| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NVM Express device driver |
| * Copyright (c) 2011-2014, Intel Corporation. |
| */ |
| |
| #include <linux/async.h> |
| #include <linux/blkdev.h> |
| #include <linux/blk-mq.h> |
| #include <linux/blk-integrity.h> |
| #include <linux/compat.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/hdreg.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/backing-dev.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/pr.h> |
| #include <linux/ptrace.h> |
| #include <linux/nvme_ioctl.h> |
| #include <linux/pm_qos.h> |
| #include <linux/ratelimit.h> |
| #include <linux/unaligned.h> |
| |
| #include "nvme.h" |
| #include "fabrics.h" |
| #include <linux/nvme-auth.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #define NVME_MINORS (1U << MINORBITS) |
| |
| struct nvme_ns_info { |
| struct nvme_ns_ids ids; |
| u32 nsid; |
| __le32 anagrpid; |
| u8 pi_offset; |
| bool is_shared; |
| bool is_readonly; |
| bool is_ready; |
| bool is_removed; |
| }; |
| |
| unsigned int admin_timeout = 60; |
| module_param(admin_timeout, uint, 0644); |
| MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); |
| EXPORT_SYMBOL_GPL(admin_timeout); |
| |
| unsigned int nvme_io_timeout = 30; |
| module_param_named(io_timeout, nvme_io_timeout, uint, 0644); |
| MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); |
| EXPORT_SYMBOL_GPL(nvme_io_timeout); |
| |
| static unsigned char shutdown_timeout = 5; |
| module_param(shutdown_timeout, byte, 0644); |
| MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); |
| |
| static u8 nvme_max_retries = 5; |
| module_param_named(max_retries, nvme_max_retries, byte, 0644); |
| MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); |
| |
| static unsigned long default_ps_max_latency_us = 100000; |
| module_param(default_ps_max_latency_us, ulong, 0644); |
| MODULE_PARM_DESC(default_ps_max_latency_us, |
| "max power saving latency for new devices; use PM QOS to change per device"); |
| |
| static bool force_apst; |
| module_param(force_apst, bool, 0644); |
| MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); |
| |
| static unsigned long apst_primary_timeout_ms = 100; |
| module_param(apst_primary_timeout_ms, ulong, 0644); |
| MODULE_PARM_DESC(apst_primary_timeout_ms, |
| "primary APST timeout in ms"); |
| |
| static unsigned long apst_secondary_timeout_ms = 2000; |
| module_param(apst_secondary_timeout_ms, ulong, 0644); |
| MODULE_PARM_DESC(apst_secondary_timeout_ms, |
| "secondary APST timeout in ms"); |
| |
| static unsigned long apst_primary_latency_tol_us = 15000; |
| module_param(apst_primary_latency_tol_us, ulong, 0644); |
| MODULE_PARM_DESC(apst_primary_latency_tol_us, |
| "primary APST latency tolerance in us"); |
| |
| static unsigned long apst_secondary_latency_tol_us = 100000; |
| module_param(apst_secondary_latency_tol_us, ulong, 0644); |
| MODULE_PARM_DESC(apst_secondary_latency_tol_us, |
| "secondary APST latency tolerance in us"); |
| |
| /* |
| * nvme_wq - hosts nvme related works that are not reset or delete |
| * nvme_reset_wq - hosts nvme reset works |
| * nvme_delete_wq - hosts nvme delete works |
| * |
| * nvme_wq will host works such as scan, aen handling, fw activation, |
| * keep-alive, periodic reconnects etc. nvme_reset_wq |
| * runs reset works which also flush works hosted on nvme_wq for |
| * serialization purposes. nvme_delete_wq host controller deletion |
| * works which flush reset works for serialization. |
| */ |
| struct workqueue_struct *nvme_wq; |
| EXPORT_SYMBOL_GPL(nvme_wq); |
| |
| struct workqueue_struct *nvme_reset_wq; |
| EXPORT_SYMBOL_GPL(nvme_reset_wq); |
| |
| struct workqueue_struct *nvme_delete_wq; |
| EXPORT_SYMBOL_GPL(nvme_delete_wq); |
| |
| static LIST_HEAD(nvme_subsystems); |
| DEFINE_MUTEX(nvme_subsystems_lock); |
| |
| static DEFINE_IDA(nvme_instance_ida); |
| static dev_t nvme_ctrl_base_chr_devt; |
| static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); |
| static const struct class nvme_class = { |
| .name = "nvme", |
| .dev_uevent = nvme_class_uevent, |
| }; |
| |
| static const struct class nvme_subsys_class = { |
| .name = "nvme-subsystem", |
| }; |
| |
| static DEFINE_IDA(nvme_ns_chr_minor_ida); |
| static dev_t nvme_ns_chr_devt; |
| static const struct class nvme_ns_chr_class = { |
| .name = "nvme-generic", |
| }; |
| |
| static void nvme_put_subsystem(struct nvme_subsystem *subsys); |
| static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
| unsigned nsid); |
| static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, |
| struct nvme_command *cmd); |
| |
| void nvme_queue_scan(struct nvme_ctrl *ctrl) |
| { |
| /* |
| * Only new queue scan work when admin and IO queues are both alive |
| */ |
| if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) |
| queue_work(nvme_wq, &ctrl->scan_work); |
| } |
| |
| /* |
| * Use this function to proceed with scheduling reset_work for a controller |
| * that had previously been set to the resetting state. This is intended for |
| * code paths that can't be interrupted by other reset attempts. A hot removal |
| * may prevent this from succeeding. |
| */ |
| int nvme_try_sched_reset(struct nvme_ctrl *ctrl) |
| { |
| if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) |
| return -EBUSY; |
| if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) |
| return -EBUSY; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_try_sched_reset); |
| |
| static void nvme_failfast_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
| struct nvme_ctrl, failfast_work); |
| |
| if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) |
| return; |
| |
| set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); |
| dev_info(ctrl->device, "failfast expired\n"); |
| nvme_kick_requeue_lists(ctrl); |
| } |
| |
| static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) |
| { |
| if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) |
| return; |
| |
| schedule_delayed_work(&ctrl->failfast_work, |
| ctrl->opts->fast_io_fail_tmo * HZ); |
| } |
| |
| static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) |
| { |
| if (!ctrl->opts) |
| return; |
| |
| cancel_delayed_work_sync(&ctrl->failfast_work); |
| clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); |
| } |
| |
| |
| int nvme_reset_ctrl(struct nvme_ctrl *ctrl) |
| { |
| if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) |
| return -EBUSY; |
| if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) |
| return -EBUSY; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_reset_ctrl); |
| |
| int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) |
| { |
| int ret; |
| |
| ret = nvme_reset_ctrl(ctrl); |
| if (!ret) { |
| flush_work(&ctrl->reset_work); |
| if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) |
| ret = -ENETRESET; |
| } |
| |
| return ret; |
| } |
| |
| static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) |
| { |
| dev_info(ctrl->device, |
| "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); |
| |
| flush_work(&ctrl->reset_work); |
| nvme_stop_ctrl(ctrl); |
| nvme_remove_namespaces(ctrl); |
| ctrl->ops->delete_ctrl(ctrl); |
| nvme_uninit_ctrl(ctrl); |
| } |
| |
| static void nvme_delete_ctrl_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(work, struct nvme_ctrl, delete_work); |
| |
| nvme_do_delete_ctrl(ctrl); |
| } |
| |
| int nvme_delete_ctrl(struct nvme_ctrl *ctrl) |
| { |
| if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) |
| return -EBUSY; |
| if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) |
| return -EBUSY; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_delete_ctrl); |
| |
| void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) |
| { |
| /* |
| * Keep a reference until nvme_do_delete_ctrl() complete, |
| * since ->delete_ctrl can free the controller. |
| */ |
| nvme_get_ctrl(ctrl); |
| if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) |
| nvme_do_delete_ctrl(ctrl); |
| nvme_put_ctrl(ctrl); |
| } |
| |
| static blk_status_t nvme_error_status(u16 status) |
| { |
| switch (status & NVME_SCT_SC_MASK) { |
| case NVME_SC_SUCCESS: |
| return BLK_STS_OK; |
| case NVME_SC_CAP_EXCEEDED: |
| return BLK_STS_NOSPC; |
| case NVME_SC_LBA_RANGE: |
| case NVME_SC_CMD_INTERRUPTED: |
| case NVME_SC_NS_NOT_READY: |
| return BLK_STS_TARGET; |
| case NVME_SC_BAD_ATTRIBUTES: |
| case NVME_SC_ONCS_NOT_SUPPORTED: |
| case NVME_SC_INVALID_OPCODE: |
| case NVME_SC_INVALID_FIELD: |
| case NVME_SC_INVALID_NS: |
| return BLK_STS_NOTSUPP; |
| case NVME_SC_WRITE_FAULT: |
| case NVME_SC_READ_ERROR: |
| case NVME_SC_UNWRITTEN_BLOCK: |
| case NVME_SC_ACCESS_DENIED: |
| case NVME_SC_READ_ONLY: |
| case NVME_SC_COMPARE_FAILED: |
| return BLK_STS_MEDIUM; |
| case NVME_SC_GUARD_CHECK: |
| case NVME_SC_APPTAG_CHECK: |
| case NVME_SC_REFTAG_CHECK: |
| case NVME_SC_INVALID_PI: |
| return BLK_STS_PROTECTION; |
| case NVME_SC_RESERVATION_CONFLICT: |
| return BLK_STS_RESV_CONFLICT; |
| case NVME_SC_HOST_PATH_ERROR: |
| return BLK_STS_TRANSPORT; |
| case NVME_SC_ZONE_TOO_MANY_ACTIVE: |
| return BLK_STS_ZONE_ACTIVE_RESOURCE; |
| case NVME_SC_ZONE_TOO_MANY_OPEN: |
| return BLK_STS_ZONE_OPEN_RESOURCE; |
| default: |
| return BLK_STS_IOERR; |
| } |
| } |
| |
| static void nvme_retry_req(struct request *req) |
| { |
| unsigned long delay = 0; |
| u16 crd; |
| |
| /* The mask and shift result must be <= 3 */ |
| crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; |
| if (crd) |
| delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; |
| |
| nvme_req(req)->retries++; |
| blk_mq_requeue_request(req, false); |
| blk_mq_delay_kick_requeue_list(req->q, delay); |
| } |
| |
| static void nvme_log_error(struct request *req) |
| { |
| struct nvme_ns *ns = req->q->queuedata; |
| struct nvme_request *nr = nvme_req(req); |
| |
| if (ns) { |
| pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", |
| ns->disk ? ns->disk->disk_name : "?", |
| nvme_get_opcode_str(nr->cmd->common.opcode), |
| nr->cmd->common.opcode, |
| nvme_sect_to_lba(ns->head, blk_rq_pos(req)), |
| blk_rq_bytes(req) >> ns->head->lba_shift, |
| nvme_get_error_status_str(nr->status), |
| NVME_SCT(nr->status), /* Status Code Type */ |
| nr->status & NVME_SC_MASK, /* Status Code */ |
| nr->status & NVME_STATUS_MORE ? "MORE " : "", |
| nr->status & NVME_STATUS_DNR ? "DNR " : ""); |
| return; |
| } |
| |
| pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", |
| dev_name(nr->ctrl->device), |
| nvme_get_admin_opcode_str(nr->cmd->common.opcode), |
| nr->cmd->common.opcode, |
| nvme_get_error_status_str(nr->status), |
| NVME_SCT(nr->status), /* Status Code Type */ |
| nr->status & NVME_SC_MASK, /* Status Code */ |
| nr->status & NVME_STATUS_MORE ? "MORE " : "", |
| nr->status & NVME_STATUS_DNR ? "DNR " : ""); |
| } |
| |
| static void nvme_log_err_passthru(struct request *req) |
| { |
| struct nvme_ns *ns = req->q->queuedata; |
| struct nvme_request *nr = nvme_req(req); |
| |
| pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" |
| "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", |
| ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), |
| ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : |
| nvme_get_admin_opcode_str(nr->cmd->common.opcode), |
| nr->cmd->common.opcode, |
| nvme_get_error_status_str(nr->status), |
| NVME_SCT(nr->status), /* Status Code Type */ |
| nr->status & NVME_SC_MASK, /* Status Code */ |
| nr->status & NVME_STATUS_MORE ? "MORE " : "", |
| nr->status & NVME_STATUS_DNR ? "DNR " : "", |
| nr->cmd->common.cdw10, |
| nr->cmd->common.cdw11, |
| nr->cmd->common.cdw12, |
| nr->cmd->common.cdw13, |
| nr->cmd->common.cdw14, |
| nr->cmd->common.cdw14); |
| } |
| |
| enum nvme_disposition { |
| COMPLETE, |
| RETRY, |
| FAILOVER, |
| AUTHENTICATE, |
| }; |
| |
| static inline enum nvme_disposition nvme_decide_disposition(struct request *req) |
| { |
| if (likely(nvme_req(req)->status == 0)) |
| return COMPLETE; |
| |
| if (blk_noretry_request(req) || |
| (nvme_req(req)->status & NVME_STATUS_DNR) || |
| nvme_req(req)->retries >= nvme_max_retries) |
| return COMPLETE; |
| |
| if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) |
| return AUTHENTICATE; |
| |
| if (req->cmd_flags & REQ_NVME_MPATH) { |
| if (nvme_is_path_error(nvme_req(req)->status) || |
| blk_queue_dying(req->q)) |
| return FAILOVER; |
| } else { |
| if (blk_queue_dying(req->q)) |
| return COMPLETE; |
| } |
| |
| return RETRY; |
| } |
| |
| static inline void nvme_end_req_zoned(struct request *req) |
| { |
| if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
| req_op(req) == REQ_OP_ZONE_APPEND) { |
| struct nvme_ns *ns = req->q->queuedata; |
| |
| req->__sector = nvme_lba_to_sect(ns->head, |
| le64_to_cpu(nvme_req(req)->result.u64)); |
| } |
| } |
| |
| static inline void __nvme_end_req(struct request *req) |
| { |
| nvme_end_req_zoned(req); |
| nvme_trace_bio_complete(req); |
| if (req->cmd_flags & REQ_NVME_MPATH) |
| nvme_mpath_end_request(req); |
| } |
| |
| void nvme_end_req(struct request *req) |
| { |
| blk_status_t status = nvme_error_status(nvme_req(req)->status); |
| |
| if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { |
| if (blk_rq_is_passthrough(req)) |
| nvme_log_err_passthru(req); |
| else |
| nvme_log_error(req); |
| } |
| __nvme_end_req(req); |
| blk_mq_end_request(req, status); |
| } |
| |
| void nvme_complete_rq(struct request *req) |
| { |
| struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; |
| |
| trace_nvme_complete_rq(req); |
| nvme_cleanup_cmd(req); |
| |
| /* |
| * Completions of long-running commands should not be able to |
| * defer sending of periodic keep alives, since the controller |
| * may have completed processing such commands a long time ago |
| * (arbitrarily close to command submission time). |
| * req->deadline - req->timeout is the command submission time |
| * in jiffies. |
| */ |
| if (ctrl->kas && |
| req->deadline - req->timeout >= ctrl->ka_last_check_time) |
| ctrl->comp_seen = true; |
| |
| switch (nvme_decide_disposition(req)) { |
| case COMPLETE: |
| nvme_end_req(req); |
| return; |
| case RETRY: |
| nvme_retry_req(req); |
| return; |
| case FAILOVER: |
| nvme_failover_req(req); |
| return; |
| case AUTHENTICATE: |
| #ifdef CONFIG_NVME_HOST_AUTH |
| queue_work(nvme_wq, &ctrl->dhchap_auth_work); |
| nvme_retry_req(req); |
| #else |
| nvme_end_req(req); |
| #endif |
| return; |
| } |
| } |
| EXPORT_SYMBOL_GPL(nvme_complete_rq); |
| |
| void nvme_complete_batch_req(struct request *req) |
| { |
| trace_nvme_complete_rq(req); |
| nvme_cleanup_cmd(req); |
| __nvme_end_req(req); |
| } |
| EXPORT_SYMBOL_GPL(nvme_complete_batch_req); |
| |
| /* |
| * Called to unwind from ->queue_rq on a failed command submission so that the |
| * multipathing code gets called to potentially failover to another path. |
| * The caller needs to unwind all transport specific resource allocations and |
| * must return propagate the return value. |
| */ |
| blk_status_t nvme_host_path_error(struct request *req) |
| { |
| nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; |
| blk_mq_set_request_complete(req); |
| nvme_complete_rq(req); |
| return BLK_STS_OK; |
| } |
| EXPORT_SYMBOL_GPL(nvme_host_path_error); |
| |
| bool nvme_cancel_request(struct request *req, void *data) |
| { |
| dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, |
| "Cancelling I/O %d", req->tag); |
| |
| /* don't abort one completed or idle request */ |
| if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) |
| return true; |
| |
| nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; |
| nvme_req(req)->flags |= NVME_REQ_CANCELLED; |
| blk_mq_complete_request(req); |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(nvme_cancel_request); |
| |
| void nvme_cancel_tagset(struct nvme_ctrl *ctrl) |
| { |
| if (ctrl->tagset) { |
| blk_mq_tagset_busy_iter(ctrl->tagset, |
| nvme_cancel_request, ctrl); |
| blk_mq_tagset_wait_completed_request(ctrl->tagset); |
| } |
| } |
| EXPORT_SYMBOL_GPL(nvme_cancel_tagset); |
| |
| void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) |
| { |
| if (ctrl->admin_tagset) { |
| blk_mq_tagset_busy_iter(ctrl->admin_tagset, |
| nvme_cancel_request, ctrl); |
| blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); |
| } |
| } |
| EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); |
| |
| bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, |
| enum nvme_ctrl_state new_state) |
| { |
| enum nvme_ctrl_state old_state; |
| unsigned long flags; |
| bool changed = false; |
| |
| spin_lock_irqsave(&ctrl->lock, flags); |
| |
| old_state = nvme_ctrl_state(ctrl); |
| switch (new_state) { |
| case NVME_CTRL_LIVE: |
| switch (old_state) { |
| case NVME_CTRL_NEW: |
| case NVME_CTRL_RESETTING: |
| case NVME_CTRL_CONNECTING: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_RESETTING: |
| switch (old_state) { |
| case NVME_CTRL_NEW: |
| case NVME_CTRL_LIVE: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_CONNECTING: |
| switch (old_state) { |
| case NVME_CTRL_NEW: |
| case NVME_CTRL_RESETTING: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_DELETING: |
| switch (old_state) { |
| case NVME_CTRL_LIVE: |
| case NVME_CTRL_RESETTING: |
| case NVME_CTRL_CONNECTING: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_DELETING_NOIO: |
| switch (old_state) { |
| case NVME_CTRL_DELETING: |
| case NVME_CTRL_DEAD: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| case NVME_CTRL_DEAD: |
| switch (old_state) { |
| case NVME_CTRL_DELETING: |
| changed = true; |
| fallthrough; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (changed) { |
| WRITE_ONCE(ctrl->state, new_state); |
| wake_up_all(&ctrl->state_wq); |
| } |
| |
| spin_unlock_irqrestore(&ctrl->lock, flags); |
| if (!changed) |
| return false; |
| |
| if (new_state == NVME_CTRL_LIVE) { |
| if (old_state == NVME_CTRL_CONNECTING) |
| nvme_stop_failfast_work(ctrl); |
| nvme_kick_requeue_lists(ctrl); |
| } else if (new_state == NVME_CTRL_CONNECTING && |
| old_state == NVME_CTRL_RESETTING) { |
| nvme_start_failfast_work(ctrl); |
| } |
| return changed; |
| } |
| EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); |
| |
| /* |
| * Waits for the controller state to be resetting, or returns false if it is |
| * not possible to ever transition to that state. |
| */ |
| bool nvme_wait_reset(struct nvme_ctrl *ctrl) |
| { |
| wait_event(ctrl->state_wq, |
| nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || |
| nvme_state_terminal(ctrl)); |
