| /* |
| * Copyright 2018 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| #include "nouveau_dmem.h" |
| #include "nouveau_drv.h" |
| #include "nouveau_chan.h" |
| #include "nouveau_dma.h" |
| #include "nouveau_mem.h" |
| #include "nouveau_bo.h" |
| |
| #include <nvif/class.h> |
| #include <nvif/object.h> |
| #include <nvif/if500b.h> |
| #include <nvif/if900b.h> |
| |
| #include <linux/sched/mm.h> |
| #include <linux/hmm.h> |
| |
| /* |
| * FIXME: this is ugly right now we are using TTM to allocate vram and we pin |
| * it in vram while in use. We likely want to overhaul memory management for |
| * nouveau to be more page like (not necessarily with system page size but a |
| * bigger page size) at lowest level and have some shim layer on top that would |
| * provide the same functionality as TTM. |
| */ |
| #define DMEM_CHUNK_SIZE (2UL << 20) |
| #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT) |
| |
| struct nouveau_migrate; |
| |
| enum nouveau_aper { |
| NOUVEAU_APER_VIRT, |
| NOUVEAU_APER_VRAM, |
| NOUVEAU_APER_HOST, |
| }; |
| |
| typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages, |
| enum nouveau_aper, u64 dst_addr, |
| enum nouveau_aper, u64 src_addr); |
| |
| struct nouveau_dmem_chunk { |
| struct list_head list; |
| struct nouveau_bo *bo; |
| struct nouveau_drm *drm; |
| unsigned long pfn_first; |
| unsigned long callocated; |
| unsigned long bitmap[BITS_TO_LONGS(DMEM_CHUNK_NPAGES)]; |
| spinlock_t lock; |
| }; |
| |
| struct nouveau_dmem_migrate { |
| nouveau_migrate_copy_t copy_func; |
| struct nouveau_channel *chan; |
| }; |
| |
| struct nouveau_dmem { |
| struct hmm_devmem *devmem; |
| struct nouveau_dmem_migrate migrate; |
| struct list_head chunk_free; |
| struct list_head chunk_full; |
| struct list_head chunk_empty; |
| struct mutex mutex; |
| }; |
| |
| struct nouveau_dmem_fault { |
| struct nouveau_drm *drm; |
| struct nouveau_fence *fence; |
| dma_addr_t *dma; |
| unsigned long npages; |
| }; |
| |
| struct nouveau_migrate { |
| struct vm_area_struct *vma; |
| struct nouveau_drm *drm; |
| struct nouveau_fence *fence; |
| unsigned long npages; |
| dma_addr_t *dma; |
| unsigned long dma_nr; |
| }; |
| |
| static void |
| nouveau_dmem_free(struct hmm_devmem *devmem, struct page *page) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| unsigned long idx; |
| |
| chunk = (void *)hmm_devmem_page_get_drvdata(page); |
| idx = page_to_pfn(page) - chunk->pfn_first; |
| |
| /* |
| * FIXME: |
| * |
| * This is really a bad example, we need to overhaul nouveau memory |
| * management to be more page focus and allow lighter locking scheme |
| * to be use in the process. |
| */ |
| spin_lock(&chunk->lock); |
| clear_bit(idx, chunk->bitmap); |
| WARN_ON(!chunk->callocated); |
| chunk->callocated--; |
| /* |
| * FIXME when chunk->callocated reach 0 we should add the chunk to |
| * a reclaim list so that it can be freed in case of memory pressure. |
| */ |
| spin_unlock(&chunk->lock); |
| } |
| |
| static void |
| nouveau_dmem_fault_alloc_and_copy(struct vm_area_struct *vma, |
| const unsigned long *src_pfns, |
| unsigned long *dst_pfns, |
| unsigned long start, |
| unsigned long end, |
| void *private) |
| { |
| struct nouveau_dmem_fault *fault = private; |
