| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. |
| * Author: Joerg Roedel <jroedel@suse.de> |
| * Leo Duran <leo.duran@amd.com> |
| */ |
| |
| #define pr_fmt(fmt) "AMD-Vi: " fmt |
| #define dev_fmt(fmt) pr_fmt(fmt) |
| |
| #include <linux/pci.h> |
| #include <linux/acpi.h> |
| #include <linux/list.h> |
| #include <linux/bitmap.h> |
| #include <linux/slab.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/interrupt.h> |
| #include <linux/msi.h> |
| #include <linux/irq.h> |
| #include <linux/amd-iommu.h> |
| #include <linux/export.h> |
| #include <linux/kmemleak.h> |
| #include <linux/cc_platform.h> |
| #include <linux/iopoll.h> |
| #include <asm/pci-direct.h> |
| #include <asm/iommu.h> |
| #include <asm/apic.h> |
| #include <asm/gart.h> |
| #include <asm/x86_init.h> |
| #include <asm/io_apic.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/set_memory.h> |
| |
| #include <linux/crash_dump.h> |
| |
| #include "amd_iommu.h" |
| #include "../irq_remapping.h" |
| |
| /* |
| * definitions for the ACPI scanning code |
| */ |
| #define IVRS_HEADER_LENGTH 48 |
| |
| #define ACPI_IVHD_TYPE_MAX_SUPPORTED 0x40 |
| #define ACPI_IVMD_TYPE_ALL 0x20 |
| #define ACPI_IVMD_TYPE 0x21 |
| #define ACPI_IVMD_TYPE_RANGE 0x22 |
| |
| #define IVHD_DEV_ALL 0x01 |
| #define IVHD_DEV_SELECT 0x02 |
| #define IVHD_DEV_SELECT_RANGE_START 0x03 |
| #define IVHD_DEV_RANGE_END 0x04 |
| #define IVHD_DEV_ALIAS 0x42 |
| #define IVHD_DEV_ALIAS_RANGE 0x43 |
| #define IVHD_DEV_EXT_SELECT 0x46 |
| #define IVHD_DEV_EXT_SELECT_RANGE 0x47 |
| #define IVHD_DEV_SPECIAL 0x48 |
| #define IVHD_DEV_ACPI_HID 0xf0 |
| |
| #define UID_NOT_PRESENT 0 |
| #define UID_IS_INTEGER 1 |
| #define UID_IS_CHARACTER 2 |
| |
| #define IVHD_SPECIAL_IOAPIC 1 |
| #define IVHD_SPECIAL_HPET 2 |
| |
| #define IVHD_FLAG_HT_TUN_EN_MASK 0x01 |
| #define IVHD_FLAG_PASSPW_EN_MASK 0x02 |
| #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04 |
| #define IVHD_FLAG_ISOC_EN_MASK 0x08 |
| |
| #define IVMD_FLAG_EXCL_RANGE 0x08 |
| #define IVMD_FLAG_IW 0x04 |
| #define IVMD_FLAG_IR 0x02 |
| #define IVMD_FLAG_UNITY_MAP 0x01 |
| |
| #define ACPI_DEVFLAG_INITPASS 0x01 |
| #define ACPI_DEVFLAG_EXTINT 0x02 |
| #define ACPI_DEVFLAG_NMI 0x04 |
| #define ACPI_DEVFLAG_SYSMGT1 0x10 |
| #define ACPI_DEVFLAG_SYSMGT2 0x20 |
| #define ACPI_DEVFLAG_LINT0 0x40 |
| #define ACPI_DEVFLAG_LINT1 0x80 |
| #define ACPI_DEVFLAG_ATSDIS 0x10000000 |
| |
| #define LOOP_TIMEOUT 2000000 |
| |
| #define IVRS_GET_SBDF_ID(seg, bus, dev, fn) (((seg & 0xffff) << 16) | ((bus & 0xff) << 8) \ |
| | ((dev & 0x1f) << 3) | (fn & 0x7)) |
| |
| /* |
| * ACPI table definitions |
| * |
| * These data structures are laid over the table to parse the important values |
| * out of it. |
| */ |
| |
| /* |
| * structure describing one IOMMU in the ACPI table. Typically followed by one |
| * or more ivhd_entrys. |
| */ |
| struct ivhd_header { |
| u8 type; |
| u8 flags; |
| u16 length; |
| u16 devid; |
| u16 cap_ptr; |
| u64 mmio_phys; |
| u16 pci_seg; |
| u16 info; |
| u32 efr_attr; |
| |
| /* Following only valid on IVHD type 11h and 40h */ |
| u64 efr_reg; /* Exact copy of MMIO_EXT_FEATURES */ |
| u64 efr_reg2; |
| } __attribute__((packed)); |
| |
| /* |
| * A device entry describing which devices a specific IOMMU translates and |
| * which requestor ids they use. |
| */ |
| struct ivhd_entry { |
| u8 type; |
| u16 devid; |
| u8 flags; |
| struct_group(ext_hid, |
| u32 ext; |
| u32 hidh; |
| ); |
| u64 cid; |
| u8 uidf; |
| u8 uidl; |
| u8 uid; |
| } __attribute__((packed)); |
| |
| /* |
| * An AMD IOMMU memory definition structure. It defines things like exclusion |
| * ranges for devices and regions that should be unity mapped. |
| */ |
| struct ivmd_header { |
| u8 type; |
| u8 flags; |
| u16 length; |
| u16 devid; |
| u16 aux; |
| u16 pci_seg; |
| u8 resv[6]; |
| u64 range_start; |
| u64 range_length; |
| } __attribute__((packed)); |
| |
| bool amd_iommu_dump; |
| bool amd_iommu_irq_remap __read_mostly; |
| |
| enum io_pgtable_fmt amd_iommu_pgtable = AMD_IOMMU_V1; |
| |
| int amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC; |
| static int amd_iommu_xt_mode = IRQ_REMAP_XAPIC_MODE; |
| |
| static bool amd_iommu_detected; |
| static bool amd_iommu_disabled __initdata; |
| static bool amd_iommu_force_enable __initdata; |
| static int amd_iommu_target_ivhd_type; |
| |
| /* Global EFR and EFR2 registers */ |
| u64 amd_iommu_efr; |
| u64 amd_iommu_efr2; |
| |
| /* SNP is enabled on the system? */ |
| bool amd_iommu_snp_en; |
| EXPORT_SYMBOL(amd_iommu_snp_en); |
| |
| LIST_HEAD(amd_iommu_pci_seg_list); /* list of all PCI segments */ |
| LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the |
| system */ |
| |
| /* Array to assign indices to IOMMUs*/ |
| struct amd_iommu *amd_iommus[MAX_IOMMUS]; |
| |
| /* Number of IOMMUs present in the system */ |
| static int amd_iommus_present; |
| |
| /* IOMMUs have a non-present cache? */ |
| bool amd_iommu_np_cache __read_mostly; |
| bool amd_iommu_iotlb_sup __read_mostly = true; |
| |
| u32 amd_iommu_max_pasid __read_mostly = ~0; |
| |
| bool amd_iommu_v2_present __read_mostly; |
| static bool amd_iommu_pc_present __read_mostly; |
| bool amdr_ivrs_remap_support __read_mostly; |
| |
| bool amd_iommu_force_isolation __read_mostly; |
| |
| /* |
| * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap |
| * to know which ones are already in use. |
| */ |
| unsigned long *amd_iommu_pd_alloc_bitmap; |
| |
| enum iommu_init_state { |
| IOMMU_START_STATE, |
| IOMMU_IVRS_DETECTED, |
| IOMMU_ACPI_FINISHED, |
| IOMMU_ENABLED, |
| IOMMU_PCI_INIT, |
| IOMMU_INTERRUPTS_EN, |
| IOMMU_INITIALIZED, |
| IOMMU_NOT_FOUND, |
| IOMMU_INIT_ERROR, |
| IOMMU_CMDLINE_DISABLED, |
| }; |
| |
| /* Early ioapic and hpet maps from kernel command line */ |
| #define EARLY_MAP_SIZE 4 |
| static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE]; |
| static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE]; |
| static struct acpihid_map_entry __initdata early_acpihid_map[EARLY_MAP_SIZE]; |
| |
| static int __initdata early_ioapic_map_size; |
| static int __initdata early_hpet_map_size; |
| static int __initdata early_acpihid_map_size; |
| |
| static bool __initdata cmdline_maps; |
| |
| static enum iommu_init_state init_state = IOMMU_START_STATE; |
| |
| static int amd_iommu_enable_interrupts(void); |
| static int __init iommu_go_to_state(enum iommu_init_state state); |
| static void init_device_table_dma(struct amd_iommu_pci_seg *pci_seg); |
| |
| static bool amd_iommu_pre_enabled = true; |
| |
| static u32 amd_iommu_ivinfo __initdata; |
| |
| bool translation_pre_enabled(struct amd_iommu *iommu) |
| { |
| return (iommu->flags & AMD_IOMMU_FLAG_TRANS_PRE_ENABLED); |
| } |
| |
| static void clear_translation_pre_enabled(struct amd_iommu *iommu) |
| { |
| iommu->flags &= ~AMD_IOMMU_FLAG_TRANS_PRE_ENABLED; |
| } |
| |
| static void init_translation_status(struct amd_iommu *iommu) |
| { |
| u64 ctrl; |
| |
| ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); |
| if (ctrl & (1<<CONTROL_IOMMU_EN)) |
| iommu->flags |= AMD_IOMMU_FLAG_TRANS_PRE_ENABLED; |
| } |
| |
| static inline unsigned long tbl_size(int entry_size, int last_bdf) |
| { |
| unsigned shift = PAGE_SHIFT + |
| get_order((last_bdf + 1) * entry_size); |
| |
| return 1UL << shift; |
| } |
| |
| int amd_iommu_get_num_iommus(void) |
| { |
| return amd_iommus_present; |
| } |
| |
| /* |
| * Iterate through all the IOMMUs to get common EFR |
| * masks among all IOMMUs and warn if found inconsistency. |
| */ |
| static void get_global_efr(void) |
| { |
| struct amd_iommu *iommu; |
| |
| for_each_iommu(iommu) { |
| u64 tmp = iommu->features; |
| u64 tmp2 = iommu->features2; |
| |
| if (list_is_first(&iommu->list, &amd_iommu_list)) { |
| amd_iommu_efr = tmp; |
| amd_iommu_efr2 = tmp2; |
| continue; |
| } |
| |
| if (amd_iommu_efr == tmp && |
| amd_iommu_efr2 == tmp2) |
| continue; |
| |
| pr_err(FW_BUG |
| "Found inconsistent EFR/EFR2 %#llx,%#llx (global %#llx,%#llx) on iommu%d (%04x:%02x:%02x.%01x).\n", |
| tmp, tmp2, amd_iommu_efr, amd_iommu_efr2, |
| iommu->index, iommu->pci_seg->id, |
| PCI_BUS_NUM(iommu->devid), PCI_SLOT(iommu->devid), |
| PCI_FUNC(iommu->devid)); |
| |
| amd_iommu_efr &= tmp; |
| amd_iommu_efr2 &= tmp2; |
| } |
| |
| pr_info("Using global IVHD EFR:%#llx, EFR2:%#llx\n", amd_iommu_efr, amd_iommu_efr2); |
| } |
| |
| static bool check_feature_on_all_iommus(u64 mask) |
| { |
| return !!(amd_iommu_efr & mask); |
| } |
| |
| /* |
| * For IVHD type 0x11/0x40, EFR is also available via IVHD. |
| * Default to IVHD EFR since it is available sooner |
| * (i.e. before PCI init). |
| */ |
| static void __init early_iommu_features_init(struct amd_iommu *iommu, |
| struct ivhd_header *h) |
| { |
| if (amd_iommu_ivinfo & IOMMU_IVINFO_EFRSUP) { |
| iommu->features = h->efr_reg; |
| iommu->features2 = h->efr_reg2; |
| } |
| if (amd_iommu_ivinfo & IOMMU_IVINFO_DMA_REMAP) |
| amdr_ivrs_remap_support = true; |
| } |
| |
| /* Access to l1 and l2 indexed register spaces */ |
| |
| static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address) |
| { |
| u32 val; |
| |
| pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16)); |
| pci_read_config_dword(iommu->dev, 0xfc, &val); |
| return val; |
| } |
| |
| static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val) |
| { |
| pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31)); |
| pci_write_config_dword(iommu->dev, 0xfc, val); |
| pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16)); |
| } |
| |
| static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address) |
| { |
| u32 val; |
| |
| pci_write_config_dword(iommu->dev, 0xf0, address); |
| pci_read_config_dword(iommu->dev, 0xf4, &val); |
| return val; |
| } |
| |
| static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val) |
| { |
| pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8)); |
| pci_write_config_dword(iommu->dev, 0xf4, val); |
| } |
| |
| /**************************************************************************** |
| * |
| * AMD IOMMU MMIO register space handling functions |
| * |
| * These functions are used to program the IOMMU device registers in |
| * MMIO space required for that driver. |
| * |
| ****************************************************************************/ |
| |
| /* |
| * This function set the exclusion range in the IOMMU. DMA accesses to the |
| * exclusion range are passed through untranslated |
| */ |
| static void iommu_set_exclusion_range(struct amd_iommu *iommu) |
| { |
| u64 start = iommu->exclusion_start & PAGE_MASK; |
| u64 limit = (start + iommu->exclusion_length - 1) & PAGE_MASK; |
| u64 entry; |
| |
| if (!iommu->exclusion_start) |
| return; |
| |
| entry = start | MMIO_EXCL_ENABLE_MASK; |
| memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET, |
| &entry, sizeof(entry)); |
| |
| entry = limit; |
| memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET, |
| &entry, sizeof(entry)); |
| } |
| |
| static void iommu_set_cwwb_range(struct amd_iommu *iommu) |
| { |
| u64 start = iommu_virt_to_phys((void *)iommu->cmd_sem); |
| u64 entry = start & PM_ADDR_MASK; |
| |
| if (!check_feature_on_all_iommus(FEATURE_SNP)) |
| return; |
| |
| /* Note: |
| * Re-purpose Exclusion base/limit registers for Completion wait |
| * write-back base/limit. |
| */ |
| memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET, |
| &entry, sizeof(entry)); |
| |
| /* Note: |
| * Default to 4 Kbytes, which can be specified by setting base |
| * address equal to the limit address. |
| */ |
| memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET, |
| &entry, sizeof(entry)); |
| } |
| |
| /* Programs the physical address of the device table into the IOMMU hardware */ |
| static void iommu_set_device_table(struct amd_iommu *iommu) |
| { |
| u64 entry; |
| u32 dev_table_size = iommu->pci_seg->dev_table_size; |
| void *dev_table = (void *)get_dev_table(iommu); |
| |
| BUG_ON(iommu->mmio_base == NULL); |
| |
| entry = iommu_virt_to_phys(dev_table); |
| entry |= (dev_table_size >> 12) - 1; |
| memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET, |
| &entry, sizeof(entry)); |
| } |
| |
| /* Generic functions to enable/disable certain features of the IOMMU. */ |
| static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit) |
| { |
| u64 ctrl; |
| |
| ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); |
| ctrl |= (1ULL << bit); |
| writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); |
| } |
| |
| static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit) |
| { |
| u64 ctrl; |
| |
| ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); |
| ctrl &= ~(1ULL << bit); |
| writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); |
| } |