| return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; |
| } |
| EXPORT_SYMBOL_GPL(nvme_wait_reset); |
| |
| static void nvme_free_ns_head(struct kref *ref) |
| { |
| struct nvme_ns_head *head = |
| container_of(ref, struct nvme_ns_head, ref); |
| |
| nvme_mpath_remove_disk(head); |
| ida_free(&head->subsys->ns_ida, head->instance); |
| cleanup_srcu_struct(&head->srcu); |
| nvme_put_subsystem(head->subsys); |
| kfree(head); |
| } |
| |
| bool nvme_tryget_ns_head(struct nvme_ns_head *head) |
| { |
| return kref_get_unless_zero(&head->ref); |
| } |
| |
| void nvme_put_ns_head(struct nvme_ns_head *head) |
| { |
| kref_put(&head->ref, nvme_free_ns_head); |
| } |
| |
| static void nvme_free_ns(struct kref *kref) |
| { |
| struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); |
| |
| put_disk(ns->disk); |
| nvme_put_ns_head(ns->head); |
| nvme_put_ctrl(ns->ctrl); |
| kfree(ns); |
| } |
| |
| bool nvme_get_ns(struct nvme_ns *ns) |
| { |
| return kref_get_unless_zero(&ns->kref); |
| } |
| |
| void nvme_put_ns(struct nvme_ns *ns) |
| { |
| kref_put(&ns->kref, nvme_free_ns); |
| } |
| EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); |
| |
| static inline void nvme_clear_nvme_request(struct request *req) |
| { |
| nvme_req(req)->status = 0; |
| nvme_req(req)->retries = 0; |
| nvme_req(req)->flags = 0; |
| req->rq_flags |= RQF_DONTPREP; |
| } |
| |
| /* initialize a passthrough request */ |
| void nvme_init_request(struct request *req, struct nvme_command *cmd) |
| { |
| struct nvme_request *nr = nvme_req(req); |
| bool logging_enabled; |
| |
| if (req->q->queuedata) { |
| struct nvme_ns *ns = req->q->disk->private_data; |
| |
| logging_enabled = ns->head->passthru_err_log_enabled; |
| req->timeout = NVME_IO_TIMEOUT; |
| } else { /* no queuedata implies admin queue */ |
| logging_enabled = nr->ctrl->passthru_err_log_enabled; |
| req->timeout = NVME_ADMIN_TIMEOUT; |
| } |
| |
| if (!logging_enabled) |
| req->rq_flags |= RQF_QUIET; |
| |
| /* passthru commands should let the driver set the SGL flags */ |
| cmd->common.flags &= ~NVME_CMD_SGL_ALL; |
| |
| req->cmd_flags |= REQ_FAILFAST_DRIVER; |
| if (req->mq_hctx->type == HCTX_TYPE_POLL) |
| req->cmd_flags |= REQ_POLLED; |
| nvme_clear_nvme_request(req); |
| memcpy(nr->cmd, cmd, sizeof(*cmd)); |
| } |
| EXPORT_SYMBOL_GPL(nvme_init_request); |
| |
| /* |
| * For something we're not in a state to send to the device the default action |
| * is to busy it and retry it after the controller state is recovered. However, |
| * if the controller is deleting or if anything is marked for failfast or |
| * nvme multipath it is immediately failed. |
| * |
| * Note: commands used to initialize the controller will be marked for failfast. |
| * Note: nvme cli/ioctl commands are marked for failfast. |
| */ |
| blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, |
| struct request *rq) |
| { |
| enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
| |
| if (state != NVME_CTRL_DELETING_NOIO && |
| state != NVME_CTRL_DELETING && |
| state != NVME_CTRL_DEAD && |
| !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && |
| !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) |
| return BLK_STS_RESOURCE; |
| return nvme_host_path_error(rq); |
| } |
| EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); |
| |
| bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, |
| bool queue_live, enum nvme_ctrl_state state) |
| { |
| struct nvme_request *req = nvme_req(rq); |
| |
| /* |
| * currently we have a problem sending passthru commands |
| * on the admin_q if the controller is not LIVE because we can't |
| * make sure that they are going out after the admin connect, |
| * controller enable and/or other commands in the initialization |
| * sequence. until the controller will be LIVE, fail with |
| * BLK_STS_RESOURCE so that they will be rescheduled. |
| */ |
| if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) |
| return false; |
| |
| if (ctrl->ops->flags & NVME_F_FABRICS) { |
| /* |
| * Only allow commands on a live queue, except for the connect |
| * command, which is require to set the queue live in the |
| * appropinquate states. |
| */ |
| switch (state) { |
| case NVME_CTRL_CONNECTING: |
| if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && |
| (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || |
| req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || |
| req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) |
| return true; |
| break; |
| default: |
| break; |
| case NVME_CTRL_DEAD: |
| return false; |
| } |
| } |
| |
| return queue_live; |
| } |
| EXPORT_SYMBOL_GPL(__nvme_check_ready); |
| |
| static inline void nvme_setup_flush(struct nvme_ns *ns, |
| struct nvme_command *cmnd) |
| { |
| memset(cmnd, 0, sizeof(*cmnd)); |
| cmnd->common.opcode = nvme_cmd_flush; |
| cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); |
| } |
| |
| static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, |
| struct nvme_command *cmnd) |
| { |
| unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; |
| struct nvme_dsm_range *range; |
| struct bio *bio; |
| |
| /* |
| * Some devices do not consider the DSM 'Number of Ranges' field when |
| * determining how much data to DMA. Always allocate memory for maximum |
| * number of segments to prevent device reading beyond end of buffer. |
| */ |
| static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; |
| |
| range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); |
| if (!range) { |
| /* |
| * If we fail allocation our range, fallback to the controller |
| * discard page. If that's also busy, it's safe to return |
| * busy, as we know we can make progress once that's freed. |
| */ |
| if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) |
| return BLK_STS_RESOURCE; |
| |
| range = page_address(ns->ctrl->discard_page); |
| } |
| |
| if (queue_max_discard_segments(req->q) == 1) { |
| u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); |
| u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); |
| |
| range[0].cattr = cpu_to_le32(0); |
| range[0].nlb = cpu_to_le32(nlb); |
| range[0].slba = cpu_to_le64(slba); |
| n = 1; |
| } else { |
| __rq_for_each_bio(bio, req) { |
| u64 slba = nvme_sect_to_lba(ns->head, |
| bio->bi_iter.bi_sector); |
| u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; |
| |
| if (n < segments) { |
| range[n].cattr = cpu_to_le32(0); |
| range[n].nlb = cpu_to_le32(nlb); |
| range[n].slba = cpu_to_le64(slba); |
| } |
| n++; |
| } |
| } |
| |
| if (WARN_ON_ONCE(n != segments)) { |
| if (virt_to_page(range) == ns->ctrl->discard_page) |
| clear_bit_unlock(0, &ns->ctrl->discard_page_busy); |
| else |
| kfree(range); |
| return BLK_STS_IOERR; |
| } |
| |
| memset(cmnd, 0, sizeof(*cmnd)); |
| cmnd->dsm.opcode = nvme_cmd_dsm; |
| cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); |
| cmnd->dsm.nr = cpu_to_le32(segments - 1); |
| cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); |
| |
| bvec_set_virt(&req->special_vec, range, alloc_size); |
| req->rq_flags |= RQF_SPECIAL_PAYLOAD; |
| |
| return BLK_STS_OK; |
| } |
| |
| static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, |
| struct request *req) |
| { |
| u32 upper, lower; |
| u64 ref48; |
| |
| /* both rw and write zeroes share the same reftag format */ |
| switch (ns->head->guard_type) { |
| case NVME_NVM_NS_16B_GUARD: |
| cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); |
| break; |
| case NVME_NVM_NS_64B_GUARD: |
| ref48 = ext_pi_ref_tag(req); |
| lower = lower_32_bits(ref48); |
| upper = upper_32_bits(ref48); |
| |
| cmnd->rw.reftag = cpu_to_le32(lower); |
| cmnd->rw.cdw3 = cpu_to_le32(upper); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, |
| struct request *req, struct nvme_command *cmnd) |
| { |
| memset(cmnd, 0, sizeof(*cmnd)); |
| |
| if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) |
| return nvme_setup_discard(ns, req, cmnd); |
| |
| cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; |
| cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); |
| cmnd->write_zeroes.slba = |
| cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); |
| cmnd->write_zeroes.length = |
| cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); |
| |
| if (!(req->cmd_flags & REQ_NOUNMAP) && |
| (ns->head->features & NVME_NS_DEAC)) |
| cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); |
| |
| if (nvme_ns_has_pi(ns->head)) { |
| cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); |
| |
| switch (ns->head->pi_type) { |
| case NVME_NS_DPS_PI_TYPE1: |
| case NVME_NS_DPS_PI_TYPE2: |
| nvme_set_ref_tag(ns, cmnd, req); |
| break; |
| } |
| } |
| |
| return BLK_STS_OK; |
| } |
| |
| /* |
| * NVMe does not support a dedicated command to issue an atomic write. A write |
| * which does adhere to the device atomic limits will silently be executed |
| * non-atomically. The request issuer should ensure that the write is within |
| * the queue atomic writes limits, but just validate this in case it is not. |
| */ |
| static bool nvme_valid_atomic_write(struct request *req) |
| { |
| struct request_queue *q = req->q; |
| u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); |
| |
| if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) |
| return false; |
| |
| if (boundary_bytes) { |
| u64 mask = boundary_bytes - 1, imask = ~mask; |
| u64 start = blk_rq_pos(req) << SECTOR_SHIFT; |
| u64 end = start + blk_rq_bytes(req) - 1; |
| |
| /* If greater then must be crossing a boundary */ |
| if (blk_rq_bytes(req) > boundary_bytes) |
| return false; |
| |
| if ((start & imask) != (end & imask)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, |
| struct request *req, struct nvme_command *cmnd, |
| enum nvme_opcode op) |
| { |
| u16 control = 0; |
| u32 dsmgmt = 0; |
| |
| if (req->cmd_flags & REQ_FUA) |
| control |= NVME_RW_FUA; |
| if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) |
| control |= NVME_RW_LR; |
| |
| if (req->cmd_flags & REQ_RAHEAD) |
| dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; |
| |
| if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) |
| return BLK_STS_INVAL; |
| |
| cmnd->rw.opcode = op; |
| cmnd->rw.flags = 0; |
| cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); |
| cmnd->rw.cdw2 = 0; |
| cmnd->rw.cdw3 = 0; |
| cmnd->rw.metadata = 0; |
| cmnd->rw.slba = |
| cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); |
| cmnd->rw.length = |
| cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); |
| cmnd->rw.reftag = 0; |
| cmnd->rw.lbat = 0; |
| cmnd->rw.lbatm = 0; |
| |
| if (ns->head->ms) { |
| /* |
| * If formated with metadata, the block layer always provides a |
| * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else |
| * we enable the PRACT bit for protection information or set the |
| * namespace capacity to zero to prevent any I/O. |
| */ |
| if (!blk_integrity_rq(req)) { |
| if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) |
| return BLK_STS_NOTSUPP; |
| control |= NVME_RW_PRINFO_PRACT; |
| } |
| |
| switch (ns->head->pi_type) { |
| case NVME_NS_DPS_PI_TYPE3: |
| control |= NVME_RW_PRINFO_PRCHK_GUARD; |
| break; |
| case NVME_NS_DPS_PI_TYPE1: |
| case NVME_NS_DPS_PI_TYPE2: |
| control |= NVME_RW_PRINFO_PRCHK_GUARD | |
| NVME_RW_PRINFO_PRCHK_REF; |
| if (op == nvme_cmd_zone_append) |
| control |= NVME_RW_APPEND_PIREMAP; |
| nvme_set_ref_tag(ns, cmnd, req); |
| break; |
| } |
| } |
| |
| cmnd->rw.control = cpu_to_le16(control); |
| cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); |
| return 0; |
| } |
| |
| void nvme_cleanup_cmd(struct request *req) |
| { |
| if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { |
| struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; |
| |
| if (req->special_vec.bv_page == ctrl->discard_page) |
| clear_bit_unlock(0, &ctrl->discard_page_busy); |
| else |
| kfree(bvec_virt(&req->special_vec)); |
| req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; |
| } |
| } |
| EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); |
| |
| blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) |
| { |
| struct nvme_command *cmd = nvme_req(req)->cmd; |
| blk_status_t ret = BLK_STS_OK; |
| |
| if (!(req->rq_flags & RQF_DONTPREP)) |
| nvme_clear_nvme_request(req); |
| |
| switch (req_op(req)) { |
| case REQ_OP_DRV_IN: |
| case REQ_OP_DRV_OUT: |
| /* these are setup prior to execution in nvme_init_request() */ |
| break; |
| case REQ_OP_FLUSH: |
| nvme_setup_flush(ns, cmd); |
| break; |
| case REQ_OP_ZONE_RESET_ALL: |
| case REQ_OP_ZONE_RESET: |
| ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); |
| break; |
| case REQ_OP_ZONE_OPEN: |
| ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); |
| break; |
| case REQ_OP_ZONE_CLOSE: |
| ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); |
| break; |
| case REQ_OP_ZONE_FINISH: |
| ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); |
| break; |
| case REQ_OP_WRITE_ZEROES: |
| ret = nvme_setup_write_zeroes(ns, req, cmd); |
| break; |
| case REQ_OP_DISCARD: |
| ret = nvme_setup_discard(ns, req, cmd); |
| break; |
| case REQ_OP_READ: |
| ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); |
| break; |
| case REQ_OP_WRITE: |
| ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); |
| break; |
| case REQ_OP_ZONE_APPEND: |
| ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| return BLK_STS_IOERR; |
| } |
| |
| cmd->common.command_id = nvme_cid(req); |
| trace_nvme_setup_cmd(req, cmd); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_setup_cmd); |
| |
| /* |
| * Return values: |
| * 0: success |
| * >0: nvme controller's cqe status response |
| * <0: kernel error in lieu of controller response |
| */ |
| int nvme_execute_rq(struct request *rq, bool at_head) |
| { |
| blk_status_t status; |
| |
| status = blk_execute_rq(rq, at_head); |
| if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) |
| return -EINTR; |
| if (nvme_req(rq)->status) |
| return nvme_req(rq)->status; |
| return blk_status_to_errno(status); |
| } |
| EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); |
| |
| /* |
| * Returns 0 on success. If the result is negative, it's a Linux error code; |
| * if the result is positive, it's an NVM Express status code |
| */ |
| int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
| union nvme_result *result, void *buffer, unsigned bufflen, |
| int qid, nvme_submit_flags_t flags) |
| { |
| struct request *req; |
| int ret; |
| blk_mq_req_flags_t blk_flags = 0; |
| |
| if (flags & NVME_SUBMIT_NOWAIT) |
| blk_flags |= BLK_MQ_REQ_NOWAIT; |
| if (flags & NVME_SUBMIT_RESERVED) |
| blk_flags |= BLK_MQ_REQ_RESERVED; |
| if (qid == NVME_QID_ANY) |
| req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); |
| else |
| req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, |
| qid - 1); |
| |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| nvme_init_request(req, cmd); |
| if (flags & NVME_SUBMIT_RETRY) |
| req->cmd_flags &= ~REQ_FAILFAST_DRIVER; |
| |
| if (buffer && bufflen) { |
| ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); |
| if (ret) |
| goto out; |
| } |
| |
| ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); |
| if (result && ret >= 0) |
| *result = nvme_req(req)->result; |
| out: |
| blk_mq_free_request(req); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); |
| |
| int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
| void *buffer, unsigned bufflen) |
| { |
| return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, |
| NVME_QID_ANY, 0); |
| } |
| EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); |
| |
| u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) |
| { |
| u32 effects = 0; |
| |
| if (ns) { |
| effects = le32_to_cpu(ns->head->effects->iocs[opcode]); |
| if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) |
| dev_warn_once(ctrl->device, |
| "IO command:%02x has unusual effects:%08x\n", |
| opcode, effects); |
| |
| /* |
| * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, |
| * which would deadlock when done on an I/O command. Note that |
| * We already warn about an unusual effect above. |
| */ |
| effects &= ~NVME_CMD_EFFECTS_CSE_MASK; |
| } else { |
| effects = le32_to_cpu(ctrl->effects->acs[opcode]); |
| |
| /* Ignore execution restrictions if any relaxation bits are set */ |
| if (effects & NVME_CMD_EFFECTS_CSER_MASK) |
| effects &= ~NVME_CMD_EFFECTS_CSE_MASK; |
| } |
| |
| return effects; |
| } |
| EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); |
| |
| u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) |
| { |
| u32 effects = nvme_command_effects(ctrl, ns, opcode); |
| |
| /* |
| * For simplicity, IO to all namespaces is quiesced even if the command |
| * effects say only one namespace is affected. |
| */ |
| if (effects & NVME_CMD_EFFECTS_CSE_MASK) { |
| mutex_lock(&ctrl->scan_lock); |
| mutex_lock(&ctrl->subsys->lock); |
| nvme_mpath_start_freeze(ctrl->subsys); |
| nvme_mpath_wait_freeze(ctrl->subsys); |
| nvme_start_freeze(ctrl); |
| nvme_wait_freeze(ctrl); |
| } |
| return effects; |
| } |
| EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); |
| |
| void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, |
| struct nvme_command *cmd, int status) |
| { |
| if (effects & NVME_CMD_EFFECTS_CSE_MASK) { |
| nvme_unfreeze(ctrl); |
| nvme_mpath_unfreeze(ctrl->subsys); |
| mutex_unlock(&ctrl->subsys->lock); |
| mutex_unlock(&ctrl->scan_lock); |
| } |
| if (effects & NVME_CMD_EFFECTS_CCC) { |
| if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, |
| &ctrl->flags)) { |
| dev_info(ctrl->device, |
| "controller capabilities changed, reset may be required to take effect.\n"); |
| } |
| } |
| if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { |
| nvme_queue_scan(ctrl); |
| flush_work(&ctrl->scan_work); |
| } |
| if (ns) |
| return; |
| |
| switch (cmd->common.opcode) { |
| case nvme_admin_set_features: |
| switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { |
| case NVME_FEAT_KATO: |
| /* |
| * Keep alive commands interval on the host should be |
| * updated when KATO is modified by Set Features |
| * commands. |
| */ |
| if (!status) |
| nvme_update_keep_alive(ctrl, cmd); |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); |
| |
| /* |
| * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: |
| * |
| * The host should send Keep Alive commands at half of the Keep Alive Timeout |
| * accounting for transport roundtrip times [..]. |
| */ |
| static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) |