| struct nouveau_drm *drm = fault->drm; |
| struct device *dev = drm->dev->dev; |
| unsigned long addr, i, npages = 0; |
| nouveau_migrate_copy_t copy; |
| int ret; |
| |
| |
| /* First allocate new memory */ |
| for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) { |
| struct page *dpage, *spage; |
| |
| dst_pfns[i] = 0; |
| spage = migrate_pfn_to_page(src_pfns[i]); |
| if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) |
| continue; |
| |
| dpage = hmm_vma_alloc_locked_page(vma, addr); |
| if (!dpage) { |
| dst_pfns[i] = MIGRATE_PFN_ERROR; |
| continue; |
| } |
| |
| dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) | |
| MIGRATE_PFN_LOCKED; |
| npages++; |
| } |
| |
| /* Allocate storage for DMA addresses, so we can unmap later. */ |
| fault->dma = kmalloc(sizeof(*fault->dma) * npages, GFP_KERNEL); |
| if (!fault->dma) |
| goto error; |
| |
| /* Copy things over */ |
| copy = drm->dmem->migrate.copy_func; |
| for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) { |
| struct nouveau_dmem_chunk *chunk; |
| struct page *spage, *dpage; |
| u64 src_addr, dst_addr; |
| |
| dpage = migrate_pfn_to_page(dst_pfns[i]); |
| if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR) |
| continue; |
| |
| spage = migrate_pfn_to_page(src_pfns[i]); |
| if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) { |
| dst_pfns[i] = MIGRATE_PFN_ERROR; |
| __free_page(dpage); |
| continue; |
| } |
| |
| fault->dma[fault->npages] = |
| dma_map_page_attrs(dev, dpage, 0, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| if (dma_mapping_error(dev, fault->dma[fault->npages])) { |
| dst_pfns[i] = MIGRATE_PFN_ERROR; |
| __free_page(dpage); |
| continue; |
| } |
| |
| dst_addr = fault->dma[fault->npages++]; |
| |
| chunk = (void *)hmm_devmem_page_get_drvdata(spage); |
| src_addr = page_to_pfn(spage) - chunk->pfn_first; |
| src_addr = (src_addr << PAGE_SHIFT) + chunk->bo->bo.offset; |
| |
| ret = copy(drm, 1, NOUVEAU_APER_HOST, dst_addr, |
| NOUVEAU_APER_VRAM, src_addr); |
| if (ret) { |
| dst_pfns[i] = MIGRATE_PFN_ERROR; |
| __free_page(dpage); |
| continue; |
| } |
| } |
| |
| nouveau_fence_new(drm->dmem->migrate.chan, false, &fault->fence); |
| |
| return; |
| |
| error: |
| for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) { |
| struct page *page; |
| |
| if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR) |
| continue; |
| |
| page = migrate_pfn_to_page(dst_pfns[i]); |
| dst_pfns[i] = MIGRATE_PFN_ERROR; |
| if (page == NULL) |
| continue; |
| |
| __free_page(page); |
| } |
| } |
| |
| void nouveau_dmem_fault_finalize_and_map(struct vm_area_struct *vma, |
| const unsigned long *src_pfns, |
| const unsigned long *dst_pfns, |
| unsigned long start, |
| unsigned long end, |
| void *private) |
| { |
| struct nouveau_dmem_fault *fault = private; |
| struct nouveau_drm *drm = fault->drm; |
| |
| if (fault->fence) { |
| nouveau_fence_wait(fault->fence, true, false); |
| nouveau_fence_unref(&fault->fence); |
| } else { |
| /* |
| * FIXME wait for channel to be IDLE before calling finalizing |
| * the hmem object below (nouveau_migrate_hmem_fini()). |
| */ |
| } |
| |
| while (fault->npages--) { |
| dma_unmap_page(drm->dev->dev, fault->dma[fault->npages], |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| } |