| |
| static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout) |
| { |
| u64 ctrl; |
| |
| ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); |
| ctrl &= ~CTRL_INV_TO_MASK; |
| ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK; |
| writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); |
| } |
| |
| /* Function to enable the hardware */ |
| static void iommu_enable(struct amd_iommu *iommu) |
| { |
| iommu_feature_enable(iommu, CONTROL_IOMMU_EN); |
| } |
| |
| static void iommu_disable(struct amd_iommu *iommu) |
| { |
| if (!iommu->mmio_base) |
| return; |
| |
| /* Disable command buffer */ |
| iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); |
| |
| /* Disable event logging and event interrupts */ |
| iommu_feature_disable(iommu, CONTROL_EVT_INT_EN); |
| iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN); |
| |
| /* Disable IOMMU GA_LOG */ |
| iommu_feature_disable(iommu, CONTROL_GALOG_EN); |
| iommu_feature_disable(iommu, CONTROL_GAINT_EN); |
| |
| /* Disable IOMMU hardware itself */ |
| iommu_feature_disable(iommu, CONTROL_IOMMU_EN); |
| } |
| |
| /* |
| * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in |
| * the system has one. |
| */ |
| static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end) |
| { |
| if (!request_mem_region(address, end, "amd_iommu")) { |
| pr_err("Can not reserve memory region %llx-%llx for mmio\n", |
| address, end); |
| pr_err("This is a BIOS bug. Please contact your hardware vendor\n"); |
| return NULL; |
| } |
| |
| return (u8 __iomem *)ioremap(address, end); |
| } |
| |
| static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu) |
| { |
| if (iommu->mmio_base) |
| iounmap(iommu->mmio_base); |
| release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end); |
| } |
| |
| static inline u32 get_ivhd_header_size(struct ivhd_header *h) |
| { |
| u32 size = 0; |
| |
| switch (h->type) { |
| case 0x10: |
| size = 24; |
| break; |
| case 0x11: |
| case 0x40: |
| size = 40; |
| break; |
| } |
| return size; |
| } |
| |
| /**************************************************************************** |
| * |
| * The functions below belong to the first pass of AMD IOMMU ACPI table |
| * parsing. In this pass we try to find out the highest device id this |
| * code has to handle. Upon this information the size of the shared data |
| * structures is determined later. |
| * |
| ****************************************************************************/ |
| |
| /* |
| * This function calculates the length of a given IVHD entry |
| */ |
| static inline int ivhd_entry_length(u8 *ivhd) |
| { |
| u32 type = ((struct ivhd_entry *)ivhd)->type; |
| |
| if (type < 0x80) { |
| return 0x04 << (*ivhd >> 6); |
| } else if (type == IVHD_DEV_ACPI_HID) { |
| /* For ACPI_HID, offset 21 is uid len */ |
| return *((u8 *)ivhd + 21) + 22; |
| } |
| return 0; |
| } |
| |
| /* |
| * After reading the highest device id from the IOMMU PCI capability header |
| * this function looks if there is a higher device id defined in the ACPI table |
| */ |
| static int __init find_last_devid_from_ivhd(struct ivhd_header *h) |
| { |
| u8 *p = (void *)h, *end = (void *)h; |
| struct ivhd_entry *dev; |
| int last_devid = -EINVAL; |
| |
| u32 ivhd_size = get_ivhd_header_size(h); |
| |
| if (!ivhd_size) { |
| pr_err("Unsupported IVHD type %#x\n", h->type); |
| return -EINVAL; |
| } |
| |
| p += ivhd_size; |
| end += h->length; |
| |
| while (p < end) { |
| dev = (struct ivhd_entry *)p; |
| switch (dev->type) { |
| case IVHD_DEV_ALL: |
| /* Use maximum BDF value for DEV_ALL */ |
| return 0xffff; |
| case IVHD_DEV_SELECT: |
| case IVHD_DEV_RANGE_END: |
| case IVHD_DEV_ALIAS: |
| case IVHD_DEV_EXT_SELECT: |
| /* all the above subfield types refer to device ids */ |
| if (dev->devid > last_devid) |
| last_devid = dev->devid; |
| break; |
| default: |
| break; |
| } |
| p += ivhd_entry_length(p); |
| } |
| |
| WARN_ON(p != end); |
| |
| return last_devid; |
| } |
| |
| static int __init check_ivrs_checksum(struct acpi_table_header *table) |
| { |
| int i; |
| u8 checksum = 0, *p = (u8 *)table; |
| |
| for (i = 0; i < table->length; ++i) |
| checksum += p[i]; |
| if (checksum != 0) { |
| /* ACPI table corrupt */ |
| pr_err(FW_BUG "IVRS invalid checksum\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Iterate over all IVHD entries in the ACPI table and find the highest device |
| * id which we need to handle. This is the first of three functions which parse |
| * the ACPI table. So we check the checksum here. |
| */ |
| static int __init find_last_devid_acpi(struct acpi_table_header *table, u16 pci_seg) |
| { |
| u8 *p = (u8 *)table, *end = (u8 *)table; |
| struct ivhd_header *h; |
| int last_devid, last_bdf = 0; |
| |
| p += IVRS_HEADER_LENGTH; |
| |
| end += table->length; |
| while (p < end) { |
| h = (struct ivhd_header *)p; |
| if (h->pci_seg == pci_seg && |
| h->type == amd_iommu_target_ivhd_type) { |
| last_devid = find_last_devid_from_ivhd(h); |
| |
| if (last_devid < 0) |
| return -EINVAL; |
| if (last_devid > last_bdf) |
| last_bdf = last_devid; |
| } |
| p += h->length; |
| } |
| WARN_ON(p != end); |
| |
| return last_bdf; |
| } |
| |
| /**************************************************************************** |
| * |
| * The following functions belong to the code path which parses the ACPI table |
| * the second time. In this ACPI parsing iteration we allocate IOMMU specific |
| * data structures, initialize the per PCI segment device/alias/rlookup table |
| * and also basically initialize the hardware. |
| * |
| ****************************************************************************/ |
| |
| /* Allocate per PCI segment device table */ |
| static inline int __init alloc_dev_table(struct amd_iommu_pci_seg *pci_seg) |
| { |
| pci_seg->dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO | GFP_DMA32, |
| get_order(pci_seg->dev_table_size)); |
| if (!pci_seg->dev_table) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static inline void free_dev_table(struct amd_iommu_pci_seg *pci_seg) |
| { |
| free_pages((unsigned long)pci_seg->dev_table, |
| get_order(pci_seg->dev_table_size)); |
| pci_seg->dev_table = NULL; |
| } |
| |
| /* Allocate per PCI segment IOMMU rlookup table. */ |
| static inline int __init alloc_rlookup_table(struct amd_iommu_pci_seg *pci_seg) |
| { |
| pci_seg->rlookup_table = (void *)__get_free_pages( |
| GFP_KERNEL | __GFP_ZERO, |
| get_order(pci_seg->rlookup_table_size)); |
| if (pci_seg->rlookup_table == NULL) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static inline void free_rlookup_table(struct amd_iommu_pci_seg *pci_seg) |
| { |
| free_pages((unsigned long)pci_seg->rlookup_table, |
| get_order(pci_seg->rlookup_table_size)); |
| pci_seg->rlookup_table = NULL; |
| } |
| |
| static inline int __init alloc_irq_lookup_table(struct amd_iommu_pci_seg *pci_seg) |
| { |
| pci_seg->irq_lookup_table = (void *)__get_free_pages( |
| GFP_KERNEL | __GFP_ZERO, |
| get_order(pci_seg->rlookup_table_size)); |
| kmemleak_alloc(pci_seg->irq_lookup_table, |
| pci_seg->rlookup_table_size, 1, GFP_KERNEL); |
| if (pci_seg->irq_lookup_table == NULL) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static inline void free_irq_lookup_table(struct amd_iommu_pci_seg *pci_seg) |
| { |
| kmemleak_free(pci_seg->irq_lookup_table); |
| free_pages((unsigned long)pci_seg->irq_lookup_table, |
| get_order(pci_seg->rlookup_table_size)); |
| pci_seg->irq_lookup_table = NULL; |
| } |
| |
| static int __init alloc_alias_table(struct amd_iommu_pci_seg *pci_seg) |
| { |
| int i; |
| |
| pci_seg->alias_table = (void *)__get_free_pages(GFP_KERNEL, |
| get_order(pci_seg->alias_table_size)); |
| if (!pci_seg->alias_table) |
| return -ENOMEM; |
| |
| /* |
| * let all alias entries point to itself |
| */ |
| for (i = 0; i <= pci_seg->last_bdf; ++i) |
| pci_seg->alias_table[i] = i; |
| |
| return 0; |
| } |
| |
| static void __init free_alias_table(struct amd_iommu_pci_seg *pci_seg) |
| { |
| free_pages((unsigned long)pci_seg->alias_table, |
| get_order(pci_seg->alias_table_size)); |
| pci_seg->alias_table = NULL; |
| } |
| |
| /* |
| * Allocates the command buffer. This buffer is per AMD IOMMU. We can |
| * write commands to that buffer later and the IOMMU will execute them |
| * asynchronously |
| */ |
| static int __init alloc_command_buffer(struct amd_iommu *iommu) |
| { |
| iommu->cmd_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(CMD_BUFFER_SIZE)); |
| |
| return iommu->cmd_buf ? 0 : -ENOMEM; |
| } |
| |
| /* |
| * This function restarts event logging in case the IOMMU experienced |
| * an event log buffer overflow. |
| */ |
| void amd_iommu_restart_event_logging(struct amd_iommu *iommu) |
| { |
| iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN); |
| iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN); |
| } |
| |
| /* |
| * This function resets the command buffer if the IOMMU stopped fetching |
| * commands from it. |
| */ |
| static void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu) |
| { |
| iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); |
| |
| writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); |
| writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| iommu->cmd_buf_head = 0; |
| iommu->cmd_buf_tail = 0; |
| |
| iommu_feature_enable(iommu, CONTROL_CMDBUF_EN); |
| } |
| |
| /* |
| * This function writes the command buffer address to the hardware and |
| * enables it. |
| */ |
| static void iommu_enable_command_buffer(struct amd_iommu *iommu) |
| { |
| u64 entry; |
| |
| BUG_ON(iommu->cmd_buf == NULL); |
| |
| entry = iommu_virt_to_phys(iommu->cmd_buf); |
| entry |= MMIO_CMD_SIZE_512; |
| |
| memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET, |
| &entry, sizeof(entry)); |
| |
| amd_iommu_reset_cmd_buffer(iommu); |
| } |
| |
| /* |
| * This function disables the command buffer |
| */ |
| static void iommu_disable_command_buffer(struct amd_iommu *iommu) |
| { |
| iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); |
| } |
| |
| static void __init free_command_buffer(struct amd_iommu *iommu) |
| { |
| free_pages((unsigned long)iommu->cmd_buf, get_order(CMD_BUFFER_SIZE)); |
| } |
| |
| static void *__init iommu_alloc_4k_pages(struct amd_iommu *iommu, |
| gfp_t gfp, size_t size) |
| { |
| int order = get_order(size); |
| void *buf = (void *)__get_free_pages(gfp, order); |
| |
| if (buf && |
| check_feature_on_all_iommus(FEATURE_SNP) && |
| set_memory_4k((unsigned long)buf, (1 << order))) { |
| free_pages((unsigned long)buf, order); |
| buf = NULL; |
| } |
| |
| return buf; |
| } |
| |
| /* allocates the memory where the IOMMU will log its events to */ |
| static int __init alloc_event_buffer(struct amd_iommu *iommu) |
| { |
| iommu->evt_buf = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO, |
| EVT_BUFFER_SIZE); |
| |
| return iommu->evt_buf ? 0 : -ENOMEM; |
| } |
| |
| static void iommu_enable_event_buffer(struct amd_iommu *iommu) |
| { |
| u64 entry; |
| |
| BUG_ON(iommu->evt_buf == NULL); |
| |
| entry = iommu_virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK; |
| |
| memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET, |
| &entry, sizeof(entry)); |
| |
| /* set head and tail to zero manually */ |
| writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); |
| |
| iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN); |
| } |
| |
| /* |
| * This function disables the event log buffer |
| */ |
| static void iommu_disable_event_buffer(struct amd_iommu *iommu) |
| { |
| iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN); |
| } |
| |
| static void __init free_event_buffer(struct amd_iommu *iommu) |
| { |
| free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE)); |
| } |
| |
| /* allocates the memory where the IOMMU will log its events to */ |
| static int __init alloc_ppr_log(struct amd_iommu *iommu) |
| { |
| iommu->ppr_log = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO, |
| PPR_LOG_SIZE); |
| |
| return iommu->ppr_log ? 0 : -ENOMEM; |
| } |
| |
| static void iommu_enable_ppr_log(struct amd_iommu *iommu) |
| { |
| u64 entry; |
| |
| if (iommu->ppr_log == NULL) |
| return; |
| |
| entry = iommu_virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512; |
| |
| memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET, |
| &entry, sizeof(entry)); |
| |
| /* set head and tail to zero manually */ |
| writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| |
| iommu_feature_enable(iommu, CONTROL_PPRLOG_EN); |
| iommu_feature_enable(iommu, CONTROL_PPR_EN); |
| } |
| |
| static void __init free_ppr_log(struct amd_iommu *iommu) |
| { |
| free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE)); |
| } |
| |
| static void free_ga_log(struct amd_iommu *iommu) |
