blob: 3a15d32d7644c000e009c801261318cf9da794dd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Intel Core SoC Power Management Controller Driver
*
* Copyright (c) 2016, Intel Corporation.
* All Rights Reserved.
*
* Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
* Vishwanath Somayaji <vishwanath.somayaji@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitfield.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/dmi.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/msr.h>
#include <asm/tsc.h>
#include "core.h"
/* Maximum number of modes supported by platfoms that has low power mode capability */
const char *pmc_lpm_modes[] = {
"S0i2.0",
"S0i2.1",
"S0i2.2",
"S0i3.0",
"S0i3.1",
"S0i3.2",
"S0i3.3",
"S0i3.4",
NULL
};
/* PKGC MSRs are common across Intel Core SoCs */
const struct pmc_bit_map msr_map[] = {
{"Package C2", MSR_PKG_C2_RESIDENCY},
{"Package C3", MSR_PKG_C3_RESIDENCY},
{"Package C6", MSR_PKG_C6_RESIDENCY},
{"Package C7", MSR_PKG_C7_RESIDENCY},
{"Package C8", MSR_PKG_C8_RESIDENCY},
{"Package C9", MSR_PKG_C9_RESIDENCY},
{"Package C10", MSR_PKG_C10_RESIDENCY},
{}
};
static inline u32 pmc_core_reg_read(struct pmc_dev *pmcdev, int reg_offset)
{
return readl(pmcdev->regbase + reg_offset);
}
static inline void pmc_core_reg_write(struct pmc_dev *pmcdev, int reg_offset,
u32 val)
{
writel(val, pmcdev->regbase + reg_offset);
}
static inline u64 pmc_core_adjust_slp_s0_step(struct pmc_dev *pmcdev, u32 value)
{
return (u64)value * pmcdev->map->slp_s0_res_counter_step;
}
static int set_etr3(struct pmc_dev *pmcdev)
{
const struct pmc_reg_map *map = pmcdev->map;
u32 reg;
int err;
if (!map->etr3_offset)
return -EOPNOTSUPP;
mutex_lock(&pmcdev->lock);
/* check if CF9 is locked */
reg = pmc_core_reg_read(pmcdev, map->etr3_offset);
if (reg & ETR3_CF9LOCK) {
err = -EACCES;
goto out_unlock;
}
/* write CF9 global reset bit */
reg |= ETR3_CF9GR;
pmc_core_reg_write(pmcdev, map->etr3_offset, reg);
reg = pmc_core_reg_read(pmcdev, map->etr3_offset);
if (!(reg & ETR3_CF9GR)) {
err = -EIO;
goto out_unlock;
}
err = 0;
out_unlock:
mutex_unlock(&pmcdev->lock);
return err;
}
static umode_t etr3_is_visible(struct kobject *kobj,
struct attribute *attr,
int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct pmc_dev *pmcdev = dev_get_drvdata(dev);
const struct pmc_reg_map *map = pmcdev->map;
u32 reg;
mutex_lock(&pmcdev->lock);
reg = pmc_core_reg_read(pmcdev, map->etr3_offset);
mutex_unlock(&pmcdev->lock);
return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
}
static ssize_t etr3_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pmc_dev *pmcdev = dev_get_drvdata(dev);
const struct pmc_reg_map *map = pmcdev->map;
u32 reg;
if (!map->etr3_offset)
return -EOPNOTSUPP;
mutex_lock(&pmcdev->lock);
reg = pmc_core_reg_read(pmcdev, map->etr3_offset);
reg &= ETR3_CF9GR | ETR3_CF9LOCK;
mutex_unlock(&pmcdev->lock);
return sysfs_emit(buf, "0x%08x", reg);
}
static ssize_t etr3_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct pmc_dev *pmcdev = dev_get_drvdata(dev);
int err;
u32 reg;
err = kstrtouint(buf, 16, &reg);
if (err)
return err;
/* allow only CF9 writes */
if (reg != ETR3_CF9GR)
return -EINVAL;
err = set_etr3(pmcdev);
if (err)
return err;
return len;
}
static DEVICE_ATTR_RW(etr3);
static struct attribute *pmc_attrs[] = {
&dev_attr_etr3.attr,
NULL
};
static const struct attribute_group pmc_attr_group = {
.attrs = pmc_attrs,
.is_visible = etr3_is_visible,
};
static const struct attribute_group *pmc_dev_groups[] = {
&pmc_attr_group,
NULL
};
static int pmc_core_dev_state_get(void *data, u64 *val)
{
