%d MHz\n",
vifs[i].old_ctx->def.chan->center_freq,
vifs[i].old_ctx->def.width,
vifs[i].old_ctx->def.center_freq1,
vifs[i].old_ctx->def.center_freq2,
vifs[i].new_ctx->def.chan->center_freq,
vifs[i].new_ctx->def.width,
vifs[i].new_ctx->def.center_freq1,
vifs[i].new_ctx->def.center_freq2);
switch (mode) {
case CHANCTX_SWMODE_REASSIGN_VIF:
hwsim_check_chanctx_magic(vifs[i].new_ctx);
break;
case CHANCTX_SWMODE_SWAP_CONTEXTS:
hwsim_set_chanctx_magic(vifs[i].new_ctx);
hwsim_clear_chanctx_magic(vifs[i].old_ctx);
break;
default:
WARN(1, "Invalid mode %d\n", mode);
}
}
return 0;
}
static const char mac80211_hwsim_gstrings_stats[][ETH_GSTRING_LEN] = {
"tx_pkts_nic",
"tx_bytes_nic",
"rx_pkts_nic",
"rx_bytes_nic",
"d_tx_dropped",
"d_tx_failed",
"d_ps_mode",
"d_group",
};
#define MAC80211_HWSIM_SSTATS_LEN ARRAY_SIZE(mac80211_hwsim_gstrings_stats)
static void mac80211_hwsim_get_et_strings(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 sset, u8 *data)
{
if (sset == ETH_SS_STATS)
memcpy(data, mac80211_hwsim_gstrings_stats,
sizeof(mac80211_hwsim_gstrings_stats));
}
static int mac80211_hwsim_get_et_sset_count(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, int sset)
{
if (sset == ETH_SS_STATS)
return MAC80211_HWSIM_SSTATS_LEN;
return 0;
}
static void mac80211_hwsim_get_et_stats(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ethtool_stats *stats, u64 *data)
{
struct mac80211_hwsim_data *ar = hw->priv;
int i = 0;
data[i++] = ar->tx_pkts;
data[i++] = ar->tx_bytes;
data[i++] = ar->rx_pkts;
data[i++] = ar->rx_bytes;
data[i++] = ar->tx_dropped;
data[i++] = ar->tx_failed;
data[i++] = ar->ps;
data[i++] = ar->group;
WARN_ON(i != MAC80211_HWSIM_SSTATS_LEN);
}
static int mac80211_hwsim_tx_last_beacon(struct ieee80211_hw *hw)
{
return 1;
}
static int mac80211_hwsim_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
return -EOPNOTSUPP;
}
static int mac80211_hwsim_change_vif_links(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u16 old_links, u16 new_links,
struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS])
{
unsigned long rem = old_links & ~new_links;
unsigned long add = new_links & ~old_links;
int i;
if (!old_links)
rem |= BIT(0);
if (!new_links)
add |= BIT(0);
for_each_set_bit(i, &rem, IEEE80211_MLD_MAX_NUM_LINKS)
mac80211_hwsim_config_mac_nl(hw, old[i]->addr, false);
for_each_set_bit(i, &add, IEEE80211_MLD_MAX_NUM_LINKS) {
struct ieee80211_bss_conf *link_conf;
link_conf = link_conf_dereference_protected(vif, i);
if (WARN_ON(!link_conf))
continue;
mac80211_hwsim_config_mac_nl(hw, link_conf->addr, true);
}
return 0;
}
static int mac80211_hwsim_change_sta_links(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u16 old_links, u16 new_links)
{
struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
hwsim_check_sta_magic(sta);
if (vif->type == NL80211_IFTYPE_STATION)
sp->active_links_rx = new_links;
return 0;
}
static int mac80211_hwsim_send_pmsr_ftm_request_peer(struct sk_buff *msg,
struct cfg80211_pmsr_ftm_request_peer *request)
{
struct nlattr *ftm;
if (!request->requested)
return -EINVAL;
ftm = nla_nest_start(msg, NL80211_PMSR_TYPE_FTM);
if (!ftm)
return -ENOBUFS;
if (nla_put_u32(msg, NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE, request->preamble))
return -ENOBUFS;
if (nla_put_u16(msg, NL80211_PMSR_FTM_REQ_ATTR_BURST_PERIOD, request->burst_period))
return -ENOBUFS;
if (request->asap && nla_put_flag(msg, NL80211_PMSR_FTM_REQ_ATTR_ASAP))
return -ENOBUFS;
if (request->request_lci && nla_put_flag(msg, NL80211_PMSR_FTM_REQ_ATTR_REQUEST_LCI))
return -ENOBUFS;
if (request->request_civicloc &&
nla_put_flag(msg, NL80211_PMSR_FTM_REQ_ATTR_REQUEST_CIVICLOC))
return -ENOBUFS;
if (request->trigger_based && nla_put_flag(msg, NL80211_PMSR_FTM_REQ_ATTR_TRIGGER_BASED))
return -ENOBUFS;
if (request->non_trigger_based &&
nla_put_flag(msg, NL80211_PMSR_FTM_REQ_ATTR_NON_TRIGGER_BASED))
return -ENOBUFS;
if (request->lmr_feedback && nla_put_flag(msg, NL80211_PMSR_FTM_REQ_ATTR_LMR_FEEDBACK))
return -ENOBUFS;
if (nla_put_u8(msg, NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP, request->num_bursts_exp))
return -ENOBUFS;
if (nla_put_u8(msg, NL80211_PMSR_FTM_REQ_ATTR_BURST_DURATION, request->burst_duration))
return -ENOBUFS;
if (nla_put_u8(msg, NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST, request->ftms_per_burst))
return -ENOBUFS;
if (nla_put_u8(msg, NL80211_PMSR_FTM_REQ_ATTR_NUM_FTMR_RETRIES, request->ftmr_retries))
return -ENOBUFS;
if (nla_put_u8(msg, NL80211_PMSR_FTM_REQ_ATTR_BURST_DURATION, request->burst_duration))
return -ENOBUFS;
if (nla_put_u8(msg, NL80211_PMSR_FTM_REQ_ATTR_BSS_COLOR, request->bss_color))
return -ENOBUFS;
nla_nest_end(msg, ftm);
return 0;
}
static int mac80211_hwsim_send_pmsr_request_peer(struct sk_buff *msg,
struct cfg80211_pmsr_request_peer *request)
{
struct nlattr *peer, *chandef, *req, *data;
int err;
peer = nla_nest_start(msg, NL80211_PMSR_ATTR_PEERS);
if (!peer)
return -ENOBUFS;
if (nla_put(msg, NL80211_PMSR_PEER_ATTR_ADDR, ETH_ALEN,
request->addr))
return -ENOBUFS;
chandef = nla_nest_start(msg, NL80211_PMSR_PEER_ATTR_CHAN);
if (!chandef)
return -ENOBUFS;
err = nl80211_send_chandef(msg, &request->chandef);
if (err)
return err;
nla_nest_end(msg, chandef);
req = nla_nest_start(msg, NL80211_PMSR_PEER_ATTR_REQ);
if (!req)
return -ENOBUFS;
if (request->report_ap_tsf && nla_put_flag(msg, NL80211_PMSR_REQ_ATTR_GET_AP_TSF))
return -ENOBUFS;
data = nla_nest_start(msg, NL80211_PMSR_REQ_ATTR_DATA);
if (!data)
return -ENOBUFS;
err = mac80211_hwsim_send_pmsr_ftm_request_peer(msg, &request->ftm);
if (err)
return err;
nla_nest_end(msg, data);
nla_nest_end(msg, req);
nla_nest_end(msg, peer);
return 0;
}
static int mac80211_hwsim_send_pmsr_request(struct sk_buff *msg,
struct cfg80211_pmsr_request *request)
{
struct nlattr *pmsr;
int err;
pmsr = nla_nest_start(msg, NL80211_ATTR_PEER_MEASUREMENTS);
if (!pmsr)
return -ENOBUFS;
if (nla_put_u32(msg, NL80211_ATTR_TIMEOUT, request->timeout))
return -ENOBUFS;
if (!is_zero_ether_addr(request->mac_addr)) {
if (nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, request->mac_addr))
return -ENOBUFS;
if (nla_put(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN, request->mac_addr_mask))
return -ENOBUFS;
}
for (int i = 0; i < request->n_peers; i++) {
err = mac80211_hwsim_send_pmsr_request_peer(msg, &request->peers[i]);
if (err)
return err;
}
nla_nest_end(msg, pmsr);
return 0;
}
static int mac80211_hwsim_start_pmsr(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_pmsr_request *request)
{
struct mac80211_hwsim_data *data;
struct sk_buff *skb = NULL;
struct nlattr *pmsr;
void *msg_head;
u32 _portid;
int err = 0;
data = hw->priv;
_portid = READ_ONCE(data->wmediumd);
if (!_portid && !hwsim_virtio_enabled)
return -EOPNOTSUPP;
mutex_lock(&data->mutex);
if (data->pmsr_request) {
err = -EBUSY;
goto out_free;
}
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb) {
err = -ENOMEM;
goto out_free;
}
msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0, HWSIM_CMD_START_PMSR);
if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
ETH_ALEN, data->addresses[1].addr)) {
err = -ENOMEM;
goto out_free;
}
pmsr = nla_nest_start(skb, HWSIM_ATTR_PMSR_REQUEST);
if (!pmsr) {
err = -ENOMEM;
goto out_free;
}
err = mac80211_hwsim_send_pmsr_request(skb, request);
if (err)
goto out_free;
nla_nest_end(skb, pmsr);
genlmsg_end(skb, msg_head);
if (hwsim_virtio_enabled)
hwsim_tx_virtio(data, skb);
else
hwsim_unicast_netgroup(data, skb, _portid);
data->pmsr_request = request;
data->pmsr_request_wdev = ieee80211_vif_to_wdev(vif);
out_free:
if (err && skb)
nlmsg_free(skb);
mutex_unlock(&data->mutex);
return err;
}
static void mac80211_hwsim_abort_pmsr(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_pmsr_request *request)
{
struct mac80211_hwsim_data *data;
struct sk_buff *skb = NULL;
struct nlattr *pmsr;
void *msg_head;
u32 _portid;
int err = 0;
data = hw->priv;
_portid = READ_ONCE(data->wmediumd);
if (!_portid && !hwsim_virtio_enabled)
return;
mutex_lock(&data->mutex);
if (data->pmsr_request != request) {
err = -EINVAL;
goto out;
}
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb) {
err = -ENOMEM;
goto out;
}
msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0, HWSIM_CMD_ABORT_PMSR);
if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER, ETH_ALEN, data->addresses[1].addr))
goto out;
pmsr = nla_nest_start(skb, HWSIM_ATTR_PMSR_REQUEST);
if (!pmsr) {
err = -ENOMEM;
goto out;
}
err = mac80211_hwsim_send_pmsr_request(skb, request);
if (err)
goto out;
err = nla_nest_end(skb, pmsr);
if (err)
goto out;
genlmsg_end(skb, msg_head);
if (hwsim_virtio_enabled)
hwsim_tx_virtio(data, skb);
else
hwsim_unicast_netgroup(data, skb, _portid);
out:
if (err && skb)
nlmsg_free(skb);
mutex_unlock(&data->mutex);
}
static int mac80211_hwsim_parse_rate_info(struct nlattr *rateattr,
struct rate_info *rate_info,
struct genl_info *info)
{
struct nlattr *tb[HWSIM_RATE_INFO_ATTR_MAX + 1];
int ret;
ret = nla_parse_nested(tb, HWSIM_RATE_INFO_ATTR_MAX,
rateattr, hwsim_rate_info_policy, info->extack);
if (ret)
return ret;
if (tb[HWSIM_RATE_INFO_ATTR_FLAGS])
rate_info->flags = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_FLAGS]);
if (tb[HWSIM_RATE_INFO_ATTR_MCS])
rate_info->mcs = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_MCS]);
if (tb[HWSIM_RATE_INFO_ATTR_LEGACY])
rate_info->legacy = nla_get_u16(tb[HWSIM_RATE_INFO_ATTR_LEGACY]);
if (tb[HWSIM_RATE_INFO_ATTR_NSS])
rate_info->nss = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_NSS]);
if (tb[HWSIM_RATE_INFO_ATTR_BW])
rate_info->bw = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_BW]);
if (tb[HWSIM_RATE_INFO_ATTR_HE_GI])
rate_info->he_gi = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_HE_GI]);
if (tb[HWSIM_RATE_INFO_ATTR_HE_DCM])
rate_info->he_dcm = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_HE_DCM]);
if (tb[HWSIM_RATE_INFO_ATTR_HE_RU_ALLOC])
rate_info->he_ru_alloc =
nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_HE_RU_ALLOC]);
if (tb[HWSIM_RATE_INFO_ATTR_N_BOUNDED_CH])
rate_info->n_bonded_ch = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_N_BOUNDED_CH]);
if (tb[HWSIM_RATE_INFO_ATTR_EHT_GI])
rate_info->eht_gi = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_EHT_GI]);
