| // SPDX-License-Identifier: GPL-2.0-only |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2018 Solarflare Communications Inc. |
| * Copyright 2019-2020 Xilinx Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include "ef100_nic.h" |
| #include "efx_common.h" |
| #include "efx_channels.h" |
| #include "io.h" |
| #include "selftest.h" |
| #include "ef100_regs.h" |
| #include "mcdi.h" |
| #include "mcdi_pcol.h" |
| #include "mcdi_port_common.h" |
| #include "mcdi_functions.h" |
| #include "mcdi_filters.h" |
| #include "ef100_rx.h" |
| #include "ef100_tx.h" |
| #include "ef100_netdev.h" |
| |
| #define EF100_MAX_VIS 4096 |
| #define EF100_NUM_MCDI_BUFFERS 1 |
| #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX) |
| |
| #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT) |
| |
| /* MCDI |
| */ |
| static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr) |
| { |
| struct ef100_nic_data *nic_data = efx->nic_data; |
| |
| if (dma_addr) |
| *dma_addr = nic_data->mcdi_buf.dma_addr + |
| bufid * ALIGN(MCDI_BUF_LEN, 256); |
| return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256); |
| } |
| |
| static int ef100_get_warm_boot_count(struct efx_nic *efx) |
| { |
| efx_dword_t reg; |
| |
| efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS)); |
| |
| if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) { |
| netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n"); |
| efx->state = STATE_DISABLED; |
| return -ENETDOWN; |
| } else { |
| return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? |
| EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; |
| } |
| } |
| |
| static void ef100_mcdi_request(struct efx_nic *efx, |
| const efx_dword_t *hdr, size_t hdr_len, |
| const efx_dword_t *sdu, size_t sdu_len) |
| { |
| dma_addr_t dma_addr; |
| u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr); |
| |
| memcpy(pdu, hdr, hdr_len); |
| memcpy(pdu + hdr_len, sdu, sdu_len); |
| wmb(); |
| |
| /* The hardware provides 'low' and 'high' (doorbell) registers |
| * for passing the 64-bit address of an MCDI request to |
| * firmware. However the dwords are swapped by firmware. The |
| * least significant bits of the doorbell are then 0 for all |
| * MCDI requests due to alignment. |
| */ |
| _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD)); |
| _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD)); |
| } |
| |
| static bool ef100_mcdi_poll_response(struct efx_nic *efx) |
| { |
| const efx_dword_t hdr = |
| *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL)); |
| |
| rmb(); |
| return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); |
| } |
| |
| static void ef100_mcdi_read_response(struct efx_nic *efx, |
| efx_dword_t *outbuf, size_t offset, |
| size_t outlen) |
| { |
| const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL); |
| |
| memcpy(outbuf, pdu + offset, outlen); |
| } |
| |
| static int ef100_mcdi_poll_reboot(struct efx_nic *efx) |
| { |
| struct ef100_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| rc = ef100_get_warm_boot_count(efx); |
| if (rc < 0) { |
| /* The firmware is presumably in the process of |
| * rebooting. However, we are supposed to report each |
| * reboot just once, so we must only do that once we |
| * can read and store the updated warm boot count. |
| */ |
| return 0; |
| } |
| |
| if (rc == nic_data->warm_boot_count) |
| return 0; |
| |
| nic_data->warm_boot_count = rc; |
| |
| return -EIO; |
| } |
| |
| static void ef100_mcdi_reboot_detected(struct efx_nic *efx) |
| { |
| } |
| |
| /* MCDI calls |
| */ |
| static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) |
| return -EIO; |
| |
| ether_addr_copy(mac_address, |
| MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); |
| return 0; |
| } |
| |
| static int efx_ef100_init_datapath_caps(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN); |
| struct ef100_nic_data *nic_data = efx->nic_data; |
| u8 vi_window_mode; |
| size_t outlen; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { |
| netif_err(efx, drv, efx->net_dev, |
| "unable to read datapath firmware capabilities\n"); |
| return -EIO; |
| } |
| |
| nic_data->datapath_caps = MCDI_DWORD(outbuf, |
| GET_CAPABILITIES_OUT_FLAGS1); |
| nic_data->datapath_caps2 = MCDI_DWORD(outbuf, |
| GET_CAPABILITIES_V2_OUT_FLAGS2); |
| if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) |
| nic_data->datapath_caps3 = 0; |
| else |
| nic_data->datapath_caps3 = MCDI_DWORD(outbuf, |
| GET_CAPABILITIES_V7_OUT_FLAGS3); |
| |
| vi_window_mode = MCDI_BYTE(outbuf, |
| GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); |
| rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); |
| if (rc) |
| return rc; |
| |
| if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) { |
| struct net_device *net_dev = efx->net_dev; |
| netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL | |
| NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | |
| NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM; |
| |
| net_dev->features |= tso; |
| net_dev->hw_features |= tso; |
| net_dev->hw_enc_features |= tso; |
