| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/mm/page_alloc.c |
| * |
| * Manages the free list, the system allocates free pages here. |
| * Note that kmalloc() lives in slab.c |
| * |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * Swap reorganised 29.12.95, Stephen Tweedie |
| * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
| * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 |
| * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
| * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 |
| * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 |
| * (lots of bits borrowed from Ingo Molnar & Andrew Morton) |
| */ |
| |
| #include <linux/stddef.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/interrupt.h> |
| #include <linux/pagemap.h> |
| #include <linux/jiffies.h> |
| #include <linux/memblock.h> |
| #include <linux/compiler.h> |
| #include <linux/kernel.h> |
| #include <linux/kasan.h> |
| #include <linux/module.h> |
| #include <linux/suspend.h> |
| #include <linux/pagevec.h> |
| #include <linux/blkdev.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include <linux/oom.h> |
| #include <linux/topology.h> |
| #include <linux/sysctl.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuset.h> |
| #include <linux/memory_hotplug.h> |
| #include <linux/nodemask.h> |
| #include <linux/vmalloc.h> |
| #include <linux/vmstat.h> |
| #include <linux/mempolicy.h> |
| #include <linux/memremap.h> |
| #include <linux/stop_machine.h> |
| #include <linux/random.h> |
| #include <linux/sort.h> |
| #include <linux/pfn.h> |
| #include <linux/backing-dev.h> |
| #include <linux/fault-inject.h> |
| #include <linux/page-isolation.h> |
| #include <linux/debugobjects.h> |
| #include <linux/kmemleak.h> |
| #include <linux/compaction.h> |
| #include <trace/events/kmem.h> |
| #include <trace/events/oom.h> |
| #include <linux/prefetch.h> |
| #include <linux/mm_inline.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/migrate.h> |
| #include <linux/hugetlb.h> |
| #include <linux/sched/rt.h> |
| #include <linux/sched/mm.h> |
| #include <linux/page_owner.h> |
| #include <linux/page_table_check.h> |
| #include <linux/kthread.h> |
| #include <linux/memcontrol.h> |
| #include <linux/ftrace.h> |
| #include <linux/lockdep.h> |
| #include <linux/nmi.h> |
| #include <linux/psi.h> |
| #include <linux/padata.h> |
| #include <linux/khugepaged.h> |
| #include <linux/buffer_head.h> |
| #include <linux/delayacct.h> |
| #include <asm/sections.h> |
| #include <asm/tlbflush.h> |
| #include <asm/div64.h> |
| #include "internal.h" |
| #include "shuffle.h" |
| #include "page_reporting.h" |
| #include "swap.h" |
| |
| /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ |
| typedef int __bitwise fpi_t; |
| |
| /* No special request */ |
| #define FPI_NONE ((__force fpi_t)0) |
| |
| /* |
| * Skip free page reporting notification for the (possibly merged) page. |
| * This does not hinder free page reporting from grabbing the page, |
| * reporting it and marking it "reported" - it only skips notifying |
| * the free page reporting infrastructure about a newly freed page. For |
| * example, used when temporarily pulling a page from a freelist and |
| * putting it back unmodified. |
| */ |
| #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) |
| |
| /* |
| * Place the (possibly merged) page to the tail of the freelist. Will ignore |
| * page shuffling (relevant code - e.g., memory onlining - is expected to |
| * shuffle the whole zone). |
| * |
| * Note: No code should rely on this flag for correctness - it's purely |
| * to allow for optimizations when handing back either fresh pages |
| * (memory onlining) or untouched pages (page isolation, free page |
| * reporting). |
| */ |
| #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) |
| |
| /* |
| * Don't poison memory with KASAN (only for the tag-based modes). |
| * During boot, all non-reserved memblock memory is exposed to page_alloc. |
| * Poisoning all that memory lengthens boot time, especially on systems with |
| * large amount of RAM. This flag is used to skip that poisoning. |
| * This is only done for the tag-based KASAN modes, as those are able to |
| * detect memory corruptions with the memory tags assigned by default. |
| * All memory allocated normally after boot gets poisoned as usual. |
| */ |
| #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) |
| |
| /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
| static DEFINE_MUTEX(pcp_batch_high_lock); |
| #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) |
| |
| #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) |
| /* |
| * On SMP, spin_trylock is sufficient protection. |
| * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. |
| */ |
| #define pcp_trylock_prepare(flags) do { } while (0) |
| #define pcp_trylock_finish(flag) do { } while (0) |
| #else |
| |
| /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ |
| #define pcp_trylock_prepare(flags) local_irq_save(flags) |
| #define pcp_trylock_finish(flags) local_irq_restore(flags) |
| #endif |
| |
| /* |
| * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid |
| * a migration causing the wrong PCP to be locked and remote memory being |
| * potentially allocated, pin the task to the CPU for the lookup+lock. |
| * preempt_disable is used on !RT because it is faster than migrate_disable. |
| * migrate_disable is used on RT because otherwise RT spinlock usage is |
| * interfered with and a high priority task cannot preempt the allocator. |
| */ |
| #ifndef CONFIG_PREEMPT_RT |
| #define pcpu_task_pin() preempt_disable() |
| #define pcpu_task_unpin() preempt_enable() |
| #else |
| #define pcpu_task_pin() migrate_disable() |
| #define pcpu_task_unpin() migrate_enable() |
| #endif |
| |
| /* |
| * Generic helper to lookup and a per-cpu variable with an embedded spinlock. |
| * Return value should be used with equivalent unlock helper. |
| */ |
| #define pcpu_spin_lock(type, member, ptr) \ |
| ({ \ |
| type *_ret; \ |
| pcpu_task_pin(); \ |
| _ret = this_cpu_ptr(ptr); \ |
| spin_lock(&_ret->member); \ |
| _ret; \ |
| }) |
| |
| #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \ |
| ({ \ |
| type *_ret; \ |
| pcpu_task_pin(); \ |
| _ret = this_cpu_ptr(ptr); \ |
| spin_lock_irqsave(&_ret->member, flags); \ |
| _ret; \ |
| }) |
| |
| #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \ |
| ({ \ |
| type *_ret; \ |
| pcpu_task_pin(); \ |
| _ret = this_cpu_ptr(ptr); \ |
| if (!spin_trylock_irqsave(&_ret->member, flags)) { \ |
| pcpu_task_unpin(); \ |
| _ret = NULL; \ |
| } \ |
| _ret; \ |
| }) |
| |
| #define pcpu_spin_unlock(member, ptr) \ |
| ({ \ |
| spin_unlock(&ptr->member); \ |
| pcpu_task_unpin(); \ |
| }) |
| |
| #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \ |
| ({ \ |
| spin_unlock_irqrestore(&ptr->member, flags); \ |
| pcpu_task_unpin(); \ |
| }) |
| |
| /* struct per_cpu_pages specific helpers. */ |
| #define pcp_spin_lock(ptr) \ |
| pcpu_spin_lock(struct per_cpu_pages, lock, ptr) |
| |
| #define pcp_spin_lock_irqsave(ptr, flags) \ |
| pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags) |
| |
| #define pcp_spin_trylock_irqsave(ptr, flags) \ |
| pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags) |
| |
| #define pcp_spin_unlock(ptr) \ |
| pcpu_spin_unlock(lock, ptr) |
| |
| #define pcp_spin_unlock_irqrestore(ptr, flags) \ |
| pcpu_spin_unlock_irqrestore(lock, ptr, flags) |
| #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
| DEFINE_PER_CPU(int, numa_node); |
| EXPORT_PER_CPU_SYMBOL(numa_node); |
| #endif |
| |
| DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); |
| |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| /* |
| * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. |
| * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. |
| * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() |
| * defined in <linux/topology.h>. |
| */ |
| DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ |
| EXPORT_PER_CPU_SYMBOL(_numa_mem_); |
| #endif |
| |
| static DEFINE_MUTEX(pcpu_drain_mutex); |
| |
| #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY |
| volatile unsigned long latent_entropy __latent_entropy; |
| EXPORT_SYMBOL(latent_entropy); |
| #endif |
| |
| /* |
| * Array of node states. |
| */ |
| nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
| [N_POSSIBLE] = NODE_MASK_ALL, |
| [N_ONLINE] = { { [0] = 1UL } }, |
| #ifndef CONFIG_NUMA |
| [N_NORMAL_MEMORY] = { { [0] = 1UL } }, |
| #ifdef CONFIG_HIGHMEM |
| [N_HIGH_MEMORY] = { { [0] = 1UL } }, |
| #endif |
| [N_MEMORY] = { { [0] = 1UL } }, |
| [N_CPU] = { { [0] = 1UL } }, |
| #endif /* NUMA */ |
| }; |
| EXPORT_SYMBOL(node_states); |
| |
| atomic_long_t _totalram_pages __read_mostly; |
| EXPORT_SYMBOL(_totalram_pages); |
| unsigned long totalreserve_pages __read_mostly; |
| unsigned long totalcma_pages __read_mostly; |
| |
| int percpu_pagelist_high_fraction; |
| gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
| DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); |
| EXPORT_SYMBOL(init_on_alloc); |
| |
| DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); |
| EXPORT_SYMBOL(init_on_free); |
| |
| static bool _init_on_alloc_enabled_early __read_mostly |
| = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); |
| static int __init early_init_on_alloc(char *buf) |
| { |
| |
| return kstrtobool(buf, &_init_on_alloc_enabled_early); |
| } |
| early_param("init_on_alloc", early_init_on_alloc); |
| |
| static bool _init_on_free_enabled_early __read_mostly |
| = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); |
| static int __init early_init_on_free(char *buf) |
| { |
| return kstrtobool(buf, &_init_on_free_enabled_early); |
| } |
| early_param("init_on_free", early_init_on_free); |
| |
| /* |
| * A cached value of the page's pageblock's migratetype, used when the page is |
| * put on a pcplist. Used to avoid the pageblock migratetype lookup when |
| * freeing from pcplists in most cases, at the cost of possibly becoming stale. |
| * Also the migratetype set in the page does not necessarily match the pcplist |
| * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any |
| * other index - this ensures that it will be put on the correct CMA freelist. |
| */ |
| static inline int get_pcppage_migratetype(struct page *page) |
| { |
| return page->index; |
| } |
| |
| static inline void set_pcppage_migratetype(struct page *page, int migratetype) |
| { |
| page->index = migratetype; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| /* |
| * The following functions are used by the suspend/hibernate code to temporarily |
| * change gfp_allowed_mask in order to avoid using I/O during memory allocations |
| * while devices are suspended. To avoid races with the suspend/hibernate code, |
| * they should always be called with system_transition_mutex held |
| * (gfp_allowed_mask also should only be modified with system_transition_mutex |
| * held, unless the suspend/hibernate code is guaranteed not to run in parallel |
| * with that modification). |
| */ |
| |
| static gfp_t saved_gfp_mask; |
| |
| void pm_restore_gfp_mask(void) |
| { |
| WARN_ON(!mutex_is_locked(&system_transition_mutex)); |
| if (saved_gfp_mask) { |
| gfp_allowed_mask = saved_gfp_mask; |
| saved_gfp_mask = 0; |
| } |
| } |
| |
| void pm_restrict_gfp_mask(void) |
| { |
| WARN_ON(!mutex_is_locked(&system_transition_mutex)); |
| WARN_ON(saved_gfp_mask); |
| saved_gfp_mask = gfp_allowed_mask; |
| gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); |
| } |
| |
| bool pm_suspended_storage(void) |
| { |
| if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
| return false; |
| return true; |
| } |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
| unsigned int pageblock_order __read_mostly; |
| #endif |
| |
| static void __free_pages_ok(struct page *page, unsigned int order, |
| fpi_t fpi_flags); |
| |
| /* |
| * results with 256, 32 in the lowmem_reserve sysctl: |
| * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) |
| * 1G machine -> (16M dma, 784M normal, 224M high) |
| * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA |
| * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL |
| * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
| * |
| * TBD: should special case ZONE_DMA32 machines here - in those we normally |
| * don't need any ZONE_NORMAL reservation |
| */ |
| int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { |
| #ifdef CONFIG_ZONE_DMA |
| [ZONE_DMA] = 256, |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| [ZONE_DMA32] = 256, |
| #endif |
| [ZONE_NORMAL] = 32, |
| #ifdef CONFIG_HIGHMEM |
| [ZONE_HIGHMEM] = 0, |
| #endif |
| [ZONE_MOVABLE] = 0, |
| }; |
| |
| static char * const zone_names[MAX_NR_ZONES] = { |
| #ifdef CONFIG_ZONE_DMA |
| "DMA", |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| "DMA32", |
| #endif |
| "Normal", |
| #ifdef CONFIG_HIGHMEM |
| "HighMem", |
| #endif |
| "Movable", |
| #ifdef CONFIG_ZONE_DEVICE |
| "Device", |
| #endif |
| }; |
| |
| const char * const migratetype_names[MIGRATE_TYPES] = { |
| "Unmovable", |
| "Movable", |
| "Reclaimable", |
| "HighAtomic", |
| #ifdef CONFIG_CMA |
| "CMA", |
| #endif |
| #ifdef CONFIG_MEMORY_ISOLATION |
| "Isolate", |
| #endif |
| }; |
| |
| compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { |
| [NULL_COMPOUND_DTOR] = NULL, |
| [COMPOUND_PAGE_DTOR] = free_compound_page, |
| #ifdef CONFIG_HUGETLB_PAGE |
| [HUGETLB_PAGE_DTOR] = free_huge_page, |
| #endif |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, |
| #endif |
| }; |
| |
| int min_free_kbytes = 1024; |
| int user_min_free_kbytes = -1; |
| int watermark_boost_factor __read_mostly = 15000; |
| int watermark_scale_factor = 10; |
| |
| static unsigned long nr_kernel_pages __initdata; |
| static unsigned long nr_all_pages __initdata; |
| static unsigned long dma_reserve __initdata; |
| |
| static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; |
| static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; |
| static unsigned long required_kernelcore __initdata; |
| static unsigned long required_kernelcore_percent __initdata; |
| static unsigned long required_movablecore __initdata; |
| static unsigned long required_movablecore_percent __initdata; |
| static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; |
| bool mirrored_kernelcore __initdata_memblock; |
| |
| /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ |
| int movable_zone; |
| EXPORT_SYMBOL(movable_zone); |
| |
| #if MAX_NUMNODES > 1 |
| unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; |
| unsigned int nr_online_nodes __read_mostly = 1; |
| EXPORT_SYMBOL(nr_node_ids); |
| EXPORT_SYMBOL(nr_online_nodes); |
| #endif |
| |
| int page_group_by_mobility_disabled __read_mostly; |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| /* |
| * During boot we initialize deferred pages on-demand, as needed, but once |
| * page_alloc_init_late() has finished, the deferred pages are all initialized, |
| * and we can permanently disable that path. |
| */ |
| static DEFINE_STATIC_KEY_TRUE(deferred_pages); |
| |
| static inline bool deferred_pages_enabled(void) |
| { |
| return static_branch_unlikely(&deferred_pages); |
| } |
| |
| /* Returns true if the struct page for the pfn is uninitialised */ |
| static inline bool __meminit early_page_uninitialised(unsigned long pfn) |
| { |
| int nid = early_pfn_to_nid(pfn); |
| |
| if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Returns true when the remaining initialisation should be deferred until |
| * later in the boot cycle when it can be parallelised. |
| */ |
| static bool __meminit |
| defer_init(int nid, unsigned long pfn, unsigned long end_pfn) |
| { |
| static unsigned long prev_end_pfn, nr_initialised; |
| |
| if (early_page_ext_enabled()) |
| return false; |
| /* |
| * prev_end_pfn static that contains the end of previous zone |
| * No need to protect because called very early in boot before smp_init. |
| */ |
| if (prev_end_pfn != end_pfn) { |
| prev_end_pfn = end_pfn; |
| nr_initialised = 0; |
| } |
| |
| /* Always populate low zones for address-constrained allocations */ |
| if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) |
| return false; |
| |
| if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) |
| return true; |
| /* |
| * We start only with one section of pages, more pages are added as |
| * needed until the rest of deferred pages are initialized. |
| */ |
| nr_initialised++; |
| if ((nr_initialised > PAGES_PER_SECTION) && |
| (pfn & (PAGES_PER_SECTION - 1)) == 0) { |
| NODE_DATA(nid)->first_deferred_pfn = pfn; |
| return true; |
| } |
| return false; |
| } |
| #else |
| static inline bool deferred_pages_enabled(void) |
| { |
| return false; |
| } |
| |
| static inline bool early_page_uninitialised(unsigned long pfn) |
| { |
| return false; |
| } |
| |
| static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) |
| { |
| return false; |
| } |
| #endif |
| |
| /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
| static inline unsigned long *get_pageblock_bitmap(const struct page *page, |
| unsigned long pfn) |
| { |
| #ifdef CONFIG_SPARSEMEM |
| return section_to_usemap(__pfn_to_section(pfn)); |
| #else |
| return page_zone(page)->pageblock_flags; |
| #endif /* CONFIG_SPARSEMEM */ |
| } |
| |
| static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) |
| { |
| #ifdef CONFIG_SPARSEMEM |
| pfn &= (PAGES_PER_SECTION-1); |
| #else |
| pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); |
| #endif /* CONFIG_SPARSEMEM */ |
| return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
| } |
| |
| static __always_inline |
| unsigned long __get_pfnblock_flags_mask(const struct page *page, |
| unsigned long pfn, |
| unsigned long mask) |
| { |
| unsigned long *bitmap; |
| unsigned long bitidx, word_bitidx; |
| unsigned long word; |
| |
| bitmap = get_pageblock_bitmap(page, pfn); |
| bitidx = pfn_to_bitidx(page, pfn); |
| word_bitidx = bitidx / BITS_PER_LONG; |
| bitidx &= (BITS_PER_LONG-1); |
| /* |
| * This races, without locks, with set_pfnblock_flags_mask(). Ensure |
| * a consistent read of the memory array, so that results, even though |
| * racy, are not corrupted. |
| */ |
| word = READ_ONCE(bitmap[word_bitidx]); |
| return (word >> bitidx) & mask; |
| } |
| |
| /** |
| * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages |
| * @page: The page within the block of interest |
| * @pfn: The target page frame number |
| * @mask: mask of bits that the caller is interested in |
| * |
| * Return: pageblock_bits flags |
| */ |
| unsigned long get_pfnblock_flags_mask(const struct page *page, |
| unsigned long pfn, unsigned long mask) |
| { |
| return __get_pfnblock_flags_mask(page, pfn, mask); |
| } |
| |
| static __always_inline int get_pfnblock_migratetype(const struct page *page, |
| unsigned long pfn) |
| { |
| return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); |
| } |
| |
| /** |
| * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages |
| * @page: The page within the block of interest |
| * @flags: The flags to set |
| * @pfn: The target page frame number |
| * @mask: mask of bits that the caller is interested in |
| */ |
| void set_pfnblock_flags_mask(struct page *page, unsigned long flags, |
| unsigned long pfn, |
| unsigned long mask) |
| { |
| unsigned long *bitmap; |
| unsigned long bitidx, word_bitidx; |
| unsigned long word; |
| |
| BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); |
| BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); |
| |
| bitmap = get_pageblock_bitmap(page, pfn); |
| bitidx = pfn_to_bitidx(page, pfn); |
| word_bitidx = bitidx / BITS_PER_LONG; |