if (tb[HWSIM_RATE_INFO_ATTR_EHT_RU_ALLOC])
rate_info->eht_ru_alloc = nla_get_u8(tb[HWSIM_RATE_INFO_ATTR_EHT_RU_ALLOC]);
return 0;
}
static int mac80211_hwsim_parse_ftm_result(struct nlattr *ftm,
struct cfg80211_pmsr_ftm_result *result,
struct genl_info *info)
{
struct nlattr *tb[NL80211_PMSR_FTM_RESP_ATTR_MAX + 1];
int ret;
ret = nla_parse_nested(tb, NL80211_PMSR_FTM_RESP_ATTR_MAX,
ftm, hwsim_ftm_result_policy, info->extack);
if (ret)
return ret;
if (tb[NL80211_PMSR_FTM_RESP_ATTR_FAIL_REASON])
result->failure_reason = nla_get_u32(tb[NL80211_PMSR_FTM_RESP_ATTR_FAIL_REASON]);
if (tb[NL80211_PMSR_FTM_RESP_ATTR_BURST_INDEX])
result->burst_index = nla_get_u16(tb[NL80211_PMSR_FTM_RESP_ATTR_BURST_INDEX]);
if (tb[NL80211_PMSR_FTM_RESP_ATTR_NUM_FTMR_ATTEMPTS]) {
result->num_ftmr_attempts_valid = 1;
result->num_ftmr_attempts =
nla_get_u32(tb[NL80211_PMSR_FTM_RESP_ATTR_NUM_FTMR_ATTEMPTS]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_NUM_FTMR_SUCCESSES]) {
result->num_ftmr_successes_valid = 1;
result->num_ftmr_successes =
nla_get_u32(tb[NL80211_PMSR_FTM_RESP_ATTR_NUM_FTMR_SUCCESSES]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_BUSY_RETRY_TIME])
result->busy_retry_time =
nla_get_u8(tb[NL80211_PMSR_FTM_RESP_ATTR_BUSY_RETRY_TIME]);
if (tb[NL80211_PMSR_FTM_RESP_ATTR_NUM_BURSTS_EXP])
result->num_bursts_exp = nla_get_u8(tb[NL80211_PMSR_FTM_RESP_ATTR_NUM_BURSTS_EXP]);
if (tb[NL80211_PMSR_FTM_RESP_ATTR_BURST_DURATION])
result->burst_duration = nla_get_u8(tb[NL80211_PMSR_FTM_RESP_ATTR_BURST_DURATION]);
if (tb[NL80211_PMSR_FTM_RESP_ATTR_FTMS_PER_BURST])
result->ftms_per_burst = nla_get_u8(tb[NL80211_PMSR_FTM_RESP_ATTR_FTMS_PER_BURST]);
if (tb[NL80211_PMSR_FTM_RESP_ATTR_RSSI_AVG]) {
result->rssi_avg_valid = 1;
result->rssi_avg = nla_get_s32(tb[NL80211_PMSR_FTM_RESP_ATTR_RSSI_AVG]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_RSSI_SPREAD]) {
result->rssi_spread_valid = 1;
result->rssi_spread =
nla_get_s32(tb[NL80211_PMSR_FTM_RESP_ATTR_RSSI_SPREAD]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_TX_RATE]) {
result->tx_rate_valid = 1;
ret = mac80211_hwsim_parse_rate_info(tb[NL80211_PMSR_FTM_RESP_ATTR_TX_RATE],
&result->tx_rate, info);
if (ret)
return ret;
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_RX_RATE]) {
result->rx_rate_valid = 1;
ret = mac80211_hwsim_parse_rate_info(tb[NL80211_PMSR_FTM_RESP_ATTR_RX_RATE],
&result->rx_rate, info);
if (ret)
return ret;
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_RTT_AVG]) {
result->rtt_avg_valid = 1;
result->rtt_avg =
nla_get_u64(tb[NL80211_PMSR_FTM_RESP_ATTR_RTT_AVG]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_RTT_VARIANCE]) {
result->rtt_variance_valid = 1;
result->rtt_variance =
nla_get_u64(tb[NL80211_PMSR_FTM_RESP_ATTR_RTT_VARIANCE]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_RTT_SPREAD]) {
result->rtt_spread_valid = 1;
result->rtt_spread =
nla_get_u64(tb[NL80211_PMSR_FTM_RESP_ATTR_RTT_SPREAD]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_DIST_AVG]) {
result->dist_avg_valid = 1;
result->dist_avg =
nla_get_u64(tb[NL80211_PMSR_FTM_RESP_ATTR_DIST_AVG]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_DIST_VARIANCE]) {
result->dist_variance_valid = 1;
result->dist_variance =
nla_get_u64(tb[NL80211_PMSR_FTM_RESP_ATTR_DIST_VARIANCE]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_DIST_SPREAD]) {
result->dist_spread_valid = 1;
result->dist_spread =
nla_get_u64(tb[NL80211_PMSR_FTM_RESP_ATTR_DIST_SPREAD]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_LCI]) {
result->lci = nla_data(tb[NL80211_PMSR_FTM_RESP_ATTR_LCI]);
result->lci_len = nla_len(tb[NL80211_PMSR_FTM_RESP_ATTR_LCI]);
}
if (tb[NL80211_PMSR_FTM_RESP_ATTR_CIVICLOC]) {
result->civicloc = nla_data(tb[NL80211_PMSR_FTM_RESP_ATTR_CIVICLOC]);
result->civicloc_len = nla_len(tb[NL80211_PMSR_FTM_RESP_ATTR_CIVICLOC]);
}
return 0;
}
static int mac80211_hwsim_parse_pmsr_resp(struct nlattr *resp,
struct cfg80211_pmsr_result *result,
struct genl_info *info)
{
struct nlattr *tb[NL80211_PMSR_RESP_ATTR_MAX + 1];
struct nlattr *pmsr;
int rem;
int ret;
ret = nla_parse_nested(tb, NL80211_PMSR_RESP_ATTR_MAX, resp, hwsim_pmsr_resp_policy,
info->extack);
if (ret)
return ret;
if (tb[NL80211_PMSR_RESP_ATTR_STATUS])
result->status = nla_get_u32(tb[NL80211_PMSR_RESP_ATTR_STATUS]);
if (tb[NL80211_PMSR_RESP_ATTR_HOST_TIME])
result->host_time = nla_get_u64(tb[NL80211_PMSR_RESP_ATTR_HOST_TIME]);
if (tb[NL80211_PMSR_RESP_ATTR_AP_TSF]) {
result->ap_tsf_valid = 1;
result->ap_tsf = nla_get_u64(tb[NL80211_PMSR_RESP_ATTR_AP_TSF]);
}
result->final = !!tb[NL80211_PMSR_RESP_ATTR_FINAL];
if (!tb[NL80211_PMSR_RESP_ATTR_DATA])
return 0;
nla_for_each_nested(pmsr, tb[NL80211_PMSR_RESP_ATTR_DATA], rem) {
switch (nla_type(pmsr)) {
case NL80211_PMSR_TYPE_FTM:
result->type = NL80211_PMSR_TYPE_FTM;
ret = mac80211_hwsim_parse_ftm_result(pmsr, &result->ftm, info);
if (ret)
return ret;
break;
default:
NL_SET_ERR_MSG_ATTR(info->extack, pmsr, "Unknown pmsr resp type");
return -EINVAL;
}
}
return 0;
}
static int mac80211_hwsim_parse_pmsr_result(struct nlattr *peer,
struct cfg80211_pmsr_result *result,
struct genl_info *info)
{
struct nlattr *tb[NL80211_PMSR_PEER_ATTR_MAX + 1];
int ret;
if (!peer)
return -EINVAL;
ret = nla_parse_nested(tb, NL80211_PMSR_PEER_ATTR_MAX, peer,
hwsim_pmsr_peer_result_policy, info->extack);
if (ret)
return ret;
if (tb[NL80211_PMSR_PEER_ATTR_ADDR])
memcpy(result->addr, nla_data(tb[NL80211_PMSR_PEER_ATTR_ADDR]),
ETH_ALEN);
if (tb[NL80211_PMSR_PEER_ATTR_RESP]) {
ret = mac80211_hwsim_parse_pmsr_resp(tb[NL80211_PMSR_PEER_ATTR_RESP], result, info);
if (ret)
return ret;
}
return 0;
};
static int hwsim_pmsr_report_nl(struct sk_buff *msg, struct genl_info *info)
{
struct mac80211_hwsim_data *data;
struct nlattr *peers, *peer;
struct nlattr *reqattr;
const u8 *src;
int err;
int rem;
if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER])
return -EINVAL;
src = nla_data(info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
data = get_hwsim_data_ref_from_addr(src);
if (!data)
return -EINVAL;
mutex_lock(&data->mutex);
if (!data->pmsr_request) {
err = -EINVAL;
goto out;
}
reqattr = info->attrs[HWSIM_ATTR_PMSR_RESULT];
if (!reqattr) {
err = -EINVAL;
goto out;
}
peers = nla_find_nested(reqattr, NL80211_PMSR_ATTR_PEERS);
if (!peers) {
err = -EINVAL;
goto out;
}
nla_for_each_nested(peer, peers, rem) {
struct cfg80211_pmsr_result result = {};
err = mac80211_hwsim_parse_pmsr_result(peer, &result, info);
if (err)
goto out;
cfg80211_pmsr_report(data->pmsr_request_wdev,
data->pmsr_request, &result, GFP_KERNEL);
}
cfg80211_pmsr_complete(data->pmsr_request_wdev, data->pmsr_request, GFP_KERNEL);
err = 0;
out:
data->pmsr_request = NULL;
data->pmsr_request_wdev = NULL;
mutex_unlock(&data->mutex);
return err;
}
#ifdef CONFIG_MAC80211_DEBUGFS
#define HWSIM_DEBUGFS_OPS \
.link_add_debugfs = mac80211_hwsim_link_add_debugfs,
#else
#define HWSIM_DEBUGFS_OPS
#endif
#define HWSIM_COMMON_OPS \
.tx = mac80211_hwsim_tx, \
.wake_tx_queue = ieee80211_handle_wake_tx_queue, \
.start = mac80211_hwsim_start, \
.stop = mac80211_hwsim_stop, \
.add_interface = mac80211_hwsim_add_interface, \
.change_interface = mac80211_hwsim_change_interface, \
.remove_interface = mac80211_hwsim_remove_interface, \
.config = mac80211_hwsim_config, \
.configure_filter = mac80211_hwsim_configure_filter, \
.vif_cfg_changed = mac80211_hwsim_vif_info_changed, \
.link_info_changed = mac80211_hwsim_link_info_changed, \
.tx_last_beacon = mac80211_hwsim_tx_last_beacon, \
.sta_notify = mac80211_hwsim_sta_notify, \
.sta_rc_update = mac80211_hwsim_sta_rc_update, \
.conf_tx = mac80211_hwsim_conf_tx, \
.get_survey = mac80211_hwsim_get_survey, \
CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd) \
.ampdu_action = mac80211_hwsim_ampdu_action, \
.flush = mac80211_hwsim_flush, \
.get_et_sset_count = mac80211_hwsim_get_et_sset_count, \
.get_et_stats = mac80211_hwsim_get_et_stats, \
.get_et_strings = mac80211_hwsim_get_et_strings, \
.start_pmsr = mac80211_hwsim_start_pmsr, \
.abort_pmsr = mac80211_hwsim_abort_pmsr, \
HWSIM_DEBUGFS_OPS
#define HWSIM_NON_MLO_OPS \
.sta_add = mac80211_hwsim_sta_add, \
.sta_remove = mac80211_hwsim_sta_remove, \
.set_tim = mac80211_hwsim_set_tim, \
.get_tsf = mac80211_hwsim_get_tsf, \
.set_tsf = mac80211_hwsim_set_tsf,
static const struct ieee80211_ops mac80211_hwsim_ops = {
HWSIM_COMMON_OPS
HWSIM_NON_MLO_OPS
.sw_scan_start = mac80211_hwsim_sw_scan,
.sw_scan_complete = mac80211_hwsim_sw_scan_complete,
.add_chanctx = ieee80211_emulate_add_chanctx,
.remove_chanctx = ieee80211_emulate_remove_chanctx,
.change_chanctx = ieee80211_emulate_change_chanctx,
.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
};
#define HWSIM_CHANCTX_OPS \
.hw_scan = mac80211_hwsim_hw_scan, \
.cancel_hw_scan = mac80211_hwsim_cancel_hw_scan, \
.remain_on_channel = mac80211_hwsim_roc, \
.cancel_remain_on_channel = mac80211_hwsim_croc, \
.add_chanctx = mac80211_hwsim_add_chanctx, \
.remove_chanctx = mac80211_hwsim_remove_chanctx, \
.change_chanctx = mac80211_hwsim_change_chanctx, \
.assign_vif_chanctx = mac80211_hwsim_assign_vif_chanctx,\
.unassign_vif_chanctx = mac80211_hwsim_unassign_vif_chanctx, \
.switch_vif_chanctx = mac80211_hwsim_switch_vif_chanctx,
static const struct ieee80211_ops mac80211_hwsim_mchan_ops = {
HWSIM_COMMON_OPS
HWSIM_NON_MLO_OPS
HWSIM_CHANCTX_OPS
};
static const struct ieee80211_ops mac80211_hwsim_mlo_ops = {
HWSIM_COMMON_OPS
HWSIM_CHANCTX_OPS
.set_rts_threshold = mac80211_hwsim_set_rts_threshold,
.change_vif_links = mac80211_hwsim_change_vif_links,
.change_sta_links = mac80211_hwsim_change_sta_links,
.sta_state = mac80211_hwsim_sta_state,
.can_neg_ttlm = mac80211_hwsim_can_neg_ttlm,
};
struct hwsim_new_radio_params {
unsigned int channels;
const char *reg_alpha2;
const struct ieee80211_regdomain *regd;
bool reg_strict;
bool p2p_device;
bool use_chanctx;
bool multi_radio;
bool destroy_on_close;
const char *hwname;
bool no_vif;
const u8 *perm_addr;
u32 iftypes;
u32 *ciphers;
u8 n_ciphers;
bool mlo;
const struct cfg80211_pmsr_capabilities *pmsr_capa;
};
static void hwsim_mcast_config_msg(struct sk_buff *mcast_skb,
struct genl_info *info)
{
if (info)
genl_notify(&hwsim_genl_family, mcast_skb, info,
HWSIM_MCGRP_CONFIG, GFP_KERNEL);
else
genlmsg_multicast(&hwsim_genl_family, mcast_skb, 0,