| { |
| #ifdef CONFIG_IRQ_REMAP |
| free_pages((unsigned long)iommu->ga_log, get_order(GA_LOG_SIZE)); |
| free_pages((unsigned long)iommu->ga_log_tail, get_order(8)); |
| #endif |
| } |
| |
| #ifdef CONFIG_IRQ_REMAP |
| static int iommu_ga_log_enable(struct amd_iommu *iommu) |
| { |
| u32 status, i; |
| u64 entry; |
| |
| if (!iommu->ga_log) |
| return -EINVAL; |
| |
| entry = iommu_virt_to_phys(iommu->ga_log) | GA_LOG_SIZE_512; |
| memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_BASE_OFFSET, |
| &entry, sizeof(entry)); |
| entry = (iommu_virt_to_phys(iommu->ga_log_tail) & |
| (BIT_ULL(52)-1)) & ~7ULL; |
| memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_TAIL_OFFSET, |
| &entry, sizeof(entry)); |
| writel(0x00, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); |
| writel(0x00, iommu->mmio_base + MMIO_GA_TAIL_OFFSET); |
| |
| |
| iommu_feature_enable(iommu, CONTROL_GAINT_EN); |
| iommu_feature_enable(iommu, CONTROL_GALOG_EN); |
| |
| for (i = 0; i < LOOP_TIMEOUT; ++i) { |
| status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| if (status & (MMIO_STATUS_GALOG_RUN_MASK)) |
| break; |
| udelay(10); |
| } |
| |
| if (WARN_ON(i >= LOOP_TIMEOUT)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int iommu_init_ga_log(struct amd_iommu *iommu) |
| { |
| if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) |
| return 0; |
| |
| iommu->ga_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(GA_LOG_SIZE)); |
| if (!iommu->ga_log) |
| goto err_out; |
| |
| iommu->ga_log_tail = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(8)); |
| if (!iommu->ga_log_tail) |
| goto err_out; |
| |
| return 0; |
| err_out: |
| free_ga_log(iommu); |
| return -EINVAL; |
| } |
| #endif /* CONFIG_IRQ_REMAP */ |
| |
| static int __init alloc_cwwb_sem(struct amd_iommu *iommu) |
| { |
| iommu->cmd_sem = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO, 1); |
| |
| return iommu->cmd_sem ? 0 : -ENOMEM; |
| } |
| |
| static void __init free_cwwb_sem(struct amd_iommu *iommu) |
| { |
| if (iommu->cmd_sem) |
| free_page((unsigned long)iommu->cmd_sem); |
| } |
| |
| static void iommu_enable_xt(struct amd_iommu *iommu) |
| { |
| #ifdef CONFIG_IRQ_REMAP |
| /* |
| * XT mode (32-bit APIC destination ID) requires |
| * GA mode (128-bit IRTE support) as a prerequisite. |
| */ |
| if (AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir) && |
| amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE) |
| iommu_feature_enable(iommu, CONTROL_XT_EN); |
| #endif /* CONFIG_IRQ_REMAP */ |
| } |
| |
| static void iommu_enable_gt(struct amd_iommu *iommu) |
| { |
| if (!iommu_feature(iommu, FEATURE_GT)) |
| return; |
| |
| iommu_feature_enable(iommu, CONTROL_GT_EN); |
| } |
| |
| /* sets a specific bit in the device table entry. */ |
| static void __set_dev_entry_bit(struct dev_table_entry *dev_table, |
| u16 devid, u8 bit) |
| { |
| int i = (bit >> 6) & 0x03; |
| int _bit = bit & 0x3f; |
| |
| dev_table[devid].data[i] |= (1UL << _bit); |
| } |
| |
| static void set_dev_entry_bit(struct amd_iommu *iommu, u16 devid, u8 bit) |
| { |
| struct dev_table_entry *dev_table = get_dev_table(iommu); |
| |
| return __set_dev_entry_bit(dev_table, devid, bit); |
| } |
| |
| static int __get_dev_entry_bit(struct dev_table_entry *dev_table, |
| u16 devid, u8 bit) |
| { |
| int i = (bit >> 6) & 0x03; |
| int _bit = bit & 0x3f; |
| |
| return (dev_table[devid].data[i] & (1UL << _bit)) >> _bit; |
| } |
| |
| static int get_dev_entry_bit(struct amd_iommu *iommu, u16 devid, u8 bit) |
| { |
| struct dev_table_entry *dev_table = get_dev_table(iommu); |
| |
| return __get_dev_entry_bit(dev_table, devid, bit); |
| } |
| |
| static bool __copy_device_table(struct amd_iommu *iommu) |
| { |
| u64 int_ctl, int_tab_len, entry = 0; |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| struct dev_table_entry *old_devtb = NULL; |
| u32 lo, hi, devid, old_devtb_size; |
| phys_addr_t old_devtb_phys; |
| u16 dom_id, dte_v, irq_v; |
| gfp_t gfp_flag; |
| u64 tmp; |
| |
| /* Each IOMMU use separate device table with the same size */ |
| lo = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET); |
| hi = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET + 4); |
| entry = (((u64) hi) << 32) + lo; |
| |
| old_devtb_size = ((entry & ~PAGE_MASK) + 1) << 12; |
| if (old_devtb_size != pci_seg->dev_table_size) { |
| pr_err("The device table size of IOMMU:%d is not expected!\n", |
| iommu->index); |
| return false; |
| } |
| |
| /* |
| * When SME is enabled in the first kernel, the entry includes the |
| * memory encryption mask(sme_me_mask), we must remove the memory |
| * encryption mask to obtain the true physical address in kdump kernel. |
| */ |
| old_devtb_phys = __sme_clr(entry) & PAGE_MASK; |
| |
| if (old_devtb_phys >= 0x100000000ULL) { |
| pr_err("The address of old device table is above 4G, not trustworthy!\n"); |
| return false; |
| } |
| old_devtb = (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT) && is_kdump_kernel()) |
| ? (__force void *)ioremap_encrypted(old_devtb_phys, |
| pci_seg->dev_table_size) |
| : memremap(old_devtb_phys, pci_seg->dev_table_size, MEMREMAP_WB); |
| |
| if (!old_devtb) |
| return false; |
| |
| gfp_flag = GFP_KERNEL | __GFP_ZERO | GFP_DMA32; |
| pci_seg->old_dev_tbl_cpy = (void *)__get_free_pages(gfp_flag, |
| get_order(pci_seg->dev_table_size)); |
| if (pci_seg->old_dev_tbl_cpy == NULL) { |
| pr_err("Failed to allocate memory for copying old device table!\n"); |
| memunmap(old_devtb); |
| return false; |
| } |
| |
| for (devid = 0; devid <= pci_seg->last_bdf; ++devid) { |
| pci_seg->old_dev_tbl_cpy[devid] = old_devtb[devid]; |
| dom_id = old_devtb[devid].data[1] & DEV_DOMID_MASK; |
| dte_v = old_devtb[devid].data[0] & DTE_FLAG_V; |
| |
| if (dte_v && dom_id) { |
| pci_seg->old_dev_tbl_cpy[devid].data[0] = old_devtb[devid].data[0]; |
| pci_seg->old_dev_tbl_cpy[devid].data[1] = old_devtb[devid].data[1]; |
| __set_bit(dom_id, amd_iommu_pd_alloc_bitmap); |
| /* If gcr3 table existed, mask it out */ |
| if (old_devtb[devid].data[0] & DTE_FLAG_GV) { |
| tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; |
| tmp |= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; |
| pci_seg->old_dev_tbl_cpy[devid].data[1] &= ~tmp; |
| tmp = DTE_GCR3_VAL_A(~0ULL) << DTE_GCR3_SHIFT_A; |
| tmp |= DTE_FLAG_GV; |
| pci_seg->old_dev_tbl_cpy[devid].data[0] &= ~tmp; |
| } |
| } |
| |
| irq_v = old_devtb[devid].data[2] & DTE_IRQ_REMAP_ENABLE; |
| int_ctl = old_devtb[devid].data[2] & DTE_IRQ_REMAP_INTCTL_MASK; |
| int_tab_len = old_devtb[devid].data[2] & DTE_INTTABLEN_MASK; |
| if (irq_v && (int_ctl || int_tab_len)) { |
| if ((int_ctl != DTE_IRQ_REMAP_INTCTL) || |
| (int_tab_len != DTE_INTTABLEN)) { |
| pr_err("Wrong old irq remapping flag: %#x\n", devid); |
| memunmap(old_devtb); |
| return false; |
| } |
| |
| pci_seg->old_dev_tbl_cpy[devid].data[2] = old_devtb[devid].data[2]; |
| } |
| } |
| memunmap(old_devtb); |
| |
| return true; |
| } |
| |
| static bool copy_device_table(void) |
| { |
| struct amd_iommu *iommu; |
| struct amd_iommu_pci_seg *pci_seg; |
| |
| if (!amd_iommu_pre_enabled) |
| return false; |
| |
| pr_warn("Translation is already enabled - trying to copy translation structures\n"); |
| |
| /* |
| * All IOMMUs within PCI segment shares common device table. |
| * Hence copy device table only once per PCI segment. |
| */ |
| for_each_pci_segment(pci_seg) { |
| for_each_iommu(iommu) { |
| if (pci_seg->id != iommu->pci_seg->id) |
| continue; |
| if (!__copy_device_table(iommu)) |
| return false; |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| void amd_iommu_apply_erratum_63(struct amd_iommu *iommu, u16 devid) |
| { |
| int sysmgt; |
| |
| sysmgt = get_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT1) | |
| (get_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT2) << 1); |
| |
| if (sysmgt == 0x01) |
| set_dev_entry_bit(iommu, devid, DEV_ENTRY_IW); |
| } |
| |
| /* |
| * This function takes the device specific flags read from the ACPI |
| * table and sets up the device table entry with that information |
| */ |
| static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu, |
| u16 devid, u32 flags, u32 ext_flags) |
| { |
| if (flags & ACPI_DEVFLAG_INITPASS) |
| set_dev_entry_bit(iommu, devid, DEV_ENTRY_INIT_PASS); |
| if (flags & ACPI_DEVFLAG_EXTINT) |
| set_dev_entry_bit(iommu, devid, DEV_ENTRY_EINT_PASS); |
| if (flags & ACPI_DEVFLAG_NMI) |
| set_dev_entry_bit(iommu, devid, DEV_ENTRY_NMI_PASS); |
| if (flags & ACPI_DEVFLAG_SYSMGT1) |
| set_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT1); |
| if (flags & ACPI_DEVFLAG_SYSMGT2) |
| set_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT2); |
| if (flags & ACPI_DEVFLAG_LINT0) |
| set_dev_entry_bit(iommu, devid, DEV_ENTRY_LINT0_PASS); |
| if (flags & ACPI_DEVFLAG_LINT1) |
| set_dev_entry_bit(iommu, devid, DEV_ENTRY_LINT1_PASS); |
| |
| amd_iommu_apply_erratum_63(iommu, devid); |
| |
| amd_iommu_set_rlookup_table(iommu, devid); |
| } |
| |
| int __init add_special_device(u8 type, u8 id, u32 *devid, bool cmd_line) |
| { |
| struct devid_map *entry; |
| struct list_head *list; |
| |
| if (type == IVHD_SPECIAL_IOAPIC) |
| list = &ioapic_map; |
| else if (type == IVHD_SPECIAL_HPET) |
| list = &hpet_map; |
| else |
| return -EINVAL; |
| |
| list_for_each_entry(entry, list, list) { |
| if (!(entry->id == id && entry->cmd_line)) |
| continue; |
| |
| pr_info("Command-line override present for %s id %d - ignoring\n", |
| type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id); |
| |
| *devid = entry->devid; |
| |
| return 0; |
| } |
| |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return -ENOMEM; |
| |
| entry->id = id; |
| entry->devid = *devid; |
| entry->cmd_line = cmd_line; |
| |
| list_add_tail(&entry->list, list); |
| |
| return 0; |
| } |
| |
| static int __init add_acpi_hid_device(u8 *hid, u8 *uid, u32 *devid, |
| bool cmd_line) |
| { |
| struct acpihid_map_entry *entry; |
| struct list_head *list = &acpihid_map; |
| |
| list_for_each_entry(entry, list, list) { |
| if (strcmp(entry->hid, hid) || |
| (*uid && *entry->uid && strcmp(entry->uid, uid)) || |
| !entry->cmd_line) |
| continue; |
| |
| pr_info("Command-line override for hid:%s uid:%s\n", |
| hid, uid); |
| *devid = entry->devid; |
| return 0; |
| } |
| |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return -ENOMEM; |
| |
| memcpy(entry->uid, uid, strlen(uid)); |
| memcpy(entry->hid, hid, strlen(hid)); |
| entry->devid = *devid; |
| entry->cmd_line = cmd_line; |
| entry->root_devid = (entry->devid & (~0x7)); |
| |
| pr_info("%s, add hid:%s, uid:%s, rdevid:%d\n", |
| entry->cmd_line ? "cmd" : "ivrs", |
| entry->hid, entry->uid, entry->root_devid); |
| |
| list_add_tail(&entry->list, list); |
| return 0; |
| } |
| |
| static int __init add_early_maps(void) |
| { |
| int i, ret; |
| |
| for (i = 0; i < early_ioapic_map_size; ++i) { |
| ret = add_special_device(IVHD_SPECIAL_IOAPIC, |
| early_ioapic_map[i].id, |
| &early_ioapic_map[i].devid, |
| early_ioapic_map[i].cmd_line); |
| if (ret) |
| return ret; |
| } |
| |
| for (i = 0; i < early_hpet_map_size; ++i) { |
| ret = add_special_device(IVHD_SPECIAL_HPET, |
| early_hpet_map[i].id, |
| &early_hpet_map[i].devid, |
| early_hpet_map[i].cmd_line); |
| if (ret) |
| return ret; |
| } |
| |
| for (i = 0; i < early_acpihid_map_size; ++i) { |
| ret = add_acpi_hid_device(early_acpihid_map[i].hid, |
| early_acpihid_map[i].uid, |
| &early_acpihid_map[i].devid, |
| early_acpihid_map[i].cmd_line); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Takes a pointer to an AMD IOMMU entry in the ACPI table and |
| * initializes the hardware and our data structures with it. |
| */ |
| static int __init init_iommu_from_acpi(struct amd_iommu *iommu, |
| struct ivhd_header *h) |
| { |
| u8 *p = (u8 *)h; |
| u8 *end = p, flags = 0; |
| u16 devid = 0, devid_start = 0, devid_to = 0, seg_id; |
| u32 dev_i, ext_flags = 0; |
| bool alias = false; |
| struct ivhd_entry *e; |
| struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; |
| u32 ivhd_size; |
| int ret; |
| |
| |
| ret = add_early_maps(); |
| if (ret) |
| return ret; |
| |
| amd_iommu_apply_ivrs_quirks(); |
| |
| /* |
| * First save the recommended feature enable bits from ACPI |
| */ |
| iommu->acpi_flags = h->flags; |
| |
| /* |
| * Done. Now parse the device entries |
| */ |
| ivhd_size = get_ivhd_header_size(h); |
| if (!ivhd_size) { |
| pr_err("Unsupported IVHD type %#x\n", h->type); |
| return -EINVAL; |
| } |
| |
| p += ivhd_size; |
| |
| end += h->length; |
| |
| |
| while (p < end) { |
| e = (struct ivhd_entry *)p; |
| seg_id = pci_seg->id; |
| |
| switch (e->type) { |
| case IVHD_DEV_ALL: |
| |
| DUMP_printk(" DEV_ALL\t\t\tflags: %02x\n", e->flags); |