| { |
| unsigned long delay = ctrl->kato * HZ / 2; |
| |
| /* |
| * When using Traffic Based Keep Alive, we need to run |
| * nvme_keep_alive_work at twice the normal frequency, as one |
| * command completion can postpone sending a keep alive command |
| * by up to twice the delay between runs. |
| */ |
| if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) |
| delay /= 2; |
| return delay; |
| } |
| |
| static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) |
| { |
| unsigned long now = jiffies; |
| unsigned long delay = nvme_keep_alive_work_period(ctrl); |
| unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; |
| |
| if (time_after(now, ka_next_check_tm)) |
| delay = 0; |
| else |
| delay = ka_next_check_tm - now; |
| |
| queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); |
| } |
| |
| static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, |
| blk_status_t status) |
| { |
| struct nvme_ctrl *ctrl = rq->end_io_data; |
| unsigned long flags; |
| bool startka = false; |
| unsigned long rtt = jiffies - (rq->deadline - rq->timeout); |
| unsigned long delay = nvme_keep_alive_work_period(ctrl); |
| |
| /* |
| * Subtract off the keepalive RTT so nvme_keep_alive_work runs |
| * at the desired frequency. |
| */ |
| if (rtt <= delay) { |
| delay -= rtt; |
| } else { |
| dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", |
| jiffies_to_msecs(rtt)); |
| delay = 0; |
| } |
| |
| blk_mq_free_request(rq); |
| |
| if (status) { |
| dev_err(ctrl->device, |
| "failed nvme_keep_alive_end_io error=%d\n", |
| status); |
| return RQ_END_IO_NONE; |
| } |
| |
| ctrl->ka_last_check_time = jiffies; |
| ctrl->comp_seen = false; |
| spin_lock_irqsave(&ctrl->lock, flags); |
| if (ctrl->state == NVME_CTRL_LIVE || |
| ctrl->state == NVME_CTRL_CONNECTING) |
| startka = true; |
| spin_unlock_irqrestore(&ctrl->lock, flags); |
| if (startka) |
| queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); |
| return RQ_END_IO_NONE; |
| } |
| |
| static void nvme_keep_alive_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
| struct nvme_ctrl, ka_work); |
| bool comp_seen = ctrl->comp_seen; |
| struct request *rq; |
| |
| ctrl->ka_last_check_time = jiffies; |
| |
| if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { |
| dev_dbg(ctrl->device, |
| "reschedule traffic based keep-alive timer\n"); |
| ctrl->comp_seen = false; |
| nvme_queue_keep_alive_work(ctrl); |
| return; |
| } |
| |
| rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), |
| BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); |
| if (IS_ERR(rq)) { |
| /* allocation failure, reset the controller */ |
| dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); |
| nvme_reset_ctrl(ctrl); |
| return; |
| } |
| nvme_init_request(rq, &ctrl->ka_cmd); |
| |
| rq->timeout = ctrl->kato * HZ; |
| rq->end_io = nvme_keep_alive_end_io; |
| rq->end_io_data = ctrl; |
| blk_execute_rq_nowait(rq, false); |
| } |
| |
| static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) |
| { |
| if (unlikely(ctrl->kato == 0)) |
| return; |
| |
| nvme_queue_keep_alive_work(ctrl); |
| } |
| |
| void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) |
| { |
| if (unlikely(ctrl->kato == 0)) |
| return; |
| |
| cancel_delayed_work_sync(&ctrl->ka_work); |
| } |
| EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); |
| |
| static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, |
| struct nvme_command *cmd) |
| { |
| unsigned int new_kato = |
| DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); |
| |
| dev_info(ctrl->device, |
| "keep alive interval updated from %u ms to %u ms\n", |
| ctrl->kato * 1000 / 2, new_kato * 1000 / 2); |
| |
| nvme_stop_keep_alive(ctrl); |
| ctrl->kato = new_kato; |
| nvme_start_keep_alive(ctrl); |
| } |
| |
| /* |
| * In NVMe 1.0 the CNS field was just a binary controller or namespace |
| * flag, thus sending any new CNS opcodes has a big chance of not working. |
| * Qemu unfortunately had that bug after reporting a 1.1 version compliance |
| * (but not for any later version). |
| */ |
| static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) |
| { |
| if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) |
| return ctrl->vs < NVME_VS(1, 2, 0); |
| return ctrl->vs < NVME_VS(1, 1, 0); |
| } |
| |
| static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) |
| { |
| struct nvme_command c = { }; |
| int error; |
| |
| /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.cns = NVME_ID_CNS_CTRL; |
| |
| *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); |
| if (!*id) |
| return -ENOMEM; |
| |
| error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, |
| sizeof(struct nvme_id_ctrl)); |
| if (error) { |
| kfree(*id); |
| *id = NULL; |
| } |
| return error; |
| } |
| |
| static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, |
| struct nvme_ns_id_desc *cur, bool *csi_seen) |
| { |
| const char *warn_str = "ctrl returned bogus length:"; |
| void *data = cur; |
| |
| switch (cur->nidt) { |
| case NVME_NIDT_EUI64: |
| if (cur->nidl != NVME_NIDT_EUI64_LEN) { |
| dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", |
| warn_str, cur->nidl); |
| return -1; |
| } |
| if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
| return NVME_NIDT_EUI64_LEN; |
| memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); |
| return NVME_NIDT_EUI64_LEN; |
| case NVME_NIDT_NGUID: |
| if (cur->nidl != NVME_NIDT_NGUID_LEN) { |
| dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", |
| warn_str, cur->nidl); |
| return -1; |
| } |
| if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
| return NVME_NIDT_NGUID_LEN; |
| memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); |
| return NVME_NIDT_NGUID_LEN; |
| case NVME_NIDT_UUID: |
| if (cur->nidl != NVME_NIDT_UUID_LEN) { |
| dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", |
| warn_str, cur->nidl); |
| return -1; |
| } |
| if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
| return NVME_NIDT_UUID_LEN; |
| uuid_copy(&ids->uuid, data + sizeof(*cur)); |
| return NVME_NIDT_UUID_LEN; |
| case NVME_NIDT_CSI: |
| if (cur->nidl != NVME_NIDT_CSI_LEN) { |
| dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", |
| warn_str, cur->nidl); |
| return -1; |
| } |
| memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); |
| *csi_seen = true; |
| return NVME_NIDT_CSI_LEN; |
| default: |
| /* Skip unknown types */ |
| return cur->nidl; |
| } |
| } |
| |
| static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, |
| struct nvme_ns_info *info) |
| { |
| struct nvme_command c = { }; |
| bool csi_seen = false; |
| int status, pos, len; |
| void *data; |
| |
| if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) |
| return 0; |
| if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) |
| return 0; |
| |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.nsid = cpu_to_le32(info->nsid); |
| c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; |
| |
| data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, |
| NVME_IDENTIFY_DATA_SIZE); |
| if (status) { |
| dev_warn(ctrl->device, |
| "Identify Descriptors failed (nsid=%u, status=0x%x)\n", |
| info->nsid, status); |
| goto free_data; |
| } |
| |
| for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { |
| struct nvme_ns_id_desc *cur = data + pos; |
| |
| if (cur->nidl == 0) |
| break; |
| |
| len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); |
| if (len < 0) |
| break; |
| |
| len += sizeof(*cur); |
| } |
| |
| if (nvme_multi_css(ctrl) && !csi_seen) { |
| dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", |
| info->nsid); |
| status = -EINVAL; |
| } |
| |
| free_data: |
| kfree(data); |
| return status; |
| } |
| |
| int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, |
| struct nvme_id_ns **id) |
| { |
| struct nvme_command c = { }; |
| int error; |
| |
| /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.nsid = cpu_to_le32(nsid); |
| c.identify.cns = NVME_ID_CNS_NS; |
| |
| *id = kmalloc(sizeof(**id), GFP_KERNEL); |
| if (!*id) |
| return -ENOMEM; |
| |
| error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); |
| if (error) { |
| dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); |
| kfree(*id); |
| *id = NULL; |
| } |
| return error; |
| } |
| |
| static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, |
| struct nvme_ns_info *info) |
| { |
| struct nvme_ns_ids *ids = &info->ids; |
| struct nvme_id_ns *id; |
| int ret; |
| |
| ret = nvme_identify_ns(ctrl, info->nsid, &id); |
| if (ret) |
| return ret; |
| |
| if (id->ncap == 0) { |
| /* namespace not allocated or attached */ |
| info->is_removed = true; |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| info->anagrpid = id->anagrpid; |
| info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; |
| info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; |
| info->is_ready = true; |
| if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { |
| dev_info(ctrl->device, |
| "Ignoring bogus Namespace Identifiers\n"); |
| } else { |
| if (ctrl->vs >= NVME_VS(1, 1, 0) && |
| !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) |
| memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); |
| if (ctrl->vs >= NVME_VS(1, 2, 0) && |
| !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) |
| memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); |
| } |
| |
| error: |
| kfree(id); |
| return ret; |
| } |
| |
| static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, |
| struct nvme_ns_info *info) |
| { |
| struct nvme_id_ns_cs_indep *id; |
| struct nvme_command c = { |
| .identify.opcode = nvme_admin_identify, |
| .identify.nsid = cpu_to_le32(info->nsid), |
| .identify.cns = NVME_ID_CNS_NS_CS_INDEP, |
| }; |
| int ret; |
| |
| id = kmalloc(sizeof(*id), GFP_KERNEL); |
| if (!id) |
| return -ENOMEM; |
| |
| ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); |
| if (!ret) { |
| info->anagrpid = id->anagrpid; |
| info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; |
| info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; |
| info->is_ready = id->nstat & NVME_NSTAT_NRDY; |
| } |
| kfree(id); |
| return ret; |
| } |
| |
| static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, |
| unsigned int dword11, void *buffer, size_t buflen, u32 *result) |
| { |
| union nvme_result res = { 0 }; |
| struct nvme_command c = { }; |
| int ret; |
| |
| c.features.opcode = op; |
| c.features.fid = cpu_to_le32(fid); |
| c.features.dword11 = cpu_to_le32(dword11); |
| |
| ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, |
| buffer, buflen, NVME_QID_ANY, 0); |
| if (ret >= 0 && result) |
| *result = le32_to_cpu(res.u32); |
| return ret; |
| } |
| |
| int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, |
| unsigned int dword11, void *buffer, size_t buflen, |
| u32 *result) |
| { |
| return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, |
| buflen, result); |
| } |
| EXPORT_SYMBOL_GPL(nvme_set_features); |
| |
| int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, |
| unsigned int dword11, void *buffer, size_t buflen, |
| u32 *result) |
| { |
| return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, |
| buflen, result); |
| } |
| EXPORT_SYMBOL_GPL(nvme_get_features); |
| |
| int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) |
| { |
| u32 q_count = (*count - 1) | ((*count - 1) << 16); |
| u32 result; |
| int status, nr_io_queues; |
| |
| status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, |
| &result); |
| if (status < 0) |
| return status; |
| |
| /* |
| * Degraded controllers might return an error when setting the queue |
| * count. We still want to be able to bring them online and offer |
| * access to the admin queue, as that might be only way to fix them up. |
| */ |
| if (status > 0) { |
| dev_err(ctrl->device, "Could not set queue count (%d)\n", status); |
| *count = 0; |
| } else { |
| nr_io_queues = min(result & 0xffff, result >> 16) + 1; |
| *count = min(*count, nr_io_queues); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_set_queue_count); |
| |
| #define NVME_AEN_SUPPORTED \ |
| (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ |
| NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) |
| |
| static void nvme_enable_aen(struct nvme_ctrl *ctrl) |
| { |
| u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; |
| int status; |
| |
| if (!supported_aens) |
| return; |
| |
| status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, |
| NULL, 0, &result); |
| if (status) |
| dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", |
| supported_aens); |
| |
| queue_work(nvme_wq, &ctrl->async_event_work); |
| } |
| |
| static int nvme_ns_open(struct nvme_ns *ns) |
| { |
| |
| /* should never be called due to GENHD_FL_HIDDEN */ |
| if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) |
| goto fail; |
| if (!nvme_get_ns(ns)) |
| goto fail; |
| if (!try_module_get(ns->ctrl->ops->module)) |
| goto fail_put_ns; |
| |
| return 0; |
| |
| fail_put_ns: |
| nvme_put_ns(ns); |
| fail: |
| return -ENXIO; |
| } |
| |
| static void nvme_ns_release(struct nvme_ns *ns) |
| { |
| |
| module_put(ns->ctrl->ops->module); |
| nvme_put_ns(ns); |
| } |
| |
| static int nvme_open(struct gendisk *disk, blk_mode_t mode) |
| { |
| return nvme_ns_open(disk->private_data); |
| } |
| |
| static void nvme_release(struct gendisk *disk) |
| { |
| nvme_ns_release(disk->private_data); |
| } |
| |
| int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| /* some standard values */ |
| geo->heads = 1 << 6; |
| geo->sectors = 1 << 5; |
| geo->cylinders = get_capacity(bdev->bd_disk) >> 11; |
| return 0; |
| } |
| |
| static bool nvme_init_integrity(struct nvme_ns_head *head, |
| struct queue_limits *lim, struct nvme_ns_info *info) |
| { |
| struct blk_integrity *bi = &lim->integrity; |
| |
| memset(bi, 0, sizeof(*bi)); |
| |
| if (!head->ms) |
| return true; |
| |
| /* |
| * PI can always be supported as we can ask the controller to simply |
| * insert/strip it, which is not possible for other kinds of metadata. |
| */ |
| if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || |
| !(head->features & NVME_NS_METADATA_SUPPORTED)) |
| return nvme_ns_has_pi(head); |
| |
| switch (head->pi_type) { |
| case NVME_NS_DPS_PI_TYPE3: |
| switch (head->guard_type) { |
| case NVME_NVM_NS_16B_GUARD: |
| bi->csum_type = BLK_INTEGRITY_CSUM_CRC; |
| bi->tag_size = sizeof(u16) + sizeof(u32); |
| bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
| break; |
| case NVME_NVM_NS_64B_GUARD: |
| bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; |
| bi->tag_size = sizeof(u16) + 6; |
| bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
| break; |
| default: |
| break; |
| } |
| break; |
| case NVME_NS_DPS_PI_TYPE1: |
| case NVME_NS_DPS_PI_TYPE2: |
| switch (head->guard_type) { |
| case NVME_NVM_NS_16B_GUARD: |
| bi->csum_type = BLK_INTEGRITY_CSUM_CRC; |
| bi->tag_size = sizeof(u16); |
| bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | |
| BLK_INTEGRITY_REF_TAG; |
| break; |
| case NVME_NVM_NS_64B_GUARD: |
| bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; |
| bi->tag_size = sizeof(u16); |
| bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | |
| BLK_INTEGRITY_REF_TAG; |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| bi->tuple_size = head->ms; |
| bi->pi_offset = info->pi_offset; |
| return true; |
| } |
| |
| static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) |
| { |
| struct nvme_ctrl *ctrl = ns->ctrl; |
| |
| if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) |
| lim->max_hw_discard_sectors = |
| nvme_lba_to_sect(ns->head, ctrl->dmrsl); |
| else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) |
| lim->max_hw_discard_sectors = UINT_MAX; |
| else |
| lim->max_hw_discard_sectors = 0; |
| |
| lim->discard_granularity = lim->logical_block_size; |
| |
| if (ctrl->dmrl) |
| lim->max_discard_segments = ctrl->dmrl; |
| else |
| lim->max_discard_segments = NVME_DSM_MAX_RANGES; |
| } |
| |
| static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) |
| { |
| return uuid_equal(&a->uuid, &b->uuid) && |
| memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && |
| memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && |
| a->csi == b->csi; |
| } |
| |
| static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, |
| struct nvme_id_ns_nvm **nvmp) |
| { |
| struct nvme_command c = { |
| .identify.opcode = nvme_admin_identify, |
| .identify.nsid = cpu_to_le32(nsid), |
| .identify.cns = NVME_ID_CNS_CS_NS, |
| .identify.csi = NVME_CSI_NVM, |
| }; |
| struct nvme_id_ns_nvm *nvm; |
| int ret; |
| |
| nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); |
| if (!nvm) |
| return -ENOMEM; |
| |
| ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); |
| if (ret) |
| kfree(nvm); |
| else |
| *nvmp = nvm; |
| return ret; |
| } |
| |
| static void nvme_configure_pi_elbas(struct nvme_ns_head *head, |
| struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) |
| { |
| u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); |
| u8 guard_type; |
| |
| /* no support for storage tag formats right now */ |
| if (nvme_elbaf_sts(elbaf)) |
| return; |
| |
| guard_type = nvme_elbaf_guard_type(elbaf); |
| if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && |
| guard_type == NVME_NVM_NS_QTYPE_GUARD) |
| guard_type = nvme_elbaf_qualified_guard_type(elbaf); |
| |
| head->guard_type = guard_type; |
| switch (head->guard_type) { |
| case NVME_NVM_NS_64B_GUARD: |
| head->pi_size = sizeof(struct crc64_pi_tuple); |
| break; |
| case NVME_NVM_NS_16B_GUARD: |
| head->pi_size = sizeof(struct t10_pi_tuple); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void nvme_configure_metadata(struct nvme_ctrl *ctrl, |
| struct nvme_ns_head *head, struct nvme_id_ns *id, |
| struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) |
| { |
| head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); |
| head->pi_type = 0; |
| head->pi_size = 0; |
| head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); |
| if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) |
| return; |
| |
| if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { |
| nvme_configure_pi_elbas(head, id, nvm); |
| } else { |
| head->pi_size = sizeof(struct t10_pi_tuple); |
| head->guard_type = NVME_NVM_NS_16B_GUARD; |
| } |
| |
| if (head->pi_size && head->ms >= head->pi_size) |
| head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; |