struct pmc_dev *pmcdev = data;
const struct pmc_reg_map *map = pmcdev->map;
u32 value;
value = pmc_core_reg_read(pmcdev, map->slp_s0_offset);
*val = pmc_core_adjust_slp_s0_step(pmcdev, value);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
static int pmc_core_check_read_lock_bit(struct pmc_dev *pmcdev)
{
u32 value;
value = pmc_core_reg_read(pmcdev, pmcdev->map->pm_cfg_offset);
return value & BIT(pmcdev->map->pm_read_disable_bit);
}
static void pmc_core_slps0_display(struct pmc_dev *pmcdev, struct device *dev,
struct seq_file *s)
{
const struct pmc_bit_map **maps = pmcdev->map->slps0_dbg_maps;
const struct pmc_bit_map *map;
int offset = pmcdev->map->slps0_dbg_offset;
u32 data;
while (*maps) {
map = *maps;
data = pmc_core_reg_read(pmcdev, offset);
offset += 4;
while (map->name) {
if (dev)
dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
map->name,
data & map->bit_mask ? "Yes" : "No");
if (s)
seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
map->name,
data & map->bit_mask ? "Yes" : "No");
++map;
}
++maps;
}
}
static int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
{
int idx;
for (idx = 0; maps[idx]; idx++)
;/* Nothing */
return idx;
}
static void pmc_core_lpm_display(struct pmc_dev *pmcdev, struct device *dev,
struct seq_file *s, u32 offset,
const char *str,
const struct pmc_bit_map **maps)
{
int index, idx, len = 32, bit_mask, arr_size;
u32 *lpm_regs;
arr_size = pmc_core_lpm_get_arr_size(maps);
lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
if (!lpm_regs)
return;
for (index = 0; index < arr_size; index++) {
lpm_regs[index] = pmc_core_reg_read(pmcdev, offset);
offset += 4;
}
for (idx = 0; idx < arr_size; idx++) {
if (dev)
dev_info(dev, "\nLPM_%s_%d:\t0x%x\n", str, idx,
lpm_regs[idx]);
if (s)
seq_printf(s, "\nLPM_%s_%d:\t0x%x\n", str, idx,
lpm_regs[idx]);
for (index = 0; maps[idx][index].name && index < len; index++) {
bit_mask = maps[idx][index].bit_mask;
if (dev)
dev_info(dev, "%-30s %-30d\n",
maps[idx][index].name,
lpm_regs[idx] & bit_mask ? 1 : 0);
if (s)
seq_printf(s, "%-30s %-30d\n",
maps[idx][index].name,
lpm_regs[idx] & bit_mask ? 1 : 0);
}
}
kfree(lpm_regs);
}
static bool slps0_dbg_latch;
static inline u8 pmc_core_reg_read_byte(struct pmc_dev *pmcdev, int offset)
{
return readb(pmcdev->regbase + offset);
}
static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
u8 pf_reg, const struct pmc_bit_map **pf_map)
{
seq_printf(s, "PCH IP: %-2d - %-32s\tState: %s\n",
ip, pf_map[idx][index].name,
pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
}
static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const struct pmc_bit_map **maps = pmcdev->map->pfear_sts;
u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
int index, iter, idx, ip = 0;
iter = pmcdev->map->ppfear0_offset;
for (index = 0; index < pmcdev->map->ppfear_buckets &&
index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
pf_regs[index] = pmc_core_reg_read_byte(pmcdev, iter);
for (idx = 0; maps[idx]; idx++) {
for (index = 0; maps[idx][index].name &&
index < pmcdev->map->ppfear_buckets * 8; ip++, index++)
pmc_core_display_map(s, index, idx, ip,
pf_regs[index / 8], maps);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
/* This function should return link status, 0 means ready */
static int pmc_core_mtpmc_link_status(struct pmc_dev *pmcdev)
{
u32 value;
value = pmc_core_reg_read(pmcdev, SPT_PMC_PM_STS_OFFSET);
return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
}
static int pmc_core_send_msg(struct pmc_dev *pmcdev, u32 *addr_xram)
{
u32 dest;
int timeout;
for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