| |
| for (dev_i = 0; dev_i <= pci_seg->last_bdf; ++dev_i) |
| set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0); |
| break; |
| case IVHD_DEV_SELECT: |
| |
| DUMP_printk(" DEV_SELECT\t\t\t devid: %04x:%02x:%02x.%x " |
| "flags: %02x\n", |
| seg_id, PCI_BUS_NUM(e->devid), |
| PCI_SLOT(e->devid), |
| PCI_FUNC(e->devid), |
| e->flags); |
| |
| devid = e->devid; |
| set_dev_entry_from_acpi(iommu, devid, e->flags, 0); |
| break; |
| case IVHD_DEV_SELECT_RANGE_START: |
| |
| DUMP_printk(" DEV_SELECT_RANGE_START\t " |
| "devid: %04x:%02x:%02x.%x flags: %02x\n", |
| seg_id, PCI_BUS_NUM(e->devid), |
| PCI_SLOT(e->devid), |
| PCI_FUNC(e->devid), |
| e->flags); |
| |
| devid_start = e->devid; |
| flags = e->flags; |
| ext_flags = 0; |
| alias = false; |
| break; |
| case IVHD_DEV_ALIAS: |
| |
| DUMP_printk(" DEV_ALIAS\t\t\t devid: %04x:%02x:%02x.%x " |
| "flags: %02x devid_to: %02x:%02x.%x\n", |
| seg_id, PCI_BUS_NUM(e->devid), |
| PCI_SLOT(e->devid), |
| PCI_FUNC(e->devid), |
| e->flags, |
| PCI_BUS_NUM(e->ext >> 8), |
| PCI_SLOT(e->ext >> 8), |
| PCI_FUNC(e->ext >> 8)); |
| |
| devid = e->devid; |
| devid_to = e->ext >> 8; |
| set_dev_entry_from_acpi(iommu, devid , e->flags, 0); |
| set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0); |
| pci_seg->alias_table[devid] = devid_to; |
| break; |
| case IVHD_DEV_ALIAS_RANGE: |
| |
| DUMP_printk(" DEV_ALIAS_RANGE\t\t " |
| "devid: %04x:%02x:%02x.%x flags: %02x " |
| "devid_to: %04x:%02x:%02x.%x\n", |
| seg_id, PCI_BUS_NUM(e->devid), |
| PCI_SLOT(e->devid), |
| PCI_FUNC(e->devid), |
| e->flags, |
| seg_id, PCI_BUS_NUM(e->ext >> 8), |
| PCI_SLOT(e->ext >> 8), |
| PCI_FUNC(e->ext >> 8)); |
| |
| devid_start = e->devid; |
| flags = e->flags; |
| devid_to = e->ext >> 8; |
| ext_flags = 0; |
| alias = true; |
| break; |
| case IVHD_DEV_EXT_SELECT: |
| |
| DUMP_printk(" DEV_EXT_SELECT\t\t devid: %04x:%02x:%02x.%x " |
| "flags: %02x ext: %08x\n", |
| seg_id, PCI_BUS_NUM(e->devid), |
| PCI_SLOT(e->devid), |
| PCI_FUNC(e->devid), |
| e->flags, e->ext); |
| |
| devid = e->devid; |
| set_dev_entry_from_acpi(iommu, devid, e->flags, |
| e->ext); |
| break; |
| case IVHD_DEV_EXT_SELECT_RANGE: |
| |
| DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: " |
| "%04x:%02x:%02x.%x flags: %02x ext: %08x\n", |
| seg_id, PCI_BUS_NUM(e->devid), |
| PCI_SLOT(e->devid), |
| PCI_FUNC(e->devid), |
| e->flags, e->ext); |
| |
| devid_start = e->devid; |
| flags = e->flags; |
| ext_flags = e->ext; |
| alias = false; |
| break; |
| case IVHD_DEV_RANGE_END: |
| |
| DUMP_printk(" DEV_RANGE_END\t\t devid: %04x:%02x:%02x.%x\n", |
| seg_id, PCI_BUS_NUM(e->devid), |
| PCI_SLOT(e->devid), |
| PCI_FUNC(e->devid)); |
| |
| devid = e->devid; |
| for (dev_i = devid_start; dev_i <= devid; ++dev_i) { |
| if (alias) { |
| pci_seg->alias_table[dev_i] = devid_to; |
| set_dev_entry_from_acpi(iommu, |
| devid_to, flags, ext_flags); |
| } |
| set_dev_entry_from_acpi(iommu, dev_i, |
| flags, ext_flags); |
| } |
| break; |
| case IVHD_DEV_SPECIAL: { |
| u8 handle, type; |
| const char *var; |
| u32 devid; |
| int ret; |
| |
| handle = e->ext & 0xff; |
| devid = PCI_SEG_DEVID_TO_SBDF(seg_id, (e->ext >> 8)); |
| type = (e->ext >> 24) & 0xff; |
| |
| if (type == IVHD_SPECIAL_IOAPIC) |
| var = "IOAPIC"; |
| else if (type == IVHD_SPECIAL_HPET) |
| var = "HPET"; |
| else |
| var = "UNKNOWN"; |
| |
| DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %04x:%02x:%02x.%x\n", |
| var, (int)handle, |
| seg_id, PCI_BUS_NUM(devid), |
| PCI_SLOT(devid), |
| PCI_FUNC(devid)); |
| |
| ret = add_special_device(type, handle, &devid, false); |
| if (ret) |
| return ret; |
| |
| /* |
| * add_special_device might update the devid in case a |
| * command-line override is present. So call |
| * set_dev_entry_from_acpi after add_special_device. |
| */ |
| set_dev_entry_from_acpi(iommu, devid, e->flags, 0); |
| |
| break; |
| } |
| case IVHD_DEV_ACPI_HID: { |
| u32 devid; |
| u8 hid[ACPIHID_HID_LEN]; |
| u8 uid[ACPIHID_UID_LEN]; |
| int ret; |
| |
| if (h->type != 0x40) { |
| pr_err(FW_BUG "Invalid IVHD device type %#x\n", |
| e->type); |
| break; |
| } |
| |
| BUILD_BUG_ON(sizeof(e->ext_hid) != ACPIHID_HID_LEN - 1); |
| memcpy(hid, &e->ext_hid, ACPIHID_HID_LEN - 1); |
| hid[ACPIHID_HID_LEN - 1] = '\0'; |
| |
| if (!(*hid)) { |
| pr_err(FW_BUG "Invalid HID.\n"); |
| break; |
| } |
| |
| uid[0] = '\0'; |
| switch (e->uidf) { |
| case UID_NOT_PRESENT: |
| |
| if (e->uidl != 0) |
| pr_warn(FW_BUG "Invalid UID length.\n"); |
| |
| break; |
| case UID_IS_INTEGER: |
| |
| sprintf(uid, "%d", e->uid); |
| |
| break; |
| case UID_IS_CHARACTER: |
| |
| memcpy(uid, &e->uid, e->uidl); |
| uid[e->uidl] = '\0'; |
| |
| break; |
| default: |
| break; |
| } |
| |
| devid = PCI_SEG_DEVID_TO_SBDF(seg_id, e->devid); |
| DUMP_printk(" DEV_ACPI_HID(%s[%s])\t\tdevid: %04x:%02x:%02x.%x\n", |
| hid, uid, seg_id, |
| PCI_BUS_NUM(devid), |
| PCI_SLOT(devid), |
| PCI_FUNC(devid)); |
| |
| flags = e->flags; |
| |
| ret = add_acpi_hid_device(hid, uid, &devid, false); |
| if (ret) |
| return ret; |
| |
| /* |
| * add_special_device might update the devid in case a |
| * command-line override is present. So call |
| * set_dev_entry_from_acpi after add_special_device. |
| */ |
| set_dev_entry_from_acpi(iommu, devid, e->flags, 0); |
| |
| break; |
| } |
| default: |
| break; |
| } |
| |
| p += ivhd_entry_length(p); |
| } |
| |
| return 0; |
| } |
| |
| /* Allocate PCI segment data structure */ |
| static struct amd_iommu_pci_seg *__init alloc_pci_segment(u16 id, |
| struct acpi_table_header *ivrs_base) |
| { |
| struct amd_iommu_pci_seg *pci_seg; |
| int last_bdf; |
| |
| /* |
| * First parse ACPI tables to find the largest Bus/Dev/Func we need to |
| * handle in this PCI segment. Upon this information the shared data |
| * structures for the PCI segments in the system will be allocated. |
| */ |
| last_bdf = find_last_devid_acpi(ivrs_base, id); |
| if (last_bdf < 0) |
| return NULL; |
| |
| pci_seg = kzalloc(sizeof(struct amd_iommu_pci_seg), GFP_KERNEL); |
| if (pci_seg == NULL) |
| return NULL; |
| |
| pci_seg->last_bdf = last_bdf; |
| DUMP_printk("PCI segment : 0x%0x, last bdf : 0x%04x\n", id, last_bdf); |
| pci_seg->dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE, last_bdf); |
| pci_seg->alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE, last_bdf); |
| pci_seg->rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE, last_bdf); |
| |
| pci_seg->id = id; |
| init_llist_head(&pci_seg->dev_data_list); |
| INIT_LIST_HEAD(&pci_seg->unity_map); |
| list_add_tail(&pci_seg->list, &amd_iommu_pci_seg_list); |
| |
| if (alloc_dev_table(pci_seg)) |
| return NULL; |
| if (alloc_alias_table(pci_seg)) |
| return NULL; |
| if (alloc_rlookup_table(pci_seg)) |
| return NULL; |
| |
| return pci_seg; |
| } |
| |
| static struct amd_iommu_pci_seg *__init get_pci_segment(u16 id, |
| struct acpi_table_header *ivrs_base) |
| { |
| struct amd_iommu_pci_seg *pci_seg; |
| |
| for_each_pci_segment(pci_seg) { |
| if (pci_seg->id == id) |
| return pci_seg; |
| } |
| |
| return alloc_pci_segment(id, ivrs_base); |
| } |
| |
| static void __init free_pci_segments(void) |
| { |
| struct amd_iommu_pci_seg *pci_seg, *next; |
| |
| for_each_pci_segment_safe(pci_seg, next) { |
| list_del(&pci_seg->list); |
| free_irq_lookup_table(pci_seg); |
| free_rlookup_table(pci_seg); |
| free_alias_table(pci_seg); |
| free_dev_table(pci_seg); |
| kfree(pci_seg); |
| } |
| } |
| |
| static void __init free_iommu_one(struct amd_iommu *iommu) |
| { |
| free_cwwb_sem(iommu); |
| free_command_buffer(iommu); |
| free_event_buffer(iommu); |
| free_ppr_log(iommu); |
| free_ga_log(iommu); |
| iommu_unmap_mmio_space(iommu); |
| } |
| |
| static void __init free_iommu_all(void) |
| { |
| struct amd_iommu *iommu, *next; |
| |
| for_each_iommu_safe(iommu, next) { |
| list_del(&iommu->list); |
| free_iommu_one(iommu); |
| kfree(iommu); |
| } |
| } |
| |
| /* |
| * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations) |
| * Workaround: |
| * BIOS should disable L2B micellaneous clock gating by setting |
| * L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b |
| */ |
| static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu) |
| { |
| u32 value; |
| |
| if ((boot_cpu_data.x86 != 0x15) || |
| (boot_cpu_data.x86_model < 0x10) || |
| (boot_cpu_data.x86_model > 0x1f)) |
| return; |
| |
| pci_write_config_dword(iommu->dev, 0xf0, 0x90); |
| pci_read_config_dword(iommu->dev, 0xf4, &value); |
| |
| if (value & BIT(2)) |
| return; |
| |
| /* Select NB indirect register 0x90 and enable writing */ |
| pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8)); |
| |
| pci_write_config_dword(iommu->dev, 0xf4, value | 0x4); |
| pci_info(iommu->dev, "Applying erratum 746 workaround\n"); |
| |
| /* Clear the enable writing bit */ |
| pci_write_config_dword(iommu->dev, 0xf0, 0x90); |
| } |
| |
| /* |
| * Family15h Model 30h-3fh (IOMMU Mishandles ATS Write Permission) |
| * Workaround: |
| * BIOS should enable ATS write permission check by setting |
| * L2_DEBUG_3[AtsIgnoreIWDis](D0F2xF4_x47[0]) = 1b |
| */ |
| static void amd_iommu_ats_write_check_workaround(struct amd_iommu *iommu) |
| { |
| u32 value; |
| |
| if ((boot_cpu_data.x86 != 0x15) || |
| (boot_cpu_data.x86_model < 0x30) || |
| (boot_cpu_data.x86_model > 0x3f)) |
| return; |
| |
| /* Test L2_DEBUG_3[AtsIgnoreIWDis] == 1 */ |
| value = iommu_read_l2(iommu, 0x47); |
| |
| if (value & BIT(0)) |
| return; |
| |
| /* Set L2_DEBUG_3[AtsIgnoreIWDis] = 1 */ |
| iommu_write_l2(iommu, 0x47, value | BIT(0)); |
| |
| pci_info(iommu->dev, "Applying ATS write check workaround\n"); |
| } |
| |
| /* |
| * This function glues the initialization function for one IOMMU |
| * together and also allocates the command buffer and programs the |
| * hardware. It does NOT enable the IOMMU. This is done afterwards. |
| */ |
| static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h, |
| struct acpi_table_header *ivrs_base) |
| { |
| struct amd_iommu_pci_seg *pci_seg; |
| |
| pci_seg = get_pci_segment(h->pci_seg, ivrs_base); |
| if (pci_seg == NULL) |
| return -ENOMEM; |
| iommu->pci_seg = pci_seg; |
| |
| raw_spin_lock_init(&iommu->lock); |
| iommu->cmd_sem_val = 0; |
| |
| /* Add IOMMU to internal data structures */ |
| list_add_tail(&iommu->list, &amd_iommu_list); |
| iommu->index = amd_iommus_present++; |
| |
| if (unlikely(iommu->index >= MAX_IOMMUS)) { |
| WARN(1, "System has more IOMMUs than supported by this driver\n"); |
| return -ENOSYS; |
| } |
| |
| /* Index is fine - add IOMMU to the array */ |
| amd_iommus[iommu->index] = iommu; |
| |
| /* |
| * Copy data from ACPI table entry to the iommu struct |
| */ |
| iommu->devid = h->devid; |
| iommu->cap_ptr = h->cap_ptr; |
| iommu->mmio_phys = h->mmio_phys; |
| |
| switch (h->type) { |
| case 0x10: |
| /* Check if IVHD EFR contains proper max banks/counters */ |
| if ((h->efr_attr != 0) && |
| ((h->efr_attr & (0xF << 13)) != 0) && |
| ((h->efr_attr & (0x3F << 17)) != 0)) |
| iommu->mmio_phys_end = MMIO_REG_END_OFFSET; |
| else |
| iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET; |
| |
| /* |
| * Note: GA (128-bit IRTE) mode requires cmpxchg16b supports. |
| * GAM also requires GA mode. Therefore, we need to |
| * check cmpxchg16b support before enabling it. |
| */ |
| if (!boot_cpu_has(X86_FEATURE_CX16) || |
| ((h->efr_attr & (0x1 << IOMMU_FEAT_GASUP_SHIFT)) == 0)) |
| amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY; |
| break; |
| case 0x11: |
| case 0x40: |
| if (h->efr_reg & (1 << 9)) |
| iommu->mmio_phys_end = MMIO_REG_END_OFFSET; |
| else |
| iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET; |
| |
| /* |
| * Note: GA (128-bit IRTE) mode requires cmpxchg16b supports. |
| * XT, GAM also requires GA mode. Therefore, we need to |
| * check cmpxchg16b support before enabling them. |
| */ |
| if (!boot_cpu_has(X86_FEATURE_CX16) || |
| ((h->efr_reg & (0x1 << IOMMU_EFR_GASUP_SHIFT)) == 0)) { |
| amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY; |
| break; |
| } |
| |
| if (h->efr_reg & BIT(IOMMU_EFR_XTSUP_SHIFT)) |
| amd_iommu_xt_mode = IRQ_REMAP_X2APIC_MODE; |
| |
| early_iommu_features_init(iommu, h); |
| |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys, |
| iommu->mmio_phys_end); |
| if (!iommu->mmio_base) |
| return -ENOMEM; |
| |
| return init_iommu_from_acpi(iommu, h); |
| } |
| |
| static int __init init_iommu_one_late(struct amd_iommu *iommu) |
| { |
| int ret; |
| |
| if (alloc_cwwb_sem(iommu)) |
| return -ENOMEM; |
| |
| if (alloc_command_buffer(iommu)) |
| return -ENOMEM; |
| |
| if (alloc_event_buffer(iommu)) |
| return -ENOMEM; |
| |
| iommu->int_enabled = false; |
| |
| init_translation_status(iommu); |