| /* EF100 HW can only offload outer checksums if they are UDP, |
| * so for GRE_CSUM we have to use GSO_PARTIAL. |
| */ |
| net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; |
| } |
| efx->num_mac_stats = MCDI_WORD(outbuf, |
| GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); |
| netif_dbg(efx, probe, efx->net_dev, |
| "firmware reports num_mac_stats = %u\n", |
| efx->num_mac_stats); |
| return 0; |
| } |
| |
| /* Event handling |
| */ |
| static int ef100_ev_probe(struct efx_channel *channel) |
| { |
| /* Allocate an extra descriptor for the QMDA status completion entry */ |
| return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, |
| (channel->eventq_mask + 2) * |
| sizeof(efx_qword_t), |
| GFP_KERNEL); |
| } |
| |
| static int ef100_ev_init(struct efx_channel *channel) |
| { |
| struct ef100_nic_data *nic_data = channel->efx->nic_data; |
| |
| /* initial phase is 0 */ |
| clear_bit(channel->channel, nic_data->evq_phases); |
| |
| return efx_mcdi_ev_init(channel, false, false); |
| } |
| |
| static void ef100_ev_read_ack(struct efx_channel *channel) |
| { |
| efx_dword_t evq_prime; |
| |
| EFX_POPULATE_DWORD_2(evq_prime, |
| ERF_GZ_EVQ_ID, channel->channel, |
| ERF_GZ_IDX, channel->eventq_read_ptr & |
| channel->eventq_mask); |
| |
| efx_writed(channel->efx, &evq_prime, |
| efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME)); |
| } |
| |
| static int ef100_ev_process(struct efx_channel *channel, int quota) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct ef100_nic_data *nic_data; |
| bool evq_phase, old_evq_phase; |
| unsigned int read_ptr; |
| efx_qword_t *p_event; |
| int spent = 0; |
| bool ev_phase; |
| int ev_type; |
| |
| if (unlikely(!channel->enabled)) |
| return 0; |
| |
| nic_data = efx->nic_data; |
| evq_phase = test_bit(channel->channel, nic_data->evq_phases); |
| old_evq_phase = evq_phase; |
| read_ptr = channel->eventq_read_ptr; |
| BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN); |
| |
| while (spent < quota) { |
| p_event = efx_event(channel, read_ptr); |
| |
| ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE); |
| if (ev_phase != evq_phase) |
| break; |
| |
| netif_vdbg(efx, drv, efx->net_dev, |
| "processing event on %d " EFX_QWORD_FMT "\n", |
| channel->channel, EFX_QWORD_VAL(*p_event)); |
| |
| ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE); |
| |
| switch (ev_type) { |
| case ESE_GZ_EF100_EV_RX_PKTS: |
| efx_ef100_ev_rx(channel, p_event); |
| ++spent; |
| break; |
| case ESE_GZ_EF100_EV_MCDI: |
| efx_mcdi_process_event(channel, p_event); |
| break; |
| case ESE_GZ_EF100_EV_TX_COMPLETION: |
| ef100_ev_tx(channel, p_event); |
| break; |
| case ESE_GZ_EF100_EV_DRIVER: |
| netif_info(efx, drv, efx->net_dev, |
| "Driver initiated event " EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*p_event)); |
| break; |
| default: |
| netif_info(efx, drv, efx->net_dev, |
| "Unhandled event " EFX_QWORD_FMT "\n", |
| EFX_QWORD_VAL(*p_event)); |
| } |
| |
| ++read_ptr; |
| if ((read_ptr & channel->eventq_mask) == 0) |
| evq_phase = !evq_phase; |
| } |
| |
| channel->eventq_read_ptr = read_ptr; |
| if (evq_phase != old_evq_phase) |
| change_bit(channel->channel, nic_data->evq_phases); |
| |
| return spent; |
| } |
| |
| static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id) |
| { |
| struct efx_msi_context *context = dev_id; |
| struct efx_nic *efx = context->efx; |
| |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); |
| |
| if (likely(READ_ONCE(efx->irq_soft_enabled))) { |
| /* Note test interrupts */ |
| if (context->index == efx->irq_level) |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| |
| /* Schedule processing of the channel */ |
| efx_schedule_channel_irq(efx->channel[context->index]); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int ef100_phy_probe(struct efx_nic *efx) |
| { |
| struct efx_mcdi_phy_data *phy_data; |
| int rc; |
| |
| /* Probe for the PHY */ |
| efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL); |
| if (!efx->phy_data) |
| return -ENOMEM; |
| |
| rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data); |
| if (rc) |
| return rc; |
| |
| /* Populate driver and ethtool settings */ |
| phy_data = efx->phy_data; |
| mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap, |
| efx->link_advertising); |
| efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap, |
| false); |
| |
| /* Default to Autonegotiated flow control if the PHY supports it */ |
| efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; |
| if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) |
| efx->wanted_fc |= EFX_FC_AUTO; |
| efx_link_set_wanted_fc(efx, efx->wanted_fc); |
| |
| /* Push settings to the PHY. Failure is not fatal, the user can try to |
| * fix it using ethtool. |
| */ |
| rc = efx_mcdi_port_reconfigure(efx); |
| if (rc && rc != -EPERM) |
| netif_warn(efx, drv, efx->net_dev, |
| "could not initialise PHY settings\n"); |
| |
| return 0; |
| } |
| |
| static int ef100_filter_table_probe(struct efx_nic *efx) |
| { |
| return efx_mcdi_filter_table_probe(efx, true); |
| } |
| |