if (pmc_core_mtpmc_link_status(pmcdev) == 0)
break;
msleep(5);
}
if (timeout <= 0 && pmc_core_mtpmc_link_status(pmcdev))
return -EBUSY;
dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
pmc_core_reg_write(pmcdev, SPT_PMC_MTPMC_OFFSET, dest);
return 0;
}
static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const struct pmc_bit_map *map = pmcdev->map->mphy_sts;
u32 mphy_core_reg_low, mphy_core_reg_high;
u32 val_low, val_high;
int index, err = 0;
if (pmcdev->pmc_xram_read_bit) {
seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
return 0;
}
mphy_core_reg_low = (SPT_PMC_MPHY_CORE_STS_0 << 16);
mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
mutex_lock(&pmcdev->lock);
if (pmc_core_send_msg(pmcdev, &mphy_core_reg_low) != 0) {
err = -EBUSY;
goto out_unlock;
}
msleep(10);
val_low = pmc_core_reg_read(pmcdev, SPT_PMC_MFPMC_OFFSET);
if (pmc_core_send_msg(pmcdev, &mphy_core_reg_high) != 0) {
err = -EBUSY;
goto out_unlock;
}
msleep(10);
val_high = pmc_core_reg_read(pmcdev, SPT_PMC_MFPMC_OFFSET);
for (index = 0; index < 8 && map[index].name; index++) {
seq_printf(s, "%-32s\tState: %s\n",
map[index].name,
map[index].bit_mask & val_low ? "Not power gated" :
"Power gated");
}
for (index = 8; map[index].name; index++) {
seq_printf(s, "%-32s\tState: %s\n",
map[index].name,
map[index].bit_mask & val_high ? "Not power gated" :
"Power gated");
}
out_unlock:
mutex_unlock(&pmcdev->lock);
return err;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
static int pmc_core_pll_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const struct pmc_bit_map *map = pmcdev->map->pll_sts;
u32 mphy_common_reg, val;
int index, err = 0;
if (pmcdev->pmc_xram_read_bit) {
seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
return 0;
}
mphy_common_reg = (SPT_PMC_MPHY_COM_STS_0 << 16);
mutex_lock(&pmcdev->lock);
if (pmc_core_send_msg(pmcdev, &mphy_common_reg) != 0) {
err = -EBUSY;
goto out_unlock;
}
/* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
msleep(10);
val = pmc_core_reg_read(pmcdev, SPT_PMC_MFPMC_OFFSET);
for (index = 0; map[index].name ; index++) {
seq_printf(s, "%-32s\tState: %s\n",
map[index].name,
map[index].bit_mask & val ? "Active" : "Idle");
}
out_unlock:
mutex_unlock(&pmcdev->lock);
return err;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value)
{
const struct pmc_reg_map *map = pmcdev->map;
u32 reg;
int err = 0;
mutex_lock(&pmcdev->lock);
if (value > map->ltr_ignore_max) {
err = -EINVAL;
goto out_unlock;
}
reg = pmc_core_reg_read(pmcdev, map->ltr_ignore_offset);
reg |= BIT(value);
pmc_core_reg_write(pmcdev, map->ltr_ignore_offset, reg);
out_unlock:
mutex_unlock(&pmcdev->lock);
return err;
}
static ssize_t pmc_core_ltr_ignore_write(struct file *file,
const char __user *userbuf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct pmc_dev *pmcdev = s->private;
u32 buf_size, value;
int err;
buf_size = min_t(u32, count, 64);
err = kstrtou32_from_user(userbuf, buf_size, 10, &value);
if (err)
return err;
err = pmc_core_send_ltr_ignore(pmcdev, value);
return err == 0 ? count : err;
}
static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
{
return 0;
}
static int pmc_core_ltr_ignore_open(struct inode *inode, struct file *file)
{
return single_open(file, pmc_core_ltr_ignore_show, inode->i_private);
}
static const struct file_operations pmc_core_ltr_ignore_ops = {
.open = pmc_core_ltr_ignore_open,
.read = seq_read,
.write = pmc_core_ltr_ignore_write,
.llseek = seq_lseek,
.release = single_release,
};
static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
{