| bitidx &= (BITS_PER_LONG-1); |
| |
| VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); |
| |
| mask <<= bitidx; |
| flags <<= bitidx; |
| |
| word = READ_ONCE(bitmap[word_bitidx]); |
| do { |
| } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); |
| } |
| |
| void set_pageblock_migratetype(struct page *page, int migratetype) |
| { |
| if (unlikely(page_group_by_mobility_disabled && |
| migratetype < MIGRATE_PCPTYPES)) |
| migratetype = MIGRATE_UNMOVABLE; |
| |
| set_pfnblock_flags_mask(page, (unsigned long)migratetype, |
| page_to_pfn(page), MIGRATETYPE_MASK); |
| } |
| |
| #ifdef CONFIG_DEBUG_VM |
| static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
| { |
| int ret = 0; |
| unsigned seq; |
| unsigned long pfn = page_to_pfn(page); |
| unsigned long sp, start_pfn; |
| |
| do { |
| seq = zone_span_seqbegin(zone); |
| start_pfn = zone->zone_start_pfn; |
| sp = zone->spanned_pages; |
| if (!zone_spans_pfn(zone, pfn)) |
| ret = 1; |
| } while (zone_span_seqretry(zone, seq)); |
| |
| if (ret) |
| pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
| pfn, zone_to_nid(zone), zone->name, |
| start_pfn, start_pfn + sp); |
| |
| return ret; |
| } |
| |
| static int page_is_consistent(struct zone *zone, struct page *page) |
| { |
| if (zone != page_zone(page)) |
| return 0; |
| |
| return 1; |
| } |
| /* |
| * Temporary debugging check for pages not lying within a given zone. |
| */ |
| static int __maybe_unused bad_range(struct zone *zone, struct page *page) |
| { |
| if (page_outside_zone_boundaries(zone, page)) |
| return 1; |
| if (!page_is_consistent(zone, page)) |
| return 1; |
| |
| return 0; |
| } |
| #else |
| static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) |
| { |
| return 0; |
| } |
| #endif |
| |
| static void bad_page(struct page *page, const char *reason) |
| { |
| static unsigned long resume; |
| static unsigned long nr_shown; |
| static unsigned long nr_unshown; |
| |
| /* |
| * Allow a burst of 60 reports, then keep quiet for that minute; |
| * or allow a steady drip of one report per second. |
| */ |
| if (nr_shown == 60) { |
| if (time_before(jiffies, resume)) { |
| nr_unshown++; |
| goto out; |
| } |
| if (nr_unshown) { |
| pr_alert( |
| "BUG: Bad page state: %lu messages suppressed\n", |
| nr_unshown); |
| nr_unshown = 0; |
| } |
| nr_shown = 0; |
| } |
| if (nr_shown++ == 0) |
| resume = jiffies + 60 * HZ; |
| |
| pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", |
| current->comm, page_to_pfn(page)); |
| dump_page(page, reason); |
| |
| print_modules(); |
| dump_stack(); |
| out: |
| /* Leave bad fields for debug, except PageBuddy could make trouble */ |
| page_mapcount_reset(page); /* remove PageBuddy */ |
| add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
| } |
| |
| static inline unsigned int order_to_pindex(int migratetype, int order) |
| { |
| int base = order; |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| if (order > PAGE_ALLOC_COSTLY_ORDER) { |
| VM_BUG_ON(order != pageblock_order); |
| return NR_LOWORDER_PCP_LISTS; |
| } |
| #else |
| VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); |
| #endif |
| |
| return (MIGRATE_PCPTYPES * base) + migratetype; |
| } |
| |
| static inline int pindex_to_order(unsigned int pindex) |
| { |
| int order = pindex / MIGRATE_PCPTYPES; |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| if (pindex == NR_LOWORDER_PCP_LISTS) |
| order = pageblock_order; |
| #else |
| VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); |
| #endif |
| |
| return order; |
| } |
| |
| static inline bool pcp_allowed_order(unsigned int order) |
| { |
| if (order <= PAGE_ALLOC_COSTLY_ORDER) |
| return true; |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| if (order == pageblock_order) |
| return true; |
| #endif |
| return false; |
| } |
| |
| static inline void free_the_page(struct page *page, unsigned int order) |
| { |
| if (pcp_allowed_order(order)) /* Via pcp? */ |
| free_unref_page(page, order); |
| else |
| __free_pages_ok(page, order, FPI_NONE); |
| } |
| |
| /* |
| * Higher-order pages are called "compound pages". They are structured thusly: |
| * |
| * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
| * |
| * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
| * in bit 0 of page->compound_head. The rest of bits is pointer to head page. |
| * |
| * The first tail page's ->compound_dtor holds the offset in array of compound |
| * page destructors. See compound_page_dtors. |
| * |
| * The first tail page's ->compound_order holds the order of allocation. |
| * This usage means that zero-order pages may not be compound. |
| */ |
| |
| void free_compound_page(struct page *page) |
| { |
| mem_cgroup_uncharge(page_folio(page)); |
| free_the_page(page, compound_order(page)); |
| } |
| |
| static void prep_compound_head(struct page *page, unsigned int order) |
| { |
| set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); |
| set_compound_order(page, order); |
| atomic_set(compound_mapcount_ptr(page), -1); |
| atomic_set(compound_pincount_ptr(page), 0); |
| } |
| |
| static void prep_compound_tail(struct page *head, int tail_idx) |
| { |
| struct page *p = head + tail_idx; |
| |
| p->mapping = TAIL_MAPPING; |
| set_compound_head(p, head); |
| } |
| |
| void prep_compound_page(struct page *page, unsigned int order) |
| { |
| int i; |
| int nr_pages = 1 << order; |
| |
| __SetPageHead(page); |
| for (i = 1; i < nr_pages; i++) |
| prep_compound_tail(page, i); |
| |
| prep_compound_head(page, order); |
| } |
| |
| void destroy_large_folio(struct folio *folio) |
| { |
| enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; |
| |
| VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); |
| compound_page_dtors[dtor](&folio->page); |
| } |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| unsigned int _debug_guardpage_minorder; |
| |
| bool _debug_pagealloc_enabled_early __read_mostly |
| = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); |
| EXPORT_SYMBOL(_debug_pagealloc_enabled_early); |
| DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); |
| EXPORT_SYMBOL(_debug_pagealloc_enabled); |
| |
| DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); |
| |
| static int __init early_debug_pagealloc(char *buf) |
| { |
| return kstrtobool(buf, &_debug_pagealloc_enabled_early); |
| } |
| early_param("debug_pagealloc", early_debug_pagealloc); |
| |
| static int __init debug_guardpage_minorder_setup(char *buf) |
| { |
| unsigned long res; |
| |
| if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { |
| pr_err("Bad debug_guardpage_minorder value\n"); |
| return 0; |
| } |
| _debug_guardpage_minorder = res; |
| pr_info("Setting debug_guardpage_minorder to %lu\n", res); |
| return 0; |
| } |
| early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); |
| |
| static inline bool set_page_guard(struct zone *zone, struct page *page, |
| unsigned int order, int migratetype) |
| { |
| if (!debug_guardpage_enabled()) |
| return false; |
| |
| if (order >= debug_guardpage_minorder()) |
| return false; |
| |
| __SetPageGuard(page); |
| INIT_LIST_HEAD(&page->buddy_list); |
| set_page_private(page, order); |
| /* Guard pages are not available for any usage */ |
| __mod_zone_freepage_state(zone, -(1 << order), migratetype); |
| |
| return true; |
| } |
| |
| static inline void clear_page_guard(struct zone *zone, struct page *page, |
| unsigned int order, int migratetype) |
| { |
| if (!debug_guardpage_enabled()) |
| return; |
| |
| __ClearPageGuard(page); |
| |
| set_page_private(page, 0); |
| if (!is_migrate_isolate(migratetype)) |
| __mod_zone_freepage_state(zone, (1 << order), migratetype); |
| } |
| #else |
| static inline bool set_page_guard(struct zone *zone, struct page *page, |
| unsigned int order, int migratetype) { return false; } |
| static inline void clear_page_guard(struct zone *zone, struct page *page, |
| unsigned int order, int migratetype) {} |
| #endif |
| |
| /* |
| * Enable static keys related to various memory debugging and hardening options. |
| * Some override others, and depend on early params that are evaluated in the |
| * order of appearance. So we need to first gather the full picture of what was |
| * enabled, and then make decisions. |
| */ |
| void init_mem_debugging_and_hardening(void) |
| { |
| bool page_poisoning_requested = false; |
| |
| #ifdef CONFIG_PAGE_POISONING |
| /* |
| * Page poisoning is debug page alloc for some arches. If |
| * either of those options are enabled, enable poisoning. |
| */ |
| if (page_poisoning_enabled() || |
| (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && |
| debug_pagealloc_enabled())) { |
| static_branch_enable(&_page_poisoning_enabled); |
| page_poisoning_requested = true; |
| } |
| #endif |
| |
| if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && |
| page_poisoning_requested) { |
| pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " |
| "will take precedence over init_on_alloc and init_on_free\n"); |
| _init_on_alloc_enabled_early = false; |
| _init_on_free_enabled_early = false; |
| } |
| |
| if (_init_on_alloc_enabled_early) |
| static_branch_enable(&init_on_alloc); |
| else |
| static_branch_disable(&init_on_alloc); |
| |
| if (_init_on_free_enabled_early) |
| static_branch_enable(&init_on_free); |
| else |
| static_branch_disable(&init_on_free); |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| if (!debug_pagealloc_enabled()) |
| return; |
| |
| static_branch_enable(&_debug_pagealloc_enabled); |
| |
| if (!debug_guardpage_minorder()) |
| return; |
| |
| static_branch_enable(&_debug_guardpage_enabled); |
| #endif |
| } |
| |
| static inline void set_buddy_order(struct page *page, unsigned int order) |
| { |
| set_page_private(page, order); |
| __SetPageBuddy(page); |
| } |
| |
| #ifdef CONFIG_COMPACTION |
| static inline struct capture_control *task_capc(struct zone *zone) |
| { |
| struct capture_control *capc = current->capture_control; |
| |
| return unlikely(capc) && |
| !(current->flags & PF_KTHREAD) && |
| !capc->page && |
| capc->cc->zone == zone ? capc : NULL; |
| } |
| |
| static inline bool |
| compaction_capture(struct capture_control *capc, struct page *page, |
| int order, int migratetype) |
| { |
| if (!capc || order != capc->cc->order) |
| return false; |
| |
| /* Do not accidentally pollute CMA or isolated regions*/ |
| if (is_migrate_cma(migratetype) || |
| is_migrate_isolate(migratetype)) |
| return false; |
| |
| /* |
| * Do not let lower order allocations pollute a movable pageblock. |
| * This might let an unmovable request use a reclaimable pageblock |
| * and vice-versa but no more than normal fallback logic which can |
| * have trouble finding a high-order free page. |
| */ |
| if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) |
| return false; |
| |
| capc->page = page; |
| return true; |
| } |
| |
| #else |
| static inline struct capture_control *task_capc(struct zone *zone) |
| { |
| return NULL; |
| } |
| |
| static inline bool |
| compaction_capture(struct capture_control *capc, struct page *page, |
| int order, int migratetype) |
| { |
| return false; |
| } |
| #endif /* CONFIG_COMPACTION */ |
| |
| /* Used for pages not on another list */ |
| static inline void add_to_free_list(struct page *page, struct zone *zone, |
| unsigned int order, int migratetype) |
| { |
| struct free_area *area = &zone->free_area[order]; |
| |
| list_add(&page->buddy_list, &area->free_list[migratetype]); |
| area->nr_free++; |
| } |
| |
| /* Used for pages not on another list */ |
| static inline void add_to_free_list_tail(struct page *page, struct zone *zone, |
| unsigned int order, int migratetype) |
| { |
| struct free_area *area = &zone->free_area[order]; |
| |
| list_add_tail(&page->buddy_list, &area->free_list[migratetype]); |
| area->nr_free++; |
| } |
| |
| /* |
| * Used for pages which are on another list. Move the pages to the tail |
| * of the list - so the moved pages won't immediately be considered for |
| * allocation again (e.g., optimization for memory onlining). |
| */ |
| static inline void move_to_free_list(struct page *page, struct zone *zone, |
| unsigned int order, int migratetype) |
| { |
| struct free_area *area = &zone->free_area[order]; |
| |
| list_move_tail(&page->buddy_list, &area->free_list[migratetype]); |
| } |
| |
| static inline void del_page_from_free_list(struct page *page, struct zone *zone, |
| unsigned int order) |
| { |
| /* clear reported state and update reported page count */ |
| if (page_reported(page)) |
| __ClearPageReported(page); |
| |
| list_del(&page->buddy_list); |
| __ClearPageBuddy(page); |
| set_page_private(page, 0); |
| zone->free_area[order].nr_free--; |
| } |
| |
| /* |
| * If this is not the largest possible page, check if the buddy |
| * of the next-highest order is free. If it is, it's possible |
| * that pages are being freed that will coalesce soon. In case, |
| * that is happening, add the free page to the tail of the list |
| * so it's less likely to be used soon and more likely to be merged |
| * as a higher order page |
| */ |
| static inline bool |
| buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, |
| struct page *page, unsigned int order) |
| { |
| unsigned long higher_page_pfn; |
| struct page *higher_page; |
| |
| if (order >= MAX_ORDER - 2) |
| return false; |
| |
| higher_page_pfn = buddy_pfn & pfn; |
| higher_page = page + (higher_page_pfn - pfn); |
| |
| return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, |
| NULL) != NULL; |
| } |
| |
| /* |
| * Freeing function for a buddy system allocator. |
| * |
| * The concept of a buddy system is to maintain direct-mapped table |
| * (containing bit values) for memory blocks of various "orders". |
| * The bottom level table contains the map for the smallest allocatable |
| * units of memory (here, pages), and each level above it describes |
| * pairs of units from the levels below, hence, "buddies". |
| * At a high level, all that happens here is marking the table entry |
| * at the bottom level available, and propagating the changes upward |
| * as necessary, plus some accounting needed to play nicely with other |
| * parts of the VM system. |
| * At each level, we keep a list of pages, which are heads of continuous |
| * free pages of length of (1 << order) and marked with PageBuddy. |
| * Page's order is recorded in page_private(page) field. |
| * So when we are allocating or freeing one, we can derive the state of the |
| * other. That is, if we allocate a small block, and both were |
| * free, the remainder of the region must be split into blocks. |
| * If a block is freed, and its buddy is also free, then this |
| * triggers coalescing into a block of larger size. |
| * |
| * -- nyc |
| */ |
| |
| static inline void __free_one_page(struct page *page, |
| unsigned long pfn, |
| struct zone *zone, unsigned int order, |
| int migratetype, fpi_t fpi_flags) |
| { |
| struct capture_control *capc = task_capc(zone); |
| unsigned long buddy_pfn; |
| unsigned long combined_pfn; |
| struct page *buddy; |
| bool to_tail; |
| |
| VM_BUG_ON(!zone_is_initialized(zone)); |
| VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
| |
| VM_BUG_ON(migratetype == -1); |
| if (likely(!is_migrate_isolate(migratetype))) |
| __mod_zone_freepage_state(zone, 1 << order, migratetype); |
| |
| VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); |
| VM_BUG_ON_PAGE(bad_range(zone, page), page); |
| |
| while (order < MAX_ORDER - 1) { |
| if (compaction_capture(capc, page, order, migratetype)) { |
| __mod_zone_freepage_state(zone, -(1 << order), |
| migratetype); |
| return; |
| } |
| |
| buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); |
| if (!buddy) |
| goto done_merging; |
| |
| if (unlikely(order >= pageblock_order)) { |
| /* |
| * We want to prevent merge between freepages on pageblock |
| * without fallbacks and normal pageblock. Without this, |
| * pageblock isolation could cause incorrect freepage or CMA |
| * accounting or HIGHATOMIC accounting. |
| */ |
| int buddy_mt = get_pageblock_migratetype(buddy); |
| |
| if (migratetype != buddy_mt |
| && (!migratetype_is_mergeable(migratetype) || |
| !migratetype_is_mergeable(buddy_mt))) |
| goto done_merging; |
| } |
| |
| /* |
| * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, |
| * merge with it and move up one order. |
| */ |
| if (page_is_guard(buddy)) |
| clear_page_guard(zone, buddy, order, migratetype); |
| else |
| del_page_from_free_list(buddy, zone, order); |
| combined_pfn = buddy_pfn & pfn; |
| page = page + (combined_pfn - pfn); |
| pfn = combined_pfn; |
| order++; |
| } |
| |
| done_merging: |
| set_buddy_order(page, order); |
| |
| if (fpi_flags & FPI_TO_TAIL) |
| to_tail = true; |
| else if (is_shuffle_order(order)) |
| to_tail = shuffle_pick_tail(); |
| else |
| to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); |
| |
| if (to_tail) |
| add_to_free_list_tail(page, zone, order, migratetype); |
| else |
| add_to_free_list(page, zone, order, migratetype); |
| |
| /* Notify page reporting subsystem of freed page */ |
| if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) |
| page_reporting_notify_free(order); |
| } |
| |
| /** |
| * split_free_page() -- split a free page at split_pfn_offset |
| * @free_page: the original free page |
| * @order: the order of the page |
| * @split_pfn_offset: split offset within the page |
| * |
| * Return -ENOENT if the free page is changed, otherwise 0 |
| * |
| * It is used when the free page crosses two pageblocks with different migratetypes |
| * at split_pfn_offset within the page. The split free page will be put into |
| * separate migratetype lists afterwards. Otherwise, the function achieves |
| * nothing. |
| */ |
| int split_free_page(struct page *free_page, |
| unsigned int order, unsigned long split_pfn_offset) |
| { |
| struct zone *zone = page_zone(free_page); |
| unsigned long free_page_pfn = page_to_pfn(free_page); |
| unsigned long pfn; |
| unsigned long flags; |
| int free_page_order; |
| int mt; |
| int ret = 0; |
| |
| if (split_pfn_offset == 0) |
| return ret; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| |
| if (!PageBuddy(free_page) || buddy_order(free_page) != order) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| mt = get_pageblock_migratetype(free_page); |
| if (likely(!is_migrate_isolate(mt))) |
| __mod_zone_freepage_state(zone, -(1UL << order), mt); |
| |
| del_page_from_free_list(free_page, zone, order); |
| for (pfn = free_page_pfn; |
| pfn < free_page_pfn + (1UL << order);) { |
| int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); |
| |
| free_page_order = min_t(unsigned int, |
| pfn ? __ffs(pfn) : order, |
| __fls(split_pfn_offset)); |
| __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, |
| mt, FPI_NONE); |
| pfn += 1UL << free_page_order; |
| split_pfn_offset -= (1UL << free_page_order); |
| /* we have done the first part, now switch to second part */ |
| if (split_pfn_offset == 0) |
| split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); |
| } |
| out: |
| spin_unlock_irqrestore(&zone->lock, flags); |
| return ret; |
| } |
| /* |
| * A bad page could be due to a number of fields. Instead of multiple branches, |
| * try and check multiple fields with one check. The caller must do a detailed |
| * check if necessary. |
| */ |
| static inline bool page_expected_state(struct page *page, |
| unsigned long check_flags) |
| { |
| if (unlikely(atomic_read(&page->_mapcount) != -1)) |
| return false; |
| |
| if (unlikely((unsigned long)page->mapping | |
| page_ref_count(page) | |
| #ifdef CONFIG_MEMCG |
| page->memcg_data | |
| #endif |
| (page->flags & check_flags))) |