HWSIM_MCGRP_CONFIG, GFP_KERNEL);
}
static int append_radio_msg(struct sk_buff *skb, int id,
struct hwsim_new_radio_params *param)
{
int ret;
ret = nla_put_u32(skb, HWSIM_ATTR_RADIO_ID, id);
if (ret < 0)
return ret;
if (param->channels) {
ret = nla_put_u32(skb, HWSIM_ATTR_CHANNELS, param->channels);
if (ret < 0)
return ret;
}
if (param->reg_alpha2) {
ret = nla_put(skb, HWSIM_ATTR_REG_HINT_ALPHA2, 2,
param->reg_alpha2);
if (ret < 0)
return ret;
}
if (param->regd) {
int i;
for (i = 0; i < ARRAY_SIZE(hwsim_world_regdom_custom); i++) {
if (hwsim_world_regdom_custom[i] != param->regd)
continue;
ret = nla_put_u32(skb, HWSIM_ATTR_REG_CUSTOM_REG, i);
if (ret < 0)
return ret;
break;
}
}
if (param->reg_strict) {
ret = nla_put_flag(skb, HWSIM_ATTR_REG_STRICT_REG);
if (ret < 0)
return ret;
}
if (param->p2p_device) {
ret = nla_put_flag(skb, HWSIM_ATTR_SUPPORT_P2P_DEVICE);
if (ret < 0)
return ret;
}
if (param->use_chanctx) {
ret = nla_put_flag(skb, HWSIM_ATTR_USE_CHANCTX);
if (ret < 0)
return ret;
}
if (param->multi_radio) {
ret = nla_put_flag(skb, HWSIM_ATTR_MULTI_RADIO);
if (ret < 0)
return ret;
}
if (param->hwname) {
ret = nla_put(skb, HWSIM_ATTR_RADIO_NAME,
strlen(param->hwname), param->hwname);
if (ret < 0)
return ret;
}
return 0;
}
static void hwsim_mcast_new_radio(int id, struct genl_info *info,
struct hwsim_new_radio_params *param)
{
struct sk_buff *mcast_skb;
void *data;
mcast_skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!mcast_skb)
return;
data = genlmsg_put(mcast_skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_NEW_RADIO);
if (!data)
goto out_err;
if (append_radio_msg(mcast_skb, id, param) < 0)
goto out_err;
genlmsg_end(mcast_skb, data);
hwsim_mcast_config_msg(mcast_skb, info);
return;
out_err:
nlmsg_free(mcast_skb);
}
static const struct ieee80211_sband_iftype_data sband_capa_2ghz[] = {
{
.types_mask = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_P2P_CLIENT),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xffff),
.tx_mcs_160 = cpu_to_le16(0xffff),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
},
.eht_cap = {
.has_eht = true,
.eht_cap_elem = {
.mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1,
.phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE,
.phy_cap_info[3] =
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
.phy_cap_info[4] =
IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI |
IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK,
.phy_cap_info[5] =
IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT |
IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK |
IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK,
.phy_cap_info[6] =
IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK |
IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK,
.phy_cap_info[7] =
IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW,
},
/* For all MCS and bandwidth, set 8 NSS for both Tx and
* Rx
*/
.eht_mcs_nss_supp = {
/*
* Since B0, B1, B2 and B3 are not set in
* the supported channel width set field in the
* HE PHY capabilities information field the
* device is a 20MHz only device on 2.4GHz band.
*/
.only_20mhz = {
.rx_tx_mcs7_max_nss = 0x88,
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
},
/* PPE threshold information is not supported */
},
},
{
.types_mask = BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_P2P_GO),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xffff),
.tx_mcs_160 = cpu_to_le16(0xffff),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
},
.eht_cap = {
.has_eht = true,
.eht_cap_elem = {
.mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1,
.phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE,
.phy_cap_info[3] =
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
.phy_cap_info[4] =
IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI |
IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK,
.phy_cap_info[5] =
IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT |
IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK |
IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK,
.phy_cap_info[6] =
IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK |
IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK,
.phy_cap_info[7] =
IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW,
},
/* For all MCS and bandwidth, set 8 NSS for both Tx and
* Rx
*/
.eht_mcs_nss_supp = {
/*
* Since B0, B1, B2 and B3 are not set in
* the supported channel width set field in the
* HE PHY capabilities information field the
* device is a 20MHz only device on 2.4GHz band.
*/
.only_20mhz = {
.rx_tx_mcs7_max_nss = 0x88,
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
},
/* PPE threshold information is not supported */
},
},
#ifdef CONFIG_MAC80211_MESH
{
.types_mask = BIT(NL80211_IFTYPE_MESH_POINT),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] = 0,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xffff),
.tx_mcs_160 = cpu_to_le16(0xffff),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
},
},
#endif
};
static const struct ieee80211_sband_iftype_data sband_capa_5ghz[] = {
{
.types_mask = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_P2P_CLIENT),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
.eht_cap = {
.has_eht = true,
.eht_cap_elem = {
.mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1,
.phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
.phy_cap_info[1] =
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
.phy_cap_info[2] =
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK,
.phy_cap_info[3] =
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
.phy_cap_info[4] =
IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI |
IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK,
.phy_cap_info[5] =
IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT |
IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK |
IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK,
.phy_cap_info[6] =
IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK |
IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK,
.phy_cap_info[7] =
IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ,
},
/* For all MCS and bandwidth, set 8 NSS for both Tx and
* Rx
*/
.eht_mcs_nss_supp = {
/*
* As B1 and B2 are set in the supported
* channel width set field in the HE PHY
* capabilities information field include all
* the following MCS/NSS.
*/
.bw._80 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
.bw._160 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
},
/* PPE threshold information is not supported */
},
},
{
.types_mask = BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_P2P_GO),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
.eht_cap = {
.has_eht = true,
.eht_cap_elem = {
.mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1,
.phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
.phy_cap_info[1] =
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
.phy_cap_info[2] =
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK,
.phy_cap_info[3] =
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
.phy_cap_info[4] =
IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI |
IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK,
.phy_cap_info[5] =
IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT |
IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK |
IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK,
.phy_cap_info[6] =
IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK |
IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK,
.phy_cap_info[7] =
IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ,
},
/* For all MCS and bandwidth, set 8 NSS for both Tx and
* Rx
*/
.eht_mcs_nss_supp = {
/*
* As B1 and B2 are set in the supported
* channel width set field in the HE PHY
* capabilities information field include all
* the following MCS/NSS.
*/
.bw._80 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
.bw._160 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
},
/* PPE threshold information is not supported */
},
},
#ifdef CONFIG_MAC80211_MESH
{
/* TODO: should we support other types, e.g., IBSS?*/
.types_mask = BIT(NL80211_IFTYPE_MESH_POINT),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] = 0,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
},
#endif
};
static const struct ieee80211_sband_iftype_data sband_capa_6ghz[] = {
{
.types_mask = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_P2P_CLIENT),
.he_6ghz_capa = {
.capa = cpu_to_le16(IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START |
IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP |
IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN |
IEEE80211_HE_6GHZ_CAP_SM_PS |
IEEE80211_HE_6GHZ_CAP_RD_RESPONDER |
IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS),
},
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
.eht_cap = {
.has_eht = true,
.eht_cap_elem = {
.mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1,
.phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ |
IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
.phy_cap_info[1] =
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK |
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK,
.phy_cap_info[2] =
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK |
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK,
.phy_cap_info[3] =
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
.phy_cap_info[4] =
IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI |
IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK,
.phy_cap_info[5] =
IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT |
IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK |
IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK,
.phy_cap_info[6] =
IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK |
IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
.phy_cap_info[7] =
IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ,
},
/* For all MCS and bandwidth, set 8 NSS for both Tx and
* Rx
*/
.eht_mcs_nss_supp = {
/*
* As B1 and B2 are set in the supported
* channel width set field in the HE PHY
* capabilities information field and 320MHz in
* 6GHz is supported include all the following
* MCS/NSS.