const struct pmc_reg_map *map = pmcdev->map;
u32 fd;
mutex_lock(&pmcdev->lock);
if (!reset && !slps0_dbg_latch)
goto out_unlock;
fd = pmc_core_reg_read(pmcdev, map->slps0_dbg_offset);
if (reset)
fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
else
fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
pmc_core_reg_write(pmcdev, map->slps0_dbg_offset, fd);
slps0_dbg_latch = false;
out_unlock:
mutex_unlock(&pmcdev->lock);
}
static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
pmc_core_slps0_dbg_latch(pmcdev, false);
pmc_core_slps0_display(pmcdev, NULL, s);
pmc_core_slps0_dbg_latch(pmcdev, true);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
static u32 convert_ltr_scale(u32 val)
{
/*
* As per PCIE specification supporting document
* ECN_LatencyTolnReporting_14Aug08.pdf the Latency
* Tolerance Reporting data payload is encoded in a
* 3 bit scale and 10 bit value fields. Values are
* multiplied by the indicated scale to yield an absolute time
* value, expressible in a range from 1 nanosecond to
* 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
*
* scale encoding is as follows:
*
* ----------------------------------------------
* |scale factor | Multiplier (ns) |
* ----------------------------------------------
* | 0 | 1 |
* | 1 | 32 |
* | 2 | 1024 |
* | 3 | 32768 |
* | 4 | 1048576 |
* | 5 | 33554432 |
* | 6 | Invalid |
* | 7 | Invalid |
* ----------------------------------------------
*/
if (val > 5) {
pr_warn("Invalid LTR scale factor.\n");
return 0;
}
return 1U << (5 * val);
}
static int pmc_core_ltr_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const struct pmc_bit_map *map = pmcdev->map->ltr_show_sts;
u64 decoded_snoop_ltr, decoded_non_snoop_ltr;
u32 ltr_raw_data, scale, val;
u16 snoop_ltr, nonsnoop_ltr;
int index;
for (index = 0; map[index].name ; index++) {
decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
ltr_raw_data = pmc_core_reg_read(pmcdev,
map[index].bit_mask);
snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
}
if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
decoded_snoop_ltr = val * convert_ltr_scale(scale);
}
seq_printf(s, "%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\n",
map[index].name, ltr_raw_data,
decoded_non_snoop_ltr,
decoded_snoop_ltr);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
static inline u64 adjust_lpm_residency(struct pmc_dev *pmcdev, u32 offset,
const int lpm_adj_x2)
{
u64 lpm_res = pmc_core_reg_read(pmcdev, offset);
return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
}
static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const int lpm_adj_x2 = pmcdev->map->lpm_res_counter_step_x2;
u32 offset = pmcdev->map->lpm_residency_offset;
int i, mode;
seq_printf(s, "%-10s %-15s\n", "Substate", "Residency");
pmc_for_each_mode(i, mode, pmcdev) {
seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode],
adjust_lpm_residency(pmcdev, offset + (4 * mode), lpm_adj_x2));
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const struct pmc_bit_map **maps = pmcdev->map->lpm_sts;
u32 offset = pmcdev->map->lpm_status_offset;
pmc_core_lpm_display(pmcdev, NULL, s, offset, "STATUS", maps);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const struct pmc_bit_map **maps = pmcdev->map->lpm_sts;
u32 offset = pmcdev->map->lpm_live_status_offset;
pmc_core_lpm_display(pmcdev, NULL, s, offset, "LIVE_STATUS", maps);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
static void pmc_core_substate_req_header_show(struct seq_file *s)
{
struct pmc_dev *pmcdev = s->private;
int i, mode;
seq_printf(s, "%30s |", "Element");