| return false; |
| |
| return true; |
| } |
| |
| static const char *page_bad_reason(struct page *page, unsigned long flags) |
| { |
| const char *bad_reason = NULL; |
| |
| if (unlikely(atomic_read(&page->_mapcount) != -1)) |
| bad_reason = "nonzero mapcount"; |
| if (unlikely(page->mapping != NULL)) |
| bad_reason = "non-NULL mapping"; |
| if (unlikely(page_ref_count(page) != 0)) |
| bad_reason = "nonzero _refcount"; |
| if (unlikely(page->flags & flags)) { |
| if (flags == PAGE_FLAGS_CHECK_AT_PREP) |
| bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; |
| else |
| bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; |
| } |
| #ifdef CONFIG_MEMCG |
| if (unlikely(page->memcg_data)) |
| bad_reason = "page still charged to cgroup"; |
| #endif |
| return bad_reason; |
| } |
| |
| static void check_free_page_bad(struct page *page) |
| { |
| bad_page(page, |
| page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); |
| } |
| |
| static inline int check_free_page(struct page *page) |
| { |
| if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) |
| return 0; |
| |
| /* Something has gone sideways, find it */ |
| check_free_page_bad(page); |
| return 1; |
| } |
| |
| static int free_tail_pages_check(struct page *head_page, struct page *page) |
| { |
| int ret = 1; |
| |
| /* |
| * We rely page->lru.next never has bit 0 set, unless the page |
| * is PageTail(). Let's make sure that's true even for poisoned ->lru. |
| */ |
| BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); |
| |
| if (!IS_ENABLED(CONFIG_DEBUG_VM)) { |
| ret = 0; |
| goto out; |
| } |
| switch (page - head_page) { |
| case 1: |
| /* the first tail page: ->mapping may be compound_mapcount() */ |
| if (unlikely(compound_mapcount(page))) { |
| bad_page(page, "nonzero compound_mapcount"); |
| goto out; |
| } |
| break; |
| case 2: |
| /* |
| * the second tail page: ->mapping is |
| * deferred_list.next -- ignore value. |
| */ |
| break; |
| default: |
| if (page->mapping != TAIL_MAPPING) { |
| bad_page(page, "corrupted mapping in tail page"); |
| goto out; |
| } |
| break; |
| } |
| if (unlikely(!PageTail(page))) { |
| bad_page(page, "PageTail not set"); |
| goto out; |
| } |
| if (unlikely(compound_head(page) != head_page)) { |
| bad_page(page, "compound_head not consistent"); |
| goto out; |
| } |
| ret = 0; |
| out: |
| page->mapping = NULL; |
| clear_compound_head(page); |
| return ret; |
| } |
| |
| /* |
| * Skip KASAN memory poisoning when either: |
| * |
| * 1. Deferred memory initialization has not yet completed, |
| * see the explanation below. |
| * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, |
| * see the comment next to it. |
| * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, |
| * see the comment next to it. |
| * |
| * Poisoning pages during deferred memory init will greatly lengthen the |
| * process and cause problem in large memory systems as the deferred pages |
| * initialization is done with interrupt disabled. |
| * |
| * Assuming that there will be no reference to those newly initialized |
| * pages before they are ever allocated, this should have no effect on |
| * KASAN memory tracking as the poison will be properly inserted at page |
| * allocation time. The only corner case is when pages are allocated by |
| * on-demand allocation and then freed again before the deferred pages |
| * initialization is done, but this is not likely to happen. |
| */ |
| static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) |
| { |
| return deferred_pages_enabled() || |
| (!IS_ENABLED(CONFIG_KASAN_GENERIC) && |
| (fpi_flags & FPI_SKIP_KASAN_POISON)) || |
| PageSkipKASanPoison(page); |
| } |
| |
| static void kernel_init_pages(struct page *page, int numpages) |
| { |
| int i; |
| |
| /* s390's use of memset() could override KASAN redzones. */ |
| kasan_disable_current(); |
| for (i = 0; i < numpages; i++) |
| clear_highpage_kasan_tagged(page + i); |
| kasan_enable_current(); |
| } |
| |
| static __always_inline bool free_pages_prepare(struct page *page, |
| unsigned int order, bool check_free, fpi_t fpi_flags) |
| { |
| int bad = 0; |
| bool init = want_init_on_free(); |
| |
| VM_BUG_ON_PAGE(PageTail(page), page); |
| |
| trace_mm_page_free(page, order); |
| |
| if (unlikely(PageHWPoison(page)) && !order) { |
| /* |
| * Do not let hwpoison pages hit pcplists/buddy |
| * Untie memcg state and reset page's owner |
| */ |
| if (memcg_kmem_enabled() && PageMemcgKmem(page)) |
| __memcg_kmem_uncharge_page(page, order); |
| reset_page_owner(page, order); |
| page_table_check_free(page, order); |
| return false; |
| } |
| |
| /* |
| * Check tail pages before head page information is cleared to |
| * avoid checking PageCompound for order-0 pages. |
| */ |
| if (unlikely(order)) { |
| bool compound = PageCompound(page); |
| int i; |
| |
| VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); |
| |
| if (compound) { |
| ClearPageDoubleMap(page); |
| ClearPageHasHWPoisoned(page); |
| } |
| for (i = 1; i < (1 << order); i++) { |
| if (compound) |
| bad += free_tail_pages_check(page, page + i); |
| if (unlikely(check_free_page(page + i))) { |
| bad++; |
| continue; |
| } |
| (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| } |
| } |
| if (PageMappingFlags(page)) |
| page->mapping = NULL; |
| if (memcg_kmem_enabled() && PageMemcgKmem(page)) |
| __memcg_kmem_uncharge_page(page, order); |
| if (check_free) |
| bad += check_free_page(page); |
| if (bad) |
| return false; |
| |
| page_cpupid_reset_last(page); |
| page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| reset_page_owner(page, order); |
| page_table_check_free(page, order); |
| |
| if (!PageHighMem(page)) { |
| debug_check_no_locks_freed(page_address(page), |
| PAGE_SIZE << order); |
| debug_check_no_obj_freed(page_address(page), |
| PAGE_SIZE << order); |
| } |
| |
| kernel_poison_pages(page, 1 << order); |
| |
| /* |
| * As memory initialization might be integrated into KASAN, |
| * KASAN poisoning and memory initialization code must be |
| * kept together to avoid discrepancies in behavior. |
| * |
| * With hardware tag-based KASAN, memory tags must be set before the |
| * page becomes unavailable via debug_pagealloc or arch_free_page. |
| */ |
| if (!should_skip_kasan_poison(page, fpi_flags)) { |
| kasan_poison_pages(page, order, init); |
| |
| /* Memory is already initialized if KASAN did it internally. */ |
| if (kasan_has_integrated_init()) |
| init = false; |
| } |
| if (init) |
| kernel_init_pages(page, 1 << order); |
| |
| /* |
| * arch_free_page() can make the page's contents inaccessible. s390 |
| * does this. So nothing which can access the page's contents should |
| * happen after this. |
| */ |
| arch_free_page(page, order); |
| |
| debug_pagealloc_unmap_pages(page, 1 << order); |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_DEBUG_VM |
| /* |
| * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed |
| * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when |
| * moved from pcp lists to free lists. |
| */ |
| static bool free_pcp_prepare(struct page *page, unsigned int order) |
| { |
| return free_pages_prepare(page, order, true, FPI_NONE); |
| } |
| |
| static bool bulkfree_pcp_prepare(struct page *page) |
| { |
| if (debug_pagealloc_enabled_static()) |
| return check_free_page(page); |
| else |
| return false; |
| } |
| #else |
| /* |
| * With DEBUG_VM disabled, order-0 pages being freed are checked only when |
| * moving from pcp lists to free list in order to reduce overhead. With |
| * debug_pagealloc enabled, they are checked also immediately when being freed |
| * to the pcp lists. |
| */ |
| static bool free_pcp_prepare(struct page *page, unsigned int order) |
| { |
| if (debug_pagealloc_enabled_static()) |
| return free_pages_prepare(page, order, true, FPI_NONE); |
| else |
| return free_pages_prepare(page, order, false, FPI_NONE); |
| } |
| |
| static bool bulkfree_pcp_prepare(struct page *page) |
| { |
| return check_free_page(page); |
| } |
| #endif /* CONFIG_DEBUG_VM */ |
| |
| /* |
| * Frees a number of pages from the PCP lists |
| * Assumes all pages on list are in same zone. |
| * count is the number of pages to free. |
| */ |
| static void free_pcppages_bulk(struct zone *zone, int count, |
| struct per_cpu_pages *pcp, |
| int pindex) |
| { |
| int min_pindex = 0; |
| int max_pindex = NR_PCP_LISTS - 1; |
| unsigned int order; |
| bool isolated_pageblocks; |
| struct page *page; |
| |
| /* |
| * Ensure proper count is passed which otherwise would stuck in the |
| * below while (list_empty(list)) loop. |
| */ |
| count = min(pcp->count, count); |
| |
| /* Ensure requested pindex is drained first. */ |
| pindex = pindex - 1; |
| |
| /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ |
| spin_lock(&zone->lock); |
| isolated_pageblocks = has_isolate_pageblock(zone); |
| |
| while (count > 0) { |
| struct list_head *list; |
| int nr_pages; |
| |
| /* Remove pages from lists in a round-robin fashion. */ |
| do { |
| if (++pindex > max_pindex) |
| pindex = min_pindex; |
| list = &pcp->lists[pindex]; |
| if (!list_empty(list)) |
| break; |
| |
| if (pindex == max_pindex) |
| max_pindex--; |
| if (pindex == min_pindex) |
| min_pindex++; |
| } while (1); |
| |
| order = pindex_to_order(pindex); |
| nr_pages = 1 << order; |
| BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); |
| do { |
| int mt; |
| |
| page = list_last_entry(list, struct page, pcp_list); |
| mt = get_pcppage_migratetype(page); |
| |
| /* must delete to avoid corrupting pcp list */ |
| list_del(&page->pcp_list); |
| count -= nr_pages; |
| pcp->count -= nr_pages; |
| |
| if (bulkfree_pcp_prepare(page)) |
| continue; |
| |
| /* MIGRATE_ISOLATE page should not go to pcplists */ |
| VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); |
| /* Pageblock could have been isolated meanwhile */ |
| if (unlikely(isolated_pageblocks)) |
| mt = get_pageblock_migratetype(page); |
| |
| __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); |
| trace_mm_page_pcpu_drain(page, order, mt); |
| } while (count > 0 && !list_empty(list)); |
| } |
| |
| spin_unlock(&zone->lock); |
| } |
| |
| static void free_one_page(struct zone *zone, |
| struct page *page, unsigned long pfn, |
| unsigned int order, |
| int migratetype, fpi_t fpi_flags) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| if (unlikely(has_isolate_pageblock(zone) || |
| is_migrate_isolate(migratetype))) { |
| migratetype = get_pfnblock_migratetype(page, pfn); |
| } |
| __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| static void __meminit __init_single_page(struct page *page, unsigned long pfn, |
| unsigned long zone, int nid) |
| { |
| mm_zero_struct_page(page); |
| set_page_links(page, zone, nid, pfn); |
| init_page_count(page); |
| page_mapcount_reset(page); |
| page_cpupid_reset_last(page); |
| page_kasan_tag_reset(page); |
| |
| INIT_LIST_HEAD(&page->lru); |
| #ifdef WANT_PAGE_VIRTUAL |
| /* The shift won't overflow because ZONE_NORMAL is below 4G. */ |
| if (!is_highmem_idx(zone)) |
| set_page_address(page, __va(pfn << PAGE_SHIFT)); |
| #endif |
| } |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| static void __meminit init_reserved_page(unsigned long pfn) |
| { |
| pg_data_t *pgdat; |
| int nid, zid; |
| |
| if (!early_page_uninitialised(pfn)) |
| return; |
| |
| nid = early_pfn_to_nid(pfn); |
| pgdat = NODE_DATA(nid); |
| |
| for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| struct zone *zone = &pgdat->node_zones[zid]; |
| |
| if (zone_spans_pfn(zone, pfn)) |
| break; |
| } |
| __init_single_page(pfn_to_page(pfn), pfn, zid, nid); |
| } |
| #else |
| static inline void init_reserved_page(unsigned long pfn) |
| { |
| } |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| |
| /* |
| * Initialised pages do not have PageReserved set. This function is |
| * called for each range allocated by the bootmem allocator and |
| * marks the pages PageReserved. The remaining valid pages are later |
| * sent to the buddy page allocator. |
| */ |
| void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) |
| { |
| unsigned long start_pfn = PFN_DOWN(start); |
| unsigned long end_pfn = PFN_UP(end); |
| |
| for (; start_pfn < end_pfn; start_pfn++) { |
| if (pfn_valid(start_pfn)) { |
| struct page *page = pfn_to_page(start_pfn); |
| |
| init_reserved_page(start_pfn); |
| |
| /* Avoid false-positive PageTail() */ |
| INIT_LIST_HEAD(&page->lru); |
| |
| /* |
| * no need for atomic set_bit because the struct |
| * page is not visible yet so nobody should |
| * access it yet. |
| */ |
| __SetPageReserved(page); |
| } |
| } |
| } |
| |
| static void __free_pages_ok(struct page *page, unsigned int order, |
| fpi_t fpi_flags) |
| { |
| unsigned long flags; |
| int migratetype; |
| unsigned long pfn = page_to_pfn(page); |
| struct zone *zone = page_zone(page); |
| |
| if (!free_pages_prepare(page, order, true, fpi_flags)) |
| return; |
| |
| migratetype = get_pfnblock_migratetype(page, pfn); |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| if (unlikely(has_isolate_pageblock(zone) || |
| is_migrate_isolate(migratetype))) { |
| migratetype = get_pfnblock_migratetype(page, pfn); |
| } |
| __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| __count_vm_events(PGFREE, 1 << order); |
| } |
| |
| void __free_pages_core(struct page *page, unsigned int order) |
| { |
| unsigned int nr_pages = 1 << order; |
| struct page *p = page; |
| unsigned int loop; |
| |
| /* |
| * When initializing the memmap, __init_single_page() sets the refcount |
| * of all pages to 1 ("allocated"/"not free"). We have to set the |
| * refcount of all involved pages to 0. |
| */ |
| prefetchw(p); |
| for (loop = 0; loop < (nr_pages - 1); loop++, p++) { |
| prefetchw(p + 1); |
| __ClearPageReserved(p); |
| set_page_count(p, 0); |
| } |
| __ClearPageReserved(p); |
| set_page_count(p, 0); |
| |
| atomic_long_add(nr_pages, &page_zone(page)->managed_pages); |
| |
| /* |
| * Bypass PCP and place fresh pages right to the tail, primarily |
| * relevant for memory onlining. |
| */ |
| __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); |
| } |
| |
| #ifdef CONFIG_NUMA |
| |
| /* |
| * During memory init memblocks map pfns to nids. The search is expensive and |
| * this caches recent lookups. The implementation of __early_pfn_to_nid |
| * treats start/end as pfns. |
| */ |
| struct mminit_pfnnid_cache { |
| unsigned long last_start; |
| unsigned long last_end; |
| int last_nid; |
| }; |
| |
| static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; |
| |
| /* |
| * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. |
| */ |
| static int __meminit __early_pfn_to_nid(unsigned long pfn, |
| struct mminit_pfnnid_cache *state) |
| { |
| unsigned long start_pfn, end_pfn; |
| int nid; |
| |
| if (state->last_start <= pfn && pfn < state->last_end) |
| return state->last_nid; |
| |
| nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); |
| if (nid != NUMA_NO_NODE) { |
| state->last_start = start_pfn; |
| state->last_end = end_pfn; |
| state->last_nid = nid; |
| } |
| |
| return nid; |
| } |
| |
| int __meminit early_pfn_to_nid(unsigned long pfn) |
| { |
| static DEFINE_SPINLOCK(early_pfn_lock); |
| int nid; |
| |
| spin_lock(&early_pfn_lock); |
| nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); |
| if (nid < 0) |
| nid = first_online_node; |
| spin_unlock(&early_pfn_lock); |
| |
| return nid; |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| void __init memblock_free_pages(struct page *page, unsigned long pfn, |
| unsigned int order) |
| { |
| if (early_page_uninitialised(pfn)) |
| return; |
| __free_pages_core(page, order); |
| } |
| |
| /* |
| * Check that the whole (or subset of) a pageblock given by the interval of |
| * [start_pfn, end_pfn) is valid and within the same zone, before scanning it |
| * with the migration of free compaction scanner. |
| * |
| * Return struct page pointer of start_pfn, or NULL if checks were not passed. |
| * |
| * It's possible on some configurations to have a setup like node0 node1 node0 |
| * i.e. it's possible that all pages within a zones range of pages do not |
| * belong to a single zone. We assume that a border between node0 and node1 |
| * can occur within a single pageblock, but not a node0 node1 node0 |
| * interleaving within a single pageblock. It is therefore sufficient to check |
| * the first and last page of a pageblock and avoid checking each individual |
| * page in a pageblock. |
| */ |
| struct page *__pageblock_pfn_to_page(unsigned long start_pfn, |
| unsigned long end_pfn, struct zone *zone) |
| { |
| struct page *start_page; |
| struct page *end_page; |
| |
| /* end_pfn is one past the range we are checking */ |
| end_pfn--; |
| |
| if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) |
| return NULL; |
| |
| start_page = pfn_to_online_page(start_pfn); |
| if (!start_page) |
| return NULL; |
| |
| if (page_zone(start_page) != zone) |
| return NULL; |
| |
| end_page = pfn_to_page(end_pfn); |
| |
| /* This gives a shorter code than deriving page_zone(end_page) */ |
| if (page_zone_id(start_page) != page_zone_id(end_page)) |
| return NULL; |
| |
| return start_page; |
| } |
| |
| void set_zone_contiguous(struct zone *zone) |
| { |
| unsigned long block_start_pfn = zone->zone_start_pfn; |
| unsigned long block_end_pfn; |
| |
| block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); |
| for (; block_start_pfn < zone_end_pfn(zone); |
| block_start_pfn = block_end_pfn, |
| block_end_pfn += pageblock_nr_pages) { |
| |
| block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); |
| |
| if (!__pageblock_pfn_to_page(block_start_pfn, |
| block_end_pfn, zone)) |
| return; |
| cond_resched(); |
| } |
| |
| /* We confirm that there is no hole */ |
| zone->contiguous = true; |
| } |
| |
| void clear_zone_contiguous(struct zone *zone) |
| { |
| zone->contiguous = false; |
| } |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| static void __init deferred_free_range(unsigned long pfn, |
| unsigned long nr_pages) |
| { |
| struct page *page; |
| unsigned long i; |
| |
| if (!nr_pages) |
| return; |
| |
| page = pfn_to_page(pfn); |
| |
| /* Free a large naturally-aligned chunk if possible */ |
| if (nr_pages == pageblock_nr_pages && |
| (pfn & (pageblock_nr_pages - 1)) == 0) { |
| set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
| __free_pages_core(page, pageblock_order); |
| return; |
| } |
| |
| for (i = 0; i < nr_pages; i++, page++, pfn++) { |
| if ((pfn & (pageblock_nr_pages - 1)) == 0) |
| set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
| __free_pages_core(page, 0); |
| } |
| } |
| |
| /* Completion tracking for deferred_init_memmap() threads */ |
| static atomic_t pgdat_init_n_undone __initdata; |
| static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); |
| |
| static inline void __init pgdat_init_report_one_done(void) |
| { |
| if (atomic_dec_and_test(&pgdat_init_n_undone)) |
| complete(&pgdat_init_all_done_comp); |
| } |
| |
| /* |
| * Returns true if page needs to be initialized or freed to buddy allocator. |
| * |
| * First we check if pfn is valid on architectures where it is possible to have |
| * holes within pageblock_nr_pages. On systems where it is not possible, this |
| * function is optimized out. |
| * |
| * Then, we check if a current large page is valid by only checking the validity |
| * of the head pfn. |
| */ |
| static inline bool __init deferred_pfn_valid(unsigned long pfn) |
| { |
| if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Free pages to buddy allocator. Try to free aligned pages in |
| * pageblock_nr_pages sizes. |
| */ |