| if (!(id->dps & NVME_NS_DPS_PI_FIRST)) |
| info->pi_offset = head->ms - head->pi_size; |
| |
| if (ctrl->ops->flags & NVME_F_FABRICS) { |
| /* |
| * The NVMe over Fabrics specification only supports metadata as |
| * part of the extended data LBA. We rely on HCA/HBA support to |
| * remap the separate metadata buffer from the block layer. |
| */ |
| if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) |
| return; |
| |
| head->features |= NVME_NS_EXT_LBAS; |
| |
| /* |
| * The current fabrics transport drivers support namespace |
| * metadata formats only if nvme_ns_has_pi() returns true. |
| * Suppress support for all other formats so the namespace will |
| * have a 0 capacity and not be usable through the block stack. |
| * |
| * Note, this check will need to be modified if any drivers |
| * gain the ability to use other metadata formats. |
| */ |
| if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) |
| head->features |= NVME_NS_METADATA_SUPPORTED; |
| } else { |
| /* |
| * For PCIe controllers, we can't easily remap the separate |
| * metadata buffer from the block layer and thus require a |
| * separate metadata buffer for block layer metadata/PI support. |
| * We allow extended LBAs for the passthrough interface, though. |
| */ |
| if (id->flbas & NVME_NS_FLBAS_META_EXT) |
| head->features |= NVME_NS_EXT_LBAS; |
| else |
| head->features |= NVME_NS_METADATA_SUPPORTED; |
| } |
| } |
| |
| |
| static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, |
| struct nvme_id_ns *id, struct queue_limits *lim, |
| u32 bs, u32 atomic_bs) |
| { |
| unsigned int boundary = 0; |
| |
| if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { |
| if (le16_to_cpu(id->nabspf)) |
| boundary = (le16_to_cpu(id->nabspf) + 1) * bs; |
| } |
| lim->atomic_write_hw_max = atomic_bs; |
| lim->atomic_write_hw_boundary = boundary; |
| lim->atomic_write_hw_unit_min = bs; |
| lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); |
| } |
| |
| static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) |
| { |
| return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; |
| } |
| |
| static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, |
| struct queue_limits *lim) |
| { |
| lim->max_hw_sectors = ctrl->max_hw_sectors; |
| lim->max_segments = min_t(u32, USHRT_MAX, |
| min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); |
| lim->max_integrity_segments = ctrl->max_integrity_segments; |
| lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; |
| lim->max_segment_size = UINT_MAX; |
| lim->dma_alignment = 3; |
| } |
| |
| static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, |
| struct queue_limits *lim) |
| { |
| struct nvme_ns_head *head = ns->head; |
| u32 bs = 1U << head->lba_shift; |
| u32 atomic_bs, phys_bs, io_opt = 0; |
| bool valid = true; |
| |
| /* |
| * The block layer can't support LBA sizes larger than the page size |
| * or smaller than a sector size yet, so catch this early and don't |
| * allow block I/O. |
| */ |
| if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { |
| bs = (1 << 9); |
| valid = false; |
| } |
| |
| atomic_bs = phys_bs = bs; |
| if (id->nabo == 0) { |
| /* |
| * Bit 1 indicates whether NAWUPF is defined for this namespace |
| * and whether it should be used instead of AWUPF. If NAWUPF == |
| * 0 then AWUPF must be used instead. |
| */ |
| if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) |
| atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; |
| else |
| atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; |
| |
| nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); |
| } |
| |
| if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { |
| /* NPWG = Namespace Preferred Write Granularity */ |
| phys_bs = bs * (1 + le16_to_cpu(id->npwg)); |
| /* NOWS = Namespace Optimal Write Size */ |
| if (id->nows) |
| io_opt = bs * (1 + le16_to_cpu(id->nows)); |
| } |
| |
| /* |
| * Linux filesystems assume writing a single physical block is |
| * an atomic operation. Hence limit the physical block size to the |
| * value of the Atomic Write Unit Power Fail parameter. |
| */ |
| lim->logical_block_size = bs; |
| lim->physical_block_size = min(phys_bs, atomic_bs); |
| lim->io_min = phys_bs; |
| lim->io_opt = io_opt; |
| if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) |
| lim->max_write_zeroes_sectors = UINT_MAX; |
| else |
| lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; |
| return valid; |
| } |
| |
| static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) |
| { |
| return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); |
| } |
| |
| static inline bool nvme_first_scan(struct gendisk *disk) |
| { |
| /* nvme_alloc_ns() scans the disk prior to adding it */ |
| return !disk_live(disk); |
| } |
| |
| static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, |
| struct queue_limits *lim) |
| { |
| struct nvme_ctrl *ctrl = ns->ctrl; |
| u32 iob; |
| |
| if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && |
| is_power_of_2(ctrl->max_hw_sectors)) |
| iob = ctrl->max_hw_sectors; |
| else |
| iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); |
| |
| if (!iob) |
| return; |
| |
| if (!is_power_of_2(iob)) { |
| if (nvme_first_scan(ns->disk)) |
| pr_warn("%s: ignoring unaligned IO boundary:%u\n", |
| ns->disk->disk_name, iob); |
| return; |
| } |
| |
| if (blk_queue_is_zoned(ns->disk->queue)) { |
| if (nvme_first_scan(ns->disk)) |
| pr_warn("%s: ignoring zoned namespace IO boundary\n", |
| ns->disk->disk_name); |
| return; |
| } |
| |
| lim->chunk_sectors = iob; |
| } |
| |
| static int nvme_update_ns_info_generic(struct nvme_ns *ns, |
| struct nvme_ns_info *info) |
| { |
| struct queue_limits lim; |
| int ret; |
| |
| blk_mq_freeze_queue(ns->disk->queue); |
| lim = queue_limits_start_update(ns->disk->queue); |
| nvme_set_ctrl_limits(ns->ctrl, &lim); |
| ret = queue_limits_commit_update(ns->disk->queue, &lim); |
| set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); |
| blk_mq_unfreeze_queue(ns->disk->queue); |
| |
| /* Hide the block-interface for these devices */ |
| if (!ret) |
| ret = -ENODEV; |
| return ret; |
| } |
| |
| static int nvme_update_ns_info_block(struct nvme_ns *ns, |
| struct nvme_ns_info *info) |
| { |
| struct queue_limits lim; |
| struct nvme_id_ns_nvm *nvm = NULL; |
| struct nvme_zone_info zi = {}; |
| struct nvme_id_ns *id; |
| sector_t capacity; |
| unsigned lbaf; |
| int ret; |
| |
| ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); |
| if (ret) |
| return ret; |
| |
| if (id->ncap == 0) { |
| /* namespace not allocated or attached */ |
| info->is_removed = true; |
| ret = -ENXIO; |
| goto out; |
| } |
| lbaf = nvme_lbaf_index(id->flbas); |
| |
| if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { |
| ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); |
| if (ret < 0) |
| goto out; |
| } |
| |
| if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
| ns->head->ids.csi == NVME_CSI_ZNS) { |
| ret = nvme_query_zone_info(ns, lbaf, &zi); |
| if (ret < 0) |
| goto out; |
| } |
| |
| blk_mq_freeze_queue(ns->disk->queue); |
| ns->head->lba_shift = id->lbaf[lbaf].ds; |
| ns->head->nuse = le64_to_cpu(id->nuse); |
| capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); |
| |
| lim = queue_limits_start_update(ns->disk->queue); |
| nvme_set_ctrl_limits(ns->ctrl, &lim); |
| nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); |
| nvme_set_chunk_sectors(ns, id, &lim); |
| if (!nvme_update_disk_info(ns, id, &lim)) |
| capacity = 0; |
| nvme_config_discard(ns, &lim); |
| if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
| ns->head->ids.csi == NVME_CSI_ZNS) |
| nvme_update_zone_info(ns, &lim, &zi); |
| |
| if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) |
| lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; |
| else |
| lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); |
| |
| /* |
| * Register a metadata profile for PI, or the plain non-integrity NVMe |
| * metadata masquerading as Type 0 if supported, otherwise reject block |
| * I/O to namespaces with metadata except when the namespace supports |
| * PI, as it can strip/insert in that case. |
| */ |
| if (!nvme_init_integrity(ns->head, &lim, info)) |
| capacity = 0; |
| |
| ret = queue_limits_commit_update(ns->disk->queue, &lim); |
| if (ret) { |
| blk_mq_unfreeze_queue(ns->disk->queue); |
| goto out; |
| } |
| |
| set_capacity_and_notify(ns->disk, capacity); |
| |
| /* |
| * Only set the DEAC bit if the device guarantees that reads from |
| * deallocated data return zeroes. While the DEAC bit does not |
| * require that, it must be a no-op if reads from deallocated data |
| * do not return zeroes. |
| */ |
| if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) |
| ns->head->features |= NVME_NS_DEAC; |
| set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); |
| set_bit(NVME_NS_READY, &ns->flags); |
| blk_mq_unfreeze_queue(ns->disk->queue); |
| |
| if (blk_queue_is_zoned(ns->queue)) { |
| ret = blk_revalidate_disk_zones(ns->disk); |
| if (ret && !nvme_first_scan(ns->disk)) |
| goto out; |
| } |
| |
| ret = 0; |
| out: |
| kfree(nvm); |
| kfree(id); |
| return ret; |
| } |
| |
| static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) |
| { |
| bool unsupported = false; |
| int ret; |
| |
| switch (info->ids.csi) { |
| case NVME_CSI_ZNS: |
| if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { |
| dev_info(ns->ctrl->device, |
| "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", |
| info->nsid); |
| ret = nvme_update_ns_info_generic(ns, info); |
| break; |
| } |
| ret = nvme_update_ns_info_block(ns, info); |
| break; |
| case NVME_CSI_NVM: |
| ret = nvme_update_ns_info_block(ns, info); |
| break; |
| default: |
| dev_info(ns->ctrl->device, |
| "block device for nsid %u not supported (csi %u)\n", |
| info->nsid, info->ids.csi); |
| ret = nvme_update_ns_info_generic(ns, info); |
| break; |
| } |
| |
| /* |
| * If probing fails due an unsupported feature, hide the block device, |
| * but still allow other access. |
| */ |
| if (ret == -ENODEV) { |
| ns->disk->flags |= GENHD_FL_HIDDEN; |
| set_bit(NVME_NS_READY, &ns->flags); |
| unsupported = true; |
| ret = 0; |
| } |
| |
| if (!ret && nvme_ns_head_multipath(ns->head)) { |
| struct queue_limits *ns_lim = &ns->disk->queue->limits; |
| struct queue_limits lim; |
| |
| blk_mq_freeze_queue(ns->head->disk->queue); |
| /* |
| * queue_limits mixes values that are the hardware limitations |
| * for bio splitting with what is the device configuration. |
| * |
| * For NVMe the device configuration can change after e.g. a |
| * Format command, and we really want to pick up the new format |
| * value here. But we must still stack the queue limits to the |
| * least common denominator for multipathing to split the bios |
| * properly. |
| * |
| * To work around this, we explicitly set the device |
| * configuration to those that we just queried, but only stack |
| * the splitting limits in to make sure we still obey possibly |
| * lower limitations of other controllers. |
| */ |
| lim = queue_limits_start_update(ns->head->disk->queue); |
| lim.logical_block_size = ns_lim->logical_block_size; |
| lim.physical_block_size = ns_lim->physical_block_size; |
| lim.io_min = ns_lim->io_min; |
| lim.io_opt = ns_lim->io_opt; |
| queue_limits_stack_bdev(&lim, ns->disk->part0, 0, |
| ns->head->disk->disk_name); |
| if (unsupported) |
| ns->head->disk->flags |= GENHD_FL_HIDDEN; |
| else |
| nvme_init_integrity(ns->head, &lim, info); |
| ret = queue_limits_commit_update(ns->head->disk->queue, &lim); |
| |
| set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); |
| set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); |
| nvme_mpath_revalidate_paths(ns); |
| |
| blk_mq_unfreeze_queue(ns->head->disk->queue); |
| } |
| |
| return ret; |
| } |
| |
| int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], |
| enum blk_unique_id type) |
| { |
| struct nvme_ns_ids *ids = &ns->head->ids; |
| |
| if (type != BLK_UID_EUI64) |
| return -EINVAL; |
| |
| if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { |
| memcpy(id, &ids->nguid, sizeof(ids->nguid)); |
| return sizeof(ids->nguid); |
| } |
| if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { |
| memcpy(id, &ids->eui64, sizeof(ids->eui64)); |
| return sizeof(ids->eui64); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], |
| enum blk_unique_id type) |
| { |
| return nvme_ns_get_unique_id(disk->private_data, id, type); |
| } |
| |
| #ifdef CONFIG_BLK_SED_OPAL |
| static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, |
| bool send) |
| { |
| struct nvme_ctrl *ctrl = data; |
| struct nvme_command cmd = { }; |
| |
| if (send) |
| cmd.common.opcode = nvme_admin_security_send; |
| else |
| cmd.common.opcode = nvme_admin_security_recv; |
| cmd.common.nsid = 0; |
| cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); |
| cmd.common.cdw11 = cpu_to_le32(len); |
| |
| return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, |
| NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); |
| } |
| |
| static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) |
| { |
| if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { |
| if (!ctrl->opal_dev) |
| ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); |
| else if (was_suspended) |
| opal_unlock_from_suspend(ctrl->opal_dev); |
| } else { |
| free_opal_dev(ctrl->opal_dev); |
| ctrl->opal_dev = NULL; |
| } |
| } |
| #else |
| static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) |
| { |
| } |
| #endif /* CONFIG_BLK_SED_OPAL */ |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| static int nvme_report_zones(struct gendisk *disk, sector_t sector, |
| unsigned int nr_zones, report_zones_cb cb, void *data) |
| { |
| return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, |
| data); |
| } |
| #else |
| #define nvme_report_zones NULL |
| #endif /* CONFIG_BLK_DEV_ZONED */ |
| |
| const struct block_device_operations nvme_bdev_ops = { |
| .owner = THIS_MODULE, |
| .ioctl = nvme_ioctl, |
| .compat_ioctl = blkdev_compat_ptr_ioctl, |
| .open = nvme_open, |
| .release = nvme_release, |
| .getgeo = nvme_getgeo, |
| .get_unique_id = nvme_get_unique_id, |
| .report_zones = nvme_report_zones, |
| .pr_ops = &nvme_pr_ops, |
| }; |
| |
| static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, |
| u32 timeout, const char *op) |
| { |
| unsigned long timeout_jiffies = jiffies + timeout * HZ; |
| u32 csts; |
| int ret; |
| |
| while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { |
| if (csts == ~0) |
| return -ENODEV; |
| if ((csts & mask) == val) |
| break; |
| |
| usleep_range(1000, 2000); |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| if (time_after(jiffies, timeout_jiffies)) { |
| dev_err(ctrl->device, |
| "Device not ready; aborting %s, CSTS=0x%x\n", |
| op, csts); |
| return -ENODEV; |
| } |
| } |
| |
| return ret; |
| } |
| |
| int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) |
| { |
| int ret; |
| |
| ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; |
| if (shutdown) |
| ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; |
| else |
| ctrl->ctrl_config &= ~NVME_CC_ENABLE; |
| |
| ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| if (ret) |
| return ret; |
| |
| if (shutdown) { |
| return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, |
| NVME_CSTS_SHST_CMPLT, |
| ctrl->shutdown_timeout, "shutdown"); |
| } |
| if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) |
| msleep(NVME_QUIRK_DELAY_AMOUNT); |
| return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, |
| (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); |
| } |
| EXPORT_SYMBOL_GPL(nvme_disable_ctrl); |
| |
| int nvme_enable_ctrl(struct nvme_ctrl *ctrl) |
| { |
| unsigned dev_page_min; |
| u32 timeout; |
| int ret; |
| |
| ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); |
| if (ret) { |
| dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); |
| return ret; |
| } |
| dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; |
| |
| if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { |
| dev_err(ctrl->device, |
| "Minimum device page size %u too large for host (%u)\n", |
| 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); |
| return -ENODEV; |
| } |
| |
| if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) |
| ctrl->ctrl_config = NVME_CC_CSS_CSI; |
| else |
| ctrl->ctrl_config = NVME_CC_CSS_NVM; |
| |
| if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) |
| ctrl->ctrl_config |= NVME_CC_CRIME; |
| |
| ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; |
| ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; |
| ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
| ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| if (ret) |
| return ret; |
| |
| /* CAP value may change after initial CC write */ |
| ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); |
| if (ret) |
| return ret; |
| |
| timeout = NVME_CAP_TIMEOUT(ctrl->cap); |
| if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { |
| u32 crto, ready_timeout; |
| |
| ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); |
| if (ret) { |
| dev_err(ctrl->device, "Reading CRTO failed (%d)\n", |
| ret); |
| return ret; |
| } |
| |
| /* |
| * CRTO should always be greater or equal to CAP.TO, but some |
| * devices are known to get this wrong. Use the larger of the |
| * two values. |
| */ |
| if (ctrl->ctrl_config & NVME_CC_CRIME) |
| ready_timeout = NVME_CRTO_CRIMT(crto); |
| else |
| ready_timeout = NVME_CRTO_CRWMT(crto); |
| |
| if (ready_timeout < timeout) |
| dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", |
| crto, ctrl->cap); |
| else |
| timeout = ready_timeout; |
| } |
| |
| ctrl->ctrl_config |= NVME_CC_ENABLE; |
| ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| if (ret) |
| return ret; |
| return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, |
| (timeout + 1) / 2, "initialisation"); |
| } |
| EXPORT_SYMBOL_GPL(nvme_enable_ctrl); |
| |
| static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) |
| { |
| __le64 ts; |
| int ret; |
| |
| if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) |
| return 0; |
| |
| ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); |
| ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), |
| NULL); |
| if (ret) |
| dev_warn_once(ctrl->device, |
| "could not set timestamp (%d)\n", ret); |
| return ret; |
| } |
| |