pmc_for_each_mode(i, mode, pmcdev)
seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
seq_printf(s, " %9s |\n", "Status");
}
static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const struct pmc_bit_map **maps = pmcdev->map->lpm_sts;
const struct pmc_bit_map *map;
const int num_maps = pmcdev->map->lpm_num_maps;
u32 sts_offset = pmcdev->map->lpm_status_offset;
u32 *lpm_req_regs = pmcdev->lpm_req_regs;
int mp;
/* Display the header */
pmc_core_substate_req_header_show(s);
/* Loop over maps */
for (mp = 0; mp < num_maps; mp++) {
u32 req_mask = 0;
u32 lpm_status;
int mode, idx, i, len = 32;
/*
* Capture the requirements and create a mask so that we only
* show an element if it's required for at least one of the
* enabled low power modes
*/
pmc_for_each_mode(idx, mode, pmcdev)
req_mask |= lpm_req_regs[mp + (mode * num_maps)];
/* Get the last latched status for this map */
lpm_status = pmc_core_reg_read(pmcdev, sts_offset + (mp * 4));
/* Loop over elements in this map */
map = maps[mp];
for (i = 0; map[i].name && i < len; i++) {
u32 bit_mask = map[i].bit_mask;
if (!(bit_mask & req_mask))
/*
* Not required for any enabled states
* so don't display
*/
continue;
/* Display the element name in the first column */
seq_printf(s, "%30s |", map[i].name);
/* Loop over the enabled states and display if required */
pmc_for_each_mode(idx, mode, pmcdev) {
if (lpm_req_regs[mp + (mode * num_maps)] & bit_mask)
seq_printf(s, " %9s |",
"Required");
else
seq_printf(s, " %9s |", " ");
}
/* In Status column, show the last captured state of this agent */
if (lpm_status & bit_mask)
seq_printf(s, " %9s |", "Yes");
else
seq_printf(s, " %9s |", " ");
seq_puts(s, "\n");
}
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_req_regs);
static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
bool c10;
u32 reg;
int idx, mode;
reg = pmc_core_reg_read(pmcdev, pmcdev->map->lpm_sts_latch_en_offset);
if (reg & LPM_STS_LATCH_MODE) {
seq_puts(s, "c10");
c10 = false;
} else {
seq_puts(s, "[c10]");
c10 = true;
}
pmc_for_each_mode(idx, mode, pmcdev) {
if ((BIT(mode) & reg) && !c10)
seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
else
seq_printf(s, " %s", pmc_lpm_modes[mode]);
}
seq_puts(s, " clear\n");
return 0;
}
static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
const char __user *userbuf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct pmc_dev *pmcdev = s->private;
bool clear = false, c10 = false;
unsigned char buf[8];
int idx, m, mode;
u32 reg;
if (count > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, userbuf, count))
return -EFAULT;
buf[count] = '\0';
/*
* Allowed strings are:
* Any enabled substate, e.g. 'S0i2.0'
* 'c10'
* 'clear'
*/
mode = sysfs_match_string(pmc_lpm_modes, buf);
/* Check string matches enabled mode */
pmc_for_each_mode(idx, m, pmcdev)
if (mode == m)
break;
if (mode != m || mode < 0) {
if (sysfs_streq(buf, "clear"))
clear = true;
else if (sysfs_streq(buf, "c10"))
c10 = true;
else
return -EINVAL;
}
if (clear) {
mutex_lock(&pmcdev->lock);
reg = pmc_core_reg_read(pmcdev, pmcdev->map->etr3_offset);
reg |= ETR3_CLEAR_LPM_EVENTS;
pmc_core_reg_write(pmcdev, pmcdev->map->etr3_offset, reg);
mutex_unlock(&pmcdev->lock);
return count;
}
if (c10) {
mutex_lock(&pmcdev->lock);
reg = pmc_core_reg_read(pmcdev, pmcdev->map->lpm_sts_latch_en_offset);
reg &= ~LPM_STS_LATCH_MODE;
pmc_core_reg_write(pmcdev, pmcdev->map->lpm_sts_latch_en_offset, reg);
mutex_unlock(&pmcdev->lock);
return count;
}
/*
* For LPM mode latching we set the latch enable bit and selected mode
* and clear everything else.