| static void __init deferred_free_pages(unsigned long pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long nr_pgmask = pageblock_nr_pages - 1; |
| unsigned long nr_free = 0; |
| |
| for (; pfn < end_pfn; pfn++) { |
| if (!deferred_pfn_valid(pfn)) { |
| deferred_free_range(pfn - nr_free, nr_free); |
| nr_free = 0; |
| } else if (!(pfn & nr_pgmask)) { |
| deferred_free_range(pfn - nr_free, nr_free); |
| nr_free = 1; |
| } else { |
| nr_free++; |
| } |
| } |
| /* Free the last block of pages to allocator */ |
| deferred_free_range(pfn - nr_free, nr_free); |
| } |
| |
| /* |
| * Initialize struct pages. We minimize pfn page lookups and scheduler checks |
| * by performing it only once every pageblock_nr_pages. |
| * Return number of pages initialized. |
| */ |
| static unsigned long __init deferred_init_pages(struct zone *zone, |
| unsigned long pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long nr_pgmask = pageblock_nr_pages - 1; |
| int nid = zone_to_nid(zone); |
| unsigned long nr_pages = 0; |
| int zid = zone_idx(zone); |
| struct page *page = NULL; |
| |
| for (; pfn < end_pfn; pfn++) { |
| if (!deferred_pfn_valid(pfn)) { |
| page = NULL; |
| continue; |
| } else if (!page || !(pfn & nr_pgmask)) { |
| page = pfn_to_page(pfn); |
| } else { |
| page++; |
| } |
| __init_single_page(page, pfn, zid, nid); |
| nr_pages++; |
| } |
| return (nr_pages); |
| } |
| |
| /* |
| * This function is meant to pre-load the iterator for the zone init. |
| * Specifically it walks through the ranges until we are caught up to the |
| * first_init_pfn value and exits there. If we never encounter the value we |
| * return false indicating there are no valid ranges left. |
| */ |
| static bool __init |
| deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, |
| unsigned long *spfn, unsigned long *epfn, |
| unsigned long first_init_pfn) |
| { |
| u64 j; |
| |
| /* |
| * Start out by walking through the ranges in this zone that have |
| * already been initialized. We don't need to do anything with them |
| * so we just need to flush them out of the system. |
| */ |
| for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { |
| if (*epfn <= first_init_pfn) |
| continue; |
| if (*spfn < first_init_pfn) |
| *spfn = first_init_pfn; |
| *i = j; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Initialize and free pages. We do it in two loops: first we initialize |
| * struct page, then free to buddy allocator, because while we are |
| * freeing pages we can access pages that are ahead (computing buddy |
| * page in __free_one_page()). |
| * |
| * In order to try and keep some memory in the cache we have the loop |
| * broken along max page order boundaries. This way we will not cause |
| * any issues with the buddy page computation. |
| */ |
| static unsigned long __init |
| deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, |
| unsigned long *end_pfn) |
| { |
| unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); |
| unsigned long spfn = *start_pfn, epfn = *end_pfn; |
| unsigned long nr_pages = 0; |
| u64 j = *i; |
| |
| /* First we loop through and initialize the page values */ |
| for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { |
| unsigned long t; |
| |
| if (mo_pfn <= *start_pfn) |
| break; |
| |
| t = min(mo_pfn, *end_pfn); |
| nr_pages += deferred_init_pages(zone, *start_pfn, t); |
| |
| if (mo_pfn < *end_pfn) { |
| *start_pfn = mo_pfn; |
| break; |
| } |
| } |
| |
| /* Reset values and now loop through freeing pages as needed */ |
| swap(j, *i); |
| |
| for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { |
| unsigned long t; |
| |
| if (mo_pfn <= spfn) |
| break; |
| |
| t = min(mo_pfn, epfn); |
| deferred_free_pages(spfn, t); |
| |
| if (mo_pfn <= epfn) |
| break; |
| } |
| |
| return nr_pages; |
| } |
| |
| static void __init |
| deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, |
| void *arg) |
| { |
| unsigned long spfn, epfn; |
| struct zone *zone = arg; |
| u64 i; |
| |
| deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); |
| |
| /* |
| * Initialize and free pages in MAX_ORDER sized increments so that we |
| * can avoid introducing any issues with the buddy allocator. |
| */ |
| while (spfn < end_pfn) { |
| deferred_init_maxorder(&i, zone, &spfn, &epfn); |
| cond_resched(); |
| } |
| } |
| |
| /* An arch may override for more concurrency. */ |
| __weak int __init |
| deferred_page_init_max_threads(const struct cpumask *node_cpumask) |
| { |
| return 1; |
| } |
| |
| /* Initialise remaining memory on a node */ |
| static int __init deferred_init_memmap(void *data) |
| { |
| pg_data_t *pgdat = data; |
| const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
| unsigned long spfn = 0, epfn = 0; |
| unsigned long first_init_pfn, flags; |
| unsigned long start = jiffies; |
| struct zone *zone; |
| int zid, max_threads; |
| u64 i; |
| |
| /* Bind memory initialisation thread to a local node if possible */ |
| if (!cpumask_empty(cpumask)) |
| set_cpus_allowed_ptr(current, cpumask); |
| |
| pgdat_resize_lock(pgdat, &flags); |
| first_init_pfn = pgdat->first_deferred_pfn; |
| if (first_init_pfn == ULONG_MAX) { |
| pgdat_resize_unlock(pgdat, &flags); |
| pgdat_init_report_one_done(); |
| return 0; |
| } |
| |
| /* Sanity check boundaries */ |
| BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); |
| BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); |
| pgdat->first_deferred_pfn = ULONG_MAX; |
| |
| /* |
| * Once we unlock here, the zone cannot be grown anymore, thus if an |
| * interrupt thread must allocate this early in boot, zone must be |
| * pre-grown prior to start of deferred page initialization. |
| */ |
| pgdat_resize_unlock(pgdat, &flags); |
| |
| /* Only the highest zone is deferred so find it */ |
| for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| zone = pgdat->node_zones + zid; |
| if (first_init_pfn < zone_end_pfn(zone)) |
| break; |
| } |
| |
| /* If the zone is empty somebody else may have cleared out the zone */ |
| if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, |
| first_init_pfn)) |
| goto zone_empty; |
| |
| max_threads = deferred_page_init_max_threads(cpumask); |
| |
| while (spfn < epfn) { |
| unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); |
| struct padata_mt_job job = { |
| .thread_fn = deferred_init_memmap_chunk, |
| .fn_arg = zone, |
| .start = spfn, |
| .size = epfn_align - spfn, |
| .align = PAGES_PER_SECTION, |
| .min_chunk = PAGES_PER_SECTION, |
| .max_threads = max_threads, |
| }; |
| |
| padata_do_multithreaded(&job); |
| deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, |
| epfn_align); |
| } |
| zone_empty: |
| /* Sanity check that the next zone really is unpopulated */ |
| WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); |
| |
| pr_info("node %d deferred pages initialised in %ums\n", |
| pgdat->node_id, jiffies_to_msecs(jiffies - start)); |
| |
| pgdat_init_report_one_done(); |
| return 0; |
| } |
| |
| /* |
| * If this zone has deferred pages, try to grow it by initializing enough |
| * deferred pages to satisfy the allocation specified by order, rounded up to |
| * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments |
| * of SECTION_SIZE bytes by initializing struct pages in increments of |
| * PAGES_PER_SECTION * sizeof(struct page) bytes. |
| * |
| * Return true when zone was grown, otherwise return false. We return true even |
| * when we grow less than requested, to let the caller decide if there are |
| * enough pages to satisfy the allocation. |
| * |
| * Note: We use noinline because this function is needed only during boot, and |
| * it is called from a __ref function _deferred_grow_zone. This way we are |
| * making sure that it is not inlined into permanent text section. |
| */ |
| static noinline bool __init |
| deferred_grow_zone(struct zone *zone, unsigned int order) |
| { |
| unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); |
| pg_data_t *pgdat = zone->zone_pgdat; |
| unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; |
| unsigned long spfn, epfn, flags; |
| unsigned long nr_pages = 0; |
| u64 i; |
| |
| /* Only the last zone may have deferred pages */ |
| if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) |
| return false; |
| |
| pgdat_resize_lock(pgdat, &flags); |
| |
| /* |
| * If someone grew this zone while we were waiting for spinlock, return |
| * true, as there might be enough pages already. |
| */ |
| if (first_deferred_pfn != pgdat->first_deferred_pfn) { |
| pgdat_resize_unlock(pgdat, &flags); |
| return true; |
| } |
| |
| /* If the zone is empty somebody else may have cleared out the zone */ |
| if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, |
| first_deferred_pfn)) { |
| pgdat->first_deferred_pfn = ULONG_MAX; |
| pgdat_resize_unlock(pgdat, &flags); |
| /* Retry only once. */ |
| return first_deferred_pfn != ULONG_MAX; |
| } |
| |
| /* |
| * Initialize and free pages in MAX_ORDER sized increments so |
| * that we can avoid introducing any issues with the buddy |
| * allocator. |
| */ |
| while (spfn < epfn) { |
| /* update our first deferred PFN for this section */ |
| first_deferred_pfn = spfn; |
| |
| nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); |
| touch_nmi_watchdog(); |
| |
| /* We should only stop along section boundaries */ |
| if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) |
| continue; |
| |
| /* If our quota has been met we can stop here */ |
| if (nr_pages >= nr_pages_needed) |
| break; |
| } |
| |
| pgdat->first_deferred_pfn = spfn; |
| pgdat_resize_unlock(pgdat, &flags); |
| |
| return nr_pages > 0; |
| } |
| |
| /* |
| * deferred_grow_zone() is __init, but it is called from |
| * get_page_from_freelist() during early boot until deferred_pages permanently |
| * disables this call. This is why we have refdata wrapper to avoid warning, |
| * and to ensure that the function body gets unloaded. |
| */ |
| static bool __ref |
| _deferred_grow_zone(struct zone *zone, unsigned int order) |
| { |
| return deferred_grow_zone(zone, order); |
| } |
| |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| |
| void __init page_alloc_init_late(void) |
| { |
| struct zone *zone; |
| int nid; |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| |
| /* There will be num_node_state(N_MEMORY) threads */ |
| atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); |
| for_each_node_state(nid, N_MEMORY) { |
| kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); |
| } |
| |
| /* Block until all are initialised */ |
| wait_for_completion(&pgdat_init_all_done_comp); |
| |
| /* |
| * We initialized the rest of the deferred pages. Permanently disable |
| * on-demand struct page initialization. |
| */ |
| static_branch_disable(&deferred_pages); |
| |
| /* Reinit limits that are based on free pages after the kernel is up */ |
| files_maxfiles_init(); |
| #endif |
| |
| buffer_init(); |
| |
| /* Discard memblock private memory */ |
| memblock_discard(); |
| |
| for_each_node_state(nid, N_MEMORY) |
| shuffle_free_memory(NODE_DATA(nid)); |
| |
| for_each_populated_zone(zone) |
| set_zone_contiguous(zone); |
| } |
| |
| #ifdef CONFIG_CMA |
| /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
| void __init init_cma_reserved_pageblock(struct page *page) |
| { |
| unsigned i = pageblock_nr_pages; |
| struct page *p = page; |
| |
| do { |
| __ClearPageReserved(p); |
| set_page_count(p, 0); |
| } while (++p, --i); |
| |
| set_pageblock_migratetype(page, MIGRATE_CMA); |
| set_page_refcounted(page); |
| __free_pages(page, pageblock_order); |
| |
| adjust_managed_page_count(page, pageblock_nr_pages); |
| page_zone(page)->cma_pages += pageblock_nr_pages; |
| } |
| #endif |
| |
| /* |
| * The order of subdivision here is critical for the IO subsystem. |
| * Please do not alter this order without good reasons and regression |
| * testing. Specifically, as large blocks of memory are subdivided, |
| * the order in which smaller blocks are delivered depends on the order |
| * they're subdivided in this function. This is the primary factor |
| * influencing the order in which pages are delivered to the IO |
| * subsystem according to empirical testing, and this is also justified |
| * by considering the behavior of a buddy system containing a single |
| * large block of memory acted on by a series of small allocations. |
| * This behavior is a critical factor in sglist merging's success. |
| * |
| * -- nyc |
| */ |
| static inline void expand(struct zone *zone, struct page *page, |
| int low, int high, int migratetype) |
| { |
| unsigned long size = 1 << high; |
| |
| while (high > low) { |
| high--; |
| size >>= 1; |
| VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
| |
| /* |
| * Mark as guard pages (or page), that will allow to |
| * merge back to allocator when buddy will be freed. |
| * Corresponding page table entries will not be touched, |
| * pages will stay not present in virtual address space |
| */ |
| if (set_page_guard(zone, &page[size], high, migratetype)) |
| continue; |
| |
| add_to_free_list(&page[size], zone, high, migratetype); |
| set_buddy_order(&page[size], high); |
| } |
| } |
| |
| static void check_new_page_bad(struct page *page) |
| { |
| if (unlikely(page->flags & __PG_HWPOISON)) { |
| /* Don't complain about hwpoisoned pages */ |
| page_mapcount_reset(page); /* remove PageBuddy */ |
| return; |
| } |
| |
| bad_page(page, |
| page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); |
| } |
| |
| /* |
| * This page is about to be returned from the page allocator |
| */ |
| static inline int check_new_page(struct page *page) |
| { |
| if (likely(page_expected_state(page, |
| PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) |
| return 0; |
| |
| check_new_page_bad(page); |
| return 1; |
| } |
| |
| static bool check_new_pages(struct page *page, unsigned int order) |
| { |
| int i; |
| for (i = 0; i < (1 << order); i++) { |
| struct page *p = page + i; |
| |
| if (unlikely(check_new_page(p))) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_DEBUG_VM |
| /* |
| * With DEBUG_VM enabled, order-0 pages are checked for expected state when |
| * being allocated from pcp lists. With debug_pagealloc also enabled, they are |
| * also checked when pcp lists are refilled from the free lists. |
| */ |
| static inline bool check_pcp_refill(struct page *page, unsigned int order) |
| { |
| if (debug_pagealloc_enabled_static()) |
| return check_new_pages(page, order); |
| else |
| return false; |
| } |
| |
| static inline bool check_new_pcp(struct page *page, unsigned int order) |
| { |
| return check_new_pages(page, order); |
| } |
| #else |
| /* |
| * With DEBUG_VM disabled, free order-0 pages are checked for expected state |
| * when pcp lists are being refilled from the free lists. With debug_pagealloc |
| * enabled, they are also checked when being allocated from the pcp lists. |
| */ |
| static inline bool check_pcp_refill(struct page *page, unsigned int order) |
| { |
| return check_new_pages(page, order); |
| } |
| static inline bool check_new_pcp(struct page *page, unsigned int order) |
| { |
| if (debug_pagealloc_enabled_static()) |
| return check_new_pages(page, order); |
| else |
| return false; |
| } |
| #endif /* CONFIG_DEBUG_VM */ |
| |
| static inline bool should_skip_kasan_unpoison(gfp_t flags) |
| { |
| /* Don't skip if a software KASAN mode is enabled. */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC) || |
| IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| return false; |
| |
| /* Skip, if hardware tag-based KASAN is not enabled. */ |
| if (!kasan_hw_tags_enabled()) |
| return true; |
| |
| /* |
| * With hardware tag-based KASAN enabled, skip if this has been |
| * requested via __GFP_SKIP_KASAN_UNPOISON. |
| */ |
| return flags & __GFP_SKIP_KASAN_UNPOISON; |
| } |
| |
| static inline bool should_skip_init(gfp_t flags) |
| { |
| /* Don't skip, if hardware tag-based KASAN is not enabled. */ |
| if (!kasan_hw_tags_enabled()) |
| return false; |
| |
| /* For hardware tag-based KASAN, skip if requested. */ |
| return (flags & __GFP_SKIP_ZERO); |
| } |
| |
| inline void post_alloc_hook(struct page *page, unsigned int order, |
| gfp_t gfp_flags) |
| { |
| bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && |
| !should_skip_init(gfp_flags); |
| bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); |
| int i; |
| |
| set_page_private(page, 0); |
| set_page_refcounted(page); |
| |
| arch_alloc_page(page, order); |
| debug_pagealloc_map_pages(page, 1 << order); |
| |
| /* |
| * Page unpoisoning must happen before memory initialization. |
| * Otherwise, the poison pattern will be overwritten for __GFP_ZERO |
| * allocations and the page unpoisoning code will complain. |
| */ |
| kernel_unpoison_pages(page, 1 << order); |
| |
| /* |
| * As memory initialization might be integrated into KASAN, |
| * KASAN unpoisoning and memory initializion code must be |
| * kept together to avoid discrepancies in behavior. |
| */ |
| |
| /* |
| * If memory tags should be zeroed (which happens only when memory |
| * should be initialized as well). |
| */ |
| if (init_tags) { |
| /* Initialize both memory and tags. */ |
| for (i = 0; i != 1 << order; ++i) |
| tag_clear_highpage(page + i); |
| |
| /* Note that memory is already initialized by the loop above. */ |
| init = false; |
| } |
| if (!should_skip_kasan_unpoison(gfp_flags)) { |
| /* Unpoison shadow memory or set memory tags. */ |
| kasan_unpoison_pages(page, order, init); |
| |
| /* Note that memory is already initialized by KASAN. */ |
| if (kasan_has_integrated_init()) |
| init = false; |
| } else { |
| /* Ensure page_address() dereferencing does not fault. */ |
| for (i = 0; i != 1 << order; ++i) |
| page_kasan_tag_reset(page + i); |
| } |
| /* If memory is still not initialized, do it now. */ |
| if (init) |
| kernel_init_pages(page, 1 << order); |
| /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ |
| if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) |
| SetPageSkipKASanPoison(page); |
| |
| set_page_owner(page, order, gfp_flags); |
| page_table_check_alloc(page, order); |
| } |
| |
| static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
| unsigned int alloc_flags) |
| { |
| post_alloc_hook(page, order, gfp_flags); |
| |
| if (order && (gfp_flags & __GFP_COMP)) |
| prep_compound_page(page, order); |
| |
| /* |
| * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
| * allocate the page. The expectation is that the caller is taking |
| * steps that will free more memory. The caller should avoid the page |
| * being used for !PFMEMALLOC purposes. |
| */ |
| if (alloc_flags & ALLOC_NO_WATERMARKS) |
| set_page_pfmemalloc(page); |
| else |
| clear_page_pfmemalloc(page); |
| } |
| |
| /* |
| * Go through the free lists for the given migratetype and remove |
| * the smallest available page from the freelists |
| */ |
| static __always_inline |
| struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, |
| int migratetype) |
| { |
| unsigned int current_order; |
| struct free_area *area; |
| struct page *page; |
| |
| /* Find a page of the appropriate size in the preferred list */ |
| for (current_order = order; current_order < MAX_ORDER; ++current_order) { |
| area = &(zone->free_area[current_order]); |
| page = get_page_from_free_area(area, migratetype); |
| if (!page) |
| continue; |
| del_page_from_free_list(page, zone, current_order); |
| expand(zone, page, order, current_order, migratetype); |
| set_pcppage_migratetype(page, migratetype); |
| trace_mm_page_alloc_zone_locked(page, order, migratetype, |
| pcp_allowed_order(order) && |
| migratetype < MIGRATE_PCPTYPES); |
| return page; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* |