| kfree(fault->dma); |
| } |
| |
| static const struct migrate_vma_ops nouveau_dmem_fault_migrate_ops = { |
| .alloc_and_copy = nouveau_dmem_fault_alloc_and_copy, |
| .finalize_and_map = nouveau_dmem_fault_finalize_and_map, |
| }; |
| |
| static vm_fault_t |
| nouveau_dmem_fault(struct hmm_devmem *devmem, |
| struct vm_area_struct *vma, |
| unsigned long addr, |
| const struct page *page, |
| unsigned int flags, |
| pmd_t *pmdp) |
| { |
| struct drm_device *drm_dev = dev_get_drvdata(devmem->device); |
| unsigned long src[1] = {0}, dst[1] = {0}; |
| struct nouveau_dmem_fault fault = {0}; |
| int ret; |
| |
| |
| |
| /* |
| * FIXME what we really want is to find some heuristic to migrate more |
| * than just one page on CPU fault. When such fault happens it is very |
| * likely that more surrounding page will CPU fault too. |
| */ |
| fault.drm = nouveau_drm(drm_dev); |
| ret = migrate_vma(&nouveau_dmem_fault_migrate_ops, vma, addr, |
| addr + PAGE_SIZE, src, dst, &fault); |
| if (ret) |
| return VM_FAULT_SIGBUS; |
| |
| if (dst[0] == MIGRATE_PFN_ERROR) |
| return VM_FAULT_SIGBUS; |
| |
| return 0; |
| } |
| |
| static const struct hmm_devmem_ops |
| nouveau_dmem_devmem_ops = { |
| .free = nouveau_dmem_free, |
| .fault = nouveau_dmem_fault, |
| }; |
| |
| static int |
| nouveau_dmem_chunk_alloc(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| int ret; |
| |
| if (drm->dmem == NULL) |
| return -EINVAL; |
| |
| mutex_lock(&drm->dmem->mutex); |
| chunk = list_first_entry_or_null(&drm->dmem->chunk_empty, |
| struct nouveau_dmem_chunk, |
| list); |
| if (chunk == NULL) { |
| mutex_unlock(&drm->dmem->mutex); |
| return -ENOMEM; |
| } |
| |
| list_del(&chunk->list); |
| mutex_unlock(&drm->dmem->mutex); |
| |
| ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0, |
| TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL, |
| &chunk->bo); |
| if (ret) |
| goto out; |
| |
| ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false); |
| if (ret) { |
| nouveau_bo_ref(NULL, &chunk->bo); |
| goto out; |
| } |
| |
| bitmap_zero(chunk->bitmap, DMEM_CHUNK_NPAGES); |
| spin_lock_init(&chunk->lock); |
| |
| out: |
| mutex_lock(&drm->dmem->mutex); |
| if (chunk->bo) |
| list_add(&chunk->list, &drm->dmem->chunk_empty); |
| else |
| list_add_tail(&chunk->list, &drm->dmem->chunk_empty); |
| mutex_unlock(&drm->dmem->mutex); |
| |
| return ret; |
| } |
| |
| static struct nouveau_dmem_chunk * |
| nouveau_dmem_chunk_first_free_locked(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| |
| chunk = list_first_entry_or_null(&drm->dmem->chunk_free, |
| struct nouveau_dmem_chunk, |
| list); |
| if (chunk) |
| return chunk; |
| |
| chunk = list_first_entry_or_null(&drm->dmem->chunk_empty, |
| struct nouveau_dmem_chunk, |
| list); |
| if (chunk->bo) |
| return chunk; |
| |
| return NULL; |
| } |
| |
| static int |
| nouveau_dmem_pages_alloc(struct nouveau_drm *drm, |
| unsigned long npages, |
| unsigned long *pages) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| unsigned long c; |
| int ret; |
| |
| memset(pages, 0xff, npages * sizeof(*pages)); |
| |
| mutex_lock(&drm->dmem->mutex); |
| for (c = 0; c < npages;) { |
| unsigned long i; |
| |
| chunk = nouveau_dmem_chunk_first_free_locked(drm); |
| if (chunk == NULL) { |