*/
.bw._80 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
.bw._160 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
.bw._320 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
},
/* PPE threshold information is not supported */
},
},
{
.types_mask = BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_P2P_GO),
.he_6ghz_capa = {
.capa = cpu_to_le16(IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START |
IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP |
IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN |
IEEE80211_HE_6GHZ_CAP_SM_PS |
IEEE80211_HE_6GHZ_CAP_RD_RESPONDER |
IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS),
},
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_BSR |
IEEE80211_HE_MAC_CAP2_MU_CASCADING |
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
.eht_cap = {
.has_eht = true,
.eht_cap_elem = {
.mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1,
.phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ |
IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
.phy_cap_info[1] =
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK |
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK,
.phy_cap_info[2] =
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK |
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK,
.phy_cap_info[3] =
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
.phy_cap_info[4] =
IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI |
IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK,
.phy_cap_info[5] =
IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT |
IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK |
IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK,
.phy_cap_info[6] =
IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK |
IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
.phy_cap_info[7] =
IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ,
},
/* For all MCS and bandwidth, set 8 NSS for both Tx and
* Rx
*/
.eht_mcs_nss_supp = {
/*
* As B1 and B2 are set in the supported
* channel width set field in the HE PHY
* capabilities information field and 320MHz in
* 6GHz is supported include all the following
* MCS/NSS.
*/
.bw._80 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
.bw._160 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
.bw._320 = {
.rx_tx_mcs9_max_nss = 0x88,
.rx_tx_mcs11_max_nss = 0x88,
.rx_tx_mcs13_max_nss = 0x88,
},
},
/* PPE threshold information is not supported */
},
},
#ifdef CONFIG_MAC80211_MESH
{
/* TODO: should we support other types, e.g., IBSS?*/
.types_mask = BIT(NL80211_IFTYPE_MESH_POINT),
.he_6ghz_capa = {
.capa = cpu_to_le16(IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START |
IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP |
IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN |
IEEE80211_HE_6GHZ_CAP_SM_PS |
IEEE80211_HE_6GHZ_CAP_RD_RESPONDER |
IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS),
},
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_ACK_EN,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3,
.mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD |
IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS,
.phy_cap_info[2] = 0,
/* Leave all the other PHY capability bytes
* unset, as DCM, beam forming, RU and PPE
* threshold information are not supported
*/
},
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xfffa),
.tx_mcs_80p80 = cpu_to_le16(0xfffa),
},
},
},
#endif
};
static void mac80211_hwsim_sband_capab(struct ieee80211_supported_band *sband)
{
switch (sband->band) {
case NL80211_BAND_2GHZ:
ieee80211_set_sband_iftype_data(sband, sband_capa_2ghz);
break;
case NL80211_BAND_5GHZ:
ieee80211_set_sband_iftype_data(sband, sband_capa_5ghz);
break;
case NL80211_BAND_6GHZ:
ieee80211_set_sband_iftype_data(sband, sband_capa_6ghz);
break;
default:
break;
}
}
#ifdef CONFIG_MAC80211_MESH
#define HWSIM_MESH_BIT BIT(NL80211_IFTYPE_MESH_POINT)
#else
#define HWSIM_MESH_BIT 0
#endif
#define HWSIM_DEFAULT_IF_LIMIT \
(BIT(NL80211_IFTYPE_STATION) | \
BIT(NL80211_IFTYPE_P2P_CLIENT) | \
BIT(NL80211_IFTYPE_AP) | \
BIT(NL80211_IFTYPE_P2P_GO) | \
HWSIM_MESH_BIT)
#define HWSIM_IFTYPE_SUPPORT_MASK \
(BIT(NL80211_IFTYPE_STATION) | \
BIT(NL80211_IFTYPE_AP) | \
BIT(NL80211_IFTYPE_P2P_CLIENT) | \
BIT(NL80211_IFTYPE_P2P_GO) | \
BIT(NL80211_IFTYPE_ADHOC) | \
BIT(NL80211_IFTYPE_MESH_POINT) | \
BIT(NL80211_IFTYPE_OCB))
static const u8 iftypes_ext_capa_ap[] = {
[0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING,
[2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT,
[7] = WLAN_EXT_CAPA8_OPMODE_NOTIF |
WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB,
[8] = WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB,
[9] = WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT,
};
#define MAC80211_HWSIM_MLD_CAPA_OPS \
FIELD_PREP_CONST(IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP, \
IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME) | \
FIELD_PREP_CONST(IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS, \
IEEE80211_MLD_MAX_NUM_LINKS - 1)
static const struct wiphy_iftype_ext_capab mac80211_hwsim_iftypes_ext_capa[] = {
{
.iftype = NL80211_IFTYPE_AP,
.extended_capabilities = iftypes_ext_capa_ap,
.extended_capabilities_mask = iftypes_ext_capa_ap,
.extended_capabilities_len = sizeof(iftypes_ext_capa_ap),
.eml_capabilities = IEEE80211_EML_CAP_EMLSR_SUPP |
IEEE80211_EML_CAP_EMLMR_SUPPORT,
.mld_capa_and_ops = MAC80211_HWSIM_MLD_CAPA_OPS,
},
};
static int mac80211_hwsim_new_radio(struct genl_info *info,
struct hwsim_new_radio_params *param)
{
int err;
u8 addr[ETH_ALEN];
struct mac80211_hwsim_data *data;
struct ieee80211_hw *hw;
enum nl80211_band band;
const struct ieee80211_ops *ops = &mac80211_hwsim_ops;
struct net *net;
int idx, i;
int n_limits = 0;
int n_bands = 0;
if (WARN_ON(param->channels > 1 && !param->use_chanctx))
return -EINVAL;
spin_lock_bh(&hwsim_radio_lock);
idx = hwsim_radio_idx++;
spin_unlock_bh(&hwsim_radio_lock);
if (param->mlo)
ops = &mac80211_hwsim_mlo_ops;
else if (param->use_chanctx)
ops = &mac80211_hwsim_mchan_ops;
hw = ieee80211_alloc_hw_nm(sizeof(*data), ops, param->hwname);
if (!hw) {
pr_debug("mac80211_hwsim: ieee80211_alloc_hw failed\n");
err = -ENOMEM;
goto failed;
}
/* ieee80211_alloc_hw_nm may have used a default name */
param->hwname = wiphy_name(hw->wiphy);
if (info)
net = genl_info_net(info);
else
net = &init_net;
wiphy_net_set(hw->wiphy, net);
data = hw->priv;
data->hw = hw;
data->dev = device_create(hwsim_class, NULL, 0, hw, "hwsim%d", idx);
if (IS_ERR(data->dev)) {
printk(KERN_DEBUG
"mac80211_hwsim: device_create failed (%ld)\n",
PTR_ERR(data->dev));
err = -ENOMEM;
goto failed_drvdata;
}
data->dev->driver = &mac80211_hwsim_driver.driver;
err = device_bind_driver(data->dev);
if (err != 0) {
pr_debug("mac80211_hwsim: device_bind_driver failed (%d)\n",
err);
goto failed_bind;
}
skb_queue_head_init(&data->pending);
SET_IEEE80211_DEV(hw, data->dev);
if (!param->perm_addr) {
eth_zero_addr(addr);
addr[0] = 0x02;
addr[3] = idx >> 8;
addr[4] = idx;
memcpy(data->addresses[0].addr, addr, ETH_ALEN);
/* Why need here second address ? */
memcpy(data->addresses[1].addr, addr, ETH_ALEN);
data->addresses[1].addr[0] |= 0x40;
hw->wiphy->n_addresses = 2;
hw->wiphy->addresses = data->addresses;
/* possible address clash is checked at hash table insertion */
} else {
memcpy(data->addresses[0].addr, param->perm_addr, ETH_ALEN);
/* compatibility with automatically generated mac addr */
memcpy(data->addresses[1].addr, param->perm_addr, ETH_ALEN);
hw->wiphy->n_addresses = 2;
hw->wiphy->addresses = data->addresses;
}
data->channels = param->channels;
data->use_chanctx = param->use_chanctx;
data->idx = idx;
data->destroy_on_close = param->destroy_on_close;
if (info)
data->portid = info->snd_portid;
/* setup interface limits, only on interface types we support */
if (param->iftypes & BIT(NL80211_IFTYPE_ADHOC)) {
data->if_limits[n_limits].max = 1;
data->if_limits[n_limits].types = BIT(NL80211_IFTYPE_ADHOC);
n_limits++;
}
if (param->iftypes & HWSIM_DEFAULT_IF_LIMIT) {
data->if_limits[n_limits].max = 2048;
/*
* For this case, we may only support a subset of
* HWSIM_DEFAULT_IF_LIMIT, therefore we only want to add the
* bits that both param->iftype & HWSIM_DEFAULT_IF_LIMIT have.
*/
data->if_limits[n_limits].types =
HWSIM_DEFAULT_IF_LIMIT & param->iftypes;
n_limits++;
}
if (param->iftypes & BIT(NL80211_IFTYPE_P2P_DEVICE)) {
data->if_limits[n_limits].max = 1;
data->if_limits[n_limits].types =
BIT(NL80211_IFTYPE_P2P_DEVICE);
n_limits++;
}
data->if_combination.radar_detect_widths =
BIT(NL80211_CHAN_WIDTH_5) |
BIT(NL80211_CHAN_WIDTH_10) |
BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80) |
BIT(NL80211_CHAN_WIDTH_160);
if (data->use_chanctx) {
hw->wiphy->max_scan_ssids = 255;
hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
hw->wiphy->max_remain_on_channel_duration = 1000;
data->if_combination.num_different_channels = data->channels;
} else {
data->if_combination.num_different_channels = 1;
}
if (!n_limits) {
err = -EINVAL;
goto failed_hw;
}
data->if_combination.max_interfaces = 0;
for (i = 0; i < n_limits; i++)
data->if_combination.max_interfaces +=
data->if_limits[i].max;
data->if_combination.n_limits = n_limits;
data->if_combination.limits = data->if_limits;
/*
* If we actually were asked to support combinations,
* advertise them - if there's only a single thing like
* only IBSS then don't advertise it as combinations.