| * This array describes the order lists are fallen back to when |
| * the free lists for the desirable migrate type are depleted |
| * |
| * The other migratetypes do not have fallbacks. |
| */ |
| static int fallbacks[MIGRATE_TYPES][3] = { |
| [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, |
| [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, |
| [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, |
| }; |
| |
| #ifdef CONFIG_CMA |
| static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
| unsigned int order) |
| { |
| return __rmqueue_smallest(zone, order, MIGRATE_CMA); |
| } |
| #else |
| static inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
| unsigned int order) { return NULL; } |
| #endif |
| |
| /* |
| * Move the free pages in a range to the freelist tail of the requested type. |
| * Note that start_page and end_pages are not aligned on a pageblock |
| * boundary. If alignment is required, use move_freepages_block() |
| */ |
| static int move_freepages(struct zone *zone, |
| unsigned long start_pfn, unsigned long end_pfn, |
| int migratetype, int *num_movable) |
| { |
| struct page *page; |
| unsigned long pfn; |
| unsigned int order; |
| int pages_moved = 0; |
| |
| for (pfn = start_pfn; pfn <= end_pfn;) { |
| page = pfn_to_page(pfn); |
| if (!PageBuddy(page)) { |
| /* |
| * We assume that pages that could be isolated for |
| * migration are movable. But we don't actually try |
| * isolating, as that would be expensive. |
| */ |
| if (num_movable && |
| (PageLRU(page) || __PageMovable(page))) |
| (*num_movable)++; |
| pfn++; |
| continue; |
| } |
| |
| /* Make sure we are not inadvertently changing nodes */ |
| VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); |
| VM_BUG_ON_PAGE(page_zone(page) != zone, page); |
| |
| order = buddy_order(page); |
| move_to_free_list(page, zone, order, migratetype); |
| pfn += 1 << order; |
| pages_moved += 1 << order; |
| } |
| |
| return pages_moved; |
| } |
| |
| int move_freepages_block(struct zone *zone, struct page *page, |
| int migratetype, int *num_movable) |
| { |
| unsigned long start_pfn, end_pfn, pfn; |
| |
| if (num_movable) |
| *num_movable = 0; |
| |
| pfn = page_to_pfn(page); |
| start_pfn = pfn & ~(pageblock_nr_pages - 1); |
| end_pfn = start_pfn + pageblock_nr_pages - 1; |
| |
| /* Do not cross zone boundaries */ |
| if (!zone_spans_pfn(zone, start_pfn)) |
| start_pfn = pfn; |
| if (!zone_spans_pfn(zone, end_pfn)) |
| return 0; |
| |
| return move_freepages(zone, start_pfn, end_pfn, migratetype, |
| num_movable); |
| } |
| |
| static void change_pageblock_range(struct page *pageblock_page, |
| int start_order, int migratetype) |
| { |
| int nr_pageblocks = 1 << (start_order - pageblock_order); |
| |
| while (nr_pageblocks--) { |
| set_pageblock_migratetype(pageblock_page, migratetype); |
| pageblock_page += pageblock_nr_pages; |
| } |
| } |
| |
| /* |
| * When we are falling back to another migratetype during allocation, try to |
| * steal extra free pages from the same pageblocks to satisfy further |
| * allocations, instead of polluting multiple pageblocks. |
| * |
| * If we are stealing a relatively large buddy page, it is likely there will |
| * be more free pages in the pageblock, so try to steal them all. For |
| * reclaimable and unmovable allocations, we steal regardless of page size, |
| * as fragmentation caused by those allocations polluting movable pageblocks |
| * is worse than movable allocations stealing from unmovable and reclaimable |
| * pageblocks. |
| */ |
| static bool can_steal_fallback(unsigned int order, int start_mt) |
| { |
| /* |
| * Leaving this order check is intended, although there is |
| * relaxed order check in next check. The reason is that |
| * we can actually steal whole pageblock if this condition met, |
| * but, below check doesn't guarantee it and that is just heuristic |
| * so could be changed anytime. |
| */ |
| if (order >= pageblock_order) |
| return true; |
| |
| if (order >= pageblock_order / 2 || |
| start_mt == MIGRATE_RECLAIMABLE || |
| start_mt == MIGRATE_UNMOVABLE || |
| page_group_by_mobility_disabled) |
| return true; |
| |
| return false; |
| } |
| |
| static inline bool boost_watermark(struct zone *zone) |
| { |
| unsigned long max_boost; |
| |
| if (!watermark_boost_factor) |
| return false; |
| /* |
| * Don't bother in zones that are unlikely to produce results. |
| * On small machines, including kdump capture kernels running |
| * in a small area, boosting the watermark can cause an out of |
| * memory situation immediately. |
| */ |
| if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) |
| return false; |
| |
| max_boost = mult_frac(zone->_watermark[WMARK_HIGH], |
| watermark_boost_factor, 10000); |
| |
| /* |
| * high watermark may be uninitialised if fragmentation occurs |
| * very early in boot so do not boost. We do not fall |
| * through and boost by pageblock_nr_pages as failing |
| * allocations that early means that reclaim is not going |
| * to help and it may even be impossible to reclaim the |
| * boosted watermark resulting in a hang. |
| */ |
| if (!max_boost) |
| return false; |
| |
| max_boost = max(pageblock_nr_pages, max_boost); |
| |
| zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, |
| max_boost); |
| |
| return true; |
| } |
| |
| /* |
| * This function implements actual steal behaviour. If order is large enough, |
| * we can steal whole pageblock. If not, we first move freepages in this |
| * pageblock to our migratetype and determine how many already-allocated pages |
| * are there in the pageblock with a compatible migratetype. If at least half |
| * of pages are free or compatible, we can change migratetype of the pageblock |
| * itself, so pages freed in the future will be put on the correct free list. |
| */ |
| static void steal_suitable_fallback(struct zone *zone, struct page *page, |
| unsigned int alloc_flags, int start_type, bool whole_block) |
| { |
| unsigned int current_order = buddy_order(page); |
| int free_pages, movable_pages, alike_pages; |
| int old_block_type; |
| |
| old_block_type = get_pageblock_migratetype(page); |
| |
| /* |
| * This can happen due to races and we want to prevent broken |
| * highatomic accounting. |
| */ |
| if (is_migrate_highatomic(old_block_type)) |
| goto single_page; |
| |
| /* Take ownership for orders >= pageblock_order */ |
| if (current_order >= pageblock_order) { |
| change_pageblock_range(page, current_order, start_type); |
| goto single_page; |
| } |
| |
| /* |
| * Boost watermarks to increase reclaim pressure to reduce the |
| * likelihood of future fallbacks. Wake kswapd now as the node |
| * may be balanced overall and kswapd will not wake naturally. |
| */ |
| if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) |
| set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
| |
| /* We are not allowed to try stealing from the whole block */ |
| if (!whole_block) |
| goto single_page; |
| |
| free_pages = move_freepages_block(zone, page, start_type, |
| &movable_pages); |
| /* |
| * Determine how many pages are compatible with our allocation. |
| * For movable allocation, it's the number of movable pages which |
| * we just obtained. For other types it's a bit more tricky. |
| */ |
| if (start_type == MIGRATE_MOVABLE) { |
| alike_pages = movable_pages; |
| } else { |
| /* |
| * If we are falling back a RECLAIMABLE or UNMOVABLE allocation |
| * to MOVABLE pageblock, consider all non-movable pages as |
| * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or |
| * vice versa, be conservative since we can't distinguish the |
| * exact migratetype of non-movable pages. |
| */ |
| if (old_block_type == MIGRATE_MOVABLE) |
| alike_pages = pageblock_nr_pages |
| - (free_pages + movable_pages); |
| else |
| alike_pages = 0; |
| } |
| |
| /* moving whole block can fail due to zone boundary conditions */ |
| if (!free_pages) |
| goto single_page; |
| |
| /* |
| * If a sufficient number of pages in the block are either free or of |
| * comparable migratability as our allocation, claim the whole block. |
| */ |
| if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || |
| page_group_by_mobility_disabled) |
| set_pageblock_migratetype(page, start_type); |
| |
| return; |
| |
| single_page: |
| move_to_free_list(page, zone, current_order, start_type); |
| } |
| |
| /* |
| * Check whether there is a suitable fallback freepage with requested order. |
| * If only_stealable is true, this function returns fallback_mt only if |
| * we can steal other freepages all together. This would help to reduce |
| * fragmentation due to mixed migratetype pages in one pageblock. |
| */ |
| int find_suitable_fallback(struct free_area *area, unsigned int order, |
| int migratetype, bool only_stealable, bool *can_steal) |
| { |
| int i; |
| int fallback_mt; |
| |
| if (area->nr_free == 0) |
| return -1; |
| |
| *can_steal = false; |
| for (i = 0;; i++) { |
| fallback_mt = fallbacks[migratetype][i]; |
| if (fallback_mt == MIGRATE_TYPES) |
| break; |
| |
| if (free_area_empty(area, fallback_mt)) |
| continue; |
| |
| if (can_steal_fallback(order, migratetype)) |
| *can_steal = true; |
| |
| if (!only_stealable) |
| return fallback_mt; |
| |
| if (*can_steal) |
| return fallback_mt; |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * Reserve a pageblock for exclusive use of high-order atomic allocations if |
| * there are no empty page blocks that contain a page with a suitable order |
| */ |
| static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, |
| unsigned int alloc_order) |
| { |
| int mt; |
| unsigned long max_managed, flags; |
| |
| /* |
| * Limit the number reserved to 1 pageblock or roughly 1% of a zone. |
| * Check is race-prone but harmless. |
| */ |
| max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; |
| if (zone->nr_reserved_highatomic >= max_managed) |
| return; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| |
| /* Recheck the nr_reserved_highatomic limit under the lock */ |
| if (zone->nr_reserved_highatomic >= max_managed) |
| goto out_unlock; |
| |
| /* Yoink! */ |
| mt = get_pageblock_migratetype(page); |
| /* Only reserve normal pageblocks (i.e., they can merge with others) */ |
| if (migratetype_is_mergeable(mt)) { |
| zone->nr_reserved_highatomic += pageblock_nr_pages; |
| set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); |
| move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); |
| } |
| |
| out_unlock: |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| /* |
| * Used when an allocation is about to fail under memory pressure. This |
| * potentially hurts the reliability of high-order allocations when under |
| * intense memory pressure but failed atomic allocations should be easier |
| * to recover from than an OOM. |
| * |
| * If @force is true, try to unreserve a pageblock even though highatomic |
| * pageblock is exhausted. |
| */ |
| static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, |
| bool force) |
| { |
| struct zonelist *zonelist = ac->zonelist; |
| unsigned long flags; |
| struct zoneref *z; |
| struct zone *zone; |
| struct page *page; |
| int order; |
| bool ret; |
| |
| for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, |
| ac->nodemask) { |
| /* |
| * Preserve at least one pageblock unless memory pressure |
| * is really high. |
| */ |
| if (!force && zone->nr_reserved_highatomic <= |
| pageblock_nr_pages) |
| continue; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| for (order = 0; order < MAX_ORDER; order++) { |
| struct free_area *area = &(zone->free_area[order]); |
| |
| page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); |
| if (!page) |
| continue; |
| |
| /* |
| * In page freeing path, migratetype change is racy so |
| * we can counter several free pages in a pageblock |
| * in this loop although we changed the pageblock type |
| * from highatomic to ac->migratetype. So we should |
| * adjust the count once. |
| */ |
| if (is_migrate_highatomic_page(page)) { |
| /* |
| * It should never happen but changes to |
| * locking could inadvertently allow a per-cpu |
| * drain to add pages to MIGRATE_HIGHATOMIC |
| * while unreserving so be safe and watch for |
| * underflows. |
| */ |
| zone->nr_reserved_highatomic -= min( |
| pageblock_nr_pages, |
| zone->nr_reserved_highatomic); |
| } |
| |
| /* |
| * Convert to ac->migratetype and avoid the normal |
| * pageblock stealing heuristics. Minimally, the caller |
| * is doing the work and needs the pages. More |
| * importantly, if the block was always converted to |
| * MIGRATE_UNMOVABLE or another type then the number |
| * of pageblocks that cannot be completely freed |
| * may increase. |
| */ |
| set_pageblock_migratetype(page, ac->migratetype); |
| ret = move_freepages_block(zone, page, ac->migratetype, |
| NULL); |
| if (ret) { |
| spin_unlock_irqrestore(&zone->lock, flags); |
| return ret; |
| } |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Try finding a free buddy page on the fallback list and put it on the free |
| * list of requested migratetype, possibly along with other pages from the same |
| * block, depending on fragmentation avoidance heuristics. Returns true if |
| * fallback was found so that __rmqueue_smallest() can grab it. |
| * |
| * The use of signed ints for order and current_order is a deliberate |
| * deviation from the rest of this file, to make the for loop |
| * condition simpler. |
| */ |
| static __always_inline bool |
| __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, |
| unsigned int alloc_flags) |
| { |
| struct free_area *area; |
| int current_order; |
| int min_order = order; |
| struct page *page; |
| int fallback_mt; |
| bool can_steal; |
| |
| /* |
| * Do not steal pages from freelists belonging to other pageblocks |
| * i.e. orders < pageblock_order. If there are no local zones free, |
| * the zonelists will be reiterated without ALLOC_NOFRAGMENT. |
| */ |
| if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) |
| min_order = pageblock_order; |
| |
| /* |
| * Find the largest available free page in the other list. This roughly |
| * approximates finding the pageblock with the most free pages, which |
| * would be too costly to do exactly. |
| */ |
| for (current_order = MAX_ORDER - 1; current_order >= min_order; |
| --current_order) { |
| area = &(zone->free_area[current_order]); |
| fallback_mt = find_suitable_fallback(area, current_order, |
| start_migratetype, false, &can_steal); |
| if (fallback_mt == -1) |
| continue; |
| |
| /* |
| * We cannot steal all free pages from the pageblock and the |
| * requested migratetype is movable. In that case it's better to |
| * steal and split the smallest available page instead of the |
| * largest available page, because even if the next movable |
| * allocation falls back into a different pageblock than this |
| * one, it won't cause permanent fragmentation. |
| */ |
| if (!can_steal && start_migratetype == MIGRATE_MOVABLE |
| && current_order > order) |
| goto find_smallest; |
| |
| goto do_steal; |
| } |
| |
| return false; |
| |
| find_smallest: |
| for (current_order = order; current_order < MAX_ORDER; |
| current_order++) { |
| area = &(zone->free_area[current_order]); |
| fallback_mt = find_suitable_fallback(area, current_order, |
| start_migratetype, false, &can_steal); |
| if (fallback_mt != -1) |
| break; |
| } |
| |
| /* |
| * This should not happen - we already found a suitable fallback |
| * when looking for the largest page. |
| */ |
| VM_BUG_ON(current_order == MAX_ORDER); |
| |
| do_steal: |
| page = get_page_from_free_area(area, fallback_mt); |
| |
| steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, |
| can_steal); |
| |
| trace_mm_page_alloc_extfrag(page, order, current_order, |
| start_migratetype, fallback_mt); |
| |
| return true; |
| |
| } |
| |
| /* |
| * Do the hard work of removing an element from the buddy allocator. |
| * Call me with the zone->lock already held. |
| */ |
| static __always_inline struct page * |
| __rmqueue(struct zone *zone, unsigned int order, int migratetype, |
| unsigned int alloc_flags) |
| { |
| struct page *page; |
| |
| if (IS_ENABLED(CONFIG_CMA)) { |
| /* |
| * Balance movable allocations between regular and CMA areas by |
| * allocating from CMA when over half of the zone's free memory |
| * is in the CMA area. |
| */ |
| if (alloc_flags & ALLOC_CMA && |
| zone_page_state(zone, NR_FREE_CMA_PAGES) > |
| zone_page_state(zone, NR_FREE_PAGES) / 2) { |
| page = __rmqueue_cma_fallback(zone, order); |
| if (page) |
| return page; |
| } |
| } |
| retry: |
| page = __rmqueue_smallest(zone, order, migratetype); |
| if (unlikely(!page)) { |
| if (alloc_flags & ALLOC_CMA) |
| page = __rmqueue_cma_fallback(zone, order); |
| |
| if (!page && __rmqueue_fallback(zone, order, migratetype, |
| alloc_flags)) |
| goto retry; |
| } |
| return page; |
| } |
| |
| /* |
| * Obtain a specified number of elements from the buddy allocator, all under |
| * a single hold of the lock, for efficiency. Add them to the supplied list. |
| * Returns the number of new pages which were placed at *list. |
| */ |
| static int rmqueue_bulk(struct zone *zone, unsigned int order, |
| unsigned long count, struct list_head *list, |
| int migratetype, unsigned int alloc_flags) |
| { |
| int i, allocated = 0; |
| |
| /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ |
| spin_lock(&zone->lock); |
| for (i = 0; i < count; ++i) { |
| struct page *page = __rmqueue(zone, order, migratetype, |
| alloc_flags); |
| if (unlikely(page == NULL)) |
| break; |
| |
| if (unlikely(check_pcp_refill(page, order))) |
| continue; |
| |
| /* |
| * Split buddy pages returned by expand() are received here in |
| * physical page order. The page is added to the tail of |
| * caller's list. From the callers perspective, the linked list |
| * is ordered by page number under some conditions. This is |
| * useful for IO devices that can forward direction from the |
| * head, thus also in the physical page order. This is useful |
| * for IO devices that can merge IO requests if the physical |
| * pages are ordered properly. |
| */ |
| list_add_tail(&page->pcp_list, list); |
| allocated++; |
| if (is_migrate_cma(get_pcppage_migratetype(page))) |
| __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, |
| -(1 << order)); |
| } |
| |
| /* |
| * i pages were removed from the buddy list even if some leak due |
| * to check_pcp_refill failing so adjust NR_FREE_PAGES based |
| * on i. Do not confuse with 'allocated' which is the number of |
| * pages added to the pcp list. |
| */ |
| __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
| spin_unlock(&zone->lock); |
| return allocated; |
| } |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Called from the vmstat counter updater to drain pagesets of this |
| * currently executing processor on remote nodes after they have |
| * expired. |
| */ |
| void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
| { |
| int to_drain, batch; |
| |
| batch = READ_ONCE(pcp->batch); |
| to_drain = min(pcp->count, batch); |
| if (to_drain > 0) { |
| unsigned long flags; |
| |
| /* |
| * free_pcppages_bulk expects IRQs disabled for zone->lock |
| * so even though pcp->lock is not intended to be IRQ-safe, |
| * it's needed in this context. |
| */ |
| spin_lock_irqsave(&pcp->lock, flags); |
| free_pcppages_bulk(zone, to_drain, pcp, 0); |
| spin_unlock_irqrestore(&pcp->lock, flags); |
| } |
| } |
| #endif |
| |
| /* |
| * Drain pcplists of the indicated processor and zone. |
| */ |
| static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
| { |
| struct per_cpu_pages *pcp; |