| static int ef100_filter_table_up(struct efx_nic *efx) |
| { |
| int rc; |
| |
| rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC); |
| if (rc) { |
| efx_mcdi_filter_table_down(efx); |
| return rc; |
| } |
| |
| rc = efx_mcdi_filter_add_vlan(efx, 0); |
| if (rc) { |
| efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); |
| efx_mcdi_filter_table_down(efx); |
| } |
| |
| return rc; |
| } |
| |
| static void ef100_filter_table_down(struct efx_nic *efx) |
| { |
| efx_mcdi_filter_del_vlan(efx, 0); |
| efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); |
| efx_mcdi_filter_table_down(efx); |
| } |
| |
| /* Other |
| */ |
| static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only) |
| { |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| efx_mcdi_filter_sync_rx_mode(efx); |
| |
| if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) |
| return efx_mcdi_set_mtu(efx); |
| return efx_mcdi_set_mac(efx); |
| } |
| |
| static enum reset_type ef100_map_reset_reason(enum reset_type reason) |
| { |
| if (reason == RESET_TYPE_TX_WATCHDOG) |
| return reason; |
| return RESET_TYPE_DISABLE; |
| } |
| |
| static int ef100_map_reset_flags(u32 *flags) |
| { |
| /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */ |
| if ((*flags & EF100_RESET_PORT)) { |
| *flags &= ~EF100_RESET_PORT; |
| return RESET_TYPE_ALL; |
| } |
| if (*flags & ETH_RESET_MGMT) { |
| *flags &= ~ETH_RESET_MGMT; |
| return RESET_TYPE_DISABLE; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type) |
| { |
| int rc; |
| |
| dev_close(efx->net_dev); |
| |
| if (reset_type == RESET_TYPE_TX_WATCHDOG) { |
| netif_device_attach(efx->net_dev); |
| __clear_bit(reset_type, &efx->reset_pending); |
| rc = dev_open(efx->net_dev, NULL); |
| } else if (reset_type == RESET_TYPE_ALL) { |
| rc = efx_mcdi_reset(efx, reset_type); |
| if (rc) |
| return rc; |
| |
| netif_device_attach(efx->net_dev); |
| |
| rc = dev_open(efx->net_dev, NULL); |
| } else { |
| rc = 1; /* Leave the device closed */ |
| } |
| return rc; |
| } |
| |
| static void ef100_common_stat_mask(unsigned long *mask) |
| { |
| __set_bit(EF100_STAT_port_rx_packets, mask); |
| __set_bit(EF100_STAT_port_tx_packets, mask); |
| __set_bit(EF100_STAT_port_rx_bytes, mask); |
| __set_bit(EF100_STAT_port_tx_bytes, mask); |
| __set_bit(EF100_STAT_port_rx_multicast, mask); |
| __set_bit(EF100_STAT_port_rx_bad, mask); |
| __set_bit(EF100_STAT_port_rx_align_error, mask); |
| __set_bit(EF100_STAT_port_rx_overflow, mask); |
| } |
| |
| static void ef100_ethtool_stat_mask(unsigned long *mask) |
| { |
| __set_bit(EF100_STAT_port_tx_pause, mask); |
| __set_bit(EF100_STAT_port_tx_unicast, mask); |
| __set_bit(EF100_STAT_port_tx_multicast, mask); |
| __set_bit(EF100_STAT_port_tx_broadcast, mask); |
| __set_bit(EF100_STAT_port_tx_lt64, mask); |
| __set_bit(EF100_STAT_port_tx_64, mask); |
| __set_bit(EF100_STAT_port_tx_65_to_127, mask); |
| __set_bit(EF100_STAT_port_tx_128_to_255, mask); |
| __set_bit(EF100_STAT_port_tx_256_to_511, mask); |
| __set_bit(EF100_STAT_port_tx_512_to_1023, mask); |
| __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask); |
| __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask); |
| __set_bit(EF100_STAT_port_rx_good, mask); |
| __set_bit(EF100_STAT_port_rx_pause, mask); |
| __set_bit(EF100_STAT_port_rx_unicast, mask); |
| __set_bit(EF100_STAT_port_rx_broadcast, mask); |
| __set_bit(EF100_STAT_port_rx_lt64, mask); |
| __set_bit(EF100_STAT_port_rx_64, mask); |
| __set_bit(EF100_STAT_port_rx_65_to_127, mask); |
| __set_bit(EF100_STAT_port_rx_128_to_255, mask); |
| __set_bit(EF100_STAT_port_rx_256_to_511, mask); |
| __set_bit(EF100_STAT_port_rx_512_to_1023, mask); |
| __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask); |
| __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask); |
| __set_bit(EF100_STAT_port_rx_gtjumbo, mask); |
| __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask); |
| __set_bit(EF100_STAT_port_rx_length_error, mask); |
| __set_bit(EF100_STAT_port_rx_nodesc_drops, mask); |
| __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask); |
| __set_bit(GENERIC_STAT_rx_noskb_drops, mask); |
| } |
| |
| #define EF100_DMA_STAT(ext_name, mcdi_name) \ |
| [EF100_STAT_ ## ext_name] = \ |
| { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } |
| |
| static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = { |
| EF100_DMA_STAT(port_tx_bytes, TX_BYTES), |
| EF100_DMA_STAT(port_tx_packets, TX_PKTS), |
| EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), |
| EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), |
| EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), |
| EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), |
| EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), |
| EF100_DMA_STAT(port_tx_64, TX_64_PKTS), |
| EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), |
| EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), |
| EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), |
| EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), |
| EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), |
| EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), |
| EF100_DMA_STAT(port_rx_bytes, RX_BYTES), |
| EF100_DMA_STAT(port_rx_packets, RX_PKTS), |
| EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS), |
| EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), |
| EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), |
| EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), |
| EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), |
| EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), |
| EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), |
| EF100_DMA_STAT(port_rx_64, RX_64_PKTS), |
| EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), |
| EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), |
| EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), |
| EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), |
| EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), |
| EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), |
| EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), |
| EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), |
| EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), |
| EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), |
| EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), |
| EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), |
| EFX_GENERIC_SW_STAT(rx_nodesc_trunc), |
| EFX_GENERIC_SW_STAT(rx_noskb_drops), |
| }; |
| |
| static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names) |
| { |
| DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; |
| |
| ef100_ethtool_stat_mask(mask); |
| return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT, |
| mask, names); |
| } |
| |
| static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats, |
| struct rtnl_link_stats64 *core_stats) |
| { |
| struct ef100_nic_data *nic_data = efx->nic_data; |
| DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; |
| size_t stats_count = 0, index; |
| u64 *stats = nic_data->stats; |
| |
| ef100_ethtool_stat_mask(mask); |
| |
| if (full_stats) { |
| for_each_set_bit(index, mask, EF100_STAT_COUNT) { |
| if (ef100_stat_desc[index].name) { |
| *full_stats++ = stats[index]; |
| ++stats_count; |
| } |
| } |
| } |
| |
| if (!core_stats) |
| return stats_count; |
| |
| core_stats->rx_packets = stats[EF100_STAT_port_rx_packets]; |
| core_stats->tx_packets = stats[EF100_STAT_port_tx_packets]; |
| core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes]; |
| core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes]; |
| core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] + |
| stats[GENERIC_STAT_rx_nodesc_trunc] + |
| stats[GENERIC_STAT_rx_noskb_drops]; |
| core_stats->multicast = stats[EF100_STAT_port_rx_multicast]; |
| core_stats->rx_length_errors = |
| stats[EF100_STAT_port_rx_gtjumbo] + |
| stats[EF100_STAT_port_rx_length_error]; |
| core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad]; |
| core_stats->rx_frame_errors = |
| stats[EF100_STAT_port_rx_align_error]; |
| core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow]; |
| core_stats->rx_errors = (core_stats->rx_length_errors + |
| core_stats->rx_crc_errors + |
| core_stats->rx_frame_errors); |
| |
| return stats_count; |
| } |
| |
| static size_t ef100_update_stats(struct efx_nic *efx, |
| u64 *full_stats, |
| struct rtnl_link_stats64 *core_stats) |
| { |
| __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC); |
| struct ef100_nic_data *nic_data = efx->nic_data; |
| DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; |
| u64 *stats = nic_data->stats; |
| |
| ef100_common_stat_mask(mask); |
| ef100_ethtool_stat_mask(mask); |
| |
| if (!mc_stats) |
| return 0; |
| |
| efx_nic_copy_stats(efx, mc_stats); |
| efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask, |
| stats, mc_stats, false); |
| |
| kfree(mc_stats); |
| |
| return ef100_update_stats_common(efx, full_stats, core_stats); |
| } |
| |
| static int efx_ef100_get_phys_port_id(struct efx_nic *efx, |
| struct netdev_phys_item_id *ppid) |
| { |
| struct ef100_nic_data *nic_data = efx->nic_data; |
| |
| if (!is_valid_ether_addr(nic_data->port_id)) |
| return -EOPNOTSUPP; |
| |
| ppid->id_len = ETH_ALEN; |
| memcpy(ppid->id, nic_data->port_id, ppid->id_len); |
| |
| return 0; |
| } |
| |
| static int efx_ef100_irq_test_generate(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); |
| |
| BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); |
| |
| MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); |
| return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT, |
| inbuf, sizeof(inbuf), NULL, 0, NULL); |
| } |
| |
| #define EFX_EF100_TEST 1 |
| |
| static void efx_ef100_ev_test_generate(struct efx_channel *channel) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); |
| struct efx_nic *efx = channel->efx; |
| efx_qword_t event; |
| int rc; |
| |
| EFX_POPULATE_QWORD_2(event, |
| ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER, |
| ESF_GZ_DRIVER_DATA, EFX_EF100_TEST); |
| |
| MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); |