*/
if (data->if_combination.max_interfaces > 1) {
hw->wiphy->iface_combinations = &data->if_combination;
hw->wiphy->n_iface_combinations = 1;
}
if (param->ciphers) {
memcpy(data->ciphers, param->ciphers,
param->n_ciphers * sizeof(u32));
hw->wiphy->cipher_suites = data->ciphers;
hw->wiphy->n_cipher_suites = param->n_ciphers;
}
hw->wiphy->mbssid_max_interfaces = 8;
hw->wiphy->ema_max_profile_periodicity = 3;
data->rx_rssi = DEFAULT_RX_RSSI;
INIT_DELAYED_WORK(&data->roc_start, hw_roc_start);
INIT_DELAYED_WORK(&data->roc_done, hw_roc_done);
INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work);
hw->queues = 5;
hw->offchannel_tx_hw_queue = 4;
ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
ieee80211_hw_set(hw, CHANCTX_STA_CSA);
ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
ieee80211_hw_set(hw, QUEUE_CONTROL);
ieee80211_hw_set(hw, WANT_MONITOR_VIF);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, MFP_CAPABLE);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(hw, TDLS_WIDER_BW);
ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID);
if (param->mlo) {
hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_MLO;
ieee80211_hw_set(hw, HAS_RATE_CONTROL);
ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
ieee80211_hw_set(hw, CONNECTION_MONITOR);
ieee80211_hw_set(hw, AP_LINK_PS);
hw->wiphy->iftype_ext_capab = mac80211_hwsim_iftypes_ext_capa;
hw->wiphy->num_iftype_ext_capab =
ARRAY_SIZE(mac80211_hwsim_iftypes_ext_capa);
} else {
ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
if (rctbl)
ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
}
hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
WIPHY_FLAG_AP_UAPSD |
WIPHY_FLAG_SUPPORTS_5_10_MHZ |
WIPHY_FLAG_HAS_CHANNEL_SWITCH;
hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR |
NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE |
NL80211_FEATURE_STATIC_SMPS |
NL80211_FEATURE_DYNAMIC_SMPS |
NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_BEACON_PROTECTION);
wiphy_ext_feature_set(hw->wiphy,
NL80211_EXT_FEATURE_MULTICAST_REGISTRATIONS);
wiphy_ext_feature_set(hw->wiphy,
NL80211_EXT_FEATURE_BEACON_RATE_LEGACY);
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER);
wiphy_ext_feature_set(hw->wiphy,
NL80211_EXT_FEATURE_SCAN_MIN_PREQ_CONTENT);
wiphy_ext_feature_set(hw->wiphy,
NL80211_EXT_FEATURE_BSS_COLOR);
hw->wiphy->interface_modes = param->iftypes;
/* ask mac80211 to reserve space for magic */
hw->vif_data_size = sizeof(struct hwsim_vif_priv);
hw->sta_data_size = sizeof(struct hwsim_sta_priv);
hw->chanctx_data_size = sizeof(struct hwsim_chanctx_priv);
memcpy(data->channels_2ghz, hwsim_channels_2ghz,
sizeof(hwsim_channels_2ghz));
memcpy(data->channels_5ghz, hwsim_channels_5ghz,
sizeof(hwsim_channels_5ghz));
memcpy(data->channels_6ghz, hwsim_channels_6ghz,
sizeof(hwsim_channels_6ghz));
memcpy(data->channels_s1g, hwsim_channels_s1g,
sizeof(hwsim_channels_s1g));
memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates));
for (band = NL80211_BAND_2GHZ; band < NUM_NL80211_BANDS; band++) {
struct ieee80211_supported_band *sband = &data->bands[band];
struct wiphy_radio_freq_range *radio_range;
const struct ieee80211_channel *c;
struct wiphy_radio *radio;
sband->band = band;
switch (band) {
case NL80211_BAND_2GHZ:
sband->channels = data->channels_2ghz;
sband->n_channels = ARRAY_SIZE(hwsim_channels_2ghz);
sband->bitrates = data->rates;
sband->n_bitrates = ARRAY_SIZE(hwsim_rates);
break;
case NL80211_BAND_5GHZ:
sband->channels = data->channels_5ghz;
sband->n_channels = ARRAY_SIZE(hwsim_channels_5ghz);
sband->bitrates = data->rates + 4;
sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
sband->vht_cap.vht_supported = true;
sband->vht_cap.cap =
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ |
IEEE80211_VHT_CAP_RXLDPC |
IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_SHORT_GI_160 |
IEEE80211_VHT_CAP_TXSTBC |
IEEE80211_VHT_CAP_RXSTBC_4 |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK;
sband->vht_cap.vht_mcs.rx_mcs_map =
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 6 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 8 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 14);
sband->vht_cap.vht_mcs.tx_mcs_map =
sband->vht_cap.vht_mcs.rx_mcs_map;
break;
case NL80211_BAND_6GHZ:
sband->channels = data->channels_6ghz;
sband->n_channels = ARRAY_SIZE(hwsim_channels_6ghz);
sband->bitrates = data->rates + 4;
sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
break;
case NL80211_BAND_S1GHZ:
memcpy(&sband->s1g_cap, &hwsim_s1g_cap,
sizeof(sband->s1g_cap));
sband->channels = data->channels_s1g;
sband->n_channels = ARRAY_SIZE(hwsim_channels_s1g);
break;
default:
continue;
}
if (band != NL80211_BAND_6GHZ){
sband->ht_cap.ht_supported = true;
sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_GRN_FLD |
IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_DSSSCCK40;
sband->ht_cap.ampdu_factor = 0x3;
sband->ht_cap.ampdu_density = 0x6;
memset(&sband->ht_cap.mcs, 0,
sizeof(sband->ht_cap.mcs));
sband->ht_cap.mcs.rx_mask[0] = 0xff;
sband->ht_cap.mcs.rx_mask[1] = 0xff;
sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
}
mac80211_hwsim_sband_capab(sband);
hw->wiphy->bands[band] = sband;
if (!param->multi_radio)
continue;
c = sband->channels;
radio_range = &data->radio_range[n_bands];
radio_range->start_freq = ieee80211_channel_to_khz(c) - 10000;
c += sband->n_channels - 1;
radio_range->end_freq = ieee80211_channel_to_khz(c) + 10000;
radio = &data->radio[n_bands++];
radio->freq_range = radio_range;
radio->n_freq_range = 1;
radio->iface_combinations = &data->if_combination_radio;
radio->n_iface_combinations = 1;
}
if (param->multi_radio) {
hw->wiphy->radio = data->radio;
hw->wiphy->n_radio = n_bands;
memcpy(&data->if_combination_radio, &data->if_combination,
sizeof(data->if_combination));
data->if_combination.num_different_channels *= n_bands;
}
if (data->use_chanctx)
data->if_combination.radar_detect_widths = 0;
/* By default all radios belong to the first group */
data->group = 1;
mutex_init(&data->mutex);
data->netgroup = hwsim_net_get_netgroup(net);
data->wmediumd = hwsim_net_get_wmediumd(net);
/* Enable frame retransmissions for lossy channels */
hw->max_rates = 4;
hw->max_rate_tries = 11;
hw->wiphy->vendor_commands = mac80211_hwsim_vendor_commands;
hw->wiphy->n_vendor_commands =
ARRAY_SIZE(mac80211_hwsim_vendor_commands);
hw->wiphy->vendor_events = mac80211_hwsim_vendor_events;
hw->wiphy->n_vendor_events = ARRAY_SIZE(mac80211_hwsim_vendor_events);
if (param->reg_strict)
hw->wiphy->regulatory_flags |= REGULATORY_STRICT_REG;
if (param->regd) {
data->regd = param->regd;
hw->wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
wiphy_apply_custom_regulatory(hw->wiphy, param->regd);
/* give the regulatory workqueue a chance to run */
schedule_timeout_interruptible(1);
}
wiphy_ext_feature_set(hw->wiphy,
NL80211_EXT_FEATURE_DFS_CONCURRENT);
if (param->no_vif)
ieee80211_hw_set(hw, NO_AUTO_VIF);
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
for (i = 0; i < ARRAY_SIZE(data->link_data); i++) {
hrtimer_init(&data->link_data[i].beacon_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_ABS_SOFT);
data->link_data[i].beacon_timer.function =
mac80211_hwsim_beacon;
data->link_data[i].link_id = i;
}
err = ieee80211_register_hw(hw);
if (err < 0) {
pr_debug("mac80211_hwsim: ieee80211_register_hw failed (%d)\n",
err);
goto failed_hw;
}
wiphy_dbg(hw->wiphy, "hwaddr %pM registered\n", hw->wiphy->perm_addr);
if (param->reg_alpha2) {
data->alpha2[0] = param->reg_alpha2[0];
data->alpha2[1] = param->reg_alpha2[1];
regulatory_hint(hw->wiphy, param->reg_alpha2);
}
data->debugfs = debugfs_create_dir("hwsim", hw->wiphy->debugfsdir);
debugfs_create_file("ps", 0666, data->debugfs, data, &hwsim_fops_ps);
debugfs_create_file("group", 0666, data->debugfs, data,
&hwsim_fops_group);
debugfs_create_file("rx_rssi", 0666, data->debugfs, data,
&hwsim_fops_rx_rssi);
if (!data->use_chanctx)
debugfs_create_file("dfs_simulate_radar", 0222,
data->debugfs,
data, &hwsim_simulate_radar);
if (param->pmsr_capa) {
data->pmsr_capa = *param->pmsr_capa;
hw->wiphy->pmsr_capa = &data->pmsr_capa;
}
spin_lock_bh(&hwsim_radio_lock);
err = rhashtable_insert_fast(&hwsim_radios_rht, &data->rht,
hwsim_rht_params);
if (err < 0) {
if (info) {
GENL_SET_ERR_MSG(info, "perm addr already present");
NL_SET_BAD_ATTR(info->extack,
info->attrs[HWSIM_ATTR_PERM_ADDR]);
}
spin_unlock_bh(&hwsim_radio_lock);
goto failed_final_insert;
}
list_add_tail(&data->list, &hwsim_radios);
hwsim_radios_generation++;
spin_unlock_bh(&hwsim_radio_lock);
hwsim_mcast_new_radio(idx, info, param);
return idx;
failed_final_insert:
debugfs_remove_recursive(data->debugfs);
ieee80211_unregister_hw(data->hw);
failed_hw:
device_release_driver(data->dev);
failed_bind:
device_unregister(data->dev);
failed_drvdata:
ieee80211_free_hw(hw);
failed:
return err;
}
static void hwsim_mcast_del_radio(int id, const char *hwname,
struct genl_info *info)
{
struct sk_buff *skb;
void *data;
int ret;
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb)
return;
data = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
HWSIM_CMD_DEL_RADIO);
if (!data)
goto error;
ret = nla_put_u32(skb, HWSIM_ATTR_RADIO_ID, id);
if (ret < 0)
goto error;
ret = nla_put(skb, HWSIM_ATTR_RADIO_NAME, strlen(hwname),
hwname);
if (ret < 0)
goto error;
genlmsg_end(skb, data);
hwsim_mcast_config_msg(skb, info);
return;
error:
nlmsg_free(skb);
}
static void mac80211_hwsim_del_radio(struct mac80211_hwsim_data *data,
const char *hwname,
struct genl_info *info)
{
hwsim_mcast_del_radio(data->idx, hwname, info);
debugfs_remove_recursive(data->debugfs);
ieee80211_unregister_hw(data->hw);
device_release_driver(data->dev);
device_unregister(data->dev);
ieee80211_free_hw(data->hw);
}
static int mac80211_hwsim_get_radio(struct sk_buff *skb,
struct mac80211_hwsim_data *data,
u32 portid, u32 seq,
struct netlink_callback *cb, int flags)
{
void *hdr;