| |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| if (pcp->count) { |
| unsigned long flags; |
| |
| /* See drain_zone_pages on why this is disabling IRQs */ |
| spin_lock_irqsave(&pcp->lock, flags); |
| free_pcppages_bulk(zone, pcp->count, pcp, 0); |
| spin_unlock_irqrestore(&pcp->lock, flags); |
| } |
| } |
| |
| /* |
| * Drain pcplists of all zones on the indicated processor. |
| */ |
| static void drain_pages(unsigned int cpu) |
| { |
| struct zone *zone; |
| |
| for_each_populated_zone(zone) { |
| drain_pages_zone(cpu, zone); |
| } |
| } |
| |
| /* |
| * Spill all of this CPU's per-cpu pages back into the buddy allocator. |
| */ |
| void drain_local_pages(struct zone *zone) |
| { |
| int cpu = smp_processor_id(); |
| |
| if (zone) |
| drain_pages_zone(cpu, zone); |
| else |
| drain_pages(cpu); |
| } |
| |
| /* |
| * The implementation of drain_all_pages(), exposing an extra parameter to |
| * drain on all cpus. |
| * |
| * drain_all_pages() is optimized to only execute on cpus where pcplists are |
| * not empty. The check for non-emptiness can however race with a free to |
| * pcplist that has not yet increased the pcp->count from 0 to 1. Callers |
| * that need the guarantee that every CPU has drained can disable the |
| * optimizing racy check. |
| */ |
| static void __drain_all_pages(struct zone *zone, bool force_all_cpus) |
| { |
| int cpu; |
| |
| /* |
| * Allocate in the BSS so we won't require allocation in |
| * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y |
| */ |
| static cpumask_t cpus_with_pcps; |
| |
| /* |
| * Do not drain if one is already in progress unless it's specific to |
| * a zone. Such callers are primarily CMA and memory hotplug and need |
| * the drain to be complete when the call returns. |
| */ |
| if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { |
| if (!zone) |
| return; |
| mutex_lock(&pcpu_drain_mutex); |
| } |
| |
| /* |
| * We don't care about racing with CPU hotplug event |
| * as offline notification will cause the notified |
| * cpu to drain that CPU pcps and on_each_cpu_mask |
| * disables preemption as part of its processing |
| */ |
| for_each_online_cpu(cpu) { |
| struct per_cpu_pages *pcp; |
| struct zone *z; |
| bool has_pcps = false; |
| |
| if (force_all_cpus) { |
| /* |
| * The pcp.count check is racy, some callers need a |
| * guarantee that no cpu is missed. |
| */ |
| has_pcps = true; |
| } else if (zone) { |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| if (pcp->count) |
| has_pcps = true; |
| } else { |
| for_each_populated_zone(z) { |
| pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); |
| if (pcp->count) { |
| has_pcps = true; |
| break; |
| } |
| } |
| } |
| |
| if (has_pcps) |
| cpumask_set_cpu(cpu, &cpus_with_pcps); |
| else |
| cpumask_clear_cpu(cpu, &cpus_with_pcps); |
| } |
| |
| for_each_cpu(cpu, &cpus_with_pcps) { |
| if (zone) |
| drain_pages_zone(cpu, zone); |
| else |
| drain_pages(cpu); |
| } |
| |
| mutex_unlock(&pcpu_drain_mutex); |
| } |
| |
| /* |
| * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
| * |
| * When zone parameter is non-NULL, spill just the single zone's pages. |
| */ |
| void drain_all_pages(struct zone *zone) |
| { |
| __drain_all_pages(zone, false); |
| } |
| |
| #ifdef CONFIG_HIBERNATION |
| |
| /* |
| * Touch the watchdog for every WD_PAGE_COUNT pages. |
| */ |
| #define WD_PAGE_COUNT (128*1024) |
| |
| void mark_free_pages(struct zone *zone) |
| { |
| unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; |
| unsigned long flags; |
| unsigned int order, t; |
| struct page *page; |
| |
| if (zone_is_empty(zone)) |
| return; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| |
| max_zone_pfn = zone_end_pfn(zone); |
| for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| if (pfn_valid(pfn)) { |
| page = pfn_to_page(pfn); |
| |
| if (!--page_count) { |
| touch_nmi_watchdog(); |
| page_count = WD_PAGE_COUNT; |
| } |
| |
| if (page_zone(page) != zone) |
| continue; |
| |
| if (!swsusp_page_is_forbidden(page)) |
| swsusp_unset_page_free(page); |
| } |
| |
| for_each_migratetype_order(order, t) { |
| list_for_each_entry(page, |
| &zone->free_area[order].free_list[t], buddy_list) { |
| unsigned long i; |
| |
| pfn = page_to_pfn(page); |
| for (i = 0; i < (1UL << order); i++) { |
| if (!--page_count) { |
| touch_nmi_watchdog(); |
| page_count = WD_PAGE_COUNT; |
| } |
| swsusp_set_page_free(pfn_to_page(pfn + i)); |
| } |
| } |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| #endif /* CONFIG_PM */ |
| |
| static bool free_unref_page_prepare(struct page *page, unsigned long pfn, |
| unsigned int order) |
| { |
| int migratetype; |
| |
| if (!free_pcp_prepare(page, order)) |
| return false; |
| |
| migratetype = get_pfnblock_migratetype(page, pfn); |
| set_pcppage_migratetype(page, migratetype); |
| return true; |
| } |
| |
| static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, |
| bool free_high) |
| { |
| int min_nr_free, max_nr_free; |
| |
| /* Free everything if batch freeing high-order pages. */ |
| if (unlikely(free_high)) |
| return pcp->count; |
| |
| /* Check for PCP disabled or boot pageset */ |
| if (unlikely(high < batch)) |
| return 1; |
| |
| /* Leave at least pcp->batch pages on the list */ |
| min_nr_free = batch; |
| max_nr_free = high - batch; |
| |
| /* |
| * Double the number of pages freed each time there is subsequent |
| * freeing of pages without any allocation. |
| */ |
| batch <<= pcp->free_factor; |
| if (batch < max_nr_free) |
| pcp->free_factor++; |
| batch = clamp(batch, min_nr_free, max_nr_free); |
| |
| return batch; |
| } |
| |
| static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, |
| bool free_high) |
| { |
| int high = READ_ONCE(pcp->high); |
| |
| if (unlikely(!high || free_high)) |
| return 0; |
| |
| if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) |
| return high; |
| |
| /* |
| * If reclaim is active, limit the number of pages that can be |
| * stored on pcp lists |
| */ |
| return min(READ_ONCE(pcp->batch) << 2, high); |
| } |
| |
| static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, |
| struct page *page, int migratetype, |
| unsigned int order) |
| { |
| int high; |
| int pindex; |
| bool free_high; |
| |
| __count_vm_event(PGFREE); |
| pindex = order_to_pindex(migratetype, order); |
| list_add(&page->pcp_list, &pcp->lists[pindex]); |
| pcp->count += 1 << order; |
| |
| /* |
| * As high-order pages other than THP's stored on PCP can contribute |
| * to fragmentation, limit the number stored when PCP is heavily |
| * freeing without allocation. The remainder after bulk freeing |
| * stops will be drained from vmstat refresh context. |
| */ |
| free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); |
| |
| high = nr_pcp_high(pcp, zone, free_high); |
| if (pcp->count >= high) { |
| int batch = READ_ONCE(pcp->batch); |
| |
| free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); |
| } |
| } |
| |
| /* |
| * Free a pcp page |
| */ |
| void free_unref_page(struct page *page, unsigned int order) |
| { |
| unsigned long flags; |
| unsigned long __maybe_unused UP_flags; |
| struct per_cpu_pages *pcp; |
| struct zone *zone; |
| unsigned long pfn = page_to_pfn(page); |
| int migratetype; |
| |
| if (!free_unref_page_prepare(page, pfn, order)) |
| return; |
| |
| /* |
| * We only track unmovable, reclaimable and movable on pcp lists. |
| * Place ISOLATE pages on the isolated list because they are being |
| * offlined but treat HIGHATOMIC as movable pages so we can get those |
| * areas back if necessary. Otherwise, we may have to free |
| * excessively into the page allocator |
| */ |
| migratetype = get_pcppage_migratetype(page); |
| if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { |
| if (unlikely(is_migrate_isolate(migratetype))) { |
| free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); |
| return; |
| } |
| migratetype = MIGRATE_MOVABLE; |
| } |
| |
| zone = page_zone(page); |
| pcp_trylock_prepare(UP_flags); |
| pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); |
| if (pcp) { |
| free_unref_page_commit(zone, pcp, page, migratetype, order); |
| pcp_spin_unlock_irqrestore(pcp, flags); |
| } else { |
| free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); |
| } |
| pcp_trylock_finish(UP_flags); |
| } |
| |
| /* |
| * Free a list of 0-order pages |
| */ |
| void free_unref_page_list(struct list_head *list) |
| { |
| struct page *page, *next; |
| struct per_cpu_pages *pcp = NULL; |
| struct zone *locked_zone = NULL; |
| unsigned long flags; |
| int batch_count = 0; |
| int migratetype; |
| |
| /* Prepare pages for freeing */ |
| list_for_each_entry_safe(page, next, list, lru) { |
| unsigned long pfn = page_to_pfn(page); |
| if (!free_unref_page_prepare(page, pfn, 0)) { |
| list_del(&page->lru); |
| continue; |
| } |
| |
| /* |
| * Free isolated pages directly to the allocator, see |
| * comment in free_unref_page. |
| */ |
| migratetype = get_pcppage_migratetype(page); |
| if (unlikely(is_migrate_isolate(migratetype))) { |
| list_del(&page->lru); |
| free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); |
| continue; |
| } |
| } |
| |
| list_for_each_entry_safe(page, next, list, lru) { |
| struct zone *zone = page_zone(page); |
| |
| /* Different zone, different pcp lock. */ |
| if (zone != locked_zone) { |
| if (pcp) |
| pcp_spin_unlock_irqrestore(pcp, flags); |
| |
| locked_zone = zone; |
| pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); |
| } |
| |
| /* |
| * Non-isolated types over MIGRATE_PCPTYPES get added |
| * to the MIGRATE_MOVABLE pcp list. |
| */ |
| migratetype = get_pcppage_migratetype(page); |
| if (unlikely(migratetype >= MIGRATE_PCPTYPES)) |
| migratetype = MIGRATE_MOVABLE; |
| |
| trace_mm_page_free_batched(page); |
| free_unref_page_commit(zone, pcp, page, migratetype, 0); |
| |
| /* |
| * Guard against excessive IRQ disabled times when we get |
| * a large list of pages to free. |
| */ |
| if (++batch_count == SWAP_CLUSTER_MAX) { |
| pcp_spin_unlock_irqrestore(pcp, flags); |
| batch_count = 0; |
| pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); |
| } |
| } |
| |
| if (pcp) |
| pcp_spin_unlock_irqrestore(pcp, flags); |
| } |
| |
| /* |
| * split_page takes a non-compound higher-order page, and splits it into |
| * n (1<<order) sub-pages: page[0..n] |
| * Each sub-page must be freed individually. |
| * |
| * Note: this is probably too low level an operation for use in drivers. |
| * Please consult with lkml before using this in your driver. |
| */ |
| void split_page(struct page *page, unsigned int order) |
| { |
| int i; |
| |
| VM_BUG_ON_PAGE(PageCompound(page), page); |
| VM_BUG_ON_PAGE(!page_count(page), page); |
| |
| for (i = 1; i < (1 << order); i++) |
| set_page_refcounted(page + i); |
| split_page_owner(page, 1 << order); |
| split_page_memcg(page, 1 << order); |
| } |
| EXPORT_SYMBOL_GPL(split_page); |
| |
| int __isolate_free_page(struct page *page, unsigned int order) |
| { |
| struct zone *zone = page_zone(page); |
| int mt = get_pageblock_migratetype(page); |
| |
| if (!is_migrate_isolate(mt)) { |
| unsigned long watermark; |
| /* |
| * Obey watermarks as if the page was being allocated. We can |
| * emulate a high-order watermark check with a raised order-0 |
| * watermark, because we already know our high-order page |
| * exists. |
| */ |
| watermark = zone->_watermark[WMARK_MIN] + (1UL << order); |
| if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) |
| return 0; |
| |
| __mod_zone_freepage_state(zone, -(1UL << order), mt); |
| } |
| |
| del_page_from_free_list(page, zone, order); |
| |
| /* |
| * Set the pageblock if the isolated page is at least half of a |
| * pageblock |
| */ |
| if (order >= pageblock_order - 1) { |
| struct page *endpage = page + (1 << order) - 1; |
| for (; page < endpage; page += pageblock_nr_pages) { |
| int mt = get_pageblock_migratetype(page); |
| /* |
| * Only change normal pageblocks (i.e., they can merge |
| * with others) |
| */ |
| if (migratetype_is_mergeable(mt)) |
| set_pageblock_migratetype(page, |
| MIGRATE_MOVABLE); |
| } |
| } |
| |
| return 1UL << order; |
| } |
| |
| /** |
| * __putback_isolated_page - Return a now-isolated page back where we got it |
| * @page: Page that was isolated |
| * @order: Order of the isolated page |
| * @mt: The page's pageblock's migratetype |
| * |
| * This function is meant to return a page pulled from the free lists via |
| * __isolate_free_page back to the free lists they were pulled from. |
| */ |
| void __putback_isolated_page(struct page *page, unsigned int order, int mt) |
| { |
| struct zone *zone = page_zone(page); |
| |
| /* zone lock should be held when this function is called */ |
| lockdep_assert_held(&zone->lock); |
| |
| /* Return isolated page to tail of freelist. */ |
| __free_one_page(page, page_to_pfn(page), zone, order, mt, |
| FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); |
| } |
| |
| /* |
| * Update NUMA hit/miss statistics |
| * |
| * Must be called with interrupts disabled. |
| */ |
| static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, |
| long nr_account) |
| { |
| #ifdef CONFIG_NUMA |
| enum numa_stat_item local_stat = NUMA_LOCAL; |
| |
| /* skip numa counters update if numa stats is disabled */ |
| if (!static_branch_likely(&vm_numa_stat_key)) |
| return; |
| |
| if (zone_to_nid(z) != numa_node_id()) |
| local_stat = NUMA_OTHER; |
| |
| if (zone_to_nid(z) == zone_to_nid(preferred_zone)) |
| __count_numa_events(z, NUMA_HIT, nr_account); |
| else { |
| __count_numa_events(z, NUMA_MISS, nr_account); |
| __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); |
| } |
| __count_numa_events(z, local_stat, nr_account); |
| #endif |
| } |
| |
| static __always_inline |
| struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, |
| unsigned int order, unsigned int alloc_flags, |
| int migratetype) |
| { |
| struct page *page; |
| unsigned long flags; |
| |
| do { |
| page = NULL; |
| spin_lock_irqsave(&zone->lock, flags); |
| /* |
| * order-0 request can reach here when the pcplist is skipped |
| * due to non-CMA allocation context. HIGHATOMIC area is |
| * reserved for high-order atomic allocation, so order-0 |
| * request should skip it. |
| */ |
| if (order > 0 && alloc_flags & ALLOC_HARDER) |
| page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); |
| if (!page) { |
| page = __rmqueue(zone, order, migratetype, alloc_flags); |
| if (!page) { |
| spin_unlock_irqrestore(&zone->lock, flags); |
| return NULL; |
| } |
| } |
| __mod_zone_freepage_state(zone, -(1 << order), |
| get_pcppage_migratetype(page)); |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } while (check_new_pages(page, order)); |
| |
| __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
| zone_statistics(preferred_zone, zone, 1); |
| |
| return page; |
| } |
| |
| /* Remove page from the per-cpu list, caller must protect the list */ |
| static inline |
| struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, |
| int migratetype, |
| unsigned int alloc_flags, |
| struct per_cpu_pages *pcp, |
| struct list_head *list) |
| { |
| struct page *page; |
| |
| do { |
| if (list_empty(list)) { |
| int batch = READ_ONCE(pcp->batch); |
| int alloced; |
| |
| /* |
| * Scale batch relative to order if batch implies |
| * free pages can be stored on the PCP. Batch can |
| * be 1 for small zones or for boot pagesets which |
| * should never store free pages as the pages may |
| * belong to arbitrary zones. |
| */ |
| if (batch > 1) |
| batch = max(batch >> order, 2); |
| alloced = rmqueue_bulk(zone, order, |
| batch, list, |
| migratetype, alloc_flags); |
| |
| pcp->count += alloced << order; |
| if (unlikely(list_empty(list))) |
| return NULL; |
| } |
| |
| page = list_first_entry(list, struct page, pcp_list); |
| list_del(&page->pcp_list); |
| pcp->count -= 1 << order; |
| } while (check_new_pcp(page, order)); |
| |
| return page; |
| } |
| |
| /* Lock and remove page from the per-cpu list */ |
| static struct page *rmqueue_pcplist(struct zone *preferred_zone, |
| struct zone *zone, unsigned int order, |
| int migratetype, unsigned int alloc_flags) |
| { |
| struct per_cpu_pages *pcp; |
| struct list_head *list; |
| struct page *page; |
| unsigned long flags; |
| unsigned long __maybe_unused UP_flags; |
| |
| /* |
| * spin_trylock may fail due to a parallel drain. In the future, the |
| * trylock will also protect against IRQ reentrancy. |
| */ |
| pcp_trylock_prepare(UP_flags); |
| pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); |
| if (!pcp) { |
| pcp_trylock_finish(UP_flags); |
| return NULL; |
| } |
| |
| /* |
| * On allocation, reduce the number of pages that are batch freed. |
| * See nr_pcp_free() where free_factor is increased for subsequent |
| * frees. |
| */ |
| pcp->free_factor >>= 1; |
| list = &pcp->lists[order_to_pindex(migratetype, order)]; |
| page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); |
| pcp_spin_unlock_irqrestore(pcp, flags); |
| pcp_trylock_finish(UP_flags); |
| if (page) { |
| __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); |
| zone_statistics(preferred_zone, zone, 1); |
| } |
| return page; |
| } |
| |
| /* |
| * Allocate a page from the given zone. Use pcplists for order-0 allocations. |
| */ |
| static inline |
| struct page *rmqueue(struct zone *preferred_zone, |
| struct zone *zone, unsigned int order, |
| gfp_t gfp_flags, unsigned int alloc_flags, |
| int migratetype) |
| { |
| struct page *page; |
| |
| /* |
| * We most definitely don't want callers attempting to |
| * allocate greater than order-1 page units with __GFP_NOFAIL. |
| */ |
| WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); |
| |
| if (likely(pcp_allowed_order(order))) { |
| /* |
| * MIGRATE_MOVABLE pcplist could have the pages on CMA area and |
| * we need to skip it when CMA area isn't allowed. |
| */ |
| if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || |
| migratetype != MIGRATE_MOVABLE) { |
| page = rmqueue_pcplist(preferred_zone, zone, order, |
| migratetype, alloc_flags); |
| if (likely(page)) |
| goto out; |
| } |
| } |
| |
| page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, |
| migratetype); |
| |
| out: |
| /* Separate test+clear to avoid unnecessary atomics */ |
| if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { |
| clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
| wakeup_kswapd(zone, 0, 0, zone_idx(zone)); |
| } |
| |
| VM_BUG_ON_PAGE(page && bad_range(zone, page), page); |
| return page; |
| } |
| |
| #ifdef CONFIG_FAIL_PAGE_ALLOC |
| |
| static struct { |
| struct fault_attr attr; |
| |
| bool ignore_gfp_highmem; |
| bool ignore_gfp_reclaim; |
| u32 min_order; |
| } fail_page_alloc = { |
| .attr = FAULT_ATTR_INITIALIZER, |
| .ignore_gfp_reclaim = true, |
| .ignore_gfp_highmem = true, |
| .min_order = 1, |
| }; |
| |
| static int __init setup_fail_page_alloc(char *str) |
| { |
| return setup_fault_attr(&fail_page_alloc.attr, str); |
| } |
| __setup("fail_page_alloc=", setup_fail_page_alloc); |
| |
| static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
| { |
| if (order < fail_page_alloc.min_order) |
| return false; |
| if (gfp_mask & __GFP_NOFAIL) |
| return false; |
| if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
| return false; |
| if (fail_page_alloc.ignore_gfp_reclaim && |
| (gfp_mask & __GFP_DIRECT_RECLAIM)) |
| return false; |
| |
| if (gfp_mask & __GFP_NOWARN) |
| fail_page_alloc.attr.no_warn = true; |
| |
| return should_fail(&fail_page_alloc.attr, 1 << order); |
| } |
| |
| #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS |
| |
| static int __init fail_page_alloc_debugfs(void) |
| { |
| umode_t mode = S_IFREG | 0600; |