| mutex_unlock(&drm->dmem->mutex); |
| ret = nouveau_dmem_chunk_alloc(drm); |
| if (ret) { |
| if (c) |
| break; |
| return ret; |
| } |
| continue; |
| } |
| |
| spin_lock(&chunk->lock); |
| i = find_first_zero_bit(chunk->bitmap, DMEM_CHUNK_NPAGES); |
| while (i < DMEM_CHUNK_NPAGES && c < npages) { |
| pages[c] = chunk->pfn_first + i; |
| set_bit(i, chunk->bitmap); |
| chunk->callocated++; |
| c++; |
| |
| i = find_next_zero_bit(chunk->bitmap, |
| DMEM_CHUNK_NPAGES, i); |
| } |
| spin_unlock(&chunk->lock); |
| } |
| mutex_unlock(&drm->dmem->mutex); |
| |
| return 0; |
| } |
| |
| static struct page * |
| nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm) |
| { |
| unsigned long pfns[1]; |
| struct page *page; |
| int ret; |
| |
| /* FIXME stop all the miss-match API ... */ |
| ret = nouveau_dmem_pages_alloc(drm, 1, pfns); |
| if (ret) |
| return NULL; |
| |
| page = pfn_to_page(pfns[0]); |
| get_page(page); |
| lock_page(page); |
| return page; |
| } |
| |
| static void |
| nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page) |
| { |
| unlock_page(page); |
| put_page(page); |
| } |
| |
| void |
| nouveau_dmem_resume(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| int ret; |
| |
| if (drm->dmem == NULL) |
| return; |
| |
| mutex_lock(&drm->dmem->mutex); |
| list_for_each_entry (chunk, &drm->dmem->chunk_free, list) { |
| ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false); |
| /* FIXME handle pin failure */ |
| WARN_ON(ret); |
| } |
| list_for_each_entry (chunk, &drm->dmem->chunk_full, list) { |
| ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false); |
| /* FIXME handle pin failure */ |
| WARN_ON(ret); |
| } |
| mutex_unlock(&drm->dmem->mutex); |
| } |
| |
| void |
| nouveau_dmem_suspend(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk; |
| |
| if (drm->dmem == NULL) |
| return; |
| |
| mutex_lock(&drm->dmem->mutex); |
| list_for_each_entry (chunk, &drm->dmem->chunk_free, list) { |
| nouveau_bo_unpin(chunk->bo); |
| } |
| list_for_each_entry (chunk, &drm->dmem->chunk_full, list) { |
| nouveau_bo_unpin(chunk->bo); |
| } |
| mutex_unlock(&drm->dmem->mutex); |
| } |
| |
| void |
| nouveau_dmem_fini(struct nouveau_drm *drm) |
| { |
| struct nouveau_dmem_chunk *chunk, *tmp; |
| |
| if (drm->dmem == NULL) |
| return; |
| |
| mutex_lock(&drm->dmem->mutex); |
| |
| WARN_ON(!list_empty(&drm->dmem->chunk_free)); |
| WARN_ON(!list_empty(&drm->dmem->chunk_full)); |
| |
| list_for_each_entry_safe (chunk, tmp, &drm->dmem->chunk_empty, list) { |
| if (chunk->bo) { |
| nouveau_bo_unpin(chunk->bo); |
| nouveau_bo_ref(NULL, &chunk->bo); |
| } |
| list_del(&chunk->list); |
| kfree(chunk); |
| } |
| |
| mutex_unlock(&drm->dmem->mutex); |
| } |
| |
| static int |
| nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages, |
| enum nouveau_aper dst_aper, u64 dst_addr, |
| enum nouveau_aper src_aper, u64 src_addr) |
| { |
| struct nouveau_channel *chan = drm->dmem->migrate.chan; |
| u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ | |
| (1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ | |
| (1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ | |
| (1 << 2) /* FLUSH_ENABLE_TRUE. */ | |
| (2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */; |
| int ret; |
| |