struct hwsim_new_radio_params param = { };
int res = -EMSGSIZE;
hdr = genlmsg_put(skb, portid, seq, &hwsim_genl_family, flags,
HWSIM_CMD_GET_RADIO);
if (!hdr)
return -EMSGSIZE;
if (cb)
genl_dump_check_consistent(cb, hdr);
if (data->alpha2[0] && data->alpha2[1])
param.reg_alpha2 = data->alpha2;
param.reg_strict = !!(data->hw->wiphy->regulatory_flags &
REGULATORY_STRICT_REG);
param.p2p_device = !!(data->hw->wiphy->interface_modes &
BIT(NL80211_IFTYPE_P2P_DEVICE));
param.use_chanctx = data->use_chanctx;
param.regd = data->regd;
param.channels = data->channels;
param.hwname = wiphy_name(data->hw->wiphy);
param.pmsr_capa = &data->pmsr_capa;
res = append_radio_msg(skb, data->idx, &param);
if (res < 0)
goto out_err;
genlmsg_end(skb, hdr);
return 0;
out_err:
genlmsg_cancel(skb, hdr);
return res;
}
static void mac80211_hwsim_free(void)
{
struct mac80211_hwsim_data *data;
spin_lock_bh(&hwsim_radio_lock);
while ((data = list_first_entry_or_null(&hwsim_radios,
struct mac80211_hwsim_data,
list))) {
list_del(&data->list);
spin_unlock_bh(&hwsim_radio_lock);
mac80211_hwsim_del_radio(data, wiphy_name(data->hw->wiphy),
NULL);
spin_lock_bh(&hwsim_radio_lock);
}
spin_unlock_bh(&hwsim_radio_lock);
class_destroy(hwsim_class);
}
static const struct net_device_ops hwsim_netdev_ops = {
.ndo_start_xmit = hwsim_mon_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static void hwsim_mon_setup(struct net_device *dev)
{
u8 addr[ETH_ALEN];
dev->netdev_ops = &hwsim_netdev_ops;
dev->needs_free_netdev = true;
ether_setup(dev);
dev->priv_flags |= IFF_NO_QUEUE;
dev->type = ARPHRD_IEEE80211_RADIOTAP;
eth_zero_addr(addr);
addr[0] = 0x12;
eth_hw_addr_set(dev, addr);
}
static void hwsim_register_wmediumd(struct net *net, u32 portid)
{
struct mac80211_hwsim_data *data;
hwsim_net_set_wmediumd(net, portid);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list) {
if (data->netgroup == hwsim_net_get_netgroup(net))
data->wmediumd = portid;
}
spin_unlock_bh(&hwsim_radio_lock);
}
static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
struct ieee80211_hdr *hdr;
struct mac80211_hwsim_data *data2;
struct ieee80211_tx_info *txi;
struct hwsim_tx_rate *tx_attempts;
u64 ret_skb_cookie;
struct sk_buff *skb, *tmp;
const u8 *src;
unsigned int hwsim_flags;
int i;
unsigned long flags;
bool found = false;
if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] ||
!info->attrs[HWSIM_ATTR_FLAGS] ||
!info->attrs[HWSIM_ATTR_COOKIE] ||
!info->attrs[HWSIM_ATTR_SIGNAL] ||
!info->attrs[HWSIM_ATTR_TX_INFO])
goto out;
src = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]);
ret_skb_cookie = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]);
data2 = get_hwsim_data_ref_from_addr(src);
if (!data2)
goto out;
if (!hwsim_virtio_enabled) {
if (hwsim_net_get_netgroup(genl_info_net(info)) !=
data2->netgroup)
goto out;
if (info->snd_portid != data2->wmediumd)
goto out;
}
/* look for the skb matching the cookie passed back from user */
spin_lock_irqsave(&data2->pending.lock, flags);
skb_queue_walk_safe(&data2->pending, skb, tmp) {
uintptr_t skb_cookie;
txi = IEEE80211_SKB_CB(skb);
skb_cookie = (uintptr_t)txi->rate_driver_data[0];
if (skb_cookie == ret_skb_cookie) {
__skb_unlink(skb, &data2->pending);
found = true;
break;
}
}
spin_unlock_irqrestore(&data2->pending.lock, flags);
/* not found */
if (!found)
goto out;
/* Tx info received because the frame was broadcasted on user space,
so we get all the necessary info: tx attempts and skb control buff */
tx_attempts = (struct hwsim_tx_rate *)nla_data(
info->attrs[HWSIM_ATTR_TX_INFO]);
/* now send back TX status */
txi = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(txi);
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
txi->status.rates[i].idx = tx_attempts[i].idx;
txi->status.rates[i].count = tx_attempts[i].count;
}
txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) &&
(hwsim_flags & HWSIM_TX_STAT_ACK)) {
if (skb->len >= 16) {
hdr = (struct ieee80211_hdr *) skb->data;
mac80211_hwsim_monitor_ack(data2->channel,
hdr->addr2);
}
txi->flags |= IEEE80211_TX_STAT_ACK;
}
if (hwsim_flags & HWSIM_TX_CTL_NO_ACK)
txi->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
ieee80211_tx_status_irqsafe(data2->hw, skb);
return 0;
out:
return -EINVAL;
}
static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
struct mac80211_hwsim_data *data2;
struct ieee80211_rx_status rx_status;
struct ieee80211_hdr *hdr;
const u8 *dst;
int frame_data_len;
void *frame_data;
struct sk_buff *skb = NULL;
struct ieee80211_channel *channel = NULL;
if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] ||
!info->attrs[HWSIM_ATTR_FRAME] ||
!info->attrs[HWSIM_ATTR_RX_RATE] ||
!info->attrs[HWSIM_ATTR_SIGNAL])
goto out;
dst = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_RECEIVER]);
frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]);
frame_data = (void *)nla_data(info->attrs[HWSIM_ATTR_FRAME]);
if (frame_data_len < sizeof(struct ieee80211_hdr_3addr) ||
frame_data_len > IEEE80211_MAX_DATA_LEN)
goto err;
/* Allocate new skb here */
skb = alloc_skb(frame_data_len, GFP_KERNEL);
if (skb == NULL)
goto err;
/* Copy the data */
skb_put_data(skb, frame_data, frame_data_len);
data2 = get_hwsim_data_ref_from_addr(dst);
if (!data2)
goto out;
if (data2->use_chanctx) {
if (data2->tmp_chan)
channel = data2->tmp_chan;
} else {
channel = data2->channel;
}
if (!hwsim_virtio_enabled) {
if (hwsim_net_get_netgroup(genl_info_net(info)) !=
data2->netgroup)
goto out;
if (info->snd_portid != data2->wmediumd)
goto out;
}
/* check if radio is configured properly */
if ((data2->idle && !data2->tmp_chan) || !data2->started)
goto out;
/* A frame is received from user space */
memset(&rx_status, 0, sizeof(rx_status));
if (info->attrs[HWSIM_ATTR_FREQ]) {
struct tx_iter_data iter_data = {};
/* throw away off-channel packets, but allow both the temporary
* ("hw" scan/remain-on-channel), regular channels and links,
* since the internal datapath also allows this
*/
rx_status.freq = nla_get_u32(info->attrs[HWSIM_ATTR_FREQ]);
iter_data.channel = ieee80211_get_channel(data2->hw->wiphy,
rx_status.freq);
if (!iter_data.channel)
goto out;
rx_status.band = iter_data.channel->band;
mutex_lock(&data2->mutex);
if (!hwsim_chans_compat(iter_data.channel, channel)) {
ieee80211_iterate_active_interfaces_atomic(
data2->hw, IEEE80211_IFACE_ITER_NORMAL,
mac80211_hwsim_tx_iter, &iter_data);
if (!iter_data.receive) {
mutex_unlock(&data2->mutex);
goto out;
}
}
mutex_unlock(&data2->mutex);
} else if (!channel) {
goto out;
} else {
rx_status.freq = channel->center_freq;
rx_status.band = channel->band;
}
rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]);
if (rx_status.rate_idx >= data2->hw->wiphy->bands[rx_status.band]->n_bitrates)
goto out;
rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
hdr = (void *)skb->data;
if (ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control))
rx_status.boottime_ns = ktime_get_boottime_ns();
mac80211_hwsim_rx(data2, &rx_status, skb);
return 0;
err:
pr_debug("mac80211_hwsim: error occurred in %s\n", __func__);
out:
dev_kfree_skb(skb);
return -EINVAL;
}
static int hwsim_register_received_nl(struct sk_buff *skb_2,
struct genl_info *info)
{
struct net *net = genl_info_net(info);
struct mac80211_hwsim_data *data;
int chans = 1;
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list)
chans = max(chans, data->channels);
spin_unlock_bh(&hwsim_radio_lock);
/* In the future we should revise the userspace API and allow it
* to set a flag that it does support multi-channel, then we can
* let this pass conditionally on the flag.
* For current userspace, prohibit it since it won't work right.
*/
if (chans > 1)
return -EOPNOTSUPP;
if (hwsim_net_get_wmediumd(net))
return -EBUSY;
hwsim_register_wmediumd(net, info->snd_portid);
pr_debug("mac80211_hwsim: received a REGISTER, "
"switching to wmediumd mode with pid %d\n", info->snd_portid);
return 0;
}
/* ensures ciphers only include ciphers listed in 'hwsim_ciphers' array */
static bool hwsim_known_ciphers(const u32 *ciphers, int n_ciphers)
{
int i;
for (i = 0; i < n_ciphers; i++) {
int j;
int found = 0;
for (j = 0; j < ARRAY_SIZE(hwsim_ciphers); j++) {
if (ciphers[i] == hwsim_ciphers[j]) {
found = 1;
break;
}
}
if (!found)
return false;
}
return true;
}
static int parse_ftm_capa(const struct nlattr *ftm_capa, struct cfg80211_pmsr_capabilities *out,
struct genl_info *info)
{
struct nlattr *tb[NL80211_PMSR_FTM_CAPA_ATTR_MAX + 1];
int ret;
ret = nla_parse_nested(tb, NL80211_PMSR_FTM_CAPA_ATTR_MAX, ftm_capa, hwsim_ftm_capa_policy,
NULL);
if (ret) {
NL_SET_ERR_MSG_ATTR(info->extack, ftm_capa, "malformed FTM capability");
return -EINVAL;
}
out->ftm.supported = 1;
if (tb[NL80211_PMSR_FTM_CAPA_ATTR_PREAMBLES])
out->ftm.preambles = nla_get_u32(tb[NL80211_PMSR_FTM_CAPA_ATTR_PREAMBLES]);
if (tb[NL80211_PMSR_FTM_CAPA_ATTR_BANDWIDTHS])
out->ftm.bandwidths = nla_get_u32(tb[NL80211_PMSR_FTM_CAPA_ATTR_BANDWIDTHS]);
if (tb[NL80211_PMSR_FTM_CAPA_ATTR_MAX_BURSTS_EXPONENT])
out->ftm.max_bursts_exponent =
nla_get_u8(tb[NL80211_PMSR_FTM_CAPA_ATTR_MAX_BURSTS_EXPONENT]);
if (tb[NL80211_PMSR_FTM_CAPA_ATTR_MAX_FTMS_PER_BURST])
out->ftm.max_ftms_per_burst =
nla_get_u8(tb[NL80211_PMSR_FTM_CAPA_ATTR_MAX_FTMS_PER_BURST]);
out->ftm.asap = !!tb[NL80211_PMSR_FTM_CAPA_ATTR_ASAP];
out->ftm.non_asap = !!tb[NL80211_PMSR_FTM_CAPA_ATTR_NON_ASAP];
out->ftm.request_lci = !!tb[NL80211_PMSR_FTM_CAPA_ATTR_REQ_LCI];
out->ftm.request_civicloc = !!tb[NL80211_PMSR_FTM_CAPA_ATTR_REQ_CIVICLOC];
out->ftm.trigger_based = !!tb[NL80211_PMSR_FTM_CAPA_ATTR_TRIGGER_BASED];
out->ftm.non_trigger_based = !!tb[NL80211_PMSR_FTM_CAPA_ATTR_NON_TRIGGER_BASED];
return 0;
}
static int parse_pmsr_capa(const struct nlattr *pmsr_capa, struct cfg80211_pmsr_capabilities *out,
struct genl_info *info)
{
struct nlattr *tb[NL80211_PMSR_ATTR_MAX + 1];
struct nlattr *nla;
int size;
int ret;
ret = nla_parse_nested(tb, NL80211_PMSR_ATTR_MAX, pmsr_capa, hwsim_pmsr_capa_policy, NULL);
if (ret) {