| |
| /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has |
| * already swapped the data to little-endian order. |
| */ |
| memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], |
| sizeof(efx_qword_t)); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| if (rc && (rc != -ENETDOWN)) |
| goto fail; |
| |
| return; |
| |
| fail: |
| WARN_ON(true); |
| netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| } |
| |
| static unsigned int ef100_check_caps(const struct efx_nic *efx, |
| u8 flag, u32 offset) |
| { |
| const struct ef100_nic_data *nic_data = efx->nic_data; |
| |
| switch (offset) { |
| case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST: |
| return nic_data->datapath_caps & BIT_ULL(flag); |
| case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST: |
| return nic_data->datapath_caps2 & BIT_ULL(flag); |
| case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST: |
| return nic_data->datapath_caps3 & BIT_ULL(flag); |
| default: |
| return 0; |
| } |
| } |
| |
| /* NIC level access functions |
| */ |
| #define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \ |
| NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \ |
| NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \ |
| NETIF_F_HW_VLAN_CTAG_TX) |
| |
| const struct efx_nic_type ef100_pf_nic_type = { |
| .revision = EFX_REV_EF100, |
| .is_vf = false, |
| .probe = ef100_probe_pf, |
| .offload_features = EF100_OFFLOAD_FEATURES, |
| .mcdi_max_ver = 2, |
| .mcdi_request = ef100_mcdi_request, |
| .mcdi_poll_response = ef100_mcdi_poll_response, |
| .mcdi_read_response = ef100_mcdi_read_response, |
| .mcdi_poll_reboot = ef100_mcdi_poll_reboot, |
| .mcdi_reboot_detected = ef100_mcdi_reboot_detected, |
| .irq_enable_master = efx_port_dummy_op_void, |
| .irq_test_generate = efx_ef100_irq_test_generate, |
| .irq_disable_non_ev = efx_port_dummy_op_void, |
| .push_irq_moderation = efx_channel_dummy_op_void, |
| .min_interrupt_mode = EFX_INT_MODE_MSIX, |
| .map_reset_reason = ef100_map_reset_reason, |
| .map_reset_flags = ef100_map_reset_flags, |
| .reset = ef100_reset, |
| |
| .check_caps = ef100_check_caps, |
| |
| .ev_probe = ef100_ev_probe, |
| .ev_init = ef100_ev_init, |
| .ev_fini = efx_mcdi_ev_fini, |
| .ev_remove = efx_mcdi_ev_remove, |
| .irq_handle_msi = ef100_msi_interrupt, |
| .ev_process = ef100_ev_process, |
| .ev_read_ack = ef100_ev_read_ack, |
| .ev_test_generate = efx_ef100_ev_test_generate, |
| .tx_probe = ef100_tx_probe, |
| .tx_init = ef100_tx_init, |
| .tx_write = ef100_tx_write, |
| .tx_enqueue = ef100_enqueue_skb, |
| .rx_probe = efx_mcdi_rx_probe, |
| .rx_init = efx_mcdi_rx_init, |
| .rx_remove = efx_mcdi_rx_remove, |
| .rx_write = ef100_rx_write, |
| .rx_packet = __ef100_rx_packet, |
| .rx_buf_hash_valid = ef100_rx_buf_hash_valid, |
| .fini_dmaq = efx_fini_dmaq, |
| .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, |
| .filter_table_probe = ef100_filter_table_up, |
| .filter_table_restore = efx_mcdi_filter_table_restore, |
| .filter_table_remove = ef100_filter_table_down, |
| .filter_insert = efx_mcdi_filter_insert, |
| .filter_remove_safe = efx_mcdi_filter_remove_safe, |
| .filter_get_safe = efx_mcdi_filter_get_safe, |
| .filter_clear_rx = efx_mcdi_filter_clear_rx, |
| .filter_count_rx_used = efx_mcdi_filter_count_rx_used, |
| .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, |
| .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, |
| #ifdef CONFIG_RFS_ACCEL |
| .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, |
| #endif |
| |
| .get_phys_port_id = efx_ef100_get_phys_port_id, |
| |
| .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, |
| .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, |
| .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, |
| .rx_hash_key_size = 40, |
| .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, |
| .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, |
| .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, |
| .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, |
| .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, |
| |
| .reconfigure_mac = ef100_reconfigure_mac, |
| .reconfigure_port = efx_mcdi_port_reconfigure, |
| .test_nvram = efx_new_mcdi_nvram_test_all, |
| .describe_stats = ef100_describe_stats, |
| .start_stats = efx_mcdi_mac_start_stats, |
| .update_stats = ef100_update_stats, |
| .pull_stats = efx_mcdi_mac_pull_stats, |
| .stop_stats = efx_mcdi_mac_stop_stats, |
| |
| /* Per-type bar/size configuration not used on ef100. Location of |
| * registers is defined by extended capabilities. |
| */ |
| .mem_bar = NULL, |
| .mem_map_size = NULL, |
| |
| }; |
| |
| const struct efx_nic_type ef100_vf_nic_type = { |
| .revision = EFX_REV_EF100, |
| .is_vf = true, |
| .probe = ef100_probe_vf, |
| .offload_features = EF100_OFFLOAD_FEATURES, |
| .mcdi_max_ver = 2, |
| .mcdi_request = ef100_mcdi_request, |
| .mcdi_poll_response = ef100_mcdi_poll_response, |
| .mcdi_read_response = ef100_mcdi_read_response, |
| .mcdi_poll_reboot = ef100_mcdi_poll_reboot, |
| .mcdi_reboot_detected = ef100_mcdi_reboot_detected, |