| struct dentry *dir; |
| |
| dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
| &fail_page_alloc.attr); |
| |
| debugfs_create_bool("ignore-gfp-wait", mode, dir, |
| &fail_page_alloc.ignore_gfp_reclaim); |
| debugfs_create_bool("ignore-gfp-highmem", mode, dir, |
| &fail_page_alloc.ignore_gfp_highmem); |
| debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); |
| |
| return 0; |
| } |
| |
| late_initcall(fail_page_alloc_debugfs); |
| |
| #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ |
| |
| #else /* CONFIG_FAIL_PAGE_ALLOC */ |
| |
| static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
| { |
| return false; |
| } |
| |
| #endif /* CONFIG_FAIL_PAGE_ALLOC */ |
| |
| noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
| { |
| return __should_fail_alloc_page(gfp_mask, order); |
| } |
| ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); |
| |
| static inline long __zone_watermark_unusable_free(struct zone *z, |
| unsigned int order, unsigned int alloc_flags) |
| { |
| const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); |
| long unusable_free = (1 << order) - 1; |
| |
| /* |
| * If the caller does not have rights to ALLOC_HARDER then subtract |
| * the high-atomic reserves. This will over-estimate the size of the |
| * atomic reserve but it avoids a search. |
| */ |
| if (likely(!alloc_harder)) |
| unusable_free += z->nr_reserved_highatomic; |
| |
| #ifdef CONFIG_CMA |
| /* If allocation can't use CMA areas don't use free CMA pages */ |
| if (!(alloc_flags & ALLOC_CMA)) |
| unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); |
| #endif |
| |
| return unusable_free; |
| } |
| |
| /* |
| * Return true if free base pages are above 'mark'. For high-order checks it |
| * will return true of the order-0 watermark is reached and there is at least |
| * one free page of a suitable size. Checking now avoids taking the zone lock |
| * to check in the allocation paths if no pages are free. |
| */ |
| bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
| int highest_zoneidx, unsigned int alloc_flags, |
| long free_pages) |
| { |
| long min = mark; |
| int o; |
| const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); |
| |
| /* free_pages may go negative - that's OK */ |
| free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); |
| |
| if (alloc_flags & ALLOC_HIGH) |
| min -= min / 2; |
| |
| if (unlikely(alloc_harder)) { |
| /* |
| * OOM victims can try even harder than normal ALLOC_HARDER |
| * users on the grounds that it's definitely going to be in |
| * the exit path shortly and free memory. Any allocation it |
| * makes during the free path will be small and short-lived. |
| */ |
| if (alloc_flags & ALLOC_OOM) |
| min -= min / 2; |
| else |
| min -= min / 4; |
| } |
| |
| /* |
| * Check watermarks for an order-0 allocation request. If these |
| * are not met, then a high-order request also cannot go ahead |
| * even if a suitable page happened to be free. |
| */ |
| if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) |
| return false; |
| |
| /* If this is an order-0 request then the watermark is fine */ |
| if (!order) |
| return true; |
| |
| /* For a high-order request, check at least one suitable page is free */ |
| for (o = order; o < MAX_ORDER; o++) { |
| struct free_area *area = &z->free_area[o]; |
| int mt; |
| |
| if (!area->nr_free) |
| continue; |
| |
| for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
| if (!free_area_empty(area, mt)) |
| return true; |
| } |
| |
| #ifdef CONFIG_CMA |
| if ((alloc_flags & ALLOC_CMA) && |
| !free_area_empty(area, MIGRATE_CMA)) { |
| return true; |
| } |
| #endif |
| if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
| int highest_zoneidx, unsigned int alloc_flags) |
| { |
| return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, |
| zone_page_state(z, NR_FREE_PAGES)); |
| } |
| |
| static inline bool zone_watermark_fast(struct zone *z, unsigned int order, |
| unsigned long mark, int highest_zoneidx, |
| unsigned int alloc_flags, gfp_t gfp_mask) |
| { |
| long free_pages; |
| |
| free_pages = zone_page_state(z, NR_FREE_PAGES); |
| |
| /* |
| * Fast check for order-0 only. If this fails then the reserves |
| * need to be calculated. |
| */ |
| if (!order) { |
| long usable_free; |
| long reserved; |
| |
| usable_free = free_pages; |
| reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); |
| |
| /* reserved may over estimate high-atomic reserves. */ |
| usable_free -= min(usable_free, reserved); |
| if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) |
| return true; |
| } |
| |
| if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, |
| free_pages)) |
| return true; |
| /* |
| * Ignore watermark boosting for GFP_ATOMIC order-0 allocations |
| * when checking the min watermark. The min watermark is the |
| * point where boosting is ignored so that kswapd is woken up |
| * when below the low watermark. |
| */ |
| if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost |
| && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { |
| mark = z->_watermark[WMARK_MIN]; |
| return __zone_watermark_ok(z, order, mark, highest_zoneidx, |
| alloc_flags, free_pages); |
| } |
| |
| return false; |
| } |
| |
| bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
| unsigned long mark, int highest_zoneidx) |
| { |
| long free_pages = zone_page_state(z, NR_FREE_PAGES); |
| |
| if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) |
| free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); |
| |
| return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, |
| free_pages); |
| } |
| |
| #ifdef CONFIG_NUMA |
| int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; |
| |
| static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
| { |
| return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= |
| node_reclaim_distance; |
| } |
| #else /* CONFIG_NUMA */ |
| static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
| { |
| return true; |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| /* |
| * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid |
| * fragmentation is subtle. If the preferred zone was HIGHMEM then |
| * premature use of a lower zone may cause lowmem pressure problems that |
| * are worse than fragmentation. If the next zone is ZONE_DMA then it is |
| * probably too small. It only makes sense to spread allocations to avoid |
| * fragmentation between the Normal and DMA32 zones. |
| */ |
| static inline unsigned int |
| alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) |
| { |
| unsigned int alloc_flags; |
| |
| /* |
| * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD |
| * to save a branch. |
| */ |
| alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); |
| |
| #ifdef CONFIG_ZONE_DMA32 |
| if (!zone) |
| return alloc_flags; |
| |
| if (zone_idx(zone) != ZONE_NORMAL) |
| return alloc_flags; |
| |
| /* |
| * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and |
| * the pointer is within zone->zone_pgdat->node_zones[]. Also assume |
| * on UMA that if Normal is populated then so is DMA32. |
| */ |
| BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); |
| if (nr_online_nodes > 1 && !populated_zone(--zone)) |
| return alloc_flags; |
| |
| alloc_flags |= ALLOC_NOFRAGMENT; |
| #endif /* CONFIG_ZONE_DMA32 */ |
| return alloc_flags; |
| } |
| |
| /* Must be called after current_gfp_context() which can change gfp_mask */ |
| static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, |
| unsigned int alloc_flags) |
| { |
| #ifdef CONFIG_CMA |
| if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
| alloc_flags |= ALLOC_CMA; |
| #endif |
| return alloc_flags; |
| } |
| |
| /* |
| * get_page_from_freelist goes through the zonelist trying to allocate |
| * a page. |
| */ |
| static struct page * |
| get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
| const struct alloc_context *ac) |
| { |
| struct zoneref *z; |
| struct zone *zone; |
| struct pglist_data *last_pgdat = NULL; |
| bool last_pgdat_dirty_ok = false; |
| bool no_fallback; |
| |
| retry: |
| /* |
| * Scan zonelist, looking for a zone with enough free. |
| * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. |
| */ |
| no_fallback = alloc_flags & ALLOC_NOFRAGMENT; |
| z = ac->preferred_zoneref; |
| for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, |
| ac->nodemask) { |
| struct page *page; |
| unsigned long mark; |
| |
| if (cpusets_enabled() && |
| (alloc_flags & ALLOC_CPUSET) && |
| !__cpuset_zone_allowed(zone, gfp_mask)) |
| continue; |
| /* |
| * When allocating a page cache page for writing, we |
| * want to get it from a node that is within its dirty |
| * limit, such that no single node holds more than its |
| * proportional share of globally allowed dirty pages. |
| * The dirty limits take into account the node's |
| * lowmem reserves and high watermark so that kswapd |
| * should be able to balance it without having to |
| * write pages from its LRU list. |
| * |
| * XXX: For now, allow allocations to potentially |
| * exceed the per-node dirty limit in the slowpath |
| * (spread_dirty_pages unset) before going into reclaim, |
| * which is important when on a NUMA setup the allowed |
| * nodes are together not big enough to reach the |
| * global limit. The proper fix for these situations |
| * will require awareness of nodes in the |
| * dirty-throttling and the flusher threads. |
| */ |
| if (ac->spread_dirty_pages) { |
| if (last_pgdat != zone->zone_pgdat) { |
| last_pgdat = zone->zone_pgdat; |
| last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); |
| } |
| |
| if (!last_pgdat_dirty_ok) |
| continue; |
| } |
| |
| if (no_fallback && nr_online_nodes > 1 && |
| zone != ac->preferred_zoneref->zone) { |
| int local_nid; |
| |
| /* |
| * If moving to a remote node, retry but allow |
| * fragmenting fallbacks. Locality is more important |
| * than fragmentation avoidance. |
| */ |
| local_nid = zone_to_nid(ac->preferred_zoneref->zone); |
| if (zone_to_nid(zone) != local_nid) { |
| alloc_flags &= ~ALLOC_NOFRAGMENT; |
| goto retry; |
| } |
| } |
| |
| mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); |
| if (!zone_watermark_fast(zone, order, mark, |
| ac->highest_zoneidx, alloc_flags, |
| gfp_mask)) { |
| int ret; |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| /* |
| * Watermark failed for this zone, but see if we can |
| * grow this zone if it contains deferred pages. |
| */ |
| if (static_branch_unlikely(&deferred_pages)) { |
| if (_deferred_grow_zone(zone, order)) |
| goto try_this_zone; |
| } |
| #endif |
| /* Checked here to keep the fast path fast */ |
| BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
| if (alloc_flags & ALLOC_NO_WATERMARKS) |
| goto try_this_zone; |
| |
| if (!node_reclaim_enabled() || |
| !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) |
| continue; |
| |
| ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); |
| switch (ret) { |
| case NODE_RECLAIM_NOSCAN: |
| /* did not scan */ |
| continue; |
| case NODE_RECLAIM_FULL: |
| /* scanned but unreclaimable */ |
| continue; |
| default: |
| /* did we reclaim enough */ |
| if (zone_watermark_ok(zone, order, mark, |
| ac->highest_zoneidx, alloc_flags)) |
| goto try_this_zone; |
| |
| continue; |
| } |
| } |
| |
| try_this_zone: |
| page = rmqueue(ac->preferred_zoneref->zone, zone, order, |
| gfp_mask, alloc_flags, ac->migratetype); |
| if (page) { |
| prep_new_page(page, order, gfp_mask, alloc_flags); |
| |
| /* |
| * If this is a high-order atomic allocation then check |
| * if the pageblock should be reserved for the future |
| */ |
| if (unlikely(order && (alloc_flags & ALLOC_HARDER))) |
| reserve_highatomic_pageblock(page, zone, order); |
| |
| return page; |
| } else { |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| /* Try again if zone has deferred pages */ |
| if (static_branch_unlikely(&deferred_pages)) { |
| if (_deferred_grow_zone(zone, order)) |
| goto try_this_zone; |
| } |
| #endif |
| } |
| } |
| |
| /* |
| * It's possible on a UMA machine to get through all zones that are |
| * fragmented. If avoiding fragmentation, reset and try again. |
| */ |
| if (no_fallback) { |
| alloc_flags &= ~ALLOC_NOFRAGMENT; |
| goto retry; |
| } |
| |
| return NULL; |
| } |
| |
| static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) |
| { |
| unsigned int filter = SHOW_MEM_FILTER_NODES; |
| |
| /* |
| * This documents exceptions given to allocations in certain |
| * contexts that are allowed to allocate outside current's set |
| * of allowed nodes. |
| */ |
| if (!(gfp_mask & __GFP_NOMEMALLOC)) |
| if (tsk_is_oom_victim(current) || |
| (current->flags & (PF_MEMALLOC | PF_EXITING))) |
| filter &= ~SHOW_MEM_FILTER_NODES; |
| if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
| filter &= ~SHOW_MEM_FILTER_NODES; |
| |
| show_mem(filter, nodemask); |
| } |
| |
| void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); |
| |
| if ((gfp_mask & __GFP_NOWARN) || |
| !__ratelimit(&nopage_rs) || |
| ((gfp_mask & __GFP_DMA) && !has_managed_dma())) |
| return; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", |
| current->comm, &vaf, gfp_mask, &gfp_mask, |
| nodemask_pr_args(nodemask)); |
| va_end(args); |
| |
| cpuset_print_current_mems_allowed(); |
| pr_cont("\n"); |
| dump_stack(); |
| warn_alloc_show_mem(gfp_mask, nodemask); |
| } |
| |
| static inline struct page * |
| __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, |
| unsigned int alloc_flags, |
| const struct alloc_context *ac) |
| { |
| struct page *page; |
| |
| page = get_page_from_freelist(gfp_mask, order, |
| alloc_flags|ALLOC_CPUSET, ac); |
| /* |
| * fallback to ignore cpuset restriction if our nodes |
| * are depleted |
| */ |
| if (!page) |
| page = get_page_from_freelist(gfp_mask, order, |
| alloc_flags, ac); |
| |
| return page; |
| } |
| |
| static inline struct page * |
| __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, |
| const struct alloc_context *ac, unsigned long *did_some_progress) |
| { |
| struct oom_control oc = { |
| .zonelist = ac->zonelist, |
| .nodemask = ac->nodemask, |
| .memcg = NULL, |
| .gfp_mask = gfp_mask, |
| .order = order, |
| }; |
| struct page *page; |
| |
| *did_some_progress = 0; |
| |
| /* |
| * Acquire the oom lock. If that fails, somebody else is |
| * making progress for us. |
| */ |
| if (!mutex_trylock(&oom_lock)) { |
| *did_some_progress = 1; |
| schedule_timeout_uninterruptible(1); |
| return NULL; |
| } |
| |
| /* |
| * Go through the zonelist yet one more time, keep very high watermark |
| * here, this is only to catch a parallel oom killing, we must fail if |
| * we're still under heavy pressure. But make sure that this reclaim |
| * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY |
| * allocation which will never fail due to oom_lock already held. |
| */ |
| page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & |
| ~__GFP_DIRECT_RECLAIM, order, |
| ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); |
| if (page) |
| goto out; |
| |
| /* Coredumps can quickly deplete all memory reserves */ |
| if (current->flags & PF_DUMPCORE) |
| goto out; |
| /* The OOM killer will not help higher order allocs */ |
| if (order > PAGE_ALLOC_COSTLY_ORDER) |
| goto out; |
| /* |
| * We have already exhausted all our reclaim opportunities without any |
| * success so it is time to admit defeat. We will skip the OOM killer |
| * because it is very likely that the caller has a more reasonable |
| * fallback than shooting a random task. |
| * |
| * The OOM killer may not free memory on a specific node. |
| */ |
| if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) |
| goto out; |
| /* The OOM killer does not needlessly kill tasks for lowmem */ |
| if (ac->highest_zoneidx < ZONE_NORMAL) |
| goto out; |
| if (pm_suspended_storage()) |
| goto out; |
| /* |
| * XXX: GFP_NOFS allocations should rather fail than rely on |
| * other request to make a forward progress. |
| * We are in an unfortunate situation where out_of_memory cannot |
| * do much for this context but let's try it to at least get |
| * access to memory reserved if the current task is killed (see |
| * out_of_memory). Once filesystems are ready to handle allocation |
| * failures more gracefully we should just bail out here. |
| */ |
| |
| /* Exhausted what can be done so it's blame time */ |
| if (out_of_memory(&oc) || |
| WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { |
| *did_some_progress = 1; |
| |
| /* |
| * Help non-failing allocations by giving them access to memory |
| * reserves |
| */ |
| if (gfp_mask & __GFP_NOFAIL) |
| page = __alloc_pages_cpuset_fallback(gfp_mask, order, |
| ALLOC_NO_WATERMARKS, ac); |
| } |
| out: |
| mutex_unlock(&oom_lock); |
| return page; |
| } |
| |
| /* |
| * Maximum number of compaction retries with a progress before OOM |
| * killer is consider as the only way to move forward. |
| */ |
| #define MAX_COMPACT_RETRIES 16 |
| |
| #ifdef CONFIG_COMPACTION |
| /* Try memory compaction for high-order allocations before reclaim */ |
| static struct page * |
| __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
| unsigned int alloc_flags, const struct alloc_context *ac, |
| enum compact_priority prio, enum compact_result *compact_result) |
| { |
| struct page *page = NULL; |
| unsigned long pflags; |
| unsigned int noreclaim_flag; |
| |
| if (!order) |
| return NULL; |
| |
| psi_memstall_enter(&pflags); |
| delayacct_compact_start(); |
| noreclaim_flag = memalloc_noreclaim_save(); |
| |
| *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
| prio, &page); |
| |
| memalloc_noreclaim_restore(noreclaim_flag); |
| psi_memstall_leave(&pflags); |
| delayacct_compact_end(); |
| |
| if (*compact_result == COMPACT_SKIPPED) |
| return NULL; |
| /* |
| * At least in one zone compaction wasn't deferred or skipped, so let's |
| * count a compaction stall |
| */ |
| count_vm_event(COMPACTSTALL); |
| |
| /* Prep a captured page if available */ |
| if (page) |
| prep_new_page(page, order, gfp_mask, alloc_flags); |
| |
| /* Try get a page from the freelist if available */ |
| if (!page) |
| page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| |
| if (page) { |
| struct zone *zone = page_zone(page); |
| |
| zone->compact_blockskip_flush = false; |
| compaction_defer_reset(zone, order, true); |
| count_vm_event(COMPACTSUCCESS); |
| return page; |
| } |
| |
| /* |
| * It's bad if compaction run occurs and fails. The most likely reason |
| * is that pages exist, but not enough to satisfy watermarks. |
| */ |
| count_vm_event(COMPACTFAIL); |
| |
| cond_resched(); |
| |
| return NULL; |
| } |
| |
| static inline bool |
| should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, |
| enum compact_result compact_result, |
| enum compact_priority *compact_priority, |
| int *compaction_retries) |
| { |
| int max_retries = MAX_COMPACT_RETRIES; |
| int min_priority; |
| bool ret = false; |
| int retries = *compaction_retries; |
| enum compact_priority priority = *compact_priority; |
| |
| if (!order) |
| return false; |
| |
| if (fatal_signal_pending(current)) |
| return false; |
| |
| if (compaction_made_progress(compact_result)) |
| (*compaction_retries)++; |
| |
| /* |
| * compaction considers all the zone as desperately out of memory |
| * so it doesn't really make much sense to retry except when the |
| * failure could be caused by insufficient priority |
| */ |
| if (compaction_failed(compact_result)) |
| goto check_priority; |
| |
| /* |
| * compaction was skipped because there are not enough order-0 pages |
| * to work with, so we retry only if it looks like reclaim can help. |
| */ |