| if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { |
| iommu_disable(iommu); |
| clear_translation_pre_enabled(iommu); |
| pr_warn("Translation was enabled for IOMMU:%d but we are not in kdump mode\n", |
| iommu->index); |
| } |
| if (amd_iommu_pre_enabled) |
| amd_iommu_pre_enabled = translation_pre_enabled(iommu); |
| |
| if (amd_iommu_irq_remap) { |
| ret = amd_iommu_create_irq_domain(iommu); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Make sure IOMMU is not considered to translate itself. The IVRS |
| * table tells us so, but this is a lie! |
| */ |
| iommu->pci_seg->rlookup_table[iommu->devid] = NULL; |
| |
| return 0; |
| } |
| |
| /** |
| * get_highest_supported_ivhd_type - Look up the appropriate IVHD type |
| * @ivrs: Pointer to the IVRS header |
| * |
| * This function search through all IVDB of the maximum supported IVHD |
| */ |
| static u8 get_highest_supported_ivhd_type(struct acpi_table_header *ivrs) |
| { |
| u8 *base = (u8 *)ivrs; |
| struct ivhd_header *ivhd = (struct ivhd_header *) |
| (base + IVRS_HEADER_LENGTH); |
| u8 last_type = ivhd->type; |
| u16 devid = ivhd->devid; |
| |
| while (((u8 *)ivhd - base < ivrs->length) && |
| (ivhd->type <= ACPI_IVHD_TYPE_MAX_SUPPORTED)) { |
| u8 *p = (u8 *) ivhd; |
| |
| if (ivhd->devid == devid) |
| last_type = ivhd->type; |
| ivhd = (struct ivhd_header *)(p + ivhd->length); |
| } |
| |
| return last_type; |
| } |
| |
| /* |
| * Iterates over all IOMMU entries in the ACPI table, allocates the |
| * IOMMU structure and initializes it with init_iommu_one() |
| */ |
| static int __init init_iommu_all(struct acpi_table_header *table) |
| { |
| u8 *p = (u8 *)table, *end = (u8 *)table; |
| struct ivhd_header *h; |
| struct amd_iommu *iommu; |
| int ret; |
| |
| end += table->length; |
| p += IVRS_HEADER_LENGTH; |
| |
| /* Phase 1: Process all IVHD blocks */ |
| while (p < end) { |
| h = (struct ivhd_header *)p; |
| if (*p == amd_iommu_target_ivhd_type) { |
| |
| DUMP_printk("device: %04x:%02x:%02x.%01x cap: %04x " |
| "flags: %01x info %04x\n", |
| h->pci_seg, PCI_BUS_NUM(h->devid), |
| PCI_SLOT(h->devid), PCI_FUNC(h->devid), |
| h->cap_ptr, h->flags, h->info); |
| DUMP_printk(" mmio-addr: %016llx\n", |
| h->mmio_phys); |
| |
| iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL); |
| if (iommu == NULL) |
| return -ENOMEM; |
| |
| ret = init_iommu_one(iommu, h, table); |
| if (ret) |
| return ret; |
| } |
| p += h->length; |
| |
| } |
| WARN_ON(p != end); |
| |
| /* Phase 2 : Early feature support check */ |
| get_global_efr(); |
| |
| /* Phase 3 : Enabling IOMMU features */ |
| for_each_iommu(iommu) { |
| ret = init_iommu_one_late(iommu); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void init_iommu_perf_ctr(struct amd_iommu *iommu) |
| { |
| u64 val; |
| struct pci_dev *pdev = iommu->dev; |
| |
| if (!iommu_feature(iommu, FEATURE_PC)) |
| return; |
| |
| amd_iommu_pc_present = true; |
| |
| pci_info(pdev, "IOMMU performance counters supported\n"); |
| |
| val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET); |
| iommu->max_banks = (u8) ((val >> 12) & 0x3f); |
| iommu->max_counters = (u8) ((val >> 7) & 0xf); |
| |
| return; |
| } |
| |
| static ssize_t amd_iommu_show_cap(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct amd_iommu *iommu = dev_to_amd_iommu(dev); |
| return sprintf(buf, "%x\n", iommu->cap); |
| } |
| static DEVICE_ATTR(cap, S_IRUGO, amd_iommu_show_cap, NULL); |
| |
| static ssize_t amd_iommu_show_features(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct amd_iommu *iommu = dev_to_amd_iommu(dev); |
| return sprintf(buf, "%llx:%llx\n", iommu->features2, iommu->features); |
| } |
| static DEVICE_ATTR(features, S_IRUGO, amd_iommu_show_features, NULL); |
| |
| static struct attribute *amd_iommu_attrs[] = { |
| &dev_attr_cap.attr, |
| &dev_attr_features.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group amd_iommu_group = { |
| .name = "amd-iommu", |
| .attrs = amd_iommu_attrs, |
| }; |
| |
| static const struct attribute_group *amd_iommu_groups[] = { |
| &amd_iommu_group, |
| NULL, |
| }; |
| |
| /* |
| * Note: IVHD 0x11 and 0x40 also contains exact copy |
| * of the IOMMU Extended Feature Register [MMIO Offset 0030h]. |
| * Default to EFR in IVHD since it is available sooner (i.e. before PCI init). |
| */ |
| static void __init late_iommu_features_init(struct amd_iommu *iommu) |
| { |
| u64 features, features2; |
| |
| if (!(iommu->cap & (1 << IOMMU_CAP_EFR))) |
| return; |
| |
| /* read extended feature bits */ |
| features = readq(iommu->mmio_base + MMIO_EXT_FEATURES); |
| features2 = readq(iommu->mmio_base + MMIO_EXT_FEATURES2); |
| |
| if (!iommu->features) { |
| iommu->features = features; |
| iommu->features2 = features2; |
| return; |
| } |
| |
| /* |
| * Sanity check and warn if EFR values from |
| * IVHD and MMIO conflict. |
| */ |
| if (features != iommu->features || |
| features2 != iommu->features2) { |
| pr_warn(FW_WARN |
| "EFR mismatch. Use IVHD EFR (%#llx : %#llx), EFR2 (%#llx : %#llx).\n", |
| features, iommu->features, |
| features2, iommu->features2); |
| } |
| } |
| |
| static int __init iommu_init_pci(struct amd_iommu *iommu) |
| { |
| int cap_ptr = iommu->cap_ptr; |
| int ret; |
| |
| iommu->dev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, |
| PCI_BUS_NUM(iommu->devid), |
| iommu->devid & 0xff); |
| if (!iommu->dev) |
| return -ENODEV; |
| |
| /* Prevent binding other PCI device drivers to IOMMU devices */ |
| iommu->dev->match_driver = false; |
| |
| pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET, |
| &iommu->cap); |
| |
| if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB))) |
| amd_iommu_iotlb_sup = false; |
| |
| late_iommu_features_init(iommu); |
| |
| if (iommu_feature(iommu, FEATURE_GT)) { |
| int glxval; |
| u32 max_pasid; |
| u64 pasmax; |
| |
| pasmax = iommu->features & FEATURE_PASID_MASK; |
| pasmax >>= FEATURE_PASID_SHIFT; |
| max_pasid = (1 << (pasmax + 1)) - 1; |
| |
| amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid); |
| |
| BUG_ON(amd_iommu_max_pasid & ~PASID_MASK); |
| |
| glxval = iommu->features & FEATURE_GLXVAL_MASK; |
| glxval >>= FEATURE_GLXVAL_SHIFT; |
| |
| if (amd_iommu_max_glx_val == -1) |
| amd_iommu_max_glx_val = glxval; |
| else |
| amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval); |
| } |
| |
| if (iommu_feature(iommu, FEATURE_GT) && |
| iommu_feature(iommu, FEATURE_PPR)) { |
| iommu->is_iommu_v2 = true; |
| amd_iommu_v2_present = true; |
| } |
| |
| if (iommu_feature(iommu, FEATURE_PPR) && alloc_ppr_log(iommu)) |
| return -ENOMEM; |
| |
| if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE)) { |
| pr_info("Using strict mode due to virtualization\n"); |
| iommu_set_dma_strict(); |
| amd_iommu_np_cache = true; |
| } |
| |
| init_iommu_perf_ctr(iommu); |
| |
| if (amd_iommu_pgtable == AMD_IOMMU_V2) { |
| if (!iommu_feature(iommu, FEATURE_GIOSUP) || |
| !iommu_feature(iommu, FEATURE_GT)) { |
| pr_warn("Cannot enable v2 page table for DMA-API. Fallback to v1.\n"); |
| amd_iommu_pgtable = AMD_IOMMU_V1; |
| } else if (iommu_default_passthrough()) { |
| pr_warn("V2 page table doesn't support passthrough mode. Fallback to v1.\n"); |
| amd_iommu_pgtable = AMD_IOMMU_V1; |
| } |
| } |
| |
| if (is_rd890_iommu(iommu->dev)) { |
| int i, j; |
| |
| iommu->root_pdev = |
| pci_get_domain_bus_and_slot(iommu->pci_seg->id, |
| iommu->dev->bus->number, |
| PCI_DEVFN(0, 0)); |
| |
| /* |
| * Some rd890 systems may not be fully reconfigured by the |
| * BIOS, so it's necessary for us to store this information so |
| * it can be reprogrammed on resume |
| */ |
| pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4, |
| &iommu->stored_addr_lo); |
| pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8, |
| &iommu->stored_addr_hi); |
| |
| /* Low bit locks writes to configuration space */ |
| iommu->stored_addr_lo &= ~1; |
| |
| for (i = 0; i < 6; i++) |
| for (j = 0; j < 0x12; j++) |
| iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j); |
| |
| for (i = 0; i < 0x83; i++) |
| iommu->stored_l2[i] = iommu_read_l2(iommu, i); |
| } |
| |
| amd_iommu_erratum_746_workaround(iommu); |
| amd_iommu_ats_write_check_workaround(iommu); |
| |
| ret = iommu_device_sysfs_add(&iommu->iommu, &iommu->dev->dev, |
| amd_iommu_groups, "ivhd%d", iommu->index); |
| if (ret) |
| return ret; |
| |
| iommu_device_register(&iommu->iommu, &amd_iommu_ops, NULL); |
| |
| return pci_enable_device(iommu->dev); |
| } |
| |
| static void print_iommu_info(void) |
| { |
| static const char * const feat_str[] = { |
| "PreF", "PPR", "X2APIC", "NX", "GT", "[5]", |
| "IA", "GA", "HE", "PC" |
| }; |
| struct amd_iommu *iommu; |
| |
| for_each_iommu(iommu) { |
| struct pci_dev *pdev = iommu->dev; |
| int i; |
| |
| pci_info(pdev, "Found IOMMU cap 0x%x\n", iommu->cap_ptr); |
| |
| if (iommu->cap & (1 << IOMMU_CAP_EFR)) { |
| pr_info("Extended features (%#llx, %#llx):", iommu->features, iommu->features2); |
| |
| for (i = 0; i < ARRAY_SIZE(feat_str); ++i) { |
| if (iommu_feature(iommu, (1ULL << i))) |
| pr_cont(" %s", feat_str[i]); |
| } |
| |
| if (iommu->features & FEATURE_GAM_VAPIC) |
| pr_cont(" GA_vAPIC"); |
| |
| if (iommu->features & FEATURE_SNP) |
| pr_cont(" SNP"); |
| |
| pr_cont("\n"); |
| } |
| } |
| if (irq_remapping_enabled) { |
| pr_info("Interrupt remapping enabled\n"); |
| if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE) |
| pr_info("X2APIC enabled\n"); |
| } |
| if (amd_iommu_pgtable == AMD_IOMMU_V2) |
| pr_info("V2 page table enabled\n"); |
| } |
| |
| static int __init amd_iommu_init_pci(void) |
| { |
| struct amd_iommu *iommu; |
| struct amd_iommu_pci_seg *pci_seg; |
| int ret; |
| |
| for_each_iommu(iommu) { |
| ret = iommu_init_pci(iommu); |
| if (ret) { |
| pr_err("IOMMU%d: Failed to initialize IOMMU Hardware (error=%d)!\n", |
| iommu->index, ret); |
| goto out; |
| } |
| /* Need to setup range after PCI init */ |
| iommu_set_cwwb_range(iommu); |
| } |
| |
| /* |
| * Order is important here to make sure any unity map requirements are |
| * fulfilled. The unity mappings are created and written to the device |
| * table during the iommu_init_pci() call. |
| * |
| * After that we call init_device_table_dma() to make sure any |
| * uninitialized DTE will block DMA, and in the end we flush the caches |
| * of all IOMMUs to make sure the changes to the device table are |
| * active. |
| */ |
| for_each_pci_segment(pci_seg) |
| init_device_table_dma(pci_seg); |
| |
| for_each_iommu(iommu) |
| iommu_flush_all_caches(iommu); |
| |
| print_iommu_info(); |
| |
| out: |
| return ret; |
| } |
| |
| /**************************************************************************** |
| * |
| * The following functions initialize the MSI interrupts for all IOMMUs |
| * in the system. It's a bit challenging because there could be multiple |
| * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per |
| * pci_dev. |
| * |
| ****************************************************************************/ |
| |
| static int iommu_setup_msi(struct amd_iommu *iommu) |
| { |
| int r; |
| |
| r = pci_enable_msi(iommu->dev); |
| if (r) |
| return r; |
| |
| r = request_threaded_irq(iommu->dev->irq, |
| amd_iommu_int_handler, |
| amd_iommu_int_thread, |
| 0, "AMD-Vi", |
| iommu); |
| |
| if (r) { |
| pci_disable_msi(iommu->dev); |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| union intcapxt { |
| u64 capxt; |
| struct { |
| u64 reserved_0 : 2, |
| dest_mode_logical : 1, |
| reserved_1 : 5, |
| destid_0_23 : 24, |
| vector : 8, |
| reserved_2 : 16, |
| destid_24_31 : 8; |
| }; |
| } __attribute__ ((packed)); |
| |
| |
| static struct irq_chip intcapxt_controller; |
| |
| static int intcapxt_irqdomain_activate(struct irq_domain *domain, |
| struct irq_data *irqd, bool reserve) |
| { |
| return 0; |
| } |
| |
| static void intcapxt_irqdomain_deactivate(struct irq_domain *domain, |
| struct irq_data *irqd) |
| { |
| } |
| |
| |
| static int intcapxt_irqdomain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| struct irq_alloc_info *info = arg; |
| int i, ret; |
| |
| if (!info || info->type != X86_IRQ_ALLOC_TYPE_AMDVI) |
| return -EINVAL; |
| |
| ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); |
| if (ret < 0) |
| return ret; |
| |
| for (i = virq; i < virq + nr_irqs; i++) { |
| struct irq_data *irqd = irq_domain_get_irq_data(domain, i); |
| |
| irqd->chip = &intcapxt_controller; |
| irqd->chip_data = info->data; |
| __irq_set_handler(i, handle_edge_irq, 0, "edge"); |
| } |
| |
| return ret; |
| } |
| |
| static void intcapxt_irqdomain_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| irq_domain_free_irqs_top(domain, virq, nr_irqs); |
| } |
| |
| |
| static void intcapxt_unmask_irq(struct irq_data *irqd) |
| { |