| .irq_enable_master = efx_port_dummy_op_void, |
| .irq_test_generate = efx_ef100_irq_test_generate, |
| .irq_disable_non_ev = efx_port_dummy_op_void, |
| .push_irq_moderation = efx_channel_dummy_op_void, |
| .min_interrupt_mode = EFX_INT_MODE_MSIX, |
| .map_reset_reason = ef100_map_reset_reason, |
| .map_reset_flags = ef100_map_reset_flags, |
| .reset = ef100_reset, |
| .check_caps = ef100_check_caps, |
| .ev_probe = ef100_ev_probe, |
| .ev_init = ef100_ev_init, |
| .ev_fini = efx_mcdi_ev_fini, |
| .ev_remove = efx_mcdi_ev_remove, |
| .irq_handle_msi = ef100_msi_interrupt, |
| .ev_process = ef100_ev_process, |
| .ev_read_ack = ef100_ev_read_ack, |
| .ev_test_generate = efx_ef100_ev_test_generate, |
| .tx_probe = ef100_tx_probe, |
| .tx_init = ef100_tx_init, |
| .tx_write = ef100_tx_write, |
| .tx_enqueue = ef100_enqueue_skb, |
| .rx_probe = efx_mcdi_rx_probe, |
| .rx_init = efx_mcdi_rx_init, |
| .rx_remove = efx_mcdi_rx_remove, |
| .rx_write = ef100_rx_write, |
| .rx_packet = __ef100_rx_packet, |
| .rx_buf_hash_valid = ef100_rx_buf_hash_valid, |
| .fini_dmaq = efx_fini_dmaq, |
| .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, |
| .filter_table_probe = ef100_filter_table_up, |
| .filter_table_restore = efx_mcdi_filter_table_restore, |
| .filter_table_remove = ef100_filter_table_down, |
| .filter_insert = efx_mcdi_filter_insert, |
| .filter_remove_safe = efx_mcdi_filter_remove_safe, |
| .filter_get_safe = efx_mcdi_filter_get_safe, |
| .filter_clear_rx = efx_mcdi_filter_clear_rx, |
| .filter_count_rx_used = efx_mcdi_filter_count_rx_used, |
| .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, |
| .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, |
| #ifdef CONFIG_RFS_ACCEL |
| .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, |
| #endif |
| |
| .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, |
| .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, |
| .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, |
| .rx_hash_key_size = 40, |
| .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, |
| .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, |
| .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, |
| |
| .reconfigure_mac = ef100_reconfigure_mac, |
| .test_nvram = efx_new_mcdi_nvram_test_all, |
| .describe_stats = ef100_describe_stats, |
| .start_stats = efx_mcdi_mac_start_stats, |
| .update_stats = ef100_update_stats, |
| .pull_stats = efx_mcdi_mac_pull_stats, |
| .stop_stats = efx_mcdi_mac_stop_stats, |
| |
| .mem_bar = NULL, |
| .mem_map_size = NULL, |
| |
| }; |
| |
| static int compare_versions(const char *a, const char *b) |
| { |
| int a_major, a_minor, a_point, a_patch; |
| int b_major, b_minor, b_point, b_patch; |
| int a_matched, b_matched; |
| |
| a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch); |
| b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch); |
| |
| if (a_matched == 4 && b_matched != 4) |
| return +1; |
| |
| if (a_matched != 4 && b_matched == 4) |
| return -1; |
| |
| if (a_matched != 4 && b_matched != 4) |
| return 0; |
| |
| if (a_major != b_major) |
| return a_major - b_major; |
| |
| if (a_minor != b_minor) |
| return a_minor - b_minor; |
| |
| if (a_point != b_point) |
| return a_point - b_point; |
| |
| return a_patch - b_patch; |
| } |
| |
| enum ef100_tlv_state_machine { |
| EF100_TLV_TYPE, |
| EF100_TLV_TYPE_CONT, |
| EF100_TLV_LENGTH, |
| EF100_TLV_VALUE |
| }; |
| |
| struct ef100_tlv_state { |
| enum ef100_tlv_state_machine state; |
| u64 value; |
| u32 value_offset; |
| u16 type; |
| u8 len; |
| }; |
| |
| static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte) |
| { |
| switch (state->state) { |
| case EF100_TLV_TYPE: |
| state->type = byte & 0x7f; |
| state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT |
| : EF100_TLV_LENGTH; |
| /* Clear ready to read in a new entry */ |
| state->value = 0; |
| state->value_offset = 0; |
| return 0; |
| case EF100_TLV_TYPE_CONT: |
| state->type |= byte << 7; |
| state->state = EF100_TLV_LENGTH; |
| return 0; |
| case EF100_TLV_LENGTH: |
| state->len = byte; |
| /* We only handle TLVs that fit in a u64 */ |
| if (state->len > sizeof(state->value)) |
| return -EOPNOTSUPP; |
| /* len may be zero, implying a value of zero */ |
| state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE; |
| return 0; |
| case EF100_TLV_VALUE: |
| state->value |= ((u64)byte) << (state->value_offset * 8); |
| state->value_offset++; |
| if (state->value_offset >= state->len) |
| state->state = EF100_TLV_TYPE; |
| return 0; |
| default: /* state machine error, can't happen */ |
| WARN_ON_ONCE(1); |
| return -EIO; |
| } |
| } |
| |
| static int ef100_process_design_param(struct efx_nic *efx, |
| const struct ef100_tlv_state *reader) |
| { |
| struct ef100_nic_data *nic_data = efx->nic_data; |
| |
| switch (reader->type) { |
| case ESE_EF100_DP_GZ_PAD: /* padding, skip it */ |
| return 0; |
| case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS: |
| /* Driver doesn't support timestamping yet, so we don't care */ |
| return 0; |
| case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS: |