| static int nvme_configure_host_options(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_feat_host_behavior *host; |
| u8 acre = 0, lbafee = 0; |
| int ret; |
| |
| /* Don't bother enabling the feature if retry delay is not reported */ |
| if (ctrl->crdt[0]) |
| acre = NVME_ENABLE_ACRE; |
| if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) |
| lbafee = NVME_ENABLE_LBAFEE; |
| |
| if (!acre && !lbafee) |
| return 0; |
| |
| host = kzalloc(sizeof(*host), GFP_KERNEL); |
| if (!host) |
| return 0; |
| |
| host->acre = acre; |
| host->lbafee = lbafee; |
| ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, |
| host, sizeof(*host), NULL); |
| kfree(host); |
| return ret; |
| } |
| |
| /* |
| * The function checks whether the given total (exlat + enlat) latency of |
| * a power state allows the latter to be used as an APST transition target. |
| * It does so by comparing the latency to the primary and secondary latency |
| * tolerances defined by module params. If there's a match, the corresponding |
| * timeout value is returned and the matching tolerance index (1 or 2) is |
| * reported. |
| */ |
| static bool nvme_apst_get_transition_time(u64 total_latency, |
| u64 *transition_time, unsigned *last_index) |
| { |
| if (total_latency <= apst_primary_latency_tol_us) { |
| if (*last_index == 1) |
| return false; |
| *last_index = 1; |
| *transition_time = apst_primary_timeout_ms; |
| return true; |
| } |
| if (apst_secondary_timeout_ms && |
| total_latency <= apst_secondary_latency_tol_us) { |
| if (*last_index <= 2) |
| return false; |
| *last_index = 2; |
| *transition_time = apst_secondary_timeout_ms; |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * APST (Autonomous Power State Transition) lets us program a table of power |
| * state transitions that the controller will perform automatically. |
| * |
| * Depending on module params, one of the two supported techniques will be used: |
| * |
| * - If the parameters provide explicit timeouts and tolerances, they will be |
| * used to build a table with up to 2 non-operational states to transition to. |
| * The default parameter values were selected based on the values used by |
| * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic |
| * regeneration of the APST table in the event of switching between external |
| * and battery power, the timeouts and tolerances reflect a compromise |
| * between values used by Microsoft for AC and battery scenarios. |
| * - If not, we'll configure the table with a simple heuristic: we are willing |
| * to spend at most 2% of the time transitioning between power states. |
| * Therefore, when running in any given state, we will enter the next |
| * lower-power non-operational state after waiting 50 * (enlat + exlat) |
| * microseconds, as long as that state's exit latency is under the requested |
| * maximum latency. |
| * |
| * We will not autonomously enter any non-operational state for which the total |
| * latency exceeds ps_max_latency_us. |
| * |
| * Users can set ps_max_latency_us to zero to turn off APST. |
| */ |
| static int nvme_configure_apst(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_feat_auto_pst *table; |
| unsigned apste = 0; |
| u64 max_lat_us = 0; |
| __le64 target = 0; |
| int max_ps = -1; |
| int state; |
| int ret; |
| unsigned last_lt_index = UINT_MAX; |
| |
| /* |
| * If APST isn't supported or if we haven't been initialized yet, |
| * then don't do anything. |
| */ |
| if (!ctrl->apsta) |
| return 0; |
| |
| if (ctrl->npss > 31) { |
| dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); |
| return 0; |
| } |
| |
| table = kzalloc(sizeof(*table), GFP_KERNEL); |
| if (!table) |
| return 0; |
| |
| if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { |
| /* Turn off APST. */ |
| dev_dbg(ctrl->device, "APST disabled\n"); |
| goto done; |
| } |
| |
| /* |
| * Walk through all states from lowest- to highest-power. |
| * According to the spec, lower-numbered states use more power. NPSS, |
| * despite the name, is the index of the lowest-power state, not the |
| * number of states. |
| */ |
| for (state = (int)ctrl->npss; state >= 0; state--) { |
| u64 total_latency_us, exit_latency_us, transition_ms; |
| |
| if (target) |
| table->entries[state] = target; |
| |
| /* |
| * Don't allow transitions to the deepest state if it's quirked |
| * off. |
| */ |
| if (state == ctrl->npss && |
| (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) |
| continue; |
| |
| /* |
| * Is this state a useful non-operational state for higher-power |
| * states to autonomously transition to? |
| */ |
| if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) |
| continue; |
| |
| exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); |
| if (exit_latency_us > ctrl->ps_max_latency_us) |
| continue; |
| |
| total_latency_us = exit_latency_us + |
| le32_to_cpu(ctrl->psd[state].entry_lat); |
| |
| /* |
| * This state is good. It can be used as the APST idle target |
| * for higher power states. |
| */ |
| if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { |
| if (!nvme_apst_get_transition_time(total_latency_us, |
| &transition_ms, &last_lt_index)) |
| continue; |
| } else { |
| transition_ms = total_latency_us + 19; |
| do_div(transition_ms, 20); |
| if (transition_ms > (1 << 24) - 1) |
| transition_ms = (1 << 24) - 1; |
| } |
| |
| target = cpu_to_le64((state << 3) | (transition_ms << 8)); |
| if (max_ps == -1) |
| max_ps = state; |
| if (total_latency_us > max_lat_us) |
| max_lat_us = total_latency_us; |
| } |
| |
| if (max_ps == -1) |
| dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); |
| else |
| dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", |
| max_ps, max_lat_us, (int)sizeof(*table), table); |
| apste = 1; |
| |
| done: |
| ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, |
| table, sizeof(*table), NULL); |
| if (ret) |
| dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); |
| kfree(table); |
| return ret; |
| } |
| |
| static void nvme_set_latency_tolerance(struct device *dev, s32 val) |
| { |
| struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| u64 latency; |
| |
| switch (val) { |
| case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: |
| case PM_QOS_LATENCY_ANY: |
| latency = U64_MAX; |
| break; |
| |
| default: |
| latency = val; |
| } |
| |
| if (ctrl->ps_max_latency_us != latency) { |
| ctrl->ps_max_latency_us = latency; |
| if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) |
| nvme_configure_apst(ctrl); |
| } |
| } |
| |
| struct nvme_core_quirk_entry { |
| /* |
| * NVMe model and firmware strings are padded with spaces. For |
| * simplicity, strings in the quirk table are padded with NULLs |
| * instead. |
| */ |
| u16 vid; |
| const char *mn; |
| const char *fr; |
| unsigned long quirks; |
| }; |
| |
| static const struct nvme_core_quirk_entry core_quirks[] = { |
| { |
| /* |
| * This Toshiba device seems to die using any APST states. See: |
| * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 |
| */ |
| .vid = 0x1179, |
| .mn = "THNSF5256GPUK TOSHIBA", |
| .quirks = NVME_QUIRK_NO_APST, |
| }, |
| { |
| /* |
| * This LiteON CL1-3D*-Q11 firmware version has a race |
| * condition associated with actions related to suspend to idle |
| * LiteON has resolved the problem in future firmware |
| */ |
| .vid = 0x14a4, |
| .fr = "22301111", |
| .quirks = NVME_QUIRK_SIMPLE_SUSPEND, |
| }, |
| { |
| /* |
| * This Kioxia CD6-V Series / HPE PE8030 device times out and |
| * aborts I/O during any load, but more easily reproducible |
| * with discards (fstrim). |
| * |
| * The device is left in a state where it is also not possible |
| * to use "nvme set-feature" to disable APST, but booting with |
| * nvme_core.default_ps_max_latency=0 works. |
| */ |
| .vid = 0x1e0f, |
| .mn = "KCD6XVUL6T40", |
| .quirks = NVME_QUIRK_NO_APST, |
| }, |
| { |
| /* |
| * The external Samsung X5 SSD fails initialization without a |
| * delay before checking if it is ready and has a whole set of |
| * other problems. To make this even more interesting, it |
| * shares the PCI ID with internal Samsung 970 Evo Plus that |
| * does not need or want these quirks. |
| */ |
| .vid = 0x144d, |
| .mn = "Samsung Portable SSD X5", |
| .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | |
| NVME_QUIRK_NO_DEEPEST_PS | |
| NVME_QUIRK_IGNORE_DEV_SUBNQN, |
| } |
| }; |
| |
| /* match is null-terminated but idstr is space-padded. */ |
| static bool string_matches(const char *idstr, const char *match, size_t len) |
| { |
| size_t matchlen; |
| |
| if (!match) |
| return true; |
| |
| matchlen = strlen(match); |
| WARN_ON_ONCE(matchlen > len); |
| |
| if (memcmp(idstr, match, matchlen)) |
| return false; |
| |
| for (; matchlen < len; matchlen++) |
| if (idstr[matchlen] != ' ') |
| return false; |
| |
| return true; |
| } |
| |
| static bool quirk_matches(const struct nvme_id_ctrl *id, |
| const struct nvme_core_quirk_entry *q) |
| { |
| return q->vid == le16_to_cpu(id->vid) && |
| string_matches(id->mn, q->mn, sizeof(id->mn)) && |
| string_matches(id->fr, q->fr, sizeof(id->fr)); |
| } |
| |
| static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, |
| struct nvme_id_ctrl *id) |
| { |
| size_t nqnlen; |
| int off; |
| |
| if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { |
| nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); |
| if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { |
| strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); |
| return; |
| } |
| |
| if (ctrl->vs >= NVME_VS(1, 2, 1)) |
| dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); |
| } |
| |
| /* |
| * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe |
| * Base Specification 2.0. It is slightly different from the format |
| * specified there due to historic reasons, and we can't change it now. |
| */ |
| off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, |
| "nqn.2014.08.org.nvmexpress:%04x%04x", |
| le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); |
| memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); |
| off += sizeof(id->sn); |
| memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); |
| off += sizeof(id->mn); |
| memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); |
| } |
| |
| static void nvme_release_subsystem(struct device *dev) |
| { |
| struct nvme_subsystem *subsys = |
| container_of(dev, struct nvme_subsystem, dev); |
| |
| if (subsys->instance >= 0) |
| ida_free(&nvme_instance_ida, subsys->instance); |
| kfree(subsys); |
| } |
| |
| static void nvme_destroy_subsystem(struct kref *ref) |
| { |
| struct nvme_subsystem *subsys = |
| container_of(ref, struct nvme_subsystem, ref); |
| |
| mutex_lock(&nvme_subsystems_lock); |
| list_del(&subsys->entry); |
| mutex_unlock(&nvme_subsystems_lock); |
| |
| ida_destroy(&subsys->ns_ida); |
| device_del(&subsys->dev); |
| put_device(&subsys->dev); |
| } |
| |
| static void nvme_put_subsystem(struct nvme_subsystem *subsys) |
| { |
| kref_put(&subsys->ref, nvme_destroy_subsystem); |
| } |
| |
| static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) |
| { |
| struct nvme_subsystem *subsys; |
| |
| lockdep_assert_held(&nvme_subsystems_lock); |
| |
| /* |
| * Fail matches for discovery subsystems. This results |
| * in each discovery controller bound to a unique subsystem. |
| * This avoids issues with validating controller values |
| * that can only be true when there is a single unique subsystem. |
| * There may be multiple and completely independent entities |
| * that provide discovery controllers. |
| */ |
| if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) |
| return NULL; |
| |
| list_for_each_entry(subsys, &nvme_subsystems, entry) { |
| if (strcmp(subsys->subnqn, subsysnqn)) |
| continue; |
| if (!kref_get_unless_zero(&subsys->ref)) |
| continue; |
| return subsys; |
| } |
| |
| return NULL; |
| } |
| |
| static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) |
| { |
| return ctrl->opts && ctrl->opts->discovery_nqn; |
| } |
| |
| static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, |
| struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| { |
| struct nvme_ctrl *tmp; |
| |
| lockdep_assert_held(&nvme_subsystems_lock); |
| |
| list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { |
| if (nvme_state_terminal(tmp)) |
| continue; |
| |
| if (tmp->cntlid == ctrl->cntlid) { |
| dev_err(ctrl->device, |
| "Duplicate cntlid %u with %s, subsys %s, rejecting\n", |
| ctrl->cntlid, dev_name(tmp->device), |
| subsys->subnqn); |
| return false; |
| } |
| |
| if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || |
| nvme_discovery_ctrl(ctrl)) |
| continue; |
| |
| dev_err(ctrl->device, |
| "Subsystem does not support multiple controllers\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| { |
| struct nvme_subsystem *subsys, *found; |
| int ret; |
| |
| subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); |
| if (!subsys) |
| return -ENOMEM; |
| |
| subsys->instance = -1; |
| mutex_init(&subsys->lock); |
| kref_init(&subsys->ref); |
| INIT_LIST_HEAD(&subsys->ctrls); |
| INIT_LIST_HEAD(&subsys->nsheads); |
| nvme_init_subnqn(subsys, ctrl, id); |
| memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); |
| memcpy(subsys->model, id->mn, sizeof(subsys->model)); |
| subsys->vendor_id = le16_to_cpu(id->vid); |
| subsys->cmic = id->cmic; |
| |
| /* Versions prior to 1.4 don't necessarily report a valid type */ |
| if (id->cntrltype == NVME_CTRL_DISC || |
| !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) |
| subsys->subtype = NVME_NQN_DISC; |
| else |
| subsys->subtype = NVME_NQN_NVME; |
| |
| if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { |
| dev_err(ctrl->device, |
| "Subsystem %s is not a discovery controller", |
| subsys->subnqn); |
| kfree(subsys); |
| return -EINVAL; |
| } |
| subsys->awupf = le16_to_cpu(id->awupf); |
| nvme_mpath_default_iopolicy(subsys); |
| |
| subsys->dev.class = &nvme_subsys_class; |
| subsys->dev.release = nvme_release_subsystem; |
| subsys->dev.groups = nvme_subsys_attrs_groups; |
| dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); |
| device_initialize(&subsys->dev); |
| |
| mutex_lock(&nvme_subsystems_lock); |
| found = __nvme_find_get_subsystem(subsys->subnqn); |
| if (found) { |
| put_device(&subsys->dev); |
| subsys = found; |
| |
| if (!nvme_validate_cntlid(subsys, ctrl, id)) { |
| ret = -EINVAL; |
| goto out_put_subsystem; |
| } |
| } else { |
| ret = device_add(&subsys->dev); |
| if (ret) { |
| dev_err(ctrl->device, |
| "failed to register subsystem device.\n"); |
| put_device(&subsys->dev); |
| goto out_unlock; |
| } |
| ida_init(&subsys->ns_ida); |
| list_add_tail(&subsys->entry, &nvme_subsystems); |
| } |
| |
| ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, |
| dev_name(ctrl->device)); |
| if (ret) { |
| dev_err(ctrl->device, |
| "failed to create sysfs link from subsystem.\n"); |
| goto out_put_subsystem; |
| } |
| |
| if (!found) |
| subsys->instance = ctrl->instance; |
| ctrl->subsys = subsys; |
| list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); |
| mutex_unlock(&nvme_subsystems_lock); |
| return 0; |
| |
| out_put_subsystem: |
| nvme_put_subsystem(subsys); |
| out_unlock: |
| mutex_unlock(&nvme_subsystems_lock); |
| return ret; |
| } |
| |
| int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, |
| void *log, size_t size, u64 offset) |
| { |
| struct nvme_command c = { }; |
| u32 dwlen = nvme_bytes_to_numd(size); |
| |
| c.get_log_page.opcode = nvme_admin_get_log_page; |
| c.get_log_page.nsid = cpu_to_le32(nsid); |
| c.get_log_page.lid = log_page; |
| c.get_log_page.lsp = lsp; |
| c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); |
| c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); |
| c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); |
| c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); |
| c.get_log_page.csi = csi; |
| |
| return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); |
| } |
| |
| static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, |
| struct nvme_effects_log **log) |
| { |
| struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); |
| int ret; |
| |
| if (cel) |
| goto out; |
| |
| cel = kzalloc(sizeof(*cel), GFP_KERNEL); |
| if (!cel) |
| return -ENOMEM; |
| |
| ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, |
| cel, sizeof(*cel), 0); |
| if (ret) { |
| kfree(cel); |
| return ret; |
| } |
| |
| xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); |
| out: |
| *log = cel; |
| return 0; |
| } |
| |
| static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) |
| { |
| u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; |
| |
| if (check_shl_overflow(1U, units + page_shift - 9, &val)) |
| return UINT_MAX; |
| return val; |
| } |
| |
| static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_command c = { }; |
| struct nvme_id_ctrl_nvm *id; |
| int ret; |
| |
| /* |
| * Even though NVMe spec explicitly states that MDTS is not applicable |
| * to the write-zeroes, we are cautious and limit the size to the |
| * controllers max_hw_sectors value, which is based on the MDTS field |
| * and possibly other limiting factors. |
| */ |
| if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && |
| !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) |
| ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; |
| else |
| ctrl->max_zeroes_sectors = 0; |
| |
| if (ctrl->subsys->subtype != NVME_NQN_NVME || |
| nvme_ctrl_limited_cns(ctrl) || |
| test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) |
| return 0; |
| |
| id = kzalloc(sizeof(*id), GFP_KERNEL); |
| if (!id) |
| return -ENOMEM; |
| |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.cns = NVME_ID_CNS_CS_CTRL; |
| c.identify.csi = NVME_CSI_NVM; |
| |
| ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); |
| if (ret) |
| goto free_data; |
| |
| ctrl->dmrl = id->dmrl; |
| ctrl->dmrsl = le32_to_cpu(id->dmrsl); |
| if (id->wzsl) |
| ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); |
| |
| free_data: |
| if (ret > 0) |
| set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); |
| kfree(id); |
| return ret; |
| } |
| |
| static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_effects_log *log = ctrl->effects; |
| |
| log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | |
| NVME_CMD_EFFECTS_NCC | |
| NVME_CMD_EFFECTS_CSE_MASK); |
| log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | |
| NVME_CMD_EFFECTS_CSE_MASK); |
| |