| struct amd_iommu *iommu = irqd->chip_data; |
| struct irq_cfg *cfg = irqd_cfg(irqd); |
| union intcapxt xt; |
| |
| xt.capxt = 0ULL; |
| xt.dest_mode_logical = apic->dest_mode_logical; |
| xt.vector = cfg->vector; |
| xt.destid_0_23 = cfg->dest_apicid & GENMASK(23, 0); |
| xt.destid_24_31 = cfg->dest_apicid >> 24; |
| |
| /** |
| * Current IOMMU implementation uses the same IRQ for all |
| * 3 IOMMU interrupts. |
| */ |
| writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_EVT_OFFSET); |
| writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_PPR_OFFSET); |
| writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_GALOG_OFFSET); |
| } |
| |
| static void intcapxt_mask_irq(struct irq_data *irqd) |
| { |
| struct amd_iommu *iommu = irqd->chip_data; |
| |
| writeq(0, iommu->mmio_base + MMIO_INTCAPXT_EVT_OFFSET); |
| writeq(0, iommu->mmio_base + MMIO_INTCAPXT_PPR_OFFSET); |
| writeq(0, iommu->mmio_base + MMIO_INTCAPXT_GALOG_OFFSET); |
| } |
| |
| |
| static int intcapxt_set_affinity(struct irq_data *irqd, |
| const struct cpumask *mask, bool force) |
| { |
| struct irq_data *parent = irqd->parent_data; |
| int ret; |
| |
| ret = parent->chip->irq_set_affinity(parent, mask, force); |
| if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) |
| return ret; |
| return 0; |
| } |
| |
| static int intcapxt_set_wake(struct irq_data *irqd, unsigned int on) |
| { |
| return on ? -EOPNOTSUPP : 0; |
| } |
| |
| static struct irq_chip intcapxt_controller = { |
| .name = "IOMMU-MSI", |
| .irq_unmask = intcapxt_unmask_irq, |
| .irq_mask = intcapxt_mask_irq, |
| .irq_ack = irq_chip_ack_parent, |
| .irq_retrigger = irq_chip_retrigger_hierarchy, |
| .irq_set_affinity = intcapxt_set_affinity, |
| .irq_set_wake = intcapxt_set_wake, |
| .flags = IRQCHIP_MASK_ON_SUSPEND, |
| }; |
| |
| static const struct irq_domain_ops intcapxt_domain_ops = { |
| .alloc = intcapxt_irqdomain_alloc, |
| .free = intcapxt_irqdomain_free, |
| .activate = intcapxt_irqdomain_activate, |
| .deactivate = intcapxt_irqdomain_deactivate, |
| }; |
| |
| |
| static struct irq_domain *iommu_irqdomain; |
| |
| static struct irq_domain *iommu_get_irqdomain(void) |
| { |
| struct fwnode_handle *fn; |
| |
| /* No need for locking here (yet) as the init is single-threaded */ |
| if (iommu_irqdomain) |
| return iommu_irqdomain; |
| |
| fn = irq_domain_alloc_named_fwnode("AMD-Vi-MSI"); |
| if (!fn) |
| return NULL; |
| |
| iommu_irqdomain = irq_domain_create_hierarchy(x86_vector_domain, 0, 0, |
| fn, &intcapxt_domain_ops, |
| NULL); |
| if (!iommu_irqdomain) |
| irq_domain_free_fwnode(fn); |
| |
| return iommu_irqdomain; |
| } |
| |
| static int iommu_setup_intcapxt(struct amd_iommu *iommu) |
| { |
| struct irq_domain *domain; |
| struct irq_alloc_info info; |
| int irq, ret; |
| |
| domain = iommu_get_irqdomain(); |
| if (!domain) |
| return -ENXIO; |
| |
| init_irq_alloc_info(&info, NULL); |
| info.type = X86_IRQ_ALLOC_TYPE_AMDVI; |
| info.data = iommu; |
| |
| irq = irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info); |
| if (irq < 0) { |
| irq_domain_remove(domain); |
| return irq; |
| } |
| |
| ret = request_threaded_irq(irq, amd_iommu_int_handler, |
| amd_iommu_int_thread, 0, "AMD-Vi", iommu); |
| if (ret) { |
| irq_domain_free_irqs(irq, 1); |
| irq_domain_remove(domain); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int iommu_init_irq(struct amd_iommu *iommu) |
| { |
| int ret; |
| |
| if (iommu->int_enabled) |
| goto enable_faults; |
| |
| if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE) |
| ret = iommu_setup_intcapxt(iommu); |
| else if (iommu->dev->msi_cap) |
| ret = iommu_setup_msi(iommu); |
| else |
| ret = -ENODEV; |
| |
| if (ret) |
| return ret; |
| |
| iommu->int_enabled = true; |
| enable_faults: |
| |
| if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE) |
| iommu_feature_enable(iommu, CONTROL_INTCAPXT_EN); |
| |
| iommu_feature_enable(iommu, CONTROL_EVT_INT_EN); |
| |
| if (iommu->ppr_log != NULL) |
| iommu_feature_enable(iommu, CONTROL_PPRINT_EN); |
| return 0; |
| } |
| |
| /**************************************************************************** |
| * |
| * The next functions belong to the third pass of parsing the ACPI |
| * table. In this last pass the memory mapping requirements are |
| * gathered (like exclusion and unity mapping ranges). |
| * |
| ****************************************************************************/ |
| |
| static void __init free_unity_maps(void) |
| { |
| struct unity_map_entry *entry, *next; |
| struct amd_iommu_pci_seg *p, *pci_seg; |
| |
| for_each_pci_segment_safe(pci_seg, p) { |
| list_for_each_entry_safe(entry, next, &pci_seg->unity_map, list) { |
| list_del(&entry->list); |
| kfree(entry); |
| } |
| } |
| } |
| |
| /* called for unity map ACPI definition */ |
| static int __init init_unity_map_range(struct ivmd_header *m, |
| struct acpi_table_header *ivrs_base) |
| { |
| struct unity_map_entry *e = NULL; |
| struct amd_iommu_pci_seg *pci_seg; |
| char *s; |
| |
| pci_seg = get_pci_segment(m->pci_seg, ivrs_base); |
| if (pci_seg == NULL) |
| return -ENOMEM; |
| |
| e = kzalloc(sizeof(*e), GFP_KERNEL); |
| if (e == NULL) |
| return -ENOMEM; |
| |
| switch (m->type) { |
| default: |
| kfree(e); |
| return 0; |
| case ACPI_IVMD_TYPE: |
| s = "IVMD_TYPEi\t\t\t"; |
| e->devid_start = e->devid_end = m->devid; |
| break; |
| case ACPI_IVMD_TYPE_ALL: |
| s = "IVMD_TYPE_ALL\t\t"; |
| e->devid_start = 0; |
| e->devid_end = pci_seg->last_bdf; |
| break; |
| case ACPI_IVMD_TYPE_RANGE: |
| s = "IVMD_TYPE_RANGE\t\t"; |
| e->devid_start = m->devid; |
| e->devid_end = m->aux; |
| break; |
| } |
| e->address_start = PAGE_ALIGN(m->range_start); |
| e->address_end = e->address_start + PAGE_ALIGN(m->range_length); |
| e->prot = m->flags >> 1; |
| |
| /* |
| * Treat per-device exclusion ranges as r/w unity-mapped regions |
| * since some buggy BIOSes might lead to the overwritten exclusion |
| * range (exclusion_start and exclusion_length members). This |
| * happens when there are multiple exclusion ranges (IVMD entries) |
| * defined in ACPI table. |
| */ |
| if (m->flags & IVMD_FLAG_EXCL_RANGE) |
| e->prot = (IVMD_FLAG_IW | IVMD_FLAG_IR) >> 1; |
| |
| DUMP_printk("%s devid_start: %04x:%02x:%02x.%x devid_end: " |
| "%04x:%02x:%02x.%x range_start: %016llx range_end: %016llx" |
| " flags: %x\n", s, m->pci_seg, |
| PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start), |
| PCI_FUNC(e->devid_start), m->pci_seg, |
| PCI_BUS_NUM(e->devid_end), |
| PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end), |
| e->address_start, e->address_end, m->flags); |
| |
| list_add_tail(&e->list, &pci_seg->unity_map); |
| |
| return 0; |
| } |
| |
| /* iterates over all memory definitions we find in the ACPI table */ |
| static int __init init_memory_definitions(struct acpi_table_header *table) |
| { |
| u8 *p = (u8 *)table, *end = (u8 *)table; |
| struct ivmd_header *m; |
| |
| end += table->length; |
| p += IVRS_HEADER_LENGTH; |
| |
| while (p < end) { |
| m = (struct ivmd_header *)p; |
| if (m->flags & (IVMD_FLAG_UNITY_MAP | IVMD_FLAG_EXCL_RANGE)) |
| init_unity_map_range(m, table); |
| |
| p += m->length; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Init the device table to not allow DMA access for devices |
| */ |
| static void init_device_table_dma(struct amd_iommu_pci_seg *pci_seg) |
| { |
| u32 devid; |
| struct dev_table_entry *dev_table = pci_seg->dev_table; |
| |
| if (dev_table == NULL) |
| return; |
| |
| for (devid = 0; devid <= pci_seg->last_bdf; ++devid) { |
| __set_dev_entry_bit(dev_table, devid, DEV_ENTRY_VALID); |
| if (!amd_iommu_snp_en) |
| __set_dev_entry_bit(dev_table, devid, DEV_ENTRY_TRANSLATION); |
| } |
| } |
| |
| static void __init uninit_device_table_dma(struct amd_iommu_pci_seg *pci_seg) |
| { |
| u32 devid; |
| struct dev_table_entry *dev_table = pci_seg->dev_table; |
| |
| if (dev_table == NULL) |
| return; |
| |
| for (devid = 0; devid <= pci_seg->last_bdf; ++devid) { |
| dev_table[devid].data[0] = 0ULL; |
| dev_table[devid].data[1] = 0ULL; |
| } |
| } |
| |
| static void init_device_table(void) |
| { |
| struct amd_iommu_pci_seg *pci_seg; |
| u32 devid; |
| |
| if (!amd_iommu_irq_remap) |
| return; |
| |
| for_each_pci_segment(pci_seg) { |
| for (devid = 0; devid <= pci_seg->last_bdf; ++devid) |
| __set_dev_entry_bit(pci_seg->dev_table, |
| devid, DEV_ENTRY_IRQ_TBL_EN); |
| } |
| } |
| |
| static void iommu_init_flags(struct amd_iommu *iommu) |
| { |
| iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ? |
| iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) : |
| iommu_feature_disable(iommu, CONTROL_HT_TUN_EN); |
| |
| iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ? |
| iommu_feature_enable(iommu, CONTROL_PASSPW_EN) : |
| iommu_feature_disable(iommu, CONTROL_PASSPW_EN); |
| |
| iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ? |
| iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) : |
| iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN); |
| |
| iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ? |
| iommu_feature_enable(iommu, CONTROL_ISOC_EN) : |
| iommu_feature_disable(iommu, CONTROL_ISOC_EN); |
| |
| /* |
| * make IOMMU memory accesses cache coherent |
| */ |
| iommu_feature_enable(iommu, CONTROL_COHERENT_EN); |
| |
| /* Set IOTLB invalidation timeout to 1s */ |
| iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S); |
| } |
| |
| static void iommu_apply_resume_quirks(struct amd_iommu *iommu) |
| { |
| int i, j; |
| u32 ioc_feature_control; |
| struct pci_dev *pdev = iommu->root_pdev; |
| |
| /* RD890 BIOSes may not have completely reconfigured the iommu */ |
| if (!is_rd890_iommu(iommu->dev) || !pdev) |
| return; |
| |
| /* |
| * First, we need to ensure that the iommu is enabled. This is |
| * controlled by a register in the northbridge |
| */ |
| |
| /* Select Northbridge indirect register 0x75 and enable writing */ |
| pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7)); |
| pci_read_config_dword(pdev, 0x64, &ioc_feature_control); |
| |
| /* Enable the iommu */ |
| if (!(ioc_feature_control & 0x1)) |
| pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1); |
| |
| /* Restore the iommu BAR */ |
| pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4, |
| iommu->stored_addr_lo); |
| pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8, |
| iommu->stored_addr_hi); |
| |
| /* Restore the l1 indirect regs for each of the 6 l1s */ |
| for (i = 0; i < 6; i++) |
| for (j = 0; j < 0x12; j++) |
| iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]); |
| |
| /* Restore the l2 indirect regs */ |
| for (i = 0; i < 0x83; i++) |
| iommu_write_l2(iommu, i, iommu->stored_l2[i]); |
| |
| /* Lock PCI setup registers */ |
| pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4, |
| iommu->stored_addr_lo | 1); |
| } |
| |
| static void iommu_enable_ga(struct amd_iommu *iommu) |
| { |
| #ifdef CONFIG_IRQ_REMAP |
| switch (amd_iommu_guest_ir) { |
| case AMD_IOMMU_GUEST_IR_VAPIC: |
| case AMD_IOMMU_GUEST_IR_LEGACY_GA: |
| iommu_feature_enable(iommu, CONTROL_GA_EN); |
| iommu->irte_ops = &irte_128_ops; |
| break; |
| default: |
| iommu->irte_ops = &irte_32_ops; |
| break; |
| } |
| #endif |
| } |
| |
| static void early_enable_iommu(struct amd_iommu *iommu) |
| { |
| iommu_disable(iommu); |
| iommu_init_flags(iommu); |
| iommu_set_device_table(iommu); |
| iommu_enable_command_buffer(iommu); |
| iommu_enable_event_buffer(iommu); |
| iommu_set_exclusion_range(iommu); |
| iommu_enable_ga(iommu); |
| iommu_enable_xt(iommu); |
| iommu_enable(iommu); |
| iommu_flush_all_caches(iommu); |
| } |
| |
| /* |
| * This function finally enables all IOMMUs found in the system after |
| * they have been initialized. |
| * |
| * Or if in kdump kernel and IOMMUs are all pre-enabled, try to copy |
| * the old content of device table entries. Not this case or copy failed, |
| * just continue as normal kernel does. |
| */ |
| static void early_enable_iommus(void) |
| { |
| struct amd_iommu *iommu; |
| struct amd_iommu_pci_seg *pci_seg; |
| |
| if (!copy_device_table()) { |
| /* |
| * If come here because of failure in copying device table from old |
| * kernel with all IOMMUs enabled, print error message and try to |
| * free allocated old_dev_tbl_cpy. |
| */ |
| if (amd_iommu_pre_enabled) |
| pr_err("Failed to copy DEV table from previous kernel.\n"); |
| |
| for_each_pci_segment(pci_seg) { |
| if (pci_seg->old_dev_tbl_cpy != NULL) { |
| free_pages((unsigned long)pci_seg->old_dev_tbl_cpy, |
| get_order(pci_seg->dev_table_size)); |
| pci_seg->old_dev_tbl_cpy = NULL; |
| } |
| } |
| |
| for_each_iommu(iommu) { |
| clear_translation_pre_enabled(iommu); |
| early_enable_iommu(iommu); |
| } |
| } else { |