NL_SET_ERR_MSG_ATTR(info->extack, pmsr_capa, "malformed PMSR capability");
return -EINVAL;
}
if (tb[NL80211_PMSR_ATTR_MAX_PEERS])
out->max_peers = nla_get_u32(tb[NL80211_PMSR_ATTR_MAX_PEERS]);
out->report_ap_tsf = !!tb[NL80211_PMSR_ATTR_REPORT_AP_TSF];
out->randomize_mac_addr = !!tb[NL80211_PMSR_ATTR_RANDOMIZE_MAC_ADDR];
if (!tb[NL80211_PMSR_ATTR_TYPE_CAPA]) {
NL_SET_ERR_MSG_ATTR(info->extack, tb[NL80211_PMSR_ATTR_TYPE_CAPA],
"malformed PMSR type");
return -EINVAL;
}
nla_for_each_nested(nla, tb[NL80211_PMSR_ATTR_TYPE_CAPA], size) {
switch (nla_type(nla)) {
case NL80211_PMSR_TYPE_FTM:
parse_ftm_capa(nla, out, info);
break;
default:
NL_SET_ERR_MSG_ATTR(info->extack, nla, "unsupported measurement type");
return -EINVAL;
}
}
return 0;
}
static int hwsim_new_radio_nl(struct sk_buff *msg, struct genl_info *info)
{
struct hwsim_new_radio_params param = { 0 };
const char *hwname = NULL;
int ret;
param.reg_strict = info->attrs[HWSIM_ATTR_REG_STRICT_REG];
param.p2p_device = info->attrs[HWSIM_ATTR_SUPPORT_P2P_DEVICE];
param.channels = channels;
param.destroy_on_close =
info->attrs[HWSIM_ATTR_DESTROY_RADIO_ON_CLOSE];
if (info->attrs[HWSIM_ATTR_CHANNELS])
param.channels = nla_get_u32(info->attrs[HWSIM_ATTR_CHANNELS]);
if (param.channels < 1) {
GENL_SET_ERR_MSG(info, "must have at least one channel");
return -EINVAL;
}
if (info->attrs[HWSIM_ATTR_NO_VIF])
param.no_vif = true;
if (info->attrs[HWSIM_ATTR_USE_CHANCTX])
param.use_chanctx = true;
else
param.use_chanctx = (param.channels > 1);
if (info->attrs[HWSIM_ATTR_MULTI_RADIO])
param.multi_radio = true;
if (info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2])
param.reg_alpha2 =
nla_data(info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2]);
if (info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]) {
u32 idx = nla_get_u32(info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]);
if (idx >= ARRAY_SIZE(hwsim_world_regdom_custom))
return -EINVAL;
idx = array_index_nospec(idx,
ARRAY_SIZE(hwsim_world_regdom_custom));
param.regd = hwsim_world_regdom_custom[idx];
}
if (info->attrs[HWSIM_ATTR_PERM_ADDR]) {
if (!is_valid_ether_addr(
nla_data(info->attrs[HWSIM_ATTR_PERM_ADDR]))) {
GENL_SET_ERR_MSG(info,"MAC is no valid source addr");
NL_SET_BAD_ATTR(info->extack,
info->attrs[HWSIM_ATTR_PERM_ADDR]);
return -EINVAL;
}
param.perm_addr = nla_data(info->attrs[HWSIM_ATTR_PERM_ADDR]);
}
if (info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT]) {
param.iftypes =
nla_get_u32(info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT]);
if (param.iftypes & ~HWSIM_IFTYPE_SUPPORT_MASK) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[HWSIM_ATTR_IFTYPE_SUPPORT],
"cannot support more iftypes than kernel");
return -EINVAL;
}
} else {
param.iftypes = HWSIM_IFTYPE_SUPPORT_MASK;
}
/* ensure both flag and iftype support is honored */
if (param.p2p_device ||
param.iftypes & BIT(NL80211_IFTYPE_P2P_DEVICE)) {
param.iftypes |= BIT(NL80211_IFTYPE_P2P_DEVICE);
param.p2p_device = true;
}
if (info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]) {
u32 len = nla_len(info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]);
param.ciphers =
nla_data(info->attrs[HWSIM_ATTR_CIPHER_SUPPORT]);
if (len % sizeof(u32)) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[HWSIM_ATTR_CIPHER_SUPPORT],
"bad cipher list length");
return -EINVAL;
}
param.n_ciphers = len / sizeof(u32);
if (param.n_ciphers > ARRAY_SIZE(hwsim_ciphers)) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[HWSIM_ATTR_CIPHER_SUPPORT],
"too many ciphers specified");
return -EINVAL;
}
if (!hwsim_known_ciphers(param.ciphers, param.n_ciphers)) {
NL_SET_ERR_MSG_ATTR(info->extack,
info->attrs[HWSIM_ATTR_CIPHER_SUPPORT],
"unsupported ciphers specified");
return -EINVAL;
}
}
param.mlo = info->attrs[HWSIM_ATTR_MLO_SUPPORT];
if (param.mlo || param.multi_radio)
param.use_chanctx = true;
if (info->attrs[HWSIM_ATTR_RADIO_NAME]) {
hwname = kstrndup((char *)nla_data(info->attrs[HWSIM_ATTR_RADIO_NAME]),
nla_len(info->attrs[HWSIM_ATTR_RADIO_NAME]),
GFP_KERNEL);
if (!hwname)
return -ENOMEM;
param.hwname = hwname;
}
if (info->attrs[HWSIM_ATTR_PMSR_SUPPORT]) {
struct cfg80211_pmsr_capabilities *pmsr_capa;
pmsr_capa = kmalloc(sizeof(*pmsr_capa), GFP_KERNEL);
if (!pmsr_capa) {
ret = -ENOMEM;
goto out_free;
}
param.pmsr_capa = pmsr_capa;
ret = parse_pmsr_capa(info->attrs[HWSIM_ATTR_PMSR_SUPPORT], pmsr_capa, info);
if (ret)
goto out_free;
}
ret = mac80211_hwsim_new_radio(info, &param);
out_free:
kfree(hwname);
kfree(param.pmsr_capa);
return ret;
}
static int hwsim_del_radio_nl(struct sk_buff *msg, struct genl_info *info)
{
struct mac80211_hwsim_data *data;
s64 idx = -1;
const char *hwname = NULL;
if (info->attrs[HWSIM_ATTR_RADIO_ID]) {
idx = nla_get_u32(info->attrs[HWSIM_ATTR_RADIO_ID]);
} else if (info->attrs[HWSIM_ATTR_RADIO_NAME]) {
hwname = kstrndup((char *)nla_data(info->attrs[HWSIM_ATTR_RADIO_NAME]),
nla_len(info->attrs[HWSIM_ATTR_RADIO_NAME]),
GFP_KERNEL);
if (!hwname)
return -ENOMEM;
} else
return -EINVAL;
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list) {
if (idx >= 0) {
if (data->idx != idx)
continue;
} else {
if (!hwname ||
strcmp(hwname, wiphy_name(data->hw->wiphy)))
continue;
}
if (!net_eq(wiphy_net(data->hw->wiphy), genl_info_net(info)))
continue;
list_del(&data->list);
rhashtable_remove_fast(&hwsim_radios_rht, &data->rht,
hwsim_rht_params);
hwsim_radios_generation++;
spin_unlock_bh(&hwsim_radio_lock);
mac80211_hwsim_del_radio(data, wiphy_name(data->hw->wiphy),
info);
kfree(hwname);
return 0;
}
spin_unlock_bh(&hwsim_radio_lock);
kfree(hwname);
return -ENODEV;
}
static int hwsim_get_radio_nl(struct sk_buff *msg, struct genl_info *info)
{
struct mac80211_hwsim_data *data;
struct sk_buff *skb;
int idx, res = -ENODEV;
if (!info->attrs[HWSIM_ATTR_RADIO_ID])
return -EINVAL;
idx = nla_get_u32(info->attrs[HWSIM_ATTR_RADIO_ID]);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry(data, &hwsim_radios, list) {
if (data->idx != idx)
continue;
if (!net_eq(wiphy_net(data->hw->wiphy), genl_info_net(info)))
continue;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!skb) {
res = -ENOMEM;
goto out_err;
}
res = mac80211_hwsim_get_radio(skb, data, info->snd_portid,
info->snd_seq, NULL, 0);
if (res < 0) {
nlmsg_free(skb);
goto out_err;
}
res = genlmsg_reply(skb, info);
break;
}
out_err:
spin_unlock_bh(&hwsim_radio_lock);
return res;
}
static int hwsim_dump_radio_nl(struct sk_buff *skb,
struct netlink_callback *cb)
{
int last_idx = cb->args[0] - 1;
struct mac80211_hwsim_data *data = NULL;
int res = 0;
void *hdr;
spin_lock_bh(&hwsim_radio_lock);
cb->seq = hwsim_radios_generation;
if (last_idx >= hwsim_radio_idx-1)
goto done;
list_for_each_entry(data, &hwsim_radios, list) {
if (data->idx <= last_idx)
continue;
if (!net_eq(wiphy_net(data->hw->wiphy), sock_net(skb->sk)))
continue;
res = mac80211_hwsim_get_radio(skb, data,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, cb,
NLM_F_MULTI);
if (res < 0)
break;
last_idx = data->idx;
}
cb->args[0] = last_idx + 1;
/* list changed, but no new element sent, set interrupted flag */
if (skb->len == 0 && cb->prev_seq && cb->seq != cb->prev_seq) {
hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, &hwsim_genl_family,
NLM_F_MULTI, HWSIM_CMD_GET_RADIO);
if (hdr) {
genl_dump_check_consistent(cb, hdr);
genlmsg_end(skb, hdr);
} else {
res = -EMSGSIZE;
}
}
done:
spin_unlock_bh(&hwsim_radio_lock);
return res ?: skb->len;
}
/* Generic Netlink operations array */
static const struct genl_small_ops hwsim_ops[] = {
{
.cmd = HWSIM_CMD_REGISTER,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_register_received_nl,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = HWSIM_CMD_FRAME,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_cloned_frame_received_nl,
},
{
.cmd = HWSIM_CMD_TX_INFO_FRAME,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_tx_info_frame_received_nl,
},
{
.cmd = HWSIM_CMD_NEW_RADIO,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_new_radio_nl,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = HWSIM_CMD_DEL_RADIO,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_del_radio_nl,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = HWSIM_CMD_GET_RADIO,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_get_radio_nl,
.dumpit = hwsim_dump_radio_nl,
},
{
.cmd = HWSIM_CMD_REPORT_PMSR,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = hwsim_pmsr_report_nl,
},
};
static struct genl_family hwsim_genl_family __ro_after_init = {
.name = "MAC80211_HWSIM",
.version = 1,
.maxattr = HWSIM_ATTR_MAX,
.policy = hwsim_genl_policy,
.netnsok = true,
.module = THIS_MODULE,
.small_ops = hwsim_ops,
.n_small_ops = ARRAY_SIZE(hwsim_ops),
.resv_start_op = HWSIM_CMD_REPORT_PMSR + 1, // match with __HWSIM_CMD_MAX
.mcgrps = hwsim_mcgrps,
.n_mcgrps = ARRAY_SIZE(hwsim_mcgrps),
};
static void remove_user_radios(u32 portid)
{
struct mac80211_hwsim_data *entry, *tmp;
LIST_HEAD(list);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(entry, tmp, &hwsim_radios, list) {
if (entry->destroy_on_close && entry->portid == portid) {
list_move(&entry->list, &list);
rhashtable_remove_fast(&hwsim_radios_rht, &entry->rht,
hwsim_rht_params);
hwsim_radios_generation++;
}
}
spin_unlock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(entry, tmp, &list, list) {
list_del(&entry->list);
mac80211_hwsim_del_radio(entry, wiphy_name(entry->hw->wiphy),
NULL);
}
}
static int mac80211_hwsim_netlink_notify(struct notifier_block *nb,
unsigned long state,
void *_notify)
{
struct netlink_notify *notify = _notify;
if (state != NETLINK_URELEASE)
return NOTIFY_DONE;
remove_user_radios(notify->portid);
if (notify->portid == hwsim_net_get_wmediumd(notify->net)) {
printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink"
" socket, switching to perfect channel medium\n");
hwsim_register_wmediumd(notify->net, 0);
}
return NOTIFY_DONE;
}
static struct notifier_block hwsim_netlink_notifier = {
.notifier_call = mac80211_hwsim_netlink_notify,
};