*/
reg = LPM_STS_LATCH_MODE | BIT(mode);
mutex_lock(&pmcdev->lock);
pmc_core_reg_write(pmcdev, pmcdev->map->lpm_sts_latch_en_offset, reg);
mutex_unlock(&pmcdev->lock);
return count;
}
DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
{
struct pmc_dev *pmcdev = s->private;
const struct pmc_bit_map *map = pmcdev->map->msr_sts;
u64 pcstate_count;
int index;
for (index = 0; map[index].name ; index++) {
if (rdmsrl_safe(map[index].bit_mask, &pcstate_count))
continue;
pcstate_count *= 1000;
do_div(pcstate_count, tsc_khz);
seq_printf(s, "%-8s : %llu\n", map[index].name,
pcstate_count);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
{
int i, j;
if (!lpm_pri)
return false;
/*
* Each byte contains the priority level for 2 modes (7:4 and 3:0).
* In a 32 bit register this allows for describing 8 modes. Store the
* levels and look for values out of range.
*/
for (i = 0; i < 8; i++) {
int level = lpm_pri & GENMASK(3, 0);
if (level >= LPM_MAX_NUM_MODES)
return false;
mode_order[i] = level;
lpm_pri >>= 4;
}
/* Check that we have unique values */
for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
if (mode_order[i] == mode_order[j])
return false;
return true;
}
static void pmc_core_get_low_power_modes(struct platform_device *pdev)
{
struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
u8 mode_order[LPM_MAX_NUM_MODES];
u32 lpm_pri;
u32 lpm_en;
int mode, i, p;
/* Use LPM Maps to indicate support for substates */
if (!pmcdev->map->lpm_num_maps)
return;
lpm_en = pmc_core_reg_read(pmcdev, pmcdev->map->lpm_en_offset);
/* For MTL, BIT 31 is not an lpm mode but a enable bit.
* Lower byte is enough to cover the number of lpm modes for all
* platforms and hence mask the upper 3 bytes.
*/
pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF);
/* Read 32 bit LPM_PRI register */
lpm_pri = pmc_core_reg_read(pmcdev, pmcdev->map->lpm_priority_offset);
/*
* If lpm_pri value passes verification, then override the default
* modes here. Otherwise stick with the default.
*/
if (pmc_core_pri_verify(lpm_pri, mode_order))
/* Get list of modes in priority order */
for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
pri_order[mode_order[mode]] = mode;
else
dev_warn(&pdev->dev, "Assuming a default substate order for this platform\n");
/*
* Loop through all modes from lowest to highest priority,
* and capture all enabled modes in order
*/
i = 0;
for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
int mode = pri_order[p];
if (!(BIT(mode) & lpm_en))
continue;
pmcdev->lpm_en_modes[i++] = mode;
}
}
static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
{
debugfs_remove_recursive(pmcdev->dbgfs_dir);
}
static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev)
{
struct dentry *dir;
dir = debugfs_create_dir("pmc_core", NULL);
pmcdev->dbgfs_dir = dir;
debugfs_create_file("slp_s0_residency_usec", 0444, dir, pmcdev,
&pmc_core_dev_state);
if (pmcdev->map->pfear_sts)
debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
pmcdev, &pmc_core_ppfear_fops);
debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
&pmc_core_ltr_ignore_ops);
debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
debugfs_create_file("package_cstate_show", 0444, dir, pmcdev,
&pmc_core_pkgc_fops);
if (pmcdev->map->pll_sts)
debugfs_create_file("pll_status", 0444, dir, pmcdev,
&pmc_core_pll_fops);
if (pmcdev->map->mphy_sts)
debugfs_create_file("mphy_core_lanes_power_gating_status",
0444, dir, pmcdev,
&pmc_core_mphy_pg_fops);
if (pmcdev->map->slps0_dbg_maps) {
debugfs_create_file("slp_s0_debug_status", 0444,
dir, pmcdev,
&pmc_core_slps0_dbg_fops);
debugfs_create_bool("slp_s0_dbg_latch", 0644,
dir, &slps0_dbg_latch);
}
if (pmcdev->map->lpm_en_offset) {
debugfs_create_file("substate_residencies", 0444,
pmcdev->dbgfs_dir, pmcdev,
&pmc_core_substate_res_fops);
