blob: 83df4cd5e06cb929f09d79a6a3f14bfb373e38c7 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/seq_file.h>
#include <linux/string_helpers.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_gt.h"
#include "intel_gt_clock_utils.h"
#include "intel_gt_debugfs.h"
#include "intel_gt_pm.h"
#include "intel_gt_pm_debugfs.h"
#include "intel_gt_regs.h"
#include "intel_llc.h"
#include "intel_mchbar_regs.h"
#include "intel_pcode.h"
#include "intel_rc6.h"
#include "intel_rps.h"
#include "intel_runtime_pm.h"
#include "intel_uncore.h"
#include "vlv_sideband.h"
void intel_gt_pm_debugfs_forcewake_user_open(struct intel_gt *gt)
{
atomic_inc(&gt->user_wakeref);
intel_gt_pm_get(gt);
if (GRAPHICS_VER(gt->i915) >= 6)
intel_uncore_forcewake_user_get(gt->uncore);
}
void intel_gt_pm_debugfs_forcewake_user_release(struct intel_gt *gt)
{
if (GRAPHICS_VER(gt->i915) >= 6)
intel_uncore_forcewake_user_put(gt->uncore);
intel_gt_pm_put(gt);
atomic_dec(&gt->user_wakeref);
}
static int forcewake_user_open(struct inode *inode, struct file *file)
{
struct intel_gt *gt = inode->i_private;
intel_gt_pm_debugfs_forcewake_user_open(gt);
return 0;
}
static int forcewake_user_release(struct inode *inode, struct file *file)
{
struct intel_gt *gt = inode->i_private;
intel_gt_pm_debugfs_forcewake_user_release(gt);
return 0;
}
static const struct file_operations forcewake_user_fops = {
.owner = THIS_MODULE,
.open = forcewake_user_open,
.release = forcewake_user_release,
};
static int fw_domains_show(struct seq_file *m, void *data)
{
struct intel_gt *gt = m->private;
struct intel_uncore *uncore = gt->uncore;
struct intel_uncore_forcewake_domain *fw_domain;
unsigned int tmp;
seq_printf(m, "user.bypass_count = %u\n",
uncore->user_forcewake_count);
for_each_fw_domain(fw_domain, uncore, tmp)
seq_printf(m, "%s.wake_count = %u\n",
intel_uncore_forcewake_domain_to_str(fw_domain->id),
READ_ONCE(fw_domain->wake_count));
return 0;
}
DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(fw_domains);
static int vlv_drpc(struct seq_file *m)
{
struct intel_gt *gt = m->private;
struct intel_uncore *uncore = gt->uncore;
u32 rcctl1, pw_status, mt_fwake_req;
mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT);
pw_status = intel_uncore_read(uncore, VLV_GTLC_PW_STATUS);
rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL);
seq_printf(m, "RC6 Enabled: %s\n",
str_yes_no(rcctl1 & (GEN7_RC_CTL_TO_MODE |
GEN6_RC_CTL_EI_MODE(1))));
seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req);
seq_printf(m, "Render Power Well: %s\n",
(pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
intel_rc6_print_residency(m, "Render RC6 residency since boot:", INTEL_RC6_RES_RC6);
intel_rc6_print_residency(m, "Media RC6 residency since boot:", INTEL_RC6_RES_VLV_MEDIA);
return fw_domains_show(m, NULL);
}
static int gen6_drpc(struct seq_file *m)
{
struct intel_gt *gt = m->private;
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
u32 gt_core_status, mt_fwake_req, rcctl1, rc6vids = 0;
u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT);
gt_core_status = intel_uncore_read_fw(uncore, GEN6_GT_CORE_STATUS);
rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL);
if (GRAPHICS_VER(i915) >= 9) {
gen9_powergate_enable =
intel_uncore_read(uncore, GEN9_PG_ENABLE);
gen9_powergate_status =
intel_uncore_read(uncore, GEN9_PWRGT_DOMAIN_STATUS);
}
if (GRAPHICS_VER(i915) <= 7)
snb_pcode_read(gt->uncore, GEN6_PCODE_READ_RC6VIDS, &rc6vids, NULL);
seq_printf(m, "RC1e Enabled: %s\n",
str_yes_no(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
seq_printf(m, "RC6 Enabled: %s\n",
str_yes_no(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
if (GRAPHICS_VER(i915) >= 9) {
seq_printf(m, "Render Well Gating Enabled: %s\n",
str_yes_no(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
seq_printf(m, "Media Well Gating Enabled: %s\n",
str_yes_no(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
}
seq_printf(m, "Deep RC6 Enabled: %s\n",
str_yes_no(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
seq_printf(m, "Deepest RC6 Enabled: %s\n",
str_yes_no(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
seq_puts(m, "Current RC state: ");
switch (gt_core_status & GEN6_RCn_MASK) {
case GEN6_RC0:
if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
seq_puts(m, "Core Power Down\n");
else
seq_puts(m, "on\n");
break;
case GEN6_RC3:
seq_puts(m, "RC3\n");
break;
case GEN6_RC6:
seq_puts(m, "RC6\n");
break;
case GEN6_RC7:
seq_puts(m, "RC7\n");
break;
default:
seq_puts(m, "Unknown\n");
break;
}
seq_printf(m, "Core Power Down: %s\n",
str_yes_no(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req);
if (GRAPHICS_VER(i915) >= 9) {
seq_printf(m, "Render Power Well: %s\n",
(gen9_powergate_status &
GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(gen9_powergate_status &
GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
}
/* Not exactly sure what this is */
intel_rc6_print_residency(m, "RC6 \"Locked to RPn\" residency since boot:",
INTEL_RC6_RES_RC6_LOCKED);
intel_rc6_print_residency(m, "RC6 residency since boot:", INTEL_RC6_RES_RC6);
intel_rc6_print_residency(m, "RC6+ residency since boot:", INTEL_RC6_RES_RC6p);
intel_rc6_print_residency(m, "RC6++ residency since boot:", INTEL_RC6_RES_RC6pp);
if (GRAPHICS_VER(i915) <= 7) {
seq_printf(m, "RC6 voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
seq_printf(m, "RC6+ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
seq_printf(m, "RC6++ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
}
return fw_domains_show(m, NULL);
}
static int ilk_drpc(struct seq_file *m)
{
struct intel_gt *gt = m->private;
struct intel_uncore *uncore = gt->uncore;
u32 rgvmodectl, rstdbyctl;
u16 crstandvid;
rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
rstdbyctl = intel_uncore_read(uncore, RSTDBYCTL);
crstandvid = intel_uncore_read16(uncore, CRSTANDVID);
seq_printf(m, "HD boost: %s\n",
str_yes_no(rgvmodectl & MEMMODE_BOOST_EN));
seq_printf(m, "Boost freq: %d\n",
(rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
MEMMODE_BOOST_FREQ_SHIFT);
seq_printf(m, "HW control enabled: %s\n",
str_yes_no(rgvmodectl & MEMMODE_HWIDLE_EN));
seq_printf(m, "SW control enabled: %s\n",
str_yes_no(rgvmodectl & MEMMODE_SWMODE_EN));
seq_printf(m, "Gated voltage change: %s\n",
str_yes_no(rgvmodectl & MEMMODE_RCLK_GATE));
seq_printf(m, "Starting frequency: P%d\n",
(rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
seq_printf(m, "Max P-state: P%d\n",
(rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
seq_printf(m, "Render standby enabled: %s\n",
str_yes_no(!(rstdbyctl & RCX_SW_EXIT)));
seq_puts(m, "Current RS state: ");
switch (rstdbyctl & RSX_STATUS_MASK) {
case RSX_STATUS_ON:
seq_puts(m, "on\n");
break;
case RSX_STATUS_RC1:
seq_puts(m, "RC1\n");
break;
case RSX_STATUS_RC1E:
seq_puts(m, "RC1E\n");
break;
case RSX_STATUS_RS1:
seq_puts(m, "RS1\n");
break;
case RSX_STATUS_RS2:
seq_puts(m, "RS2 (RC6)\n");
break;
case RSX_STATUS_RS3:
seq_puts(m, "RC3 (RC6+)\n");
break;
default:
seq_puts(m, "unknown\n");
break;
}
return 0;
}
static int mtl_drpc(struct seq_file *m)
{
struct intel_gt *gt = m->private;
struct intel_uncore *uncore = gt->uncore;
u32 gt_core_status, rcctl1, mt_fwake_req;
u32 mtl_powergate_enable = 0, mtl_powergate_status = 0;
mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT);
gt_core_status = intel_uncore_read(uncore, MTL_MIRROR_TARGET_WP1);
rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL);
mtl_powergate_enable = intel_uncore_read(uncore, GEN9_PG_ENABLE);
mtl_powergate_status = intel_uncore_read(uncore,
GEN9_PWRGT_DOMAIN_STATUS);
seq_printf(m, "RC6 Enabled: %s\n",
str_yes_no(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
if (gt->type == GT_MEDIA) {
seq_printf(m, "Media Well Gating Enabled: %s\n",
str_yes_no(mtl_powergate_enable & GEN9_MEDIA_PG_ENABLE));
} else {
seq_printf(m, "Render Well Gating Enabled: %s\n",
str_yes_no(mtl_powergate_enable & GEN9_RENDER_PG_ENABLE));
}
seq_puts(m, "Current RC state: ");
switch (REG_FIELD_GET(MTL_CC_MASK, gt_core_status)) {
case MTL_CC0:
seq_puts(m, "RC0\n");
break;
case MTL_CC6:
seq_puts(m, "RC6\n");
break;
default:
MISSING_CASE(REG_FIELD_GET(MTL_CC_MASK, gt_core_status));
seq_puts(m, "Unknown\n");
break;
}
seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req);
if (gt->type == GT_MEDIA)
seq_printf(m, "Media Power Well: %s\n",
(mtl_powergate_status &
GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
else
seq_printf(m, "Render Power Well: %s\n",
(mtl_powergate_status &
GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
/* Works for both render and media gt's */
intel_rc6_print_residency(m, "RC6 residency since boot:", INTEL_RC6_RES_RC6);
return fw_domains_show(m, NULL);
}
static int drpc_show(struct seq_file *m, void *unused)
{
struct intel_gt *gt = m->private;
struct drm_i915_private *i915 = gt->i915;
intel_wakeref_t wakeref;
int err = -ENODEV;
with_intel_runtime_pm(gt->uncore->rpm, wakeref) {
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
err = mtl_drpc(m);
else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
err = vlv_drpc(m);
else if (GRAPHICS_VER(i915) >= 6)
err = gen6_drpc(m);
else
err = ilk_drpc(m);
}
return err;
}
DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(drpc);
void intel_gt_pm_frequency_dump(struct intel_gt *gt, struct drm_printer *p)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
struct intel_rps *rps = &gt->rps;
intel_wakeref_t wakeref;
wakeref = intel_runtime_pm_get(uncore->rpm);
if (GRAPHICS_VER(i915) == 5) {
u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK);
drm_printf(p, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
drm_printf(p, "Requested VID: %d\n", rgvswctl & 0x3f);
drm_printf(p, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
drm_printf(p, "Current P-state: %d\n",
REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rgvstat));
} else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
u32 rpmodectl, freq_sts;
rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
drm_printf(p, "Video Turbo Mode: %s\n",
str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
drm_printf(p, "HW control enabled: %s\n",
str_yes_no(rpmodectl & GEN6_RP_ENABLE));
drm_printf(p, "SW control enabled: %s\n",
str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
vlv_punit_get(i915);
freq_sts = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
vlv_punit_put(i915);
drm_printf(p, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
drm_printf(p, "DDR freq: %d MHz\n", i915->mem_freq);
drm_printf(p, "actual GPU freq: %d MHz\n",
intel_gpu_freq(rps, (freq_sts >> 8) & 0xff));
drm_printf(p, "current GPU freq: %d MHz\n",
intel_gpu_freq(rps, rps->cur_freq));
drm_printf(p, "max GPU freq: %d MHz\n",
intel_gpu_freq(rps, rps->max_freq));
drm_printf(p, "min GPU freq: %d MHz\n",
intel_gpu_freq(rps, rps->min_freq));
drm_printf(p, "idle GPU freq: %d MHz\n",
intel_gpu_freq(rps, rps->idle_freq));
drm_printf(p, "efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(rps, rps->efficient_freq));
} else if (GRAPHICS_VER(i915) >= 6) {
gen6_rps_frequency_dump(rps, p);
} else {
drm_puts(p, "no P-state info available\n");
}
drm_printf(p, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk);
drm_printf(p, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq);
drm_printf(p, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq);
intel_runtime_pm_put(uncore->rpm, wakeref);
}
static int frequency_show(struct seq_file *m, void *unused)
{
struct intel_gt *gt = m->private;
struct drm_printer p = drm_seq_file_printer(m);
intel_gt_pm_frequency_dump(gt, &p);
return 0;
}
DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(frequency);
static int llc_show(struct seq_file *m, void *data)
{
struct intel_gt *gt = m->private;
struct drm_i915_private *i915 = gt->i915;
const bool edram = GRAPHICS_VER(i915) > 8;
struct intel_rps *rps = &gt->rps;
unsigned int max_gpu_freq, min_gpu_freq;
intel_wakeref_t wakeref;
int gpu_freq, ia_freq;
seq_printf(m, "LLC: %s\n", str_yes_no(HAS_LLC(i915)));
seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC",
i915->edram_size_mb);
min_gpu_freq = rps->min_freq;
max_gpu_freq = rps->max_freq;
if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
/* Convert GT frequency to 50 HZ units */
min_gpu_freq /= GEN9_FREQ_SCALER;
max_gpu_freq /= GEN9_FREQ_SCALER;
}
seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
wakeref = intel_runtime_pm_get(gt->uncore->rpm);
for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
ia_freq = gpu_freq;
snb_pcode_read(gt->uncore, GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq, NULL);
seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
intel_gpu_freq(rps,
(gpu_freq *
(IS_GEN9_BC(i915) ||
GRAPHICS_VER(i915) >= 11 ?