| pr_info("Copied DEV table from previous kernel.\n"); |
| |
| for_each_pci_segment(pci_seg) { |
| free_pages((unsigned long)pci_seg->dev_table, |
| get_order(pci_seg->dev_table_size)); |
| pci_seg->dev_table = pci_seg->old_dev_tbl_cpy; |
| } |
| |
| for_each_iommu(iommu) { |
| iommu_disable_command_buffer(iommu); |
| iommu_disable_event_buffer(iommu); |
| iommu_enable_command_buffer(iommu); |
| iommu_enable_event_buffer(iommu); |
| iommu_enable_ga(iommu); |
| iommu_enable_xt(iommu); |
| iommu_set_device_table(iommu); |
| iommu_flush_all_caches(iommu); |
| } |
| } |
| } |
| |
| static void enable_iommus_v2(void) |
| { |
| struct amd_iommu *iommu; |
| |
| for_each_iommu(iommu) { |
| iommu_enable_ppr_log(iommu); |
| iommu_enable_gt(iommu); |
| } |
| } |
| |
| static void enable_iommus_vapic(void) |
| { |
| #ifdef CONFIG_IRQ_REMAP |
| u32 status, i; |
| struct amd_iommu *iommu; |
| |
| for_each_iommu(iommu) { |
| /* |
| * Disable GALog if already running. It could have been enabled |
| * in the previous boot before kdump. |
| */ |
| status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| if (!(status & MMIO_STATUS_GALOG_RUN_MASK)) |
| continue; |
| |
| iommu_feature_disable(iommu, CONTROL_GALOG_EN); |
| iommu_feature_disable(iommu, CONTROL_GAINT_EN); |
| |
| /* |
| * Need to set and poll check the GALOGRun bit to zero before |
| * we can set/ modify GA Log registers safely. |
| */ |
| for (i = 0; i < LOOP_TIMEOUT; ++i) { |
| status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| if (!(status & MMIO_STATUS_GALOG_RUN_MASK)) |
| break; |
| udelay(10); |
| } |
| |
| if (WARN_ON(i >= LOOP_TIMEOUT)) |
| return; |
| } |
| |
| if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && |
| !check_feature_on_all_iommus(FEATURE_GAM_VAPIC)) { |
| amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA; |
| return; |
| } |
| |
| if (amd_iommu_snp_en && |
| !FEATURE_SNPAVICSUP_GAM(amd_iommu_efr2)) { |
| pr_warn("Force to disable Virtual APIC due to SNP\n"); |
| amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA; |
| return; |
| } |
| |
| /* Enabling GAM and SNPAVIC support */ |
| for_each_iommu(iommu) { |
| if (iommu_init_ga_log(iommu) || |
| iommu_ga_log_enable(iommu)) |
| return; |
| |
| iommu_feature_enable(iommu, CONTROL_GAM_EN); |
| if (amd_iommu_snp_en) |
| iommu_feature_enable(iommu, CONTROL_SNPAVIC_EN); |
| } |
| |
| amd_iommu_irq_ops.capability |= (1 << IRQ_POSTING_CAP); |
| pr_info("Virtual APIC enabled\n"); |
| #endif |
| } |
| |
| static void enable_iommus(void) |
| { |
| early_enable_iommus(); |
| enable_iommus_vapic(); |
| enable_iommus_v2(); |
| } |
| |
| static void disable_iommus(void) |
| { |
| struct amd_iommu *iommu; |
| |
| for_each_iommu(iommu) |
| iommu_disable(iommu); |
| |
| #ifdef CONFIG_IRQ_REMAP |
| if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) |
| amd_iommu_irq_ops.capability &= ~(1 << IRQ_POSTING_CAP); |
| #endif |
| } |
| |
| /* |
| * Suspend/Resume support |
| * disable suspend until real resume implemented |
| */ |
| |
| static void amd_iommu_resume(void) |
| { |
| struct amd_iommu *iommu; |
| |
| for_each_iommu(iommu) |
| iommu_apply_resume_quirks(iommu); |
| |
| /* re-load the hardware */ |
| enable_iommus(); |
| |
| amd_iommu_enable_interrupts(); |
| } |
| |
| static int amd_iommu_suspend(void) |
| { |
| /* disable IOMMUs to go out of the way for BIOS */ |
| disable_iommus(); |
| |
| return 0; |
| } |
| |
| static struct syscore_ops amd_iommu_syscore_ops = { |
| .suspend = amd_iommu_suspend, |
| .resume = amd_iommu_resume, |
| }; |
| |
| static void __init free_iommu_resources(void) |
| { |
| kmem_cache_destroy(amd_iommu_irq_cache); |
| amd_iommu_irq_cache = NULL; |
| |
| free_iommu_all(); |
| free_pci_segments(); |
| } |
| |
| /* SB IOAPIC is always on this device in AMD systems */ |
| #define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0)) |
| |
| static bool __init check_ioapic_information(void) |
| { |
| const char *fw_bug = FW_BUG; |
| bool ret, has_sb_ioapic; |
| int idx; |
| |
| has_sb_ioapic = false; |
| ret = false; |
| |
| /* |
| * If we have map overrides on the kernel command line the |
| * messages in this function might not describe firmware bugs |
| * anymore - so be careful |
| */ |
| if (cmdline_maps) |
| fw_bug = ""; |
| |
| for (idx = 0; idx < nr_ioapics; idx++) { |
| int devid, id = mpc_ioapic_id(idx); |
| |
| devid = get_ioapic_devid(id); |
| if (devid < 0) { |
| pr_err("%s: IOAPIC[%d] not in IVRS table\n", |
| fw_bug, id); |
| ret = false; |
| } else if (devid == IOAPIC_SB_DEVID) { |
| has_sb_ioapic = true; |
| ret = true; |
| } |
| } |
| |
| if (!has_sb_ioapic) { |
| /* |
| * We expect the SB IOAPIC to be listed in the IVRS |
| * table. The system timer is connected to the SB IOAPIC |
| * and if we don't have it in the list the system will |
| * panic at boot time. This situation usually happens |
| * when the BIOS is buggy and provides us the wrong |
| * device id for the IOAPIC in the system. |
| */ |
| pr_err("%s: No southbridge IOAPIC found\n", fw_bug); |
| } |
| |
| if (!ret) |
| pr_err("Disabling interrupt remapping\n"); |
| |
| return ret; |
| } |
| |
| static void __init free_dma_resources(void) |
| { |
| free_pages((unsigned long)amd_iommu_pd_alloc_bitmap, |
| get_order(MAX_DOMAIN_ID/8)); |
| amd_iommu_pd_alloc_bitmap = NULL; |
| |
| free_unity_maps(); |
| } |
| |
| static void __init ivinfo_init(void *ivrs) |
| { |
| amd_iommu_ivinfo = *((u32 *)(ivrs + IOMMU_IVINFO_OFFSET)); |
| } |
| |
| /* |
| * This is the hardware init function for AMD IOMMU in the system. |
| * This function is called either from amd_iommu_init or from the interrupt |
| * remapping setup code. |
| * |
| * This function basically parses the ACPI table for AMD IOMMU (IVRS) |
| * four times: |
| * |
| * 1 pass) Discover the most comprehensive IVHD type to use. |
| * |
| * 2 pass) Find the highest PCI device id the driver has to handle. |
| * Upon this information the size of the data structures is |
| * determined that needs to be allocated. |
| * |
| * 3 pass) Initialize the data structures just allocated with the |
| * information in the ACPI table about available AMD IOMMUs |
| * in the system. It also maps the PCI devices in the |
| * system to specific IOMMUs |
| * |
| * 4 pass) After the basic data structures are allocated and |
| * initialized we update them with information about memory |
| * remapping requirements parsed out of the ACPI table in |
| * this last pass. |
| * |
| * After everything is set up the IOMMUs are enabled and the necessary |
| * hotplug and suspend notifiers are registered. |
| */ |
| static int __init early_amd_iommu_init(void) |
| { |
| struct acpi_table_header *ivrs_base; |
| int remap_cache_sz, ret; |
| acpi_status status; |
| |
| if (!amd_iommu_detected) |
| return -ENODEV; |
| |
| status = acpi_get_table("IVRS", 0, &ivrs_base); |
| if (status == AE_NOT_FOUND) |
| return -ENODEV; |
| else if (ACPI_FAILURE(status)) { |
| const char *err = acpi_format_exception(status); |
| pr_err("IVRS table error: %s\n", err); |
| return -EINVAL; |
| } |
| |
| /* |
| * Validate checksum here so we don't need to do it when |
| * we actually parse the table |
| */ |
| ret = check_ivrs_checksum(ivrs_base); |
| if (ret) |
| goto out; |
| |
| ivinfo_init(ivrs_base); |
| |
| amd_iommu_target_ivhd_type = get_highest_supported_ivhd_type(ivrs_base); |
| DUMP_printk("Using IVHD type %#x\n", amd_iommu_target_ivhd_type); |
| |
| /* Device table - directly used by all IOMMUs */ |
| ret = -ENOMEM; |
| |
| amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages( |
| GFP_KERNEL | __GFP_ZERO, |
| get_order(MAX_DOMAIN_ID/8)); |
| if (amd_iommu_pd_alloc_bitmap == NULL) |
| goto out; |
| |
| /* |
| * never allocate domain 0 because its used as the non-allocated and |
| * error value placeholder |
| */ |
| __set_bit(0, amd_iommu_pd_alloc_bitmap); |
| |
| /* |
| * now the data structures are allocated and basically initialized |
| * start the real acpi table scan |
| */ |
| ret = init_iommu_all(ivrs_base); |
| if (ret) |
| goto out; |
| |
| /* Disable any previously enabled IOMMUs */ |
| if (!is_kdump_kernel() || amd_iommu_disabled) |
| disable_iommus(); |
| |
| if (amd_iommu_irq_remap) |
| amd_iommu_irq_remap = check_ioapic_information(); |
| |
| if (amd_iommu_irq_remap) { |
| struct amd_iommu_pci_seg *pci_seg; |
| /* |
| * Interrupt remapping enabled, create kmem_cache for the |
| * remapping tables. |
| */ |
| ret = -ENOMEM; |
| if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) |
| remap_cache_sz = MAX_IRQS_PER_TABLE * sizeof(u32); |
| else |
| remap_cache_sz = MAX_IRQS_PER_TABLE * (sizeof(u64) * 2); |
| amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache", |
| remap_cache_sz, |
| DTE_INTTAB_ALIGNMENT, |
| 0, NULL); |
| if (!amd_iommu_irq_cache) |
| goto out; |
| |
| for_each_pci_segment(pci_seg) { |
| if (alloc_irq_lookup_table(pci_seg)) |
| goto out; |
| } |
| } |
| |
| ret = init_memory_definitions(ivrs_base); |
| if (ret) |
| goto out; |
| |
| /* init the device table */ |
| init_device_table(); |
| |
| out: |
| /* Don't leak any ACPI memory */ |
| acpi_put_table(ivrs_base); |
| |
| return ret; |
| } |
| |
| static int amd_iommu_enable_interrupts(void) |
| { |
| struct amd_iommu *iommu; |
| int ret = 0; |
| |
| for_each_iommu(iommu) { |
| ret = iommu_init_irq(iommu); |
| if (ret) |
| goto out; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static bool __init detect_ivrs(void) |
| { |
| struct acpi_table_header *ivrs_base; |
| acpi_status status; |
| int i; |
| |
| status = acpi_get_table("IVRS", 0, &ivrs_base); |
| if (status == AE_NOT_FOUND) |
| return false; |
| else if (ACPI_FAILURE(status)) { |
| const char *err = acpi_format_exception(status); |
| pr_err("IVRS table error: %s\n", err); |
| return false; |
| } |
| |
| acpi_put_table(ivrs_base); |
| |
| if (amd_iommu_force_enable) |
| goto out; |
| |
| /* Don't use IOMMU if there is Stoney Ridge graphics */ |
| for (i = 0; i < 32; i++) { |
| u32 pci_id; |
| |
| pci_id = read_pci_config(0, i, 0, 0); |
| if ((pci_id & 0xffff) == 0x1002 && (pci_id >> 16) == 0x98e4) { |
| pr_info("Disable IOMMU on Stoney Ridge\n"); |
| return false; |
| } |
| } |
| |
| out: |
| /* Make sure ACS will be enabled during PCI probe */ |
| pci_request_acs(); |
| |
| return true; |
| } |
| |
| /**************************************************************************** |
| * |
| * AMD IOMMU Initialization State Machine |
| * |
| ****************************************************************************/ |
| |
| static int __init state_next(void) |
| { |
| int ret = 0; |
| |
| switch (init_state) { |
| case IOMMU_START_STATE: |
| if (!detect_ivrs()) { |
| init_state = IOMMU_NOT_FOUND; |
| ret = -ENODEV; |
| } else { |
| init_state = IOMMU_IVRS_DETECTED; |
| } |
| break; |
| case IOMMU_IVRS_DETECTED: |
| if (amd_iommu_disabled) { |
| init_state = IOMMU_CMDLINE_DISABLED; |
| ret = -EINVAL; |
| } else { |
| ret = early_amd_iommu_init(); |
| init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED; |
| } |
| break; |
| case IOMMU_ACPI_FINISHED: |
| early_enable_iommus(); |
| x86_platform.iommu_shutdown = disable_iommus; |
| init_state = IOMMU_ENABLED; |
| break; |
| case IOMMU_ENABLED: |
| register_syscore_ops(&amd_iommu_syscore_ops); |
| ret = amd_iommu_init_pci(); |
| init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT; |
| enable_iommus_vapic(); |
| enable_iommus_v2(); |
| break; |
| case IOMMU_PCI_INIT: |
| ret = amd_iommu_enable_interrupts(); |
| init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN; |
| break; |
| case IOMMU_INTERRUPTS_EN: |
| init_state = IOMMU_INITIALIZED; |
| break; |
| case IOMMU_INITIALIZED: |
| /* Nothing to do */ |
| break; |
| case IOMMU_NOT_FOUND: |
| case IOMMU_INIT_ERROR: |
| case IOMMU_CMDLINE_DISABLED: |
| /* Error states => do nothing */ |
| ret = -EINVAL; |
| break; |
| default: |
| /* Unknown state */ |
| BUG(); |
| } |
| |
| if (ret) { |
| free_dma_resources(); |
| if (!irq_remapping_enabled) { |
| disable_iommus(); |
| free_iommu_resources(); |
| } else { |
| struct amd_iommu *iommu; |
| struct amd_iommu_pci_seg *pci_seg; |
| |
| for_each_pci_segment(pci_seg) |
| uninit_device_table_dma(pci_seg); |
| |
| for_each_iommu(iommu) |
| iommu_flush_all_caches(iommu); |
| } |
| } |
| return ret; |
| } |
| |
| static int __init iommu_go_to_state(enum iommu_init_state state) |
| { |
| int ret = -EINVAL; |
| |
| while (init_state != state) { |
| if (init_state == IOMMU_NOT_FOUND || |
| init_state == IOMMU_INIT_ERROR || |
| init_state == IOMMU_CMDLINE_DISABLED) |
| break; |
| ret = state_next(); |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_IRQ_REMAP |
| int __init amd_iommu_prepare(void) |
| { |
| int ret; |
| |
| amd_iommu_irq_remap = true; |