}
if (pmcdev->map->lpm_status_offset) {
debugfs_create_file("substate_status_registers", 0444,
pmcdev->dbgfs_dir, pmcdev,
&pmc_core_substate_sts_regs_fops);
debugfs_create_file("substate_live_status_registers", 0444,
pmcdev->dbgfs_dir, pmcdev,
&pmc_core_substate_l_sts_regs_fops);
debugfs_create_file("lpm_latch_mode", 0644,
pmcdev->dbgfs_dir, pmcdev,
&pmc_core_lpm_latch_mode_fops);
}
if (pmcdev->lpm_req_regs) {
debugfs_create_file("substate_requirements", 0444,
pmcdev->dbgfs_dir, pmcdev,
&pmc_core_substate_req_regs_fops);
}
}
static const struct x86_cpu_id intel_pmc_core_ids[] = {
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, spt_core_init),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, spt_core_init),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, spt_core_init),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, spt_core_init),
X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, cnp_core_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, icl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, icl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, cnp_core_init),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, cnp_core_init),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, tgl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, tgl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, tgl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, icl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, tgl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, tgl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N, tgl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, adl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, tgl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, adl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, adl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE, mtl_core_init),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, mtl_core_init),
{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
static const struct pci_device_id pmc_pci_ids[] = {
{ PCI_VDEVICE(INTEL, SPT_PMC_PCI_DEVICE_ID) },
{ }
};
/*
* This quirk can be used on those platforms where
* the platform BIOS enforces 24Mhz crystal to shutdown
* before PMC can assert SLP_S0#.
*/
static bool xtal_ignore;
static int quirk_xtal_ignore(const struct dmi_system_id *id)
{
xtal_ignore = true;
return 0;
}
static void pmc_core_xtal_ignore(struct pmc_dev *pmcdev)
{
u32 value;
value = pmc_core_reg_read(pmcdev, pmcdev->map->pm_vric1_offset);
/* 24MHz Crystal Shutdown Qualification Disable */
value |= SPT_PMC_VRIC1_XTALSDQDIS;
/* Low Voltage Mode Enable */
value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
pmc_core_reg_write(pmcdev, pmcdev->map->pm_vric1_offset, value);
}
static const struct dmi_system_id pmc_core_dmi_table[] = {
{
.callback = quirk_xtal_ignore,
.ident = "HP Elite x2 1013 G3",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
},
},
{}
};
static void pmc_core_do_dmi_quirks(struct pmc_dev *pmcdev)
{
dmi_check_system(pmc_core_dmi_table);
if (xtal_ignore)
pmc_core_xtal_ignore(pmcdev);
}
static int pmc_core_probe(struct platform_device *pdev)
{
static bool device_initialized;
struct pmc_dev *pmcdev;
const struct x86_cpu_id *cpu_id;
void (*core_init)(struct pmc_dev *pmcdev);
u64 slp_s0_addr;
if (device_initialized)
return -ENODEV;
pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
if (!pmcdev)
return -ENOMEM;
platform_set_drvdata(pdev, pmcdev);
pmcdev->pdev = pdev;
cpu_id = x86_match_cpu(intel_pmc_core_ids);
if (!cpu_id)
return -ENODEV;
core_init = (void (*)(struct pmc_dev *))cpu_id->driver_data;
/*
* Coffee Lake has CPU ID of Kaby Lake and Cannon Lake PCH. So here
* Sunrisepoint PCH regmap can't be used. Use Cannon Lake PCH regmap
* in this case.