| ret = RING_SPACE(chan, 13); |
| if (ret) |
| return ret; |
| |
| if (src_aper != NOUVEAU_APER_VIRT) { |
| switch (src_aper) { |
| case NOUVEAU_APER_VRAM: |
| BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0); |
| break; |
| case NOUVEAU_APER_HOST: |
| BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1); |
| break; |
| default: |
| return -EINVAL; |
| } |
| launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */ |
| } |
| |
| if (dst_aper != NOUVEAU_APER_VIRT) { |
| switch (dst_aper) { |
| case NOUVEAU_APER_VRAM: |
| BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0); |
| break; |
| case NOUVEAU_APER_HOST: |
| BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1); |
| break; |
| default: |
| return -EINVAL; |
| } |
| launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */ |
| } |
| |
| BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8); |
| OUT_RING (chan, upper_32_bits(src_addr)); |
| OUT_RING (chan, lower_32_bits(src_addr)); |
| OUT_RING (chan, upper_32_bits(dst_addr)); |
| OUT_RING (chan, lower_32_bits(dst_addr)); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, npages); |
| BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1); |
| OUT_RING (chan, launch_dma); |
| return 0; |
| } |
| |
| static int |
| nouveau_dmem_migrate_init(struct nouveau_drm *drm) |
| { |
| switch (drm->ttm.copy.oclass) { |
| case PASCAL_DMA_COPY_A: |
| case PASCAL_DMA_COPY_B: |
| case VOLTA_DMA_COPY_A: |
| case TURING_DMA_COPY_A: |
| drm->dmem->migrate.copy_func = nvc0b5_migrate_copy; |
| drm->dmem->migrate.chan = drm->ttm.chan; |
| return 0; |
| default: |
| break; |
| } |
| return -ENODEV; |
| } |
| |
| void |
| nouveau_dmem_init(struct nouveau_drm *drm) |
| { |
| struct device *device = drm->dev->dev; |
| unsigned long i, size; |
| int ret; |
| |
| /* This only make sense on PASCAL or newer */ |
| if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL) |
| return; |
| |
| if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL))) |
| return; |
| |
| mutex_init(&drm->dmem->mutex); |
| INIT_LIST_HEAD(&drm->dmem->chunk_free); |
| INIT_LIST_HEAD(&drm->dmem->chunk_full); |
| INIT_LIST_HEAD(&drm->dmem->chunk_empty); |
| |
| size = ALIGN(drm->client.device.info.ram_user, DMEM_CHUNK_SIZE); |
| |
| /* Initialize migration dma helpers before registering memory */ |
| ret = nouveau_dmem_migrate_init(drm); |
| if (ret) { |
| kfree(drm->dmem); |
| drm->dmem = NULL; |
| return; |
| } |
| |
| /* |
| * FIXME we need some kind of policy to decide how much VRAM we |
| * want to register with HMM. For now just register everything |
| * and latter if we want to do thing like over commit then we |
| * could revisit this. |
| */ |
| drm->dmem->devmem = hmm_devmem_add(&nouveau_dmem_devmem_ops, |
| device, size); |
| if (IS_ERR(drm->dmem->devmem)) { |
| kfree(drm->dmem); |
| drm->dmem = NULL; |
| return; |
| } |
| |
| for (i = 0; i < (size / DMEM_CHUNK_SIZE); ++i) { |
| struct nouveau_dmem_chunk *chunk; |
| struct page *page; |
| unsigned long j; |
| |
| chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); |
| if (chunk == NULL) { |
| nouveau_dmem_fini(drm); |
| return; |
| } |
| |
| chunk->drm = drm; |
| chunk->pfn_first = drm->dmem->devmem->pfn_first; |
| chunk->pfn_first += (i * DMEM_CHUNK_NPAGES); |