| |
| ret = iommu_go_to_state(IOMMU_ACPI_FINISHED); |
| if (ret) { |
| amd_iommu_irq_remap = false; |
| return ret; |
| } |
| |
| return amd_iommu_irq_remap ? 0 : -ENODEV; |
| } |
| |
| int __init amd_iommu_enable(void) |
| { |
| int ret; |
| |
| ret = iommu_go_to_state(IOMMU_ENABLED); |
| if (ret) |
| return ret; |
| |
| irq_remapping_enabled = 1; |
| return amd_iommu_xt_mode; |
| } |
| |
| void amd_iommu_disable(void) |
| { |
| amd_iommu_suspend(); |
| } |
| |
| int amd_iommu_reenable(int mode) |
| { |
| amd_iommu_resume(); |
| |
| return 0; |
| } |
| |
| int __init amd_iommu_enable_faulting(void) |
| { |
| /* We enable MSI later when PCI is initialized */ |
| return 0; |
| } |
| #endif |
| |
| /* |
| * This is the core init function for AMD IOMMU hardware in the system. |
| * This function is called from the generic x86 DMA layer initialization |
| * code. |
| */ |
| static int __init amd_iommu_init(void) |
| { |
| struct amd_iommu *iommu; |
| int ret; |
| |
| ret = iommu_go_to_state(IOMMU_INITIALIZED); |
| #ifdef CONFIG_GART_IOMMU |
| if (ret && list_empty(&amd_iommu_list)) { |
| /* |
| * We failed to initialize the AMD IOMMU - try fallback |
| * to GART if possible. |
| */ |
| gart_iommu_init(); |
| } |
| #endif |
| |
| for_each_iommu(iommu) |
| amd_iommu_debugfs_setup(iommu); |
| |
| return ret; |
| } |
| |
| static bool amd_iommu_sme_check(void) |
| { |
| if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT) || |
| (boot_cpu_data.x86 != 0x17)) |
| return true; |
| |
| /* For Fam17h, a specific level of support is required */ |
| if (boot_cpu_data.microcode >= 0x08001205) |
| return true; |
| |
| if ((boot_cpu_data.microcode >= 0x08001126) && |
| (boot_cpu_data.microcode <= 0x080011ff)) |
| return true; |
| |
| pr_notice("IOMMU not currently supported when SME is active\n"); |
| |
| return false; |
| } |
| |
| /**************************************************************************** |
| * |
| * Early detect code. This code runs at IOMMU detection time in the DMA |
| * layer. It just looks if there is an IVRS ACPI table to detect AMD |
| * IOMMUs |
| * |
| ****************************************************************************/ |
| int __init amd_iommu_detect(void) |
| { |
| int ret; |
| |
| if (no_iommu || (iommu_detected && !gart_iommu_aperture)) |
| return -ENODEV; |
| |
| if (!amd_iommu_sme_check()) |
| return -ENODEV; |
| |
| ret = iommu_go_to_state(IOMMU_IVRS_DETECTED); |
| if (ret) |
| return ret; |
| |
| amd_iommu_detected = true; |
| iommu_detected = 1; |
| x86_init.iommu.iommu_init = amd_iommu_init; |
| |
| return 1; |
| } |
| |
| /**************************************************************************** |
| * |
| * Parsing functions for the AMD IOMMU specific kernel command line |
| * options. |
| * |
| ****************************************************************************/ |
| |
| static int __init parse_amd_iommu_dump(char *str) |
| { |
| amd_iommu_dump = true; |
| |
| return 1; |
| } |
| |
| static int __init parse_amd_iommu_intr(char *str) |
| { |
| for (; *str; ++str) { |
| if (strncmp(str, "legacy", 6) == 0) { |
| amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA; |
| break; |
| } |
| if (strncmp(str, "vapic", 5) == 0) { |
| amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC; |
| break; |
| } |
| } |
| return 1; |
| } |
| |
| static int __init parse_amd_iommu_options(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| while (*str) { |
| if (strncmp(str, "fullflush", 9) == 0) { |
| pr_warn("amd_iommu=fullflush deprecated; use iommu.strict=1 instead\n"); |
| iommu_set_dma_strict(); |
| } else if (strncmp(str, "force_enable", 12) == 0) { |
| amd_iommu_force_enable = true; |
| } else if (strncmp(str, "off", 3) == 0) { |
| amd_iommu_disabled = true; |
| } else if (strncmp(str, "force_isolation", 15) == 0) { |
| amd_iommu_force_isolation = true; |
| } else if (strncmp(str, "pgtbl_v1", 8) == 0) { |
| amd_iommu_pgtable = AMD_IOMMU_V1; |
| } else if (strncmp(str, "pgtbl_v2", 8) == 0) { |
| amd_iommu_pgtable = AMD_IOMMU_V2; |
| } else { |
| pr_notice("Unknown option - '%s'\n", str); |
| } |
| |
| str += strcspn(str, ","); |
| while (*str == ',') |
| str++; |
| } |
| |
| return 1; |
| } |
| |
| static int __init parse_ivrs_ioapic(char *str) |
| { |
| u32 seg = 0, bus, dev, fn; |
| int id, i; |
| u32 devid; |
| |
| if (sscanf(str, "=%d@%x:%x.%x", &id, &bus, &dev, &fn) == 4 || |
| sscanf(str, "=%d@%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) |
| goto found; |
| |
| if (sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn) == 4 || |
| sscanf(str, "[%d]=%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) { |
| pr_warn("ivrs_ioapic%s option format deprecated; use ivrs_ioapic=%d@%04x:%02x:%02x.%d instead\n", |
| str, id, seg, bus, dev, fn); |
| goto found; |
| } |
| |
| pr_err("Invalid command line: ivrs_ioapic%s\n", str); |
| return 1; |
| |
| found: |
| if (early_ioapic_map_size == EARLY_MAP_SIZE) { |
| pr_err("Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n", |
| str); |
| return 1; |
| } |
| |
| devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn); |
| |
| cmdline_maps = true; |
| i = early_ioapic_map_size++; |
| early_ioapic_map[i].id = id; |
| early_ioapic_map[i].devid = devid; |
| early_ioapic_map[i].cmd_line = true; |
| |
| return 1; |
| } |
| |
| static int __init parse_ivrs_hpet(char *str) |
| { |
| u32 seg = 0, bus, dev, fn; |
| int id, i; |
| u32 devid; |
| |
| if (sscanf(str, "=%d@%x:%x.%x", &id, &bus, &dev, &fn) == 4 || |
| sscanf(str, "=%d@%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) |
| goto found; |
| |
| if (sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn) == 4 || |
| sscanf(str, "[%d]=%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) { |
| pr_warn("ivrs_hpet%s option format deprecated; use ivrs_hpet=%d@%04x:%02x:%02x.%d instead\n", |
| str, id, seg, bus, dev, fn); |
| goto found; |
| } |
| |
| pr_err("Invalid command line: ivrs_hpet%s\n", str); |
| return 1; |
| |
| found: |
| if (early_hpet_map_size == EARLY_MAP_SIZE) { |
| pr_err("Early HPET map overflow - ignoring ivrs_hpet%s\n", |
| str); |
| return 1; |
| } |
| |
| devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn); |
| |
| cmdline_maps = true; |
| i = early_hpet_map_size++; |
| early_hpet_map[i].id = id; |
| early_hpet_map[i].devid = devid; |
| early_hpet_map[i].cmd_line = true; |
| |
| return 1; |
| } |
| |
| #define ACPIID_LEN (ACPIHID_UID_LEN + ACPIHID_HID_LEN) |
| |
| static int __init parse_ivrs_acpihid(char *str) |
| { |
| u32 seg = 0, bus, dev, fn; |
| char *hid, *uid, *p, *addr; |
| char acpiid[ACPIID_LEN] = {0}; |
| int i; |
| |
| addr = strchr(str, '@'); |
| if (!addr) { |
| addr = strchr(str, '='); |
| if (!addr) |
| goto not_found; |
| |
| ++addr; |
| |
| if (strlen(addr) > ACPIID_LEN) |
| goto not_found; |
| |
| if (sscanf(str, "[%x:%x.%x]=%s", &bus, &dev, &fn, acpiid) == 4 || |
| sscanf(str, "[%x:%x:%x.%x]=%s", &seg, &bus, &dev, &fn, acpiid) == 5) { |
| pr_warn("ivrs_acpihid%s option format deprecated; use ivrs_acpihid=%s@%04x:%02x:%02x.%d instead\n", |
| str, acpiid, seg, bus, dev, fn); |
| goto found; |
| } |
| goto not_found; |
| } |
| |
| /* We have the '@', make it the terminator to get just the acpiid */ |
| *addr++ = 0; |
| |
| if (strlen(str) > ACPIID_LEN + 1) |
| goto not_found; |
| |
| if (sscanf(str, "=%s", acpiid) != 1) |
| goto not_found; |
| |
| if (sscanf(addr, "%x:%x.%x", &bus, &dev, &fn) == 3 || |
| sscanf(addr, "%x:%x:%x.%x", &seg, &bus, &dev, &fn) == 4) |
| goto found; |
| |
| not_found: |
| pr_err("Invalid command line: ivrs_acpihid%s\n", str); |
| return 1; |
| |
| found: |
| p = acpiid; |
| hid = strsep(&p, ":"); |
| uid = p; |
| |
| if (!hid || !(*hid) || !uid) { |
| pr_err("Invalid command line: hid or uid\n"); |
| return 1; |
| } |
| |
| /* |
| * Ignore leading zeroes after ':', so e.g., AMDI0095:00 |
| * will match AMDI0095:0 in the second strcmp in acpi_dev_hid_uid_match |
| */ |
| while (*uid == '0' && *(uid + 1)) |
| uid++; |
| |
| i = early_acpihid_map_size++; |
| memcpy(early_acpihid_map[i].hid, hid, strlen(hid)); |
| memcpy(early_acpihid_map[i].uid, uid, strlen(uid)); |
| early_acpihid_map[i].devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn); |
| early_acpihid_map[i].cmd_line = true; |
| |
| return 1; |
| } |
| |
| __setup("amd_iommu_dump", parse_amd_iommu_dump); |
| __setup("amd_iommu=", parse_amd_iommu_options); |
| __setup("amd_iommu_intr=", parse_amd_iommu_intr); |
| __setup("ivrs_ioapic", parse_ivrs_ioapic); |
| __setup("ivrs_hpet", parse_ivrs_hpet); |
| __setup("ivrs_acpihid", parse_ivrs_acpihid); |
| |
| bool amd_iommu_v2_supported(void) |
| { |
| /* |
| * Since DTE[Mode]=0 is prohibited on SNP-enabled system |
| * (i.e. EFR[SNPSup]=1), IOMMUv2 page table cannot be used without |
| * setting up IOMMUv1 page table. |
| */ |
| return amd_iommu_v2_present && !amd_iommu_snp_en; |
| } |
| EXPORT_SYMBOL(amd_iommu_v2_supported); |
| |
| struct amd_iommu *get_amd_iommu(unsigned int idx) |
| { |
| unsigned int i = 0; |
| struct amd_iommu *iommu; |
| |
| for_each_iommu(iommu) |
| if (i++ == idx) |
| return iommu; |
| return NULL; |
| } |
| |
| /**************************************************************************** |
| * |
| * IOMMU EFR Performance Counter support functionality. This code allows |
| * access to the IOMMU PC functionality. |
| * |
| ****************************************************************************/ |
| |
| u8 amd_iommu_pc_get_max_banks(unsigned int idx) |
| { |
| struct amd_iommu *iommu = get_amd_iommu(idx); |
| |
| if (iommu) |
| return iommu->max_banks; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amd_iommu_pc_get_max_banks); |
| |
| bool amd_iommu_pc_supported(void) |
| { |
| return amd_iommu_pc_present; |
| } |
| EXPORT_SYMBOL(amd_iommu_pc_supported); |
| |
| u8 amd_iommu_pc_get_max_counters(unsigned int idx) |
| { |
| struct amd_iommu *iommu = get_amd_iommu(idx); |
| |
| if (iommu) |
| return iommu->max_counters; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amd_iommu_pc_get_max_counters); |
| |
| static int iommu_pc_get_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, |
| u8 fxn, u64 *value, bool is_write) |
| { |
| u32 offset; |
| u32 max_offset_lim; |
| |
| /* Make sure the IOMMU PC resource is available */ |
| if (!amd_iommu_pc_present) |
| return -ENODEV; |
| |
| /* Check for valid iommu and pc register indexing */ |
| if (WARN_ON(!iommu || (fxn > 0x28) || (fxn & 7))) |
| return -ENODEV; |
| |
| offset = (u32)(((0x40 | bank) << 12) | (cntr << 8) | fxn); |
| |
| /* Limit the offset to the hw defined mmio region aperture */ |
| max_offset_lim = (u32)(((0x40 | iommu->max_banks) << 12) | |
| (iommu->max_counters << 8) | 0x28); |
| if ((offset < MMIO_CNTR_REG_OFFSET) || |
| (offset > max_offset_lim)) |
| return -EINVAL; |
| |
| if (is_write) { |
| u64 val = *value & GENMASK_ULL(47, 0); |
| |
| writel((u32)val, iommu->mmio_base + offset); |
| writel((val >> 32), iommu->mmio_base + offset + 4); |
| } else { |
| *value = readl(iommu->mmio_base + offset + 4); |
| *value <<= 32; |
| *value |= readl(iommu->mmio_base + offset); |
| *value &= GENMASK_ULL(47, 0); |
| } |
| |
| return 0; |
| } |
| |
| int amd_iommu_pc_get_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value) |
| { |
| if (!iommu) |
| return -EINVAL; |
| |
| return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, false); |
| } |
| |
| int amd_iommu_pc_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value) |
| { |
| if (!iommu) |
| return -EINVAL; |
| |
| return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, true); |
| } |
| |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| int amd_iommu_snp_enable(void) |
| { |
| /* |
| * The SNP support requires that IOMMU must be enabled, and is |
| * not configured in the passthrough mode. |
| */ |
| if (no_iommu || iommu_default_passthrough()) { |
| pr_err("SNP: IOMMU is disabled or configured in passthrough mode, SNP cannot be supported"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Prevent enabling SNP after IOMMU_ENABLED state because this process |
| * affect how IOMMU driver sets up data structures and configures |
| * IOMMU hardware. |
| */ |
| if (init_state > IOMMU_ENABLED) { |
| pr_err("SNP: Too late to enable SNP for IOMMU.\n"); |
| return -EINVAL; |
| } |
| |
| amd_iommu_snp_en = check_feature_on_all_iommus(FEATURE_SNP); |
| if (!amd_iommu_snp_en) |
| return -EINVAL; |
| |
| pr_info("SNP enabled\n"); |
| |
| /* Enforce IOMMU v1 pagetable when SNP is enabled. */ |
| if (amd_iommu_pgtable != AMD_IOMMU_V1) { |
| pr_warn("Force to using AMD IOMMU v1 page table due to SNP\n"); |
| amd_iommu_pgtable = AMD_IOMMU_V1; |
| } |
| |
| return 0; |
| } |
| #endif |