| if (compaction_needs_reclaim(compact_result)) { |
| ret = compaction_zonelist_suitable(ac, order, alloc_flags); |
| goto out; |
| } |
| |
| /* |
| * make sure the compaction wasn't deferred or didn't bail out early |
| * due to locks contention before we declare that we should give up. |
| * But the next retry should use a higher priority if allowed, so |
| * we don't just keep bailing out endlessly. |
| */ |
| if (compaction_withdrawn(compact_result)) { |
| goto check_priority; |
| } |
| |
| /* |
| * !costly requests are much more important than __GFP_RETRY_MAYFAIL |
| * costly ones because they are de facto nofail and invoke OOM |
| * killer to move on while costly can fail and users are ready |
| * to cope with that. 1/4 retries is rather arbitrary but we |
| * would need much more detailed feedback from compaction to |
| * make a better decision. |
| */ |
| if (order > PAGE_ALLOC_COSTLY_ORDER) |
| max_retries /= 4; |
| if (*compaction_retries <= max_retries) { |
| ret = true; |
| goto out; |
| } |
| |
| /* |
| * Make sure there are attempts at the highest priority if we exhausted |
| * all retries or failed at the lower priorities. |
| */ |
| check_priority: |
| min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? |
| MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; |
| |
| if (*compact_priority > min_priority) { |
| (*compact_priority)--; |
| *compaction_retries = 0; |
| ret = true; |
| } |
| out: |
| trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); |
| return ret; |
| } |
| #else |
| static inline struct page * |
| __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
| unsigned int alloc_flags, const struct alloc_context *ac, |
| enum compact_priority prio, enum compact_result *compact_result) |
| { |
| *compact_result = COMPACT_SKIPPED; |
| return NULL; |
| } |
| |
| static inline bool |
| should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, |
| enum compact_result compact_result, |
| enum compact_priority *compact_priority, |
| int *compaction_retries) |
| { |
| struct zone *zone; |
| struct zoneref *z; |
| |
| if (!order || order > PAGE_ALLOC_COSTLY_ORDER) |
| return false; |
| |
| /* |
| * There are setups with compaction disabled which would prefer to loop |
| * inside the allocator rather than hit the oom killer prematurely. |
| * Let's give them a good hope and keep retrying while the order-0 |
| * watermarks are OK. |
| */ |
| for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask) { |
| if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), |
| ac->highest_zoneidx, alloc_flags)) |
| return true; |
| } |
| return false; |
| } |
| #endif /* CONFIG_COMPACTION */ |
| |
| #ifdef CONFIG_LOCKDEP |
| static struct lockdep_map __fs_reclaim_map = |
| STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); |
| |
| static bool __need_reclaim(gfp_t gfp_mask) |
| { |
| /* no reclaim without waiting on it */ |
| if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) |
| return false; |
| |
| /* this guy won't enter reclaim */ |
| if (current->flags & PF_MEMALLOC) |
| return false; |
| |
| if (gfp_mask & __GFP_NOLOCKDEP) |
| return false; |
| |
| return true; |
| } |
| |
| void __fs_reclaim_acquire(unsigned long ip) |
| { |
| lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); |
| } |
| |
| void __fs_reclaim_release(unsigned long ip) |
| { |
| lock_release(&__fs_reclaim_map, ip); |
| } |
| |
| void fs_reclaim_acquire(gfp_t gfp_mask) |
| { |
| gfp_mask = current_gfp_context(gfp_mask); |
| |
| if (__need_reclaim(gfp_mask)) { |
| if (gfp_mask & __GFP_FS) |
| __fs_reclaim_acquire(_RET_IP_); |
| |
| #ifdef CONFIG_MMU_NOTIFIER |
| lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); |
| lock_map_release(&__mmu_notifier_invalidate_range_start_map); |
| #endif |
| |
| } |
| } |
| EXPORT_SYMBOL_GPL(fs_reclaim_acquire); |
| |
| void fs_reclaim_release(gfp_t gfp_mask) |
| { |
| gfp_mask = current_gfp_context(gfp_mask); |
| |
| if (__need_reclaim(gfp_mask)) { |
| if (gfp_mask & __GFP_FS) |
| __fs_reclaim_release(_RET_IP_); |
| } |
| } |
| EXPORT_SYMBOL_GPL(fs_reclaim_release); |
| #endif |
| |
| /* |
| * Zonelists may change due to hotplug during allocation. Detect when zonelists |
| * have been rebuilt so allocation retries. Reader side does not lock and |
| * retries the allocation if zonelist changes. Writer side is protected by the |
| * embedded spin_lock. |
| */ |
| static DEFINE_SEQLOCK(zonelist_update_seq); |
| |
| static unsigned int zonelist_iter_begin(void) |
| { |
| if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) |
| return read_seqbegin(&zonelist_update_seq); |
| |
| return 0; |
| } |
| |
| static unsigned int check_retry_zonelist(unsigned int seq) |
| { |
| if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) |
| return read_seqretry(&zonelist_update_seq, seq); |
| |
| return seq; |
| } |
| |
| /* Perform direct synchronous page reclaim */ |
| static unsigned long |
| __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
| const struct alloc_context *ac) |
| { |
| unsigned int noreclaim_flag; |
| unsigned long progress; |
| |
| cond_resched(); |
| |
| /* We now go into synchronous reclaim */ |
| cpuset_memory_pressure_bump(); |
| fs_reclaim_acquire(gfp_mask); |
| noreclaim_flag = memalloc_noreclaim_save(); |
| |
| progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
| ac->nodemask); |
| |
| memalloc_noreclaim_restore(noreclaim_flag); |
| fs_reclaim_release(gfp_mask); |
| |
| cond_resched(); |
| |
| return progress; |
| } |
| |
| /* The really slow allocator path where we enter direct reclaim */ |
| static inline struct page * |
| __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, |
| unsigned int alloc_flags, const struct alloc_context *ac, |
| unsigned long *did_some_progress) |
| { |
| struct page *page = NULL; |
| unsigned long pflags; |
| bool drained = false; |
| |
| psi_memstall_enter(&pflags); |
| *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
| if (unlikely(!(*did_some_progress))) |
| goto out; |
| |
| retry: |
| page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| |
| /* |
| * If an allocation failed after direct reclaim, it could be because |
| * pages are pinned on the per-cpu lists or in high alloc reserves. |
| * Shrink them and try again |
| */ |
| if (!page && !drained) { |
| unreserve_highatomic_pageblock(ac, false); |
| drain_all_pages(NULL); |
| drained = true; |
| goto retry; |
| } |
| out: |
| psi_memstall_leave(&pflags); |
| |
| return page; |
| } |
| |
| static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, |
| const struct alloc_context *ac) |
| { |
| struct zoneref *z; |
| struct zone *zone; |
| pg_data_t *last_pgdat = NULL; |
| enum zone_type highest_zoneidx = ac->highest_zoneidx; |
| |
| for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, |
| ac->nodemask) { |
| if (!managed_zone(zone)) |
| continue; |
| if (last_pgdat != zone->zone_pgdat) { |
| wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); |
| last_pgdat = zone->zone_pgdat; |
| } |
| } |
| } |
| |
| static inline unsigned int |
| gfp_to_alloc_flags(gfp_t gfp_mask) |
| { |
| unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
| |
| /* |
| * __GFP_HIGH is assumed to be the same as ALLOC_HIGH |
| * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD |
| * to save two branches. |
| */ |
| BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
| BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); |
| |
| /* |
| * The caller may dip into page reserves a bit more if the caller |
| * cannot run direct reclaim, or if the caller has realtime scheduling |
| * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will |
| * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). |
| */ |
| alloc_flags |= (__force int) |
| (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); |
| |
| if (gfp_mask & __GFP_ATOMIC) { |
| /* |
| * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
| * if it can't schedule. |
| */ |
| if (!(gfp_mask & __GFP_NOMEMALLOC)) |
| alloc_flags |= ALLOC_HARDER; |
| /* |
| * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the |
| * comment for __cpuset_node_allowed(). |
| */ |
| alloc_flags &= ~ALLOC_CPUSET; |
| } else if (unlikely(rt_task(current)) && in_task()) |
| alloc_flags |= ALLOC_HARDER; |
| |
| alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); |
| |
| return alloc_flags; |
| } |
| |
| static bool oom_reserves_allowed(struct task_struct *tsk) |
| { |
| if (!tsk_is_oom_victim(tsk)) |
| return false; |
| |
| /* |
| * !MMU doesn't have oom reaper so give access to memory reserves |
| * only to the thread with TIF_MEMDIE set |
| */ |
| if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Distinguish requests which really need access to full memory |
| * reserves from oom victims which can live with a portion of it |
| */ |
| static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) |
| { |
| if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) |
| return 0; |
| if (gfp_mask & __GFP_MEMALLOC) |
| return ALLOC_NO_WATERMARKS; |
| if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
| return ALLOC_NO_WATERMARKS; |
| if (!in_interrupt()) { |
| if (current->flags & PF_MEMALLOC) |
| return ALLOC_NO_WATERMARKS; |
| else if (oom_reserves_allowed(current)) |
| return ALLOC_OOM; |
| } |
| |
| return 0; |
| } |
| |
| bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
| { |
| return !!__gfp_pfmemalloc_flags(gfp_mask); |
| } |
| |
| /* |
| * Checks whether it makes sense to retry the reclaim to make a forward progress |
| * for the given allocation request. |
| * |
| * We give up when we either have tried MAX_RECLAIM_RETRIES in a row |
| * without success, or when we couldn't even meet the watermark if we |
| * reclaimed all remaining pages on the LRU lists. |
| * |
| * Returns true if a retry is viable or false to enter the oom path. |
| */ |
| static inline bool |
| should_reclaim_retry(gfp_t gfp_mask, unsigned order, |
| struct alloc_context *ac, int alloc_flags, |
| bool did_some_progress, int *no_progress_loops) |
| { |
| struct zone *zone; |
| struct zoneref *z; |
| bool ret = false; |
| |
| /* |
| * Costly allocations might have made a progress but this doesn't mean |
| * their order will become available due to high fragmentation so |
| * always increment the no progress counter for them |
| */ |
| if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) |
| *no_progress_loops = 0; |
| else |
| (*no_progress_loops)++; |
| |
| /* |
| * Make sure we converge to OOM if we cannot make any progress |
| * several times in the row. |
| */ |
| if (*no_progress_loops > MAX_RECLAIM_RETRIES) { |
| /* Before OOM, exhaust highatomic_reserve */ |
| return unreserve_highatomic_pageblock(ac, true); |
| } |
| |
| /* |
| * Keep reclaiming pages while there is a chance this will lead |
| * somewhere. If none of the target zones can satisfy our allocation |
| * request even if all reclaimable pages are considered then we are |
| * screwed and have to go OOM. |
| */ |
| for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask) { |
| unsigned long available; |
| unsigned long reclaimable; |
| unsigned long min_wmark = min_wmark_pages(zone); |
| bool wmark; |
| |
| available = reclaimable = zone_reclaimable_pages(zone); |
| available += zone_page_state_snapshot(zone, NR_FREE_PAGES); |
| |
| /* |
| * Would the allocation succeed if we reclaimed all |
| * reclaimable pages? |
| */ |
| wmark = __zone_watermark_ok(zone, order, min_wmark, |
| ac->highest_zoneidx, alloc_flags, available); |
| trace_reclaim_retry_zone(z, order, reclaimable, |
| available, min_wmark, *no_progress_loops, wmark); |
| if (wmark) { |
| ret = true; |
| break; |
| } |
| } |
| |
| /* |
| * Memory allocation/reclaim might be called from a WQ context and the |
| * current implementation of the WQ concurrency control doesn't |
| * recognize that a particular WQ is congested if the worker thread is |
| * looping without ever sleeping. Therefore we have to do a short sleep |
| * here rather than calling cond_resched(). |
| */ |
| if (current->flags & PF_WQ_WORKER) |
| schedule_timeout_uninterruptible(1); |
| else |
| cond_resched(); |
| return ret; |
| } |
| |
| static inline bool |
| check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) |
| { |
| /* |
| * It's possible that cpuset's mems_allowed and the nodemask from |
| * mempolicy don't intersect. This should be normally dealt with by |
| * policy_nodemask(), but it's possible to race with cpuset update in |
| * such a way the check therein was true, and then it became false |
| * before we got our cpuset_mems_cookie here. |
| * This assumes that for all allocations, ac->nodemask can come only |
| * from MPOL_BIND mempolicy (whose documented semantics is to be ignored |
| * when it does not intersect with the cpuset restrictions) or the |
| * caller can deal with a violated nodemask. |
| */ |
| if (cpusets_enabled() && ac->nodemask && |
| !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { |
| ac->nodemask = NULL; |
| return true; |
| } |
| |
| /* |
| * When updating a task's mems_allowed or mempolicy nodemask, it is |
| * possible to race with parallel threads in such a way that our |
| * allocation can fail while the mask is being updated. If we are about |
| * to fail, check if the cpuset changed during allocation and if so, |
| * retry. |
| */ |
| if (read_mems_allowed_retry(cpuset_mems_cookie)) |
| return true; |
| |
| return false; |
| } |
| |
| static inline struct page * |
| __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, |
| struct alloc_context *ac) |
| { |
| bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
| const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; |
| struct page *page = NULL; |
| unsigned int alloc_flags; |
| unsigned long did_some_progress; |
| enum compact_priority compact_priority; |
| enum compact_result compact_result; |
| int compaction_retries; |
| int no_progress_loops; |
| unsigned int cpuset_mems_cookie; |
| unsigned int zonelist_iter_cookie; |
| int reserve_flags; |
| |
| /* |
| * We also sanity check to catch abuse of atomic reserves being used by |
| * callers that are not in atomic context. |
| */ |
| if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == |
| (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) |
| gfp_mask &= ~__GFP_ATOMIC; |
| |
| restart: |
| compaction_retries = 0; |
| no_progress_loops = 0; |
| compact_priority = DEF_COMPACT_PRIORITY; |
| cpuset_mems_cookie = read_mems_allowed_begin(); |
| zonelist_iter_cookie = zonelist_iter_begin(); |
| |
| /* |
| * The fast path uses conservative alloc_flags to succeed only until |
| * kswapd needs to be woken up, and to avoid the cost of setting up |
| * alloc_flags precisely. So we do that now. |
| */ |
| alloc_flags = gfp_to_alloc_flags(gfp_mask); |
| |
| /* |
| * We need to recalculate the starting point for the zonelist iterator |
| * because we might have used different nodemask in the fast path, or |
| * there was a cpuset modification and we are retrying - otherwise we |
| * could end up iterating over non-eligible zones endlessly. |
| */ |
| ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask); |
| if (!ac->preferred_zoneref->zone) |
| goto nopage; |
| |
| /* |
| * Check for insane configurations where the cpuset doesn't contain |
| * any suitable zone to satisfy the request - e.g. non-movable |
| * GFP_HIGHUSER allocations from MOVABLE nodes only. |
| */ |
| if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { |
| struct zoneref *z = first_zones_zonelist(ac->zonelist, |
| ac->highest_zoneidx, |
| &cpuset_current_mems_allowed); |
| if (!z->zone) |
| goto nopage; |
| } |
| |
| if (alloc_flags & ALLOC_KSWAPD) |
| wake_all_kswapds(order, gfp_mask, ac); |
| |
| /* |
| * The adjusted alloc_flags might result in immediate success, so try |
| * that first |
| */ |
| page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| if (page) |
| goto got_pg; |
| |
| /* |
| * For costly allocations, try direct compaction first, as it's likely |
| * that we have enough base pages and don't need to reclaim. For non- |
| * movable high-order allocations, do that as well, as compaction will |
| * try prevent permanent fragmentation by migrating from blocks of the |
| * same migratetype. |
| * Don't try this for allocations that are allowed to ignore |
| * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. |
| */ |
| if (can_direct_reclaim && |
| (costly_order || |
| (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) |
| && !gfp_pfmemalloc_allowed(gfp_mask)) { |
| page = __alloc_pages_direct_compact(gfp_mask, order, |
| alloc_flags, ac, |
| INIT_COMPACT_PRIORITY, |
| &compact_result); |
| if (page) |
| goto got_pg; |
| |
| /* |
| * Checks for costly allocations with __GFP_NORETRY, which |
| * includes some THP page fault allocations |
| */ |
| if (costly_order && (gfp_mask & __GFP_NORETRY)) { |
| /* |
| * If allocating entire pageblock(s) and compaction |
| * failed because all zones are below low watermarks |
| * or is prohibited because it recently failed at this |
| * order, fail immediately unless the allocator has |
| * requested compaction and reclaim retry. |
| * |
| * Reclaim is |
| * - potentially very expensive because zones are far |
| * below their low watermarks or this is part of very |
| * bursty high order allocations, |
| * - not guaranteed to help because isolate_freepages() |
| * may not iterate over freed pages as part of its |
| * linear scan, and |
| * - unlikely to make entire pageblocks free on its |
| * own. |
| */ |
| if (compact_result == COMPACT_SKIPPED || |
| compact_result == COMPACT_DEFERRED) |
| goto nopage; |
| |
| /* |
| * Looks like reclaim/compaction is worth trying, but |
| * sync compaction could be very expensive, so keep |
| * using async compaction. |
| */ |
| compact_priority = INIT_COMPACT_PRIORITY; |
| } |
| } |
| |
| retry: |
| /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ |
| if (alloc_flags & ALLOC_KSWAPD) |
| wake_all_kswapds(order, gfp_mask, ac); |
| |
| reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); |
| if (reserve_flags) |
| alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); |
| |
| /* |
| * Reset the nodemask and zonelist iterators if memory policies can be |
| * ignored. These allocations are high priority and system rather than |
| * user oriented. |
| */ |
| if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { |
| ac->nodemask = NULL; |
| ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask); |
| } |
| |
| /* Attempt with potentially adjusted zonelist and alloc_flags */ |
| page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| if (page) |
| goto got_pg; |
| |
| /* Caller is not willing to reclaim, we can't balance anything */ |
| if (!can_direct_reclaim) |
| goto nopage; |
| |
| /* Avoid recursion of direct reclaim */ |
| if (current->flags & PF_MEMALLOC) |
| goto nopage; |
| |
| /* Try direct reclaim and then allocating */ |
| page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, |
| &did_some_progress); |
| if (page) |
| goto got_pg; |
| |
| /* Try direct compaction and then allocating */ |
| page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
| compact_priority, &compact_result); |
| if (page) |
| goto got_pg; |
| |
| /* Do not loop if specifically requested */ |
| if (gfp_mask & __GFP_NORETRY) |
| goto nopage; |
| |
| /* |
| * Do not retry costly high order allocations unless they are |
| * __GFP_RETRY_MAYFAIL |
| */ |
| if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) |
| goto nopage; |
| |
| if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, |
| did_some_progress > 0, &no_progress_loops)) |
| goto retry; |
| |
| /* |