| list_add_tail(&chunk->list, &drm->dmem->chunk_empty); |
| |
| page = pfn_to_page(chunk->pfn_first); |
| for (j = 0; j < DMEM_CHUNK_NPAGES; ++j, ++page) { |
| hmm_devmem_page_set_drvdata(page, (long)chunk); |
| } |
| } |
| |
| NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", size >> 20); |
| } |
| |
| static void |
| nouveau_dmem_migrate_alloc_and_copy(struct vm_area_struct *vma, |
| const unsigned long *src_pfns, |
| unsigned long *dst_pfns, |
| unsigned long start, |
| unsigned long end, |
| void *private) |
| { |
| struct nouveau_migrate *migrate = private; |
| struct nouveau_drm *drm = migrate->drm; |
| struct device *dev = drm->dev->dev; |
| unsigned long addr, i, npages = 0; |
| nouveau_migrate_copy_t copy; |
| int ret; |
| |
| /* First allocate new memory */ |
| for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) { |
| struct page *dpage, *spage; |
| |
| dst_pfns[i] = 0; |
| spage = migrate_pfn_to_page(src_pfns[i]); |
| if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) |
| continue; |
| |
| dpage = nouveau_dmem_page_alloc_locked(drm); |
| if (!dpage) |
| continue; |
| |
| dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) | |
| MIGRATE_PFN_LOCKED | |
| MIGRATE_PFN_DEVICE; |
| npages++; |
| } |
| |
| if (!npages) |
| return; |
| |
| /* Allocate storage for DMA addresses, so we can unmap later. */ |
| migrate->dma = kmalloc(sizeof(*migrate->dma) * npages, GFP_KERNEL); |
| if (!migrate->dma) |
| goto error; |
| |
| /* Copy things over */ |
| copy = drm->dmem->migrate.copy_func; |
| for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) { |
| struct nouveau_dmem_chunk *chunk; |
| struct page *spage, *dpage; |
| u64 src_addr, dst_addr; |
| |
| dpage = migrate_pfn_to_page(dst_pfns[i]); |
| if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR) |
| continue; |
| |
| chunk = (void *)hmm_devmem_page_get_drvdata(dpage); |
| dst_addr = page_to_pfn(dpage) - chunk->pfn_first; |
| dst_addr = (dst_addr << PAGE_SHIFT) + chunk->bo->bo.offset; |
| |
| spage = migrate_pfn_to_page(src_pfns[i]); |
| if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) { |
| nouveau_dmem_page_free_locked(drm, dpage); |
| dst_pfns[i] = 0; |
| continue; |
| } |
| |
| migrate->dma[migrate->dma_nr] = |
| dma_map_page_attrs(dev, spage, 0, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| if (dma_mapping_error(dev, migrate->dma[migrate->dma_nr])) { |
| nouveau_dmem_page_free_locked(drm, dpage); |
| dst_pfns[i] = 0; |
| continue; |
| } |
| |
| src_addr = migrate->dma[migrate->dma_nr++]; |
| |
| ret = copy(drm, 1, NOUVEAU_APER_VRAM, dst_addr, |
| NOUVEAU_APER_HOST, src_addr); |
| if (ret) { |
| nouveau_dmem_page_free_locked(drm, dpage); |
| dst_pfns[i] = 0; |
| continue; |
| } |
| } |
| |
| nouveau_fence_new(drm->dmem->migrate.chan, false, &migrate->fence); |
| |
| return; |
| |
| error: |
| for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) { |
| struct page *page; |
| |
| if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR) |
| continue; |
| |
| page = migrate_pfn_to_page(dst_pfns[i]); |
| dst_pfns[i] = MIGRATE_PFN_ERROR; |
| if (page == NULL) |
| continue; |
| |
| __free_page(page); |
| } |
| } |
| |
| void nouveau_dmem_migrate_finalize_and_map(struct vm_area_struct *vma, |