| /* Driver doesn't support unsolicited-event credits yet, so |
| * we don't care |
| */ |
| return 0; |
| case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE: |
| /* Driver doesn't manage the NMMU (so we don't care) */ |
| return 0; |
| case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS: |
| /* Driver uses CHECKSUM_COMPLETE, so we don't care about |
| * protocol checksum validation |
| */ |
| return 0; |
| case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN: |
| nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff); |
| return 0; |
| case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS: |
| /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */ |
| if (!reader->value) { |
| netif_err(efx, probe, efx->net_dev, |
| "TSO_MAX_HDR_NUM_SEGS < 1\n"); |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY: |
| case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY: |
| /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by |
| * EFX_MIN_DMAQ_SIZE, so we just need to check that |
| * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY. |
| * This is very unlikely to fail. |
| */ |
| if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE || |
| EFX_MIN_DMAQ_SIZE % (u32)reader->value) { |
| netif_err(efx, probe, efx->net_dev, |
| "%s size granularity is %llu, can't guarantee safety\n", |
| reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ", |
| reader->value); |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN: |
| nic_data->tso_max_payload_len = min_t(u64, reader->value, GSO_MAX_SIZE); |
| efx->net_dev->gso_max_size = nic_data->tso_max_payload_len; |
| return 0; |
| case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS: |
| nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff); |
| efx->net_dev->gso_max_segs = nic_data->tso_max_payload_num_segs; |
| return 0; |
| case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES: |
| nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff); |
| return 0; |
| case ESE_EF100_DP_GZ_COMPAT: |
| if (reader->value) { |
| netif_err(efx, probe, efx->net_dev, |
| "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n", |
| reader->value); |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN: |
| /* Driver doesn't use mem2mem transfers */ |
| return 0; |
| case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS: |
| /* Driver doesn't currently use EVQ_TIMER */ |
| return 0; |
| case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES: |
| /* Driver doesn't manage the NMMU (so we don't care) */ |
| return 0; |
| case ESE_EF100_DP_GZ_VI_STRIDES: |
| /* We never try to set the VI stride, and we don't rely on |
| * being able to find VIs past VI 0 until after we've learned |
| * the current stride from MC_CMD_GET_CAPABILITIES. |
| * So the value of this shouldn't matter. |
| */ |
| if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT) |
| netif_dbg(efx, probe, efx->net_dev, |
| "NIC has other than default VI_STRIDES (mask " |
| "%#llx), early probing might use wrong one\n", |
| reader->value); |
| return 0; |
| case ESE_EF100_DP_GZ_RX_MAX_RUNT: |
| /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't |
| * care whether it indicates runt or overlength for any given |
| * packet, so we don't care about this parameter. |
| */ |
| return 0; |
| default: |
| /* Host interface says "Drivers should ignore design parameters |
| * that they do not recognise." |
| */ |
| netif_dbg(efx, probe, efx->net_dev, |
| "Ignoring unrecognised design parameter %u\n", |
| reader->type); |
| return 0; |
| } |
| } |
| |
| static int ef100_check_design_params(struct efx_nic *efx) |
| { |
| struct ef100_tlv_state reader = {}; |
| u32 total_len, offset = 0; |
| efx_dword_t reg; |
| int rc = 0, i; |
| u32 data; |
| |
| efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN); |
| total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0); |
| netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n", |
| total_len); |
| while (offset < total_len) { |
| efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset); |
| data = EFX_DWORD_FIELD(reg, EFX_DWORD_0); |
| for (i = 0; i < sizeof(data); i++) { |
| rc = ef100_tlv_feed(&reader, data); |
| /* Got a complete value? */ |
| if (!rc && reader.state == EF100_TLV_TYPE) |
| rc = ef100_process_design_param(efx, &reader); |
| if (rc) |
| goto out; |
| data >>= 8; |
| offset++; |
| } |
| } |
| /* Check we didn't end halfway through a TLV entry, which could either |
| * mean that the TLV stream is truncated or just that it's corrupted |
| * and our state machine is out of sync. |
| */ |
| if (reader.state != EF100_TLV_TYPE) { |
| if (reader.state == EF100_TLV_TYPE_CONT) |
| netif_err(efx, probe, efx->net_dev, |
| "truncated design parameter (incomplete type %u)\n", |
| reader.type); |
| else |
| netif_err(efx, probe, efx->net_dev, |
| "truncated design parameter %u\n", |
| reader.type); |
| rc = -EIO; |
| } |
| out: |
| return rc; |
| } |
| |
| /* NIC probe and remove |
| */ |
| static int ef100_probe_main(struct efx_nic *efx) |
| { |
| unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]); |
| struct net_device *net_dev = efx->net_dev; |
| struct ef100_nic_data *nic_data; |
| char fw_version[32]; |
| int i, rc; |
| |
| if (WARN_ON(bar_size == 0)) |
| return -EIO; |
| |
| nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); |
| if (!nic_data) |
| return -ENOMEM; |
| efx->nic_data = nic_data; |
| nic_data->efx = efx; |
| net_dev->features |= efx->type->offload_features; |
| net_dev->hw_features |= efx->type->offload_features; |
| net_dev->hw_enc_features |= efx->type->offload_features; |
| net_dev->vlan_features |= NETIF_F_HW_CSUM | NETIF_F_SG | |
| NETIF_F_HIGHDMA | NETIF_F_ALL_TSO; |
| |
| /* Populate design-parameter defaults */ |
| nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT; |
| nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT; |
| nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT; |
| nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT; |
| net_dev->gso_max_segs = ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT; |
| /* Read design parameters */ |
| rc = ef100_check_design_params(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "Unsupported design parameters\n"); |
| goto fail; |
| } |
| |
| /* we assume later that we can copy from this buffer in dwords */ |
| BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); |
| |
| /* MCDI buffers must be 256 byte aligned. */ |
| rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN, |
| GFP_KERNEL); |
| if (rc) |
| goto fail; |
| |
| /* Get the MC's warm boot count. In case it's rebooting right |
| * now, be prepared to retry. |
| */ |
| i = 0; |
| for (;;) { |
| rc = ef100_get_warm_boot_count(efx); |
| if (rc >= 0) |
| break; |
| if (++i == 5) |
| goto fail; |
| ssleep(1); |
| } |
| nic_data->warm_boot_count = rc; |
| |
| /* In case we're recovering from a crash (kexec), we want to |
| * cancel any outstanding request by the previous user of this |
| * function. We send a special message using the least |
| * significant bits of the 'high' (doorbell) register. |
| */ |
| _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD)); |
| |
| /* Post-IO section. */ |
| |
| rc = efx_mcdi_init(efx); |
| if (!rc && efx->mcdi->fn_flags & |
| (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) { |
| netif_info(efx, probe, efx->net_dev, |
| "No network port on this PCI function"); |
| rc = -ENODEV; |
| } |
| if (rc) |
| goto fail; |
| /* Reset (most) configuration for this function */ |
| rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); |
| if (rc) |
| goto fail; |
| /* Enable event logging */ |
| rc = efx_mcdi_log_ctrl(efx, true, false, 0); |
| if (rc) |
| goto fail; |
| |
| rc = efx_get_pf_index(efx, &nic_data->pf_index); |
| if (rc) |
| goto fail; |
| |
| rc = efx_ef100_init_datapath_caps(efx); |
| if (rc < 0) |
| goto fail; |
| |
| efx->max_vis = EF100_MAX_VIS; |
| |
| rc = efx_mcdi_port_get_number(efx); |
| if (rc < 0) |
| goto fail; |
| efx->port_num = rc; |
| |
| efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version)); |
| netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version); |
| |
| if (compare_versions(fw_version, "1.1.0.1000") < 0) { |
| netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n"); |
| rc = -EINVAL; |
| goto fail; |
| } |
| |
| if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) { |
| netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n"); |
| rc = -EINVAL; |
| goto fail; |
| } |
| |
| rc = ef100_phy_probe(efx); |
| if (rc) |
| goto fail; |
| |
| down_write(&efx->filter_sem); |
| rc = ef100_filter_table_probe(efx); |
| up_write(&efx->filter_sem); |
| if (rc) |
| goto fail; |
| |
| netdev_rss_key_fill(efx->rss_context.rx_hash_key, |
| sizeof(efx->rss_context.rx_hash_key)); |
| |
| /* Don't fail init if RSS setup doesn't work. */ |
| efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels); |
| |
| rc = ef100_register_netdev(efx); |
| if (rc) |
| goto fail; |
| |
| return 0; |
| fail: |
| return rc; |
| } |
| |
| int ef100_probe_pf(struct efx_nic *efx) |
| { |
| struct net_device *net_dev = efx->net_dev; |
| struct ef100_nic_data *nic_data; |
| int rc = ef100_probe_main(efx); |
| |
| if (rc) |
| goto fail; |
| |
| nic_data = efx->nic_data; |
| rc = ef100_get_mac_address(efx, net_dev->perm_addr); |
| if (rc) |
| goto fail; |
| /* Assign MAC address */ |
| eth_hw_addr_set(net_dev, net_dev->perm_addr); |
| memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN); |
| |
| return 0; |
| |
| fail: |
| return rc; |
| } |
| |
| int ef100_probe_vf(struct efx_nic *efx) |
| { |
| return ef100_probe_main(efx); |
| } |
| |
| void ef100_remove(struct efx_nic *efx) |
| { |
| struct ef100_nic_data *nic_data = efx->nic_data; |
| |
| ef100_unregister_netdev(efx); |
| |
| down_write(&efx->filter_sem); |
| efx_mcdi_filter_table_remove(efx); |
| up_write(&efx->filter_sem); |
| efx_fini_channels(efx); |
| kfree(efx->phy_data); |
| efx->phy_data = NULL; |
| efx_mcdi_detach(efx); |
| efx_mcdi_fini(efx); |
| if (nic_data) |
| efx_nic_free_buffer(efx, &nic_data->mcdi_buf); |
| kfree(nic_data); |
| efx->nic_data = NULL; |
| } |