| /* |
| * The spec says the result of a security receive command depends on |
| * the previous security send command. As such, many vendors log this |
| * command as one to submitted only when no other commands to the same |
| * namespace are outstanding. The intention is to tell the host to |
| * prevent mixing security send and receive. |
| * |
| * This driver can only enforce such exclusive access against IO |
| * queues, though. We are not readily able to enforce such a rule for |
| * two commands to the admin queue, which is the only queue that |
| * matters for this command. |
| * |
| * Rather than blindly freezing the IO queues for this effect that |
| * doesn't even apply to IO, mask it off. |
| */ |
| log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); |
| |
| log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
| log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
| log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
| } |
| |
| static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| { |
| int ret = 0; |
| |
| if (ctrl->effects) |
| return 0; |
| |
| if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { |
| ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (!ctrl->effects) { |
| ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); |
| if (!ctrl->effects) |
| return -ENOMEM; |
| xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); |
| } |
| |
| nvme_init_known_nvm_effects(ctrl); |
| return 0; |
| } |
| |
| static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| { |
| /* |
| * In fabrics we need to verify the cntlid matches the |
| * admin connect |
| */ |
| if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { |
| dev_err(ctrl->device, |
| "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", |
| ctrl->cntlid, le16_to_cpu(id->cntlid)); |
| return -EINVAL; |
| } |
| |
| if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { |
| dev_err(ctrl->device, |
| "keep-alive support is mandatory for fabrics\n"); |
| return -EINVAL; |
| } |
| |
| if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { |
| dev_err(ctrl->device, |
| "I/O queue command capsule supported size %d < 4\n", |
| ctrl->ioccsz); |
| return -EINVAL; |
| } |
| |
| if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { |
| dev_err(ctrl->device, |
| "I/O queue response capsule supported size %d < 1\n", |
| ctrl->iorcsz); |
| return -EINVAL; |
| } |
| |
| if (!ctrl->maxcmd) { |
| dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_init_identify(struct nvme_ctrl *ctrl) |
| { |
| struct queue_limits lim; |
| struct nvme_id_ctrl *id; |
| u32 max_hw_sectors; |
| bool prev_apst_enabled; |
| int ret; |
| |
| ret = nvme_identify_ctrl(ctrl, &id); |
| if (ret) { |
| dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); |
| return -EIO; |
| } |
| |
| if (!(ctrl->ops->flags & NVME_F_FABRICS)) |
| ctrl->cntlid = le16_to_cpu(id->cntlid); |
| |
| if (!ctrl->identified) { |
| unsigned int i; |
| |
| /* |
| * Check for quirks. Quirk can depend on firmware version, |
| * so, in principle, the set of quirks present can change |
| * across a reset. As a possible future enhancement, we |
| * could re-scan for quirks every time we reinitialize |
| * the device, but we'd have to make sure that the driver |
| * behaves intelligently if the quirks change. |
| */ |
| for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { |
| if (quirk_matches(id, &core_quirks[i])) |
| ctrl->quirks |= core_quirks[i].quirks; |
| } |
| |
| ret = nvme_init_subsystem(ctrl, id); |
| if (ret) |
| goto out_free; |
| |
| ret = nvme_init_effects(ctrl, id); |
| if (ret) |
| goto out_free; |
| } |
| memcpy(ctrl->subsys->firmware_rev, id->fr, |
| sizeof(ctrl->subsys->firmware_rev)); |
| |
| if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { |
| dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); |
| ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; |
| } |
| |
| ctrl->crdt[0] = le16_to_cpu(id->crdt1); |
| ctrl->crdt[1] = le16_to_cpu(id->crdt2); |
| ctrl->crdt[2] = le16_to_cpu(id->crdt3); |
| |
| ctrl->oacs = le16_to_cpu(id->oacs); |
| ctrl->oncs = le16_to_cpu(id->oncs); |
| ctrl->mtfa = le16_to_cpu(id->mtfa); |
| ctrl->oaes = le32_to_cpu(id->oaes); |
| ctrl->wctemp = le16_to_cpu(id->wctemp); |
| ctrl->cctemp = le16_to_cpu(id->cctemp); |
| |
| atomic_set(&ctrl->abort_limit, id->acl + 1); |
| ctrl->vwc = id->vwc; |
| if (id->mdts) |
| max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); |
| else |
| max_hw_sectors = UINT_MAX; |
| ctrl->max_hw_sectors = |
| min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); |
| |
| lim = queue_limits_start_update(ctrl->admin_q); |
| nvme_set_ctrl_limits(ctrl, &lim); |
| ret = queue_limits_commit_update(ctrl->admin_q, &lim); |
| if (ret) |
| goto out_free; |
| |
| ctrl->sgls = le32_to_cpu(id->sgls); |
| ctrl->kas = le16_to_cpu(id->kas); |
| ctrl->max_namespaces = le32_to_cpu(id->mnan); |
| ctrl->ctratt = le32_to_cpu(id->ctratt); |
| |
| ctrl->cntrltype = id->cntrltype; |
| ctrl->dctype = id->dctype; |
| |
| if (id->rtd3e) { |
| /* us -> s */ |
| u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; |
| |
| ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, |
| shutdown_timeout, 60); |
| |
| if (ctrl->shutdown_timeout != shutdown_timeout) |
| dev_info(ctrl->device, |
| "D3 entry latency set to %u seconds\n", |
| ctrl->shutdown_timeout); |
| } else |
| ctrl->shutdown_timeout = shutdown_timeout; |
| |
| ctrl->npss = id->npss; |
| ctrl->apsta = id->apsta; |
| prev_apst_enabled = ctrl->apst_enabled; |
| if (ctrl->quirks & NVME_QUIRK_NO_APST) { |
| if (force_apst && id->apsta) { |
| dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); |
| ctrl->apst_enabled = true; |
| } else { |
| ctrl->apst_enabled = false; |
| } |
| } else { |
| ctrl->apst_enabled = id->apsta; |
| } |
| memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); |
| |
| if (ctrl->ops->flags & NVME_F_FABRICS) { |
| ctrl->icdoff = le16_to_cpu(id->icdoff); |
| ctrl->ioccsz = le32_to_cpu(id->ioccsz); |
| ctrl->iorcsz = le32_to_cpu(id->iorcsz); |
| ctrl->maxcmd = le16_to_cpu(id->maxcmd); |
| |
| ret = nvme_check_ctrl_fabric_info(ctrl, id); |
| if (ret) |
| goto out_free; |
| } else { |
| ctrl->hmpre = le32_to_cpu(id->hmpre); |
| ctrl->hmmin = le32_to_cpu(id->hmmin); |
| ctrl->hmminds = le32_to_cpu(id->hmminds); |
| ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); |
| } |
| |
| ret = nvme_mpath_init_identify(ctrl, id); |
| if (ret < 0) |
| goto out_free; |
| |
| if (ctrl->apst_enabled && !prev_apst_enabled) |
| dev_pm_qos_expose_latency_tolerance(ctrl->device); |
| else if (!ctrl->apst_enabled && prev_apst_enabled) |
| dev_pm_qos_hide_latency_tolerance(ctrl->device); |
| |
| out_free: |
| kfree(id); |
| return ret; |
| } |
| |
| /* |
| * Initialize the cached copies of the Identify data and various controller |
| * register in our nvme_ctrl structure. This should be called as soon as |
| * the admin queue is fully up and running. |
| */ |
| int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) |
| { |
| int ret; |
| |
| ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); |
| if (ret) { |
| dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); |
| return ret; |
| } |
| |
| ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); |
| |
| if (ctrl->vs >= NVME_VS(1, 1, 0)) |
| ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); |
| |
| ret = nvme_init_identify(ctrl); |
| if (ret) |
| return ret; |
| |
| ret = nvme_configure_apst(ctrl); |
| if (ret < 0) |
| return ret; |
| |
| ret = nvme_configure_timestamp(ctrl); |
| if (ret < 0) |
| return ret; |
| |
| ret = nvme_configure_host_options(ctrl); |
| if (ret < 0) |
| return ret; |
| |
| nvme_configure_opal(ctrl, was_suspended); |
| |
| if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { |
| /* |
| * Do not return errors unless we are in a controller reset, |
| * the controller works perfectly fine without hwmon. |
| */ |
| ret = nvme_hwmon_init(ctrl); |
| if (ret == -EINTR) |
| return ret; |
| } |
| |
| clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); |
| ctrl->identified = true; |
| |
| nvme_start_keep_alive(ctrl); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); |
| |
| static int nvme_dev_open(struct inode *inode, struct file *file) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(inode->i_cdev, struct nvme_ctrl, cdev); |
| |
| switch (nvme_ctrl_state(ctrl)) { |
| case NVME_CTRL_LIVE: |
| break; |
| default: |
| return -EWOULDBLOCK; |
| } |
| |
| nvme_get_ctrl(ctrl); |
| if (!try_module_get(ctrl->ops->module)) { |
| nvme_put_ctrl(ctrl); |
| return -EINVAL; |
| } |
| |
| file->private_data = ctrl; |
| return 0; |
| } |
| |
| static int nvme_dev_release(struct inode *inode, struct file *file) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(inode->i_cdev, struct nvme_ctrl, cdev); |
| |
| module_put(ctrl->ops->module); |
| nvme_put_ctrl(ctrl); |
| return 0; |
| } |
| |
| static const struct file_operations nvme_dev_fops = { |
| .owner = THIS_MODULE, |
| .open = nvme_dev_open, |
| .release = nvme_dev_release, |
| .unlocked_ioctl = nvme_dev_ioctl, |
| .compat_ioctl = compat_ptr_ioctl, |
| .uring_cmd = nvme_dev_uring_cmd, |
| }; |
| |
| static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, |
| unsigned nsid) |
| { |
| struct nvme_ns_head *h; |
| |
| lockdep_assert_held(&ctrl->subsys->lock); |
| |
| list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { |
| /* |
| * Private namespaces can share NSIDs under some conditions. |
| * In that case we can't use the same ns_head for namespaces |
| * with the same NSID. |
| */ |
| if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) |
| continue; |
| if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) |
| return h; |
| } |
| |
| return NULL; |
| } |
| |
| static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, |
| struct nvme_ns_ids *ids) |
| { |
| bool has_uuid = !uuid_is_null(&ids->uuid); |
| bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); |
| bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); |
| struct nvme_ns_head *h; |
| |
| lockdep_assert_held(&subsys->lock); |
| |
| list_for_each_entry(h, &subsys->nsheads, entry) { |
| if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) |
| return -EINVAL; |
| if (has_nguid && |
| memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) |
| return -EINVAL; |
| if (has_eui64 && |
| memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_cdev_rel(struct device *dev) |
| { |
| ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); |
| } |
| |
| void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) |
| { |
| cdev_device_del(cdev, cdev_device); |
| put_device(cdev_device); |
| } |
| |
| int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, |
| const struct file_operations *fops, struct module *owner) |
| { |
| int minor, ret; |
| |
| minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); |
| if (minor < 0) |
| return minor; |
| cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); |
| cdev_device->class = &nvme_ns_chr_class; |
| cdev_device->release = nvme_cdev_rel; |
| device_initialize(cdev_device); |
| cdev_init(cdev, fops); |
| cdev->owner = owner; |
| ret = cdev_device_add(cdev, cdev_device); |
| if (ret) |
| put_device(cdev_device); |
| |
| return ret; |
| } |
| |
| static int nvme_ns_chr_open(struct inode *inode, struct file *file) |
| { |
| return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); |
| } |
| |
| static int nvme_ns_chr_release(struct inode *inode, struct file *file) |
| { |
| nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); |
| return 0; |
| } |
| |
| static const struct file_operations nvme_ns_chr_fops = { |
| .owner = THIS_MODULE, |
| .open = nvme_ns_chr_open, |
| .release = nvme_ns_chr_release, |
| .unlocked_ioctl = nvme_ns_chr_ioctl, |
| .compat_ioctl = compat_ptr_ioctl, |
| .uring_cmd = nvme_ns_chr_uring_cmd, |
| .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, |
| }; |
| |
| static int nvme_add_ns_cdev(struct nvme_ns *ns) |
| { |
| int ret; |
| |
| ns->cdev_device.parent = ns->ctrl->device; |
| ret = dev_set_name(&ns->cdev_device, "ng%dn%d", |
| ns->ctrl->instance, ns->head->instance); |
| if (ret) |
| return ret; |
| |
| return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, |
| ns->ctrl->ops->module); |
| } |
| |
| static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, |
| struct nvme_ns_info *info) |
| { |
| struct nvme_ns_head *head; |
| size_t size = sizeof(*head); |
| int ret = -ENOMEM; |
| |
| #ifdef CONFIG_NVME_MULTIPATH |
| size += num_possible_nodes() * sizeof(struct nvme_ns *); |
| #endif |
| |
| head = kzalloc(size, GFP_KERNEL); |
| if (!head) |
| goto out; |
| ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); |
| if (ret < 0) |
| goto out_free_head; |
| head->instance = ret; |
| INIT_LIST_HEAD(&head->list); |
| ret = init_srcu_struct(&head->srcu); |
| if (ret) |
| goto out_ida_remove; |
| head->subsys = ctrl->subsys; |
| head->ns_id = info->nsid; |
| head->ids = info->ids; |
| head->shared = info->is_shared; |
| ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); |
| ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); |
| kref_init(&head->ref); |
| |
| if (head->ids.csi) { |
| ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); |
| if (ret) |
| goto out_cleanup_srcu; |
| } else |
| head->effects = ctrl->effects; |
| |
| ret = nvme_mpath_alloc_disk(ctrl, head); |
| if (ret) |
| goto out_cleanup_srcu; |
| |
| list_add_tail(&head->entry, &ctrl->subsys->nsheads); |
| |
| kref_get(&ctrl->subsys->ref); |
| |
| return head; |
| out_cleanup_srcu: |
| cleanup_srcu_struct(&head->srcu); |
| out_ida_remove: |
| ida_free(&ctrl->subsys->ns_ida, head->instance); |
| out_free_head: |
| kfree(head); |
| out: |
| if (ret > 0) |
| ret = blk_status_to_errno(nvme_error_status(ret)); |
| return ERR_PTR(ret); |
| } |
| |
| static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, |
| struct nvme_ns_ids *ids) |
| { |
| struct nvme_subsystem *s; |
| int ret = 0; |
| |
| /* |
| * Note that this check is racy as we try to avoid holding the global |
| * lock over the whole ns_head creation. But it is only intended as |
| * a sanity check anyway. |
| */ |
| mutex_lock(&nvme_subsystems_lock); |
| list_for_each_entry(s, &nvme_subsystems, entry) { |
| if (s == this) |
| continue; |
| mutex_lock(&s->lock); |
| ret = nvme_subsys_check_duplicate_ids(s, ids); |
| mutex_unlock(&s->lock); |
| if (ret) |
| break; |
| } |
| mutex_unlock(&nvme_subsystems_lock); |
| |
| return ret; |
| } |
| |
| static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) |
| { |
| struct nvme_ctrl *ctrl = ns->ctrl; |
| struct nvme_ns_head *head = NULL; |
| int ret; |
| |
| ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); |
| if (ret) { |
| /* |
| * We've found two different namespaces on two different |
| * subsystems that report the same ID. This is pretty nasty |
| * for anything that actually requires unique device |
| * identification. In the kernel we need this for multipathing, |
| * and in user space the /dev/disk/by-id/ links rely on it. |
| * |
| * If the device also claims to be multi-path capable back off |
| * here now and refuse the probe the second device as this is a |
| * recipe for data corruption. If not this is probably a |
| * cheap consumer device if on the PCIe bus, so let the user |
| * proceed and use the shiny toy, but warn that with changing |
| * probing order (which due to our async probing could just be |
| * device taking longer to startup) the other device could show |
| * up at any time. |
| */ |
| nvme_print_device_info(ctrl); |
| if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ |
| ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && |
| info->is_shared)) { |
| dev_err(ctrl->device, |
| "ignoring nsid %d because of duplicate IDs\n", |
| info->nsid); |
| return ret; |
| } |
| |
| dev_err(ctrl->device, |
| "clearing duplicate IDs for nsid %d\n", info->nsid); |
| dev_err(ctrl->device, |
| "use of /dev/disk/by-id/ may cause data corruption\n"); |
| memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); |
| memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); |
| memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); |
| ctrl->quirks |= NVME_QUIRK_BOGUS_NID; |
| } |
| |
| mutex_lock(&ctrl->subsys->lock); |
| head = nvme_find_ns_head(ctrl, info->nsid); |
| if (!head) { |
| ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); |
| if (ret) { |
| dev_err(ctrl->device, |
| "duplicate IDs in subsystem for nsid %d\n", |
| info->nsid); |
| goto out_unlock; |
| } |
| head = nvme_alloc_ns_head(ctrl, info); |
| if (IS_ERR(head)) { |
| ret = PTR_ERR(head); |
| goto out_unlock; |
| } |
| } else { |
| ret = -EINVAL; |
| if (!info->is_shared || !head->shared) { |
| dev_err(ctrl->device, |
| "Duplicate unshared namespace %d\n", |
| info->nsid); |
| goto out_put_ns_head; |
| } |
| if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { |
| dev_err(ctrl->device, |
| "IDs don't match for shared namespace %d\n", |
| info->nsid); |
| goto out_put_ns_head; |
| } |
| |
| if (!multipath) { |
| dev_warn(ctrl->device, |
| "Found shared namespace %d, but multipathing not supported.\n", |
| info->nsid); |
| dev_warn_once(ctrl->device, |
| "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); |
| } |
| } |
| |
| list_add_tail_rcu(&ns->siblings, &head->list); |
| ns->head = head; |
| mutex_unlock(&ctrl->subsys->lock); |
| return 0; |
| |
| out_put_ns_head: |
| nvme_put_ns_head(head); |
| out_unlock: |
| mutex_unlock(&ctrl->subsys->lock); |
| return ret; |
| } |
| |
| struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
| { |
| struct nvme_ns *ns, *ret = NULL; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&ctrl->srcu); |
| list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { |
| if (ns->head->ns_id == nsid) { |
| if (!nvme_get_ns(ns)) |
| continue; |
| ret = ns; |
| break; |
| } |
| if (ns->head->ns_id > nsid) |
| break; |
| } |
| srcu_read_unlock(&ctrl->srcu, srcu_idx); |
| return ret; |
| } |
| EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); |
| |
| /* |
| * Add the namespace to the controller list while keeping the list ordered. |
| */ |
| static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) |
| { |
| struct nvme_ns *tmp; |
| |
| list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { |
| if (tmp->head->ns_id < ns->head->ns_id) { |
| list_add_rcu(&ns->list, &tmp->list); |