GEN9_FREQ_SCALER : 1))),
((ia_freq >> 0) & 0xff) * 100,
((ia_freq >> 8) & 0xff) * 100);
}
intel_runtime_pm_put(gt->uncore->rpm, wakeref);
return 0;
}
static bool llc_eval(void *data)
{
struct intel_gt *gt = data;
return HAS_LLC(gt->i915);
}
DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(llc);
static const char *rps_power_to_str(unsigned int power)
{
static const char * const strings[] = {
[LOW_POWER] = "low power",
[BETWEEN] = "mixed",
[HIGH_POWER] = "high power",
};
if (power >= ARRAY_SIZE(strings) || !strings[power])
return "unknown";
return strings[power];
}
static int rps_boost_show(struct seq_file *m, void *data)
{
struct intel_gt *gt = m->private;
struct drm_i915_private *i915 = gt->i915;
struct intel_rps *rps = &gt->rps;
seq_printf(m, "RPS enabled? %s\n",
str_yes_no(intel_rps_is_enabled(rps)));
seq_printf(m, "RPS active? %s\n",
str_yes_no(intel_rps_is_active(rps)));
seq_printf(m, "GPU busy? %s, %llums\n",
str_yes_no(gt->awake),
ktime_to_ms(intel_gt_get_awake_time(gt)));
seq_printf(m, "Boosts outstanding? %d\n",
atomic_read(&rps->num_waiters));
seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive));
seq_printf(m, "Frequency requested %d, actual %d\n",
intel_gpu_freq(rps, rps->cur_freq),
intel_rps_read_actual_frequency(rps));
seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
intel_gpu_freq(rps, rps->min_freq),
intel_gpu_freq(rps, rps->min_freq_softlimit),
intel_gpu_freq(rps, rps->max_freq_softlimit),
intel_gpu_freq(rps, rps->max_freq));
seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
intel_gpu_freq(rps, rps->idle_freq),
intel_gpu_freq(rps, rps->efficient_freq),
intel_gpu_freq(rps, rps->boost_freq));
seq_printf(m, "Wait boosts: %d\n", READ_ONCE(rps->boosts));
if (GRAPHICS_VER(i915) >= 6 && intel_rps_is_active(rps)) {
struct intel_uncore *uncore = gt->uncore;
u32 rpup, rpupei;
u32 rpdown, rpdownei;
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
rpup = intel_uncore_read_fw(uncore, GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
rpupei = intel_uncore_read_fw(uncore, GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
rpdown = intel_uncore_read_fw(uncore, GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
rpdownei = intel_uncore_read_fw(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
rps_power_to_str(rps->power.mode));
seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
rpup && rpupei ? 100 * rpup / rpupei : 0,
rps->power.up_threshold);
seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
rps->power.down_threshold);
} else {
seq_puts(m, "\nRPS Autotuning inactive\n");
}
return 0;
}
static bool rps_eval(void *data)
{
struct intel_gt *gt = data;
return HAS_RPS(gt->i915);
}
DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(rps_boost);
static int perf_limit_reasons_get(void *data, u64 *val)
{
struct intel_gt *gt = data;
intel_wakeref_t wakeref;
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
*val = intel_uncore_read(gt->uncore, intel_gt_perf_limit_reasons_reg(gt));
return 0;
}
static int perf_limit_reasons_clear(void *data, u64 val)
{
struct intel_gt *gt = data;
intel_wakeref_t wakeref;
/*
* Clear the upper 16 "log" bits, the lower 16 "status" bits are
* read-only. The upper 16 "log" bits are identical to the lower 16
* "status" bits except that the "log" bits remain set until cleared.
*/
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
intel_uncore_rmw(gt->uncore, intel_gt_perf_limit_reasons_reg(gt),
GT0_PERF_LIMIT_REASONS_LOG_MASK, 0);
return 0;
}
static bool perf_limit_reasons_eval(void *data)
{
struct intel_gt *gt = data;
return i915_mmio_reg_valid(intel_gt_perf_limit_reasons_reg(gt));
}
DEFINE_SIMPLE_ATTRIBUTE(perf_limit_reasons_fops, perf_limit_reasons_get,
perf_limit_reasons_clear, "%llu\n");
void intel_gt_pm_debugfs_register(struct intel_gt *gt, struct dentry *root)
{
static const struct intel_gt_debugfs_file files[] = {
{ "drpc", &drpc_fops, NULL },
{ "frequency", &frequency_fops, NULL },
{ "forcewake", &fw_domains_fops, NULL },
{ "forcewake_user", &forcewake_user_fops, NULL},
{ "llc", &llc_fops, llc_eval },
{ "rps_boost", &rps_boost_fops, rps_eval },
{ "perf_limit_reasons", &perf_limit_reasons_fops, perf_limit_reasons_eval },
};
intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt);
}