static int __init hwsim_init_netlink(void)
{
int rc;
printk(KERN_INFO "mac80211_hwsim: initializing netlink\n");
rc = genl_register_family(&hwsim_genl_family);
if (rc)
goto failure;
rc = netlink_register_notifier(&hwsim_netlink_notifier);
if (rc) {
genl_unregister_family(&hwsim_genl_family);
goto failure;
}
return 0;
failure:
pr_debug("mac80211_hwsim: error occurred in %s\n", __func__);
return -EINVAL;
}
static __net_init int hwsim_init_net(struct net *net)
{
return hwsim_net_set_netgroup(net);
}
static void __net_exit hwsim_exit_net(struct net *net)
{
struct mac80211_hwsim_data *data, *tmp;
LIST_HEAD(list);
spin_lock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(data, tmp, &hwsim_radios, list) {
if (!net_eq(wiphy_net(data->hw->wiphy), net))
continue;
/* Radios created in init_net are returned to init_net. */
if (data->netgroup == hwsim_net_get_netgroup(&init_net))
continue;
list_move(&data->list, &list);
rhashtable_remove_fast(&hwsim_radios_rht, &data->rht,
hwsim_rht_params);
hwsim_radios_generation++;
}
spin_unlock_bh(&hwsim_radio_lock);
list_for_each_entry_safe(data, tmp, &list, list) {
list_del(&data->list);
mac80211_hwsim_del_radio(data,
wiphy_name(data->hw->wiphy),
NULL);
}
ida_free(&hwsim_netgroup_ida, hwsim_net_get_netgroup(net));
}
static struct pernet_operations hwsim_net_ops = {
.init = hwsim_init_net,
.exit = hwsim_exit_net,
.id = &hwsim_net_id,
.size = sizeof(struct hwsim_net),
};
static void hwsim_exit_netlink(void)
{
/* unregister the notifier */
netlink_unregister_notifier(&hwsim_netlink_notifier);
/* unregister the family */
genl_unregister_family(&hwsim_genl_family);
}
#if IS_REACHABLE(CONFIG_VIRTIO)
static void hwsim_virtio_tx_done(struct virtqueue *vq)
{
unsigned int len;
struct sk_buff *skb;
unsigned long flags;
spin_lock_irqsave(&hwsim_virtio_lock, flags);
while ((skb = virtqueue_get_buf(vq, &len)))
dev_kfree_skb_irq(skb);
spin_unlock_irqrestore(&hwsim_virtio_lock, flags);
}
static int hwsim_virtio_handle_cmd(struct sk_buff *skb)
{
struct nlmsghdr *nlh;
struct genlmsghdr *gnlh;
struct nlattr *tb[HWSIM_ATTR_MAX + 1];
struct genl_info info = {};
int err;
nlh = nlmsg_hdr(skb);
gnlh = nlmsg_data(nlh);
if (skb->len < nlh->nlmsg_len)
return -EINVAL;
err = genlmsg_parse(nlh, &hwsim_genl_family, tb, HWSIM_ATTR_MAX,
hwsim_genl_policy, NULL);
if (err) {
pr_err_ratelimited("hwsim: genlmsg_parse returned %d\n", err);
return err;
}
info.attrs = tb;
switch (gnlh->cmd) {
case HWSIM_CMD_FRAME:
hwsim_cloned_frame_received_nl(skb, &info);
break;
case HWSIM_CMD_TX_INFO_FRAME:
hwsim_tx_info_frame_received_nl(skb, &info);
break;
case HWSIM_CMD_REPORT_PMSR:
hwsim_pmsr_report_nl(skb, &info);
break;
default:
pr_err_ratelimited("hwsim: invalid cmd: %d\n", gnlh->cmd);
return -EPROTO;
}
return 0;
}
static void hwsim_virtio_rx_work(struct work_struct *work)
{
struct virtqueue *vq;
unsigned int len;
struct sk_buff *skb;
struct scatterlist sg[1];
int err;
unsigned long flags;
spin_lock_irqsave(&hwsim_virtio_lock, flags);
if (!hwsim_virtio_enabled)
goto out_unlock;
skb = virtqueue_get_buf(hwsim_vqs[HWSIM_VQ_RX], &len);
if (!skb)
goto out_unlock;
spin_unlock_irqrestore(&hwsim_virtio_lock, flags);
skb->data = skb->head;
skb_reset_tail_pointer(skb);
skb_put(skb, len);
hwsim_virtio_handle_cmd(skb);
spin_lock_irqsave(&hwsim_virtio_lock, flags);
if (!hwsim_virtio_enabled) {
dev_kfree_skb_irq(skb);
goto out_unlock;
}
vq = hwsim_vqs[HWSIM_VQ_RX];
sg_init_one(sg, skb->head, skb_end_offset(skb));
err = virtqueue_add_inbuf(vq, sg, 1, skb, GFP_ATOMIC);
if (WARN(err, "virtqueue_add_inbuf returned %d\n", err))
dev_kfree_skb_irq(skb);
else
virtqueue_kick(vq);
schedule_work(&hwsim_virtio_rx);
out_unlock:
spin_unlock_irqrestore(&hwsim_virtio_lock, flags);
}
static void hwsim_virtio_rx_done(struct virtqueue *vq)
{
schedule_work(&hwsim_virtio_rx);
}
static int init_vqs(struct virtio_device *vdev)
{
struct virtqueue_info vqs_info[HWSIM_NUM_VQS] = {
[HWSIM_VQ_TX] = { "tx", hwsim_virtio_tx_done },
[HWSIM_VQ_RX] = { "rx", hwsim_virtio_rx_done },
};
return virtio_find_vqs(vdev, HWSIM_NUM_VQS,
hwsim_vqs, vqs_info, NULL);
}
static int fill_vq(struct virtqueue *vq)
{
int i, err;
struct sk_buff *skb;
struct scatterlist sg[1];
for (i = 0; i < virtqueue_get_vring_size(vq); i++) {
skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb)
return -ENOMEM;
sg_init_one(sg, skb->head, skb_end_offset(skb));
err = virtqueue_add_inbuf(vq, sg, 1, skb, GFP_KERNEL);
if (err) {
nlmsg_free(skb);
return err;
}
}
virtqueue_kick(vq);
return 0;
}
static void remove_vqs(struct virtio_device *vdev)
{
int i;
virtio_reset_device(vdev);
for (i = 0; i < ARRAY_SIZE(hwsim_vqs); i++) {
struct virtqueue *vq = hwsim_vqs[i];
struct sk_buff *skb;
while ((skb = virtqueue_detach_unused_buf(vq)))
nlmsg_free(skb);
}
vdev->config->del_vqs(vdev);
}
static int hwsim_virtio_probe(struct virtio_device *vdev)
{
int err;
unsigned long flags;
spin_lock_irqsave(&hwsim_virtio_lock, flags);
if (hwsim_virtio_enabled) {
spin_unlock_irqrestore(&hwsim_virtio_lock, flags);
return -EEXIST;
}
spin_unlock_irqrestore(&hwsim_virtio_lock, flags);
err = init_vqs(vdev);
if (err)
return err;
virtio_device_ready(vdev);
err = fill_vq(hwsim_vqs[HWSIM_VQ_RX]);
if (err)
goto out_remove;
spin_lock_irqsave(&hwsim_virtio_lock, flags);
hwsim_virtio_enabled = true;
spin_unlock_irqrestore(&hwsim_virtio_lock, flags);
schedule_work(&hwsim_virtio_rx);
return 0;
out_remove:
remove_vqs(vdev);
return err;
}
static void hwsim_virtio_remove(struct virtio_device *vdev)
{
hwsim_virtio_enabled = false;
cancel_work_sync(&hwsim_virtio_rx);
remove_vqs(vdev);
}
/* MAC80211_HWSIM virtio device id table */
static const struct virtio_device_id id_table[] = {
{ VIRTIO_ID_MAC80211_HWSIM, VIRTIO_DEV_ANY_ID },
{ 0 }
};
MODULE_DEVICE_TABLE(virtio, id_table);
static struct virtio_driver virtio_hwsim = {
.driver.name = KBUILD_MODNAME,
.id_table = id_table,
.probe = hwsim_virtio_probe,
.remove = hwsim_virtio_remove,
};
static int hwsim_register_virtio_driver(void)
{
return register_virtio_driver(&virtio_hwsim);
}
static void hwsim_unregister_virtio_driver(void)
{
unregister_virtio_driver(&virtio_hwsim);
}
#else
static inline int hwsim_register_virtio_driver(void)
{
return 0;
}
static inline void hwsim_unregister_virtio_driver(void)
{
}
#endif
static int __init init_mac80211_hwsim(void)
{
int i, err;
if (radios < 0 || radios > 100)
return -EINVAL;
if (channels < 1)
return -EINVAL;
err = rhashtable_init(&hwsim_radios_rht, &hwsim_rht_params);
if (err)
return err;
err = register_pernet_device(&hwsim_net_ops);
if (err)
goto out_free_rht;
err = platform_driver_register(&mac80211_hwsim_driver);
if (err)
goto out_unregister_pernet;
err = hwsim_init_netlink();
if (err)
goto out_unregister_driver;
err = hwsim_register_virtio_driver();
if (err)
goto out_exit_netlink;
hwsim_class = class_create("mac80211_hwsim");
if (IS_ERR(hwsim_class)) {
err = PTR_ERR(hwsim_class);
goto out_exit_virtio;
}
hwsim_init_s1g_channels(hwsim_channels_s1g);
for (i = 0; i < radios; i++) {
struct hwsim_new_radio_params param = { 0 };
param.channels = channels;
switch (regtest) {
case HWSIM_REGTEST_DIFF_COUNTRY:
if (i < ARRAY_SIZE(hwsim_alpha2s))
param.reg_alpha2 = hwsim_alpha2s[i];
break;
case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
if (!i)
param.reg_alpha2 = hwsim_alpha2s[0];
break;
case HWSIM_REGTEST_STRICT_ALL:
param.reg_strict = true;
fallthrough;
case HWSIM_REGTEST_DRIVER_REG_ALL:
param.reg_alpha2 = hwsim_alpha2s[0];
break;
case HWSIM_REGTEST_WORLD_ROAM:
if (i == 0)
param.regd = &hwsim_world_regdom_custom_01;
break;
case HWSIM_REGTEST_CUSTOM_WORLD:
param.regd = &hwsim_world_regdom_custom_03;
break;
case HWSIM_REGTEST_CUSTOM_WORLD_2:
if (i == 0)
param.regd = &hwsim_world_regdom_custom_03;
else if (i == 1)
param.regd = &hwsim_world_regdom_custom_02;
break;
case HWSIM_REGTEST_STRICT_FOLLOW:
if (i == 0) {
param.reg_strict = true;
param.reg_alpha2 = hwsim_alpha2s[0];
}
break;
case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
if (i == 0) {
param.reg_strict = true;
param.reg_alpha2 = hwsim_alpha2s[0];
} else if (i == 1) {
param.reg_alpha2 = hwsim_alpha2s[1];
}
break;
case HWSIM_REGTEST_ALL:
switch (i) {
case 0:
param.regd = &hwsim_world_regdom_custom_01;
break;
case 1:
param.regd = &hwsim_world_regdom_custom_02;
break;
case 2:
param.reg_alpha2 = hwsim_alpha2s[0];
break;
case 3:
param.reg_alpha2 = hwsim_alpha2s[1];
break;
case 4:
param.reg_strict = true;
param.reg_alpha2 = hwsim_alpha2s[2];
break;
}
break;
default:
break;
}
param.p2p_device = support_p2p_device;
param.mlo = mlo;
param.multi_radio = multi_radio;
param.use_chanctx = channels > 1 || mlo || multi_radio;
param.iftypes = HWSIM_IFTYPE_SUPPORT_MASK;
if (param.p2p_device)
param.iftypes |= BIT(NL80211_IFTYPE_P2P_DEVICE);
err = mac80211_hwsim_new_radio(NULL, &param);
if (err < 0)
goto out_free_radios;
}
hwsim_mon = alloc_netdev(0, "hwsim%d", NET_NAME_UNKNOWN,
hwsim_mon_setup);
if (hwsim_mon == NULL) {
err = -ENOMEM;
goto out_free_radios;
}
rtnl_lock();
err = dev_alloc_name(hwsim_mon, hwsim_mon->name);
if (err < 0) {
rtnl_unlock();
goto out_free_mon;
}
err = register_netdevice(hwsim_mon);
if (err < 0) {
rtnl_unlock();
goto out_free_mon;
}
rtnl_unlock();
return 0;
out_free_mon:
free_netdev(hwsim_mon);
out_free_radios:
mac80211_hwsim_free();
out_exit_virtio:
hwsim_unregister_virtio_driver();
out_exit_netlink:
hwsim_exit_netlink();
out_unregister_driver:
platform_driver_unregister(&mac80211_hwsim_driver);
out_unregister_pernet:
unregister_pernet_device(&hwsim_net_ops);
out_free_rht:
rhashtable_destroy(&hwsim_radios_rht);
return err;
}
module_init(init_mac80211_hwsim);
static void __exit exit_mac80211_hwsim(void)
{
pr_debug("mac80211_hwsim: unregister radios\n");
hwsim_unregister_virtio_driver();
hwsim_exit_netlink();
mac80211_hwsim_free();
rhashtable_destroy(&hwsim_radios_rht);
unregister_netdev(hwsim_mon);
platform_driver_unregister(&mac80211_hwsim_driver);
unregister_pernet_device(&hwsim_net_ops);
}
module_exit(exit_mac80211_hwsim);