| const unsigned long *src_pfns, |
| const unsigned long *dst_pfns, |
| unsigned long start, |
| unsigned long end, |
| void *private) |
| { |
| struct nouveau_migrate *migrate = private; |
| struct nouveau_drm *drm = migrate->drm; |
| |
| if (migrate->fence) { |
| nouveau_fence_wait(migrate->fence, true, false); |
| nouveau_fence_unref(&migrate->fence); |
| } else { |
| /* |
| * FIXME wait for channel to be IDLE before finalizing |
| * the hmem object below (nouveau_migrate_hmem_fini()) ? |
| */ |
| } |
| |
| while (migrate->dma_nr--) { |
| dma_unmap_page(drm->dev->dev, migrate->dma[migrate->dma_nr], |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| } |
| kfree(migrate->dma); |
| |
| /* |
| * FIXME optimization: update GPU page table to point to newly |
| * migrated memory. |
| */ |
| } |
| |
| static const struct migrate_vma_ops nouveau_dmem_migrate_ops = { |
| .alloc_and_copy = nouveau_dmem_migrate_alloc_and_copy, |
| .finalize_and_map = nouveau_dmem_migrate_finalize_and_map, |
| }; |
| |
| int |
| nouveau_dmem_migrate_vma(struct nouveau_drm *drm, |
| struct vm_area_struct *vma, |
| unsigned long start, |
| unsigned long end) |
| { |
| unsigned long *src_pfns, *dst_pfns, npages; |
| struct nouveau_migrate migrate = {0}; |
| unsigned long i, c, max; |
| int ret = 0; |
| |
| npages = (end - start) >> PAGE_SHIFT; |
| max = min(SG_MAX_SINGLE_ALLOC, npages); |
| src_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL); |
| if (src_pfns == NULL) |
| return -ENOMEM; |
| dst_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL); |
| if (dst_pfns == NULL) { |
| kfree(src_pfns); |
| return -ENOMEM; |
| } |
| |
| migrate.drm = drm; |
| migrate.vma = vma; |
| migrate.npages = npages; |
| for (i = 0; i < npages; i += c) { |
| unsigned long next; |
| |
| c = min(SG_MAX_SINGLE_ALLOC, npages); |
| next = start + (c << PAGE_SHIFT); |
| ret = migrate_vma(&nouveau_dmem_migrate_ops, vma, start, |
| next, src_pfns, dst_pfns, &migrate); |
| if (ret) |
| goto out; |
| start = next; |
| } |
| |
| out: |
| kfree(dst_pfns); |
| kfree(src_pfns); |
| return ret; |
| } |
| |
| static inline bool |
| nouveau_dmem_page(struct nouveau_drm *drm, struct page *page) |
| { |
| if (!is_device_private_page(page)) |
| return false; |
| |
| if (drm->dmem->devmem != page->pgmap->data) |
| return false; |
| |
| return true; |
| } |
| |
| void |
| nouveau_dmem_convert_pfn(struct nouveau_drm *drm, |
| struct hmm_range *range) |
| { |
| unsigned long i, npages; |
| |
| npages = (range->end - range->start) >> PAGE_SHIFT; |
| for (i = 0; i < npages; ++i) { |
| struct nouveau_dmem_chunk *chunk; |
| struct page *page; |
| uint64_t addr; |
| |
| page = hmm_pfn_to_page(range, range->pfns[i]); |
| if (page == NULL) |
| continue; |
| |
| if (!(range->pfns[i] & range->flags[HMM_PFN_DEVICE_PRIVATE])) { |
| continue; |
| } |
| |
| if (!nouveau_dmem_page(drm, page)) { |
| WARN(1, "Some unknown device memory !\n"); |
| range->pfns[i] = 0; |
| continue; |
| } |
| |
| chunk = (void *)hmm_devmem_page_get_drvdata(page); |
| addr = page_to_pfn(page) - chunk->pfn_first; |
| addr = (addr + chunk->bo->bo.mem.start) << PAGE_SHIFT; |
| |
| range->pfns[i] &= ((1UL << range->pfn_shift) - 1); |
| range->pfns[i] |= (addr >> PAGE_SHIFT) << range->pfn_shift; |
| } |
| } |