*/
if (core_init == spt_core_init && !pci_dev_present(pmc_pci_ids))
core_init = cnp_core_init;
mutex_init(&pmcdev->lock);
core_init(pmcdev);
if (lpit_read_residency_count_address(&slp_s0_addr)) {
pmcdev->base_addr = PMC_BASE_ADDR_DEFAULT;
if (page_is_ram(PHYS_PFN(pmcdev->base_addr)))
return -ENODEV;
} else {
pmcdev->base_addr = slp_s0_addr - pmcdev->map->slp_s0_offset;
}
pmcdev->regbase = ioremap(pmcdev->base_addr,
pmcdev->map->regmap_length);
if (!pmcdev->regbase)
return -ENOMEM;
if (pmcdev->core_configure)
pmcdev->core_configure(pmcdev);
pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(pmcdev);
pmc_core_get_low_power_modes(pdev);
pmc_core_do_dmi_quirks(pmcdev);
pmc_core_dbgfs_register(pmcdev);
device_initialized = true;
dev_info(&pdev->dev, " initialized\n");
return 0;
}
static int pmc_core_remove(struct platform_device *pdev)
{
struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
pmc_core_dbgfs_unregister(pmcdev);
platform_set_drvdata(pdev, NULL);
mutex_destroy(&pmcdev->lock);
iounmap(pmcdev->regbase);
return 0;
}
static bool warn_on_s0ix_failures;
module_param(warn_on_s0ix_failures, bool, 0644);
MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
static __maybe_unused int pmc_core_suspend(struct device *dev)
{
struct pmc_dev *pmcdev = dev_get_drvdata(dev);
pmcdev->check_counters = false;
/* No warnings on S0ix failures */
if (!warn_on_s0ix_failures)
return 0;
/* Check if the syspend will actually use S0ix */
if (pm_suspend_via_firmware())
return 0;
/* Save PC10 residency for checking later */
if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pmcdev->pc10_counter))
return -EIO;
/* Save S0ix residency for checking later */
if (pmc_core_dev_state_get(pmcdev, &pmcdev->s0ix_counter))
return -EIO;
pmcdev->check_counters = true;
return 0;
}
static inline bool pmc_core_is_pc10_failed(struct pmc_dev *pmcdev)
{
u64 pc10_counter;
if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pc10_counter))
return false;
if (pc10_counter == pmcdev->pc10_counter)
return true;
return false;
}
static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
{
u64 s0ix_counter;
if (pmc_core_dev_state_get(pmcdev, &s0ix_counter))
return false;
if (s0ix_counter == pmcdev->s0ix_counter)
return true;
return false;
}
static __maybe_unused int pmc_core_resume(struct device *dev)
{
struct pmc_dev *pmcdev = dev_get_drvdata(dev);
const struct pmc_bit_map **maps = pmcdev->map->lpm_sts;
int offset = pmcdev->map->lpm_status_offset;
if (!pmcdev->check_counters)
return 0;
if (!pmc_core_is_s0ix_failed(pmcdev))
return 0;
if (pmc_core_is_pc10_failed(pmcdev)) {
/* S0ix failed because of PC10 entry failure */
dev_info(dev, "CPU did not enter PC10!!! (PC10 cnt=0x%llx)\n",
pmcdev->pc10_counter);
return 0;
}
/* The real interesting case - S0ix failed - lets ask PMC why. */
dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
pmcdev->s0ix_counter);
if (pmcdev->map->slps0_dbg_maps)
pmc_core_slps0_display(pmcdev, dev, NULL);
if (pmcdev->map->lpm_sts)
pmc_core_lpm_display(pmcdev, dev, NULL, offset, "STATUS", maps);
return 0;
}
static const struct dev_pm_ops pmc_core_pm_ops = {
SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
};
static const struct acpi_device_id pmc_core_acpi_ids[] = {
{"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
{ }
};
MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
static struct platform_driver pmc_core_driver = {
.driver = {
.name = "intel_pmc_core",
.acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
.pm = &pmc_core_pm_ops,
.dev_groups = pmc_dev_groups,
},
.probe = pmc_core_probe,
.remove = pmc_core_remove,
};
module_platform_driver(pmc_core_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Intel PMC Core Driver");