| return; |
| } |
| } |
| list_add(&ns->list, &ns->ctrl->namespaces); |
| } |
| |
| static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) |
| { |
| struct queue_limits lim = { }; |
| struct nvme_ns *ns; |
| struct gendisk *disk; |
| int node = ctrl->numa_node; |
| |
| ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); |
| if (!ns) |
| return; |
| |
| if (ctrl->opts && ctrl->opts->data_digest) |
| lim.features |= BLK_FEAT_STABLE_WRITES; |
| if (ctrl->ops->supports_pci_p2pdma && |
| ctrl->ops->supports_pci_p2pdma(ctrl)) |
| lim.features |= BLK_FEAT_PCI_P2PDMA; |
| |
| disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); |
| if (IS_ERR(disk)) |
| goto out_free_ns; |
| disk->fops = &nvme_bdev_ops; |
| disk->private_data = ns; |
| |
| ns->disk = disk; |
| ns->queue = disk->queue; |
| ns->ctrl = ctrl; |
| kref_init(&ns->kref); |
| |
| if (nvme_init_ns_head(ns, info)) |
| goto out_cleanup_disk; |
| |
| /* |
| * If multipathing is enabled, the device name for all disks and not |
| * just those that represent shared namespaces needs to be based on the |
| * subsystem instance. Using the controller instance for private |
| * namespaces could lead to naming collisions between shared and private |
| * namespaces if they don't use a common numbering scheme. |
| * |
| * If multipathing is not enabled, disk names must use the controller |
| * instance as shared namespaces will show up as multiple block |
| * devices. |
| */ |
| if (nvme_ns_head_multipath(ns->head)) { |
| sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, |
| ctrl->instance, ns->head->instance); |
| disk->flags |= GENHD_FL_HIDDEN; |
| } else if (multipath) { |
| sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, |
| ns->head->instance); |
| } else { |
| sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, |
| ns->head->instance); |
| } |
| |
| if (nvme_update_ns_info(ns, info)) |
| goto out_unlink_ns; |
| |
| mutex_lock(&ctrl->namespaces_lock); |
| /* |
| * Ensure that no namespaces are added to the ctrl list after the queues |
| * are frozen, thereby avoiding a deadlock between scan and reset. |
| */ |
| if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { |
| mutex_unlock(&ctrl->namespaces_lock); |
| goto out_unlink_ns; |
| } |
| nvme_ns_add_to_ctrl_list(ns); |
| mutex_unlock(&ctrl->namespaces_lock); |
| synchronize_srcu(&ctrl->srcu); |
| nvme_get_ctrl(ctrl); |
| |
| if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) |
| goto out_cleanup_ns_from_list; |
| |
| if (!nvme_ns_head_multipath(ns->head)) |
| nvme_add_ns_cdev(ns); |
| |
| nvme_mpath_add_disk(ns, info->anagrpid); |
| nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); |
| |
| /* |
| * Set ns->disk->device->driver_data to ns so we can access |
| * ns->head->passthru_err_log_enabled in |
| * nvme_io_passthru_err_log_enabled_[store | show](). |
| */ |
| dev_set_drvdata(disk_to_dev(ns->disk), ns); |
| |
| return; |
| |
| out_cleanup_ns_from_list: |
| nvme_put_ctrl(ctrl); |
| mutex_lock(&ctrl->namespaces_lock); |
| list_del_rcu(&ns->list); |
| mutex_unlock(&ctrl->namespaces_lock); |
| synchronize_srcu(&ctrl->srcu); |
| out_unlink_ns: |
| mutex_lock(&ctrl->subsys->lock); |
| list_del_rcu(&ns->siblings); |
| if (list_empty(&ns->head->list)) |
| list_del_init(&ns->head->entry); |
| mutex_unlock(&ctrl->subsys->lock); |
| nvme_put_ns_head(ns->head); |
| out_cleanup_disk: |
| put_disk(disk); |
| out_free_ns: |
| kfree(ns); |
| } |
| |
| static void nvme_ns_remove(struct nvme_ns *ns) |
| { |
| bool last_path = false; |
| |
| if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) |
| return; |
| |
| clear_bit(NVME_NS_READY, &ns->flags); |
| set_capacity(ns->disk, 0); |
| nvme_fault_inject_fini(&ns->fault_inject); |
| |
| /* |
| * Ensure that !NVME_NS_READY is seen by other threads to prevent |
| * this ns going back into current_path. |
| */ |
| synchronize_srcu(&ns->head->srcu); |
| |
| /* wait for concurrent submissions */ |
| if (nvme_mpath_clear_current_path(ns)) |
| synchronize_srcu(&ns->head->srcu); |
| |
| mutex_lock(&ns->ctrl->subsys->lock); |
| list_del_rcu(&ns->siblings); |
| if (list_empty(&ns->head->list)) { |
| list_del_init(&ns->head->entry); |
| last_path = true; |
| } |
| mutex_unlock(&ns->ctrl->subsys->lock); |
| |
| /* guarantee not available in head->list */ |
| synchronize_srcu(&ns->head->srcu); |
| |
| if (!nvme_ns_head_multipath(ns->head)) |
| nvme_cdev_del(&ns->cdev, &ns->cdev_device); |
| del_gendisk(ns->disk); |
| |
| mutex_lock(&ns->ctrl->namespaces_lock); |
| list_del_rcu(&ns->list); |
| mutex_unlock(&ns->ctrl->namespaces_lock); |
| synchronize_srcu(&ns->ctrl->srcu); |
| |
| if (last_path) |
| nvme_mpath_shutdown_disk(ns->head); |
| nvme_put_ns(ns); |
| } |
| |
| static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) |
| { |
| struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); |
| |
| if (ns) { |
| nvme_ns_remove(ns); |
| nvme_put_ns(ns); |
| } |
| } |
| |
| static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) |
| { |
| int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; |
| |
| if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { |
| dev_err(ns->ctrl->device, |
| "identifiers changed for nsid %d\n", ns->head->ns_id); |
| goto out; |
| } |
| |
| ret = nvme_update_ns_info(ns, info); |
| out: |
| /* |
| * Only remove the namespace if we got a fatal error back from the |
| * device, otherwise ignore the error and just move on. |
| * |
| * TODO: we should probably schedule a delayed retry here. |
| */ |
| if (ret > 0 && (ret & NVME_STATUS_DNR)) |
| nvme_ns_remove(ns); |
| } |
| |
| static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
| { |
| struct nvme_ns_info info = { .nsid = nsid }; |
| struct nvme_ns *ns; |
| int ret; |
| |
| if (nvme_identify_ns_descs(ctrl, &info)) |
| return; |
| |
| if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { |
| dev_warn(ctrl->device, |
| "command set not reported for nsid: %d\n", nsid); |
| return; |
| } |
| |
| /* |
| * If available try to use the Command Set Idependent Identify Namespace |
| * data structure to find all the generic information that is needed to |
| * set up a namespace. If not fall back to the legacy version. |
| */ |
| if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || |
| (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) |
| ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); |
| else |
| ret = nvme_ns_info_from_identify(ctrl, &info); |
| |
| if (info.is_removed) |
| nvme_ns_remove_by_nsid(ctrl, nsid); |
| |
| /* |
| * Ignore the namespace if it is not ready. We will get an AEN once it |
| * becomes ready and restart the scan. |
| */ |
| if (ret || !info.is_ready) |
| return; |
| |
| ns = nvme_find_get_ns(ctrl, nsid); |
| if (ns) { |
| nvme_validate_ns(ns, &info); |
| nvme_put_ns(ns); |
| } else { |
| nvme_alloc_ns(ctrl, &info); |
| } |
| } |
| |
| /** |
| * struct async_scan_info - keeps track of controller & NSIDs to scan |
| * @ctrl: Controller on which namespaces are being scanned |
| * @next_nsid: Index of next NSID to scan in ns_list |
| * @ns_list: Pointer to list of NSIDs to scan |
| * |
| * Note: There is a single async_scan_info structure shared by all instances |
| * of nvme_scan_ns_async() scanning a given controller, so the atomic |
| * operations on next_nsid are critical to ensure each instance scans a unique |
| * NSID. |
| */ |
| struct async_scan_info { |
| struct nvme_ctrl *ctrl; |
| atomic_t next_nsid; |
| __le32 *ns_list; |
| }; |
| |
| static void nvme_scan_ns_async(void *data, async_cookie_t cookie) |
| { |
| struct async_scan_info *scan_info = data; |
| int idx; |
| u32 nsid; |
| |
| idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); |
| nsid = le32_to_cpu(scan_info->ns_list[idx]); |
| |
| nvme_scan_ns(scan_info->ctrl, nsid); |
| } |
| |
| static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
| unsigned nsid) |
| { |
| struct nvme_ns *ns, *next; |
| LIST_HEAD(rm_list); |
| |
| mutex_lock(&ctrl->namespaces_lock); |
| list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { |
| if (ns->head->ns_id > nsid) { |
| list_del_rcu(&ns->list); |
| synchronize_srcu(&ctrl->srcu); |
| list_add_tail_rcu(&ns->list, &rm_list); |
| } |
| } |
| mutex_unlock(&ctrl->namespaces_lock); |
| |
| list_for_each_entry_safe(ns, next, &rm_list, list) |
| nvme_ns_remove(ns); |
| } |
| |
| static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) |
| { |
| const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); |
| __le32 *ns_list; |
| u32 prev = 0; |
| int ret = 0, i; |
| ASYNC_DOMAIN(domain); |
| struct async_scan_info scan_info; |
| |
| ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); |
| if (!ns_list) |
| return -ENOMEM; |
| |
| scan_info.ctrl = ctrl; |
| scan_info.ns_list = ns_list; |
| for (;;) { |
| struct nvme_command cmd = { |
| .identify.opcode = nvme_admin_identify, |
| .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, |
| .identify.nsid = cpu_to_le32(prev), |
| }; |
| |
| ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, |
| NVME_IDENTIFY_DATA_SIZE); |
| if (ret) { |
| dev_warn(ctrl->device, |
| "Identify NS List failed (status=0x%x)\n", ret); |
| goto free; |
| } |
| |
| atomic_set(&scan_info.next_nsid, 0); |
| for (i = 0; i < nr_entries; i++) { |
| u32 nsid = le32_to_cpu(ns_list[i]); |
| |
| if (!nsid) /* end of the list? */ |
| goto out; |
| async_schedule_domain(nvme_scan_ns_async, &scan_info, |
| &domain); |
| while (++prev < nsid) |
| nvme_ns_remove_by_nsid(ctrl, prev); |
| } |
| async_synchronize_full_domain(&domain); |
| } |
| out: |
| nvme_remove_invalid_namespaces(ctrl, prev); |
| free: |
| async_synchronize_full_domain(&domain); |
| kfree(ns_list); |
| return ret; |
| } |
| |
| static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_id_ctrl *id; |
| u32 nn, i; |
| |
| if (nvme_identify_ctrl(ctrl, &id)) |
| return; |
| nn = le32_to_cpu(id->nn); |
| kfree(id); |
| |
| for (i = 1; i <= nn; i++) |
| nvme_scan_ns(ctrl, i); |
| |
| nvme_remove_invalid_namespaces(ctrl, nn); |
| } |
| |
| static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) |
| { |
| size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); |
| __le32 *log; |
| int error; |
| |
| log = kzalloc(log_size, GFP_KERNEL); |
| if (!log) |
| return; |
| |
| /* |
| * We need to read the log to clear the AEN, but we don't want to rely |
| * on it for the changed namespace information as userspace could have |
| * raced with us in reading the log page, which could cause us to miss |
| * updates. |
| */ |
| error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, |
| NVME_CSI_NVM, log, log_size, 0); |
| if (error) |
| dev_warn(ctrl->device, |
| "reading changed ns log failed: %d\n", error); |
| |
| kfree(log); |
| } |
| |
| static void nvme_scan_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(work, struct nvme_ctrl, scan_work); |
| int ret; |
| |
| /* No tagset on a live ctrl means IO queues could not created */ |
| if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) |
| return; |
| |
| /* |
| * Identify controller limits can change at controller reset due to |
| * new firmware download, even though it is not common we cannot ignore |
| * such scenario. Controller's non-mdts limits are reported in the unit |
| * of logical blocks that is dependent on the format of attached |
| * namespace. Hence re-read the limits at the time of ns allocation. |
| */ |
| ret = nvme_init_non_mdts_limits(ctrl); |
| if (ret < 0) { |
| dev_warn(ctrl->device, |
| "reading non-mdts-limits failed: %d\n", ret); |
| return; |
| } |
| |
| if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { |
| dev_info(ctrl->device, "rescanning namespaces.\n"); |
| nvme_clear_changed_ns_log(ctrl); |
| } |
| |
| mutex_lock(&ctrl->scan_lock); |
| if (nvme_ctrl_limited_cns(ctrl)) { |
| nvme_scan_ns_sequential(ctrl); |
| } else { |
| /* |
| * Fall back to sequential scan if DNR is set to handle broken |
| * devices which should support Identify NS List (as per the VS |
| * they report) but don't actually support it. |
| */ |
| ret = nvme_scan_ns_list(ctrl); |
| if (ret > 0 && ret & NVME_STATUS_DNR) |
| nvme_scan_ns_sequential(ctrl); |
| } |
| mutex_unlock(&ctrl->scan_lock); |
| } |
| |
| /* |
| * This function iterates the namespace list unlocked to allow recovery from |
| * controller failure. It is up to the caller to ensure the namespace list is |
| * not modified by scan work while this function is executing. |
| */ |
| void nvme_remove_namespaces(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns, *next; |
| LIST_HEAD(ns_list); |
| |
| /* |
| * make sure to requeue I/O to all namespaces as these |
| * might result from the scan itself and must complete |
| * for the scan_work to make progress |
| */ |
| nvme_mpath_clear_ctrl_paths(ctrl); |
| |
| /* |
| * Unquiesce io queues so any pending IO won't hang, especially |
| * those submitted from scan work |
| */ |
| nvme_unquiesce_io_queues(ctrl); |
| |
| /* prevent racing with ns scanning */ |
| flush_work(&ctrl->scan_work); |
| |
| /* |
| * The dead states indicates the controller was not gracefully |
| * disconnected. In that case, we won't be able to flush any data while |
| * removing the namespaces' disks; fail all the queues now to avoid |
| * potentially having to clean up the failed sync later. |
| */ |
| if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) |
| nvme_mark_namespaces_dead(ctrl); |
| |
| /* this is a no-op when called from the controller reset handler */ |
| nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); |
| |
| mutex_lock(&ctrl->namespaces_lock); |
| list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); |
| mutex_unlock(&ctrl->namespaces_lock); |
| synchronize_srcu(&ctrl->srcu); |
| |
| list_for_each_entry_safe(ns, next, &ns_list, list) |
| nvme_ns_remove(ns); |
| } |
| EXPORT_SYMBOL_GPL(nvme_remove_namespaces); |
| |
| static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) |
| { |
| const struct nvme_ctrl *ctrl = |
| container_of(dev, struct nvme_ctrl, ctrl_device); |
| struct nvmf_ctrl_options *opts = ctrl->opts; |
| int ret; |
| |
| ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); |
| if (ret) |
| return ret; |
| |
| if (opts) { |
| ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); |
| if (ret) |
| return ret; |
| |
| ret = add_uevent_var(env, "NVME_TRSVCID=%s", |
| opts->trsvcid ?: "none"); |
| if (ret) |
| return ret; |
| |
| ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", |
| opts->host_traddr ?: "none"); |
| if (ret) |
| return ret; |
| |
| ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", |
| opts->host_iface ?: "none"); |
| } |
| return ret; |
| } |
| |
| static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) |
| { |
| char *envp[2] = { envdata, NULL }; |
| |
| kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); |
| } |
| |
| static void nvme_aen_uevent(struct nvme_ctrl *ctrl) |
| { |
| char *envp[2] = { NULL, NULL }; |
| u32 aen_result = ctrl->aen_result; |
| |
| ctrl->aen_result = 0; |
| if (!aen_result) |
| return; |
| |
| envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); |
| if (!envp[0]) |
| return; |
| kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); |
| kfree(envp[0]); |
| } |
| |
| static void nvme_async_event_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(work, struct nvme_ctrl, async_event_work); |
| |
| nvme_aen_uevent(ctrl); |
| |
| /* |
| * The transport drivers must guarantee AER submission here is safe by |
| * flushing ctrl async_event_work after changing the controller state |
| * from LIVE and before freeing the admin queue. |
| */ |
| if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) |
| ctrl->ops->submit_async_event(ctrl); |
| } |
| |
| static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) |
| { |
| |
| u32 csts; |
| |
| if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) |
| return false; |
| |
| if (csts == ~0) |
| return false; |
| |
| return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); |
| } |
| |
| static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_fw_slot_info_log *log; |
| u8 next_fw_slot, cur_fw_slot; |
| |
| log = kmalloc(sizeof(*log), GFP_KERNEL); |
| if (!log) |
| return; |
| |
| if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, |
| log, sizeof(*log), 0)) { |
| dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); |
| goto out_free_log; |
| } |
| |
| cur_fw_slot = log->afi & 0x7; |
| next_fw_slot = (log->afi & 0x70) >> 4; |
| if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { |
| dev_info(ctrl->device, |
| "Firmware is activated after next Controller Level Reset\n"); |
| goto out_free_log; |
| } |
| |
| memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], |
| sizeof(ctrl->subsys->firmware_rev)); |
| |
| out_free_log: |
| kfree(log); |
| } |
| |
| static void nvme_fw_act_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = container_of(work, |
| struct nvme_ctrl, fw_act_work); |
| unsigned long fw_act_timeout; |
| |
| nvme_auth_stop(ctrl); |
| |
| if (ctrl->mtfa) |
| fw_act_timeout = jiffies + |
| msecs_to_jiffies(ctrl->mtfa * 100); |
| else |
| fw_act_timeout = jiffies + |
| msecs_to_jiffies(admin_timeout * 1000); |
| |
| nvme_quiesce_io_queues(ctrl); |
| while (nvme_ctrl_pp_status(ctrl)) { |
| if (time_after(jiffies, fw_act_timeout)) { |
| dev_warn(ctrl->device, |
| "Fw activation timeout, reset controller\n"); |
| nvme_try_sched_reset(ctrl); |
| return; |
| } |
| msleep(100); |
| } |
| |
| if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) |
| return; |
| |
| nvme_unquiesce_io_queues(ctrl); |
| /* read FW slot information to clear the AER */ |
| nvme_get_fw_slot_info(ctrl); |
| |
| queue_work(nvme_wq, &ctrl->async_event_work); |
| } |
| |
| static u32 nvme_aer_type(u32 result) |
| { |
| return result & 0x7; |
| } |
| |
| static u32 nvme_aer_subtype(u32 result) |
| { |
| return (result & 0xff00) >> 8; |
| } |
| |
| static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) |
| { |
| u32 aer_notice_type = nvme_aer_subtype(result); |
| bool requeue = true; |
| |
| switch (aer_notice_type) { |
| case NVME_AER_NOTICE_NS_CHANGED: |
| set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); |
| nvme_queue_scan(ctrl); |
| break; |
| case NVME_AER_NOTICE_FW_ACT_STARTING: |
| /* |
| * We are (ab)using the RESETTING state to prevent subsequent |
| * recovery actions from interfering with the controller's |
| * firmware activation. |
| */ |
| if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { |
| requeue = false; |
| queue_work(nvme_wq, &ctrl->fw_act_work); |
| } |
| break; |
| #ifdef CONFIG_NVME_MULTIPATH |
| case NVME_AER_NOTICE_ANA: |
| if (!ctrl->ana_log_buf) |
| break; |
| queue_work(nvme_wq, &ctrl->ana_work); |
| break; |
| #endif |
| case NVME_AER_NOTICE_DISC_CHANGED: |
| ctrl->aen_result = result; |
| break; |
| default: |
| dev_warn(ctrl->device, "async event result %08x\n", result); |
| } |
| return requeue; |
| } |
| |
| static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) |
| { |
| dev_warn(ctrl->device, |
| "resetting controller due to persistent internal error\n"); |
| nvme_reset_ctrl(ctrl); |
| } |
| |
| void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, |
| volatile union nvme_result *res) |
| { |
| u32 result = le32_to_cpu(res->u32); |
| u32 aer_type = nvme_aer_type(result); |
| u32 aer_subtype = nvme_aer_subtype(result); |
| bool requeue = true; |
| |
| if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) |
| return; |
| |
| trace_nvme_async_event(ctrl, result); |
| switch (aer_type) { |
| case NVME_AER_NOTICE: |
| requeue = nvme_handle_aen_notice(ctrl, result); |
| break; |
| case NVME_AER_ERROR: |
| /* |
| * For a persistent internal error, don't run async_event_work |
| * to submit a new AER. The controller reset will do it. |
| */ |
| if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { |
| nvme_handle_aer_persistent_error(ctrl); |
| return; |
| } |
| fallthrough; |
| case NVME_AER_SMART: |
| case NVME_AER_CSS: |
| case NVME_AER_VS: |
| ctrl->aen_result = result; |
| break; |
| default: |
| break; |
| } |
| |
| if (requeue) |
| queue_work(nvme_wq, &ctrl->async_event_work); |
| } |
| EXPORT_SYMBOL_GPL(nvme_complete_async_event); |
| |
| int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, |
| const struct blk_mq_ops *ops, unsigned int cmd_size) |
| { |
| struct queue_limits lim = {}; |
| int ret; |
| |
| memset(set, 0, sizeof(*set)); |
| set->ops = ops; |
| set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; |
| if (ctrl->ops->flags & NVME_F_FABRICS) |
| /* Reserved for fabric connect and keep alive */ |
| set->reserved_tags = 2; |
| set->numa_node = ctrl->numa_node; |
| set->flags = BLK_MQ_F_NO_SCHED; |
| if (ctrl->ops->flags & NVME_F_BLOCKING) |
| set->flags |= BLK_MQ_F_BLOCKING; |
| set->cmd_size = cmd_size; |
| set->driver_data = ctrl; |
| set->nr_hw_queues = 1; |
| set->timeout = NVME_ADMIN_TIMEOUT; |
| ret = blk_mq_alloc_tag_set(set); |
| if (ret) |
| return ret; |
| |
| ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); |
| if (IS_ERR(ctrl->admin_q)) { |
| ret = PTR_ERR(ctrl->admin_q); |
| goto out_free_tagset; |
| } |
| |
| if (ctrl->ops->flags & NVME_F_FABRICS) { |
| ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); |
| if (IS_ERR(ctrl->fabrics_q)) { |
| ret = PTR_ERR(ctrl->fabrics_q); |
| goto out_cleanup_admin_q; |
| } |
| } |
| |
| ctrl->admin_tagset = set; |
| return 0; |
| |
| out_cleanup_admin_q: |
| blk_mq_destroy_queue(ctrl->admin_q); |
| blk_put_queue(ctrl->admin_q); |
| out_free_tagset: |
| blk_mq_free_tag_set(set); |
| ctrl->admin_q = NULL; |
| ctrl->fabrics_q = NULL; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); |
| |
| void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) |
| { |
| blk_mq_destroy_queue(ctrl->admin_q); |
| blk_put_queue(ctrl->admin_q); |
| if (ctrl->ops->flags & NVME_F_FABRICS) { |
| blk_mq_destroy_queue(ctrl->fabrics_q); |
| blk_put_queue(ctrl->fabrics_q); |
| } |
| blk_mq_free_tag_set(ctrl->admin_tagset); |
| } |
| EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); |
| |
| int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, |
| const struct blk_mq_ops *ops, unsigned int nr_maps, |
| unsigned int cmd_size) |
| { |
| int ret; |
| |
| memset(set, 0, sizeof(*set)); |
| set->ops = ops; |
| set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); |
| /* |
| * Some Apple controllers requires tags to be unique across admin and |
| * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. |
| */ |
| if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) |
| set->reserved_tags = NVME_AQ_DEPTH; |
| else if (ctrl->ops->flags & NVME_F_FABRICS) |
| /* Reserved for fabric connect */ |
| set->reserved_tags = 1; |
| set->numa_node = ctrl->numa_node; |
| set->flags = BLK_MQ_F_SHOULD_MERGE; |
| if (ctrl->ops->flags & NVME_F_BLOCKING) |
| set->flags |= BLK_MQ_F_BLOCKING; |
| set->cmd_size = cmd_size; |
| set->driver_data = ctrl; |
| set->nr_hw_queues = ctrl->queue_count - 1; |
| set->timeout = NVME_IO_TIMEOUT; |
| set->nr_maps = nr_maps; |
| ret = blk_mq_alloc_tag_set(set); |
| if (ret) |
| return ret; |
| |
| if (ctrl->ops->flags & NVME_F_FABRICS) { |
| struct queue_limits lim = { |
| .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, |
| }; |
| |
| ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); |
| if (IS_ERR(ctrl->connect_q)) { |
| ret = PTR_ERR(ctrl->connect_q); |
| goto out_free_tag_set; |
| } |
| } |
| |
| ctrl->tagset = set; |
| return 0; |
| |
| out_free_tag_set: |
| blk_mq_free_tag_set(set); |
| ctrl->connect_q = NULL; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); |
| |
| void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) |
| { |
| if (ctrl->ops->flags & NVME_F_FABRICS) { |
| blk_mq_destroy_queue(ctrl->connect_q); |
| blk_put_queue(ctrl->connect_q); |
| } |
| blk_mq_free_tag_set(ctrl->tagset); |
| } |
| EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); |
| |
| void nvme_stop_ctrl(struct nvme_ctrl *ctrl) |
| { |
| nvme_mpath_stop(ctrl); |
| nvme_auth_stop(ctrl); |
| nvme_stop_failfast_work(ctrl); |
| flush_work(&ctrl->async_event_work); |
| cancel_work_sync(&ctrl->fw_act_work); |
| if (ctrl->ops->stop_ctrl) |
| ctrl->ops->stop_ctrl(ctrl); |
| } |
| EXPORT_SYMBOL_GPL(nvme_stop_ctrl); |
| |
| void nvme_start_ctrl(struct nvme_ctrl *ctrl) |
| { |
| nvme_enable_aen(ctrl); |
| |
| /* |
| * persistent discovery controllers need to send indication to userspace |
| * to re-read the discovery log page to learn about possible changes |
| * that were missed. We identify persistent discovery controllers by |
| * checking that they started once before, hence are reconnecting back. |
| */ |
| if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && |
| nvme_discovery_ctrl(ctrl)) |
| nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); |
| |
| if (ctrl->queue_count > 1) { |
| nvme_queue_scan(ctrl); |
| nvme_unquiesce_io_queues(ctrl); |
| nvme_mpath_update(ctrl); |
| } |
| |
| nvme_change_uevent(ctrl, "NVME_EVENT=connected"); |
| set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); |
| } |
| EXPORT_SYMBOL_GPL(nvme_start_ctrl); |
| |
| void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) |
| { |
| nvme_stop_keep_alive(ctrl); |
| nvme_hwmon_exit(ctrl); |
| nvme_fault_inject_fini(&ctrl->fault_inject); |
| dev_pm_qos_hide_latency_tolerance(ctrl->device); |
| cdev_device_del(&ctrl->cdev, ctrl->device); |
| nvme_put_ctrl(ctrl); |
| } |
| EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); |
| |
| static void nvme_free_cels(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_effects_log *cel; |
| unsigned long i; |
| |
| xa_for_each(&ctrl->cels, i, cel) { |
| xa_erase(&ctrl->cels, i); |
| kfree(cel); |
| } |
| |
| xa_destroy(&ctrl->cels); |
| } |
| |
| static void nvme_free_ctrl(struct device *dev) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(dev, struct nvme_ctrl, ctrl_device); |
| struct nvme_subsystem *subsys = ctrl->subsys; |
| |
| if (!subsys || ctrl->instance != subsys->instance) |
| ida_free(&nvme_instance_ida, ctrl->instance); |
| nvme_free_cels(ctrl); |
| nvme_mpath_uninit(ctrl); |
| cleanup_srcu_struct(&ctrl->srcu); |
| nvme_auth_stop(ctrl); |
| nvme_auth_free(ctrl); |
| __free_page(ctrl->discard_page); |
| free_opal_dev(ctrl->opal_dev); |
| |
| if (subsys) { |
| mutex_lock(&nvme_subsystems_lock); |
| list_del(&ctrl->subsys_entry); |
| sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); |
| mutex_unlock(&nvme_subsystems_lock); |
| } |
| |
| ctrl->ops->free_ctrl(ctrl); |
| |
| if (subsys) |
| nvme_put_subsystem(subsys); |
| } |
| |
| /* |
| * Initialize a NVMe controller structures. This needs to be called during |
| * earliest initialization so that we have the initialized structured around |
| * during probing. |
| * |
| * On success, the caller must use the nvme_put_ctrl() to release this when |
| * needed, which also invokes the ops->free_ctrl() callback. |
| */ |
| int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, |
| const struct nvme_ctrl_ops *ops, unsigned long quirks) |
| { |
| int ret; |
| |
| WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); |
| ctrl->passthru_err_log_enabled = false; |
| clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); |
| spin_lock_init(&ctrl->lock); |
| mutex_init(&ctrl->namespaces_lock); |
| |
| ret = init_srcu_struct(&ctrl->srcu); |
| if (ret) |
| return ret; |
| |
| mutex_init(&ctrl->scan_lock); |
| INIT_LIST_HEAD(&ctrl->namespaces); |
| xa_init(&ctrl->cels); |
| ctrl->dev = dev; |
| ctrl->ops = ops; |
| ctrl->quirks = quirks; |
| ctrl->numa_node = NUMA_NO_NODE; |
| INIT_WORK(&ctrl->scan_work, nvme_scan_work); |
| INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); |
| INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); |
| INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); |
| init_waitqueue_head(&ctrl->state_wq); |
| |
| INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); |
| INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); |
| memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); |
| ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; |
| ctrl->ka_last_check_time = jiffies; |
| |
| BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > |
| PAGE_SIZE); |
| ctrl->discard_page = alloc_page(GFP_KERNEL); |
| if (!ctrl->discard_page) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); |
| if (ret < 0) |
| goto out; |
| ctrl->instance = ret; |
| |
| ret = nvme_auth_init_ctrl(ctrl); |
| if (ret) |
| goto out_release_instance; |
| |
| nvme_mpath_init_ctrl(ctrl); |
| |
| device_initialize(&ctrl->ctrl_device); |
| ctrl->device = &ctrl->ctrl_device; |
| ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), |
| ctrl->instance); |
| ctrl->device->class = &nvme_class; |
| ctrl->device->parent = ctrl->dev; |
| if (ops->dev_attr_groups) |
| ctrl->device->groups = ops->dev_attr_groups; |
| else |
| ctrl->device->groups = nvme_dev_attr_groups; |
| ctrl->device->release = nvme_free_ctrl; |
| dev_set_drvdata(ctrl->device, ctrl); |
| |
| return ret; |
| |
| out_release_instance: |
| ida_free(&nvme_instance_ida, ctrl->instance); |
| out: |
| if (ctrl->discard_page) |
| __free_page(ctrl->discard_page); |
| cleanup_srcu_struct(&ctrl->srcu); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_init_ctrl); |
| |
| /* |
| * On success, returns with an elevated controller reference and caller must |
| * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. |
| */ |
| int nvme_add_ctrl(struct nvme_ctrl *ctrl) |
| { |
| int ret; |
| |
| ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); |
| if (ret) |
| return ret; |
| |
| cdev_init(&ctrl->cdev, &nvme_dev_fops); |
| ctrl->cdev.owner = ctrl->ops->module; |
| ret = cdev_device_add(&ctrl->cdev, ctrl->device); |
| if (ret) |
| return ret; |
| |
| /* |
| * Initialize latency tolerance controls. The sysfs files won't |
| * be visible to userspace unless the device actually supports APST. |
| */ |
| ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; |
| dev_pm_qos_update_user_latency_tolerance(ctrl->device, |
| min(default_ps_max_latency_us, (unsigned long)S32_MAX)); |
| |
| nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); |
| nvme_get_ctrl(ctrl); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_add_ctrl); |
| |
| /* let I/O to all namespaces fail in preparation for surprise removal */ |
| void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&ctrl->srcu); |
| list_for_each_entry_rcu(ns, &ctrl->namespaces, list) |
| blk_mark_disk_dead(ns->disk); |
| srcu_read_unlock(&ctrl->srcu, srcu_idx); |
| } |
| EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); |
| |
| void nvme_unfreeze(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&ctrl->srcu); |
| list_for_each_entry_rcu(ns, &ctrl->namespaces, list) |
| blk_mq_unfreeze_queue(ns->queue); |
| srcu_read_unlock(&ctrl->srcu, srcu_idx); |
| clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); |
| } |
| EXPORT_SYMBOL_GPL(nvme_unfreeze); |
| |
| int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) |
| { |
| struct nvme_ns *ns; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&ctrl->srcu); |
| list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { |
| timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); |
| if (timeout <= 0) |
| break; |
| } |
| srcu_read_unlock(&ctrl->srcu, srcu_idx); |
| return timeout; |
| } |
| EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); |
| |
| void nvme_wait_freeze(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&ctrl->srcu); |
| list_for_each_entry_rcu(ns, &ctrl->namespaces, list) |
| blk_mq_freeze_queue_wait(ns->queue); |
| srcu_read_unlock(&ctrl->srcu, srcu_idx); |
| } |
| EXPORT_SYMBOL_GPL(nvme_wait_freeze); |
| |
| void nvme_start_freeze(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| int srcu_idx; |
| |
| set_bit(NVME_CTRL_FROZEN, &ctrl->flags); |
| srcu_idx = srcu_read_lock(&ctrl->srcu); |
| list_for_each_entry_rcu(ns, &ctrl->namespaces, list) |
| blk_freeze_queue_start(ns->queue); |
| srcu_read_unlock(&ctrl->srcu, srcu_idx); |
| } |
| EXPORT_SYMBOL_GPL(nvme_start_freeze); |
| |
| void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) |
| { |
| if (!ctrl->tagset) |
| return; |
| if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) |
| blk_mq_quiesce_tagset(ctrl->tagset); |
| else |
| blk_mq_wait_quiesce_done(ctrl->tagset); |
| } |
| EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); |
| |
| void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) |
| { |
| if (!ctrl->tagset) |
| return; |
| if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) |
| blk_mq_unquiesce_tagset(ctrl->tagset); |
| } |
| EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); |
| |
| void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) |
| { |
| if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) |
| blk_mq_quiesce_queue(ctrl->admin_q); |
| else |
| blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); |
| } |
| EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); |
| |
| void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) |
| { |
| if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) |
| blk_mq_unquiesce_queue(ctrl->admin_q); |
| } |
| EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); |
| |
| void nvme_sync_io_queues(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&ctrl->srcu); |
| list_for_each_entry_rcu(ns, &ctrl->namespaces, list) |
| blk_sync_queue(ns->queue); |
| srcu_read_unlock(&ctrl->srcu, srcu_idx); |
| } |
| EXPORT_SYMBOL_GPL(nvme_sync_io_queues); |
| |
| void nvme_sync_queues(struct nvme_ctrl *ctrl) |
| { |
| nvme_sync_io_queues(ctrl); |
| if (ctrl->admin_q) |
| blk_sync_queue(ctrl->admin_q); |
| } |
| EXPORT_SYMBOL_GPL(nvme_sync_queues); |
| |
| struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) |
| { |
| if (file->f_op != &nvme_dev_fops) |
| return NULL; |
| return file->private_data; |
| } |
| EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); |
| |
| /* |
| * Check we didn't inadvertently grow the command structure sizes: |
| */ |
| static inline void _nvme_check_size(void) |
| { |
| BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_features) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != |
| NVME_IDENTIFY_DATA_SIZE); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); |
| BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); |
| BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); |
| } |
| |
| |
| static int __init nvme_core_init(void) |
| { |
| int result = -ENOMEM; |
| |
| _nvme_check_size(); |
| |
| nvme_wq = alloc_workqueue("nvme-wq", |
| WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); |
| if (!nvme_wq) |
| goto out; |
| |
| nvme_reset_wq = alloc_workqueue("nvme-reset-wq", |
| WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); |
| if (!nvme_reset_wq) |
| goto destroy_wq; |
| |
| nvme_delete_wq = alloc_workqueue("nvme-delete-wq", |
| WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); |
| if (!nvme_delete_wq) |
| goto destroy_reset_wq; |
| |
| result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, |
| NVME_MINORS, "nvme"); |
| if (result < 0) |
| goto destroy_delete_wq; |
| |
| result = class_register(&nvme_class); |
| if (result) |
| goto unregister_chrdev; |
| |
| result = class_register(&nvme_subsys_class); |
| if (result) |
| goto destroy_class; |
| |
| result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, |
| "nvme-generic"); |
| if (result < 0) |
| goto destroy_subsys_class; |
| |
| result = class_register(&nvme_ns_chr_class); |
| if (result) |
| goto unregister_generic_ns; |
| |
| result = nvme_init_auth(); |
| if (result) |
| goto destroy_ns_chr; |
| return 0; |
| |
| destroy_ns_chr: |
| class_unregister(&nvme_ns_chr_class); |
| unregister_generic_ns: |
| unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); |
| destroy_subsys_class: |
| class_unregister(&nvme_subsys_class); |
| destroy_class: |
| class_unregister(&nvme_class); |
| unregister_chrdev: |
| unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); |
| destroy_delete_wq: |
| destroy_workqueue(nvme_delete_wq); |
| destroy_reset_wq: |
| destroy_workqueue(nvme_reset_wq); |
| destroy_wq: |
| destroy_workqueue(nvme_wq); |
| out: |
| return result; |
| } |
| |
| static void __exit nvme_core_exit(void) |
| { |
| nvme_exit_auth(); |
| class_unregister(&nvme_ns_chr_class); |
| class_unregister(&nvme_subsys_class); |
| class_unregister(&nvme_class); |
| unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); |
| unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); |
| destroy_workqueue(nvme_delete_wq); |
| destroy_workqueue(nvme_reset_wq); |
| destroy_workqueue(nvme_wq); |
| ida_destroy(&nvme_ns_chr_minor_ida); |
| ida_destroy(&nvme_instance_ida); |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION("1.0"); |
| MODULE_DESCRIPTION("NVMe host core framework"); |
| module_init(nvme_core_init); |
| module_exit(nvme_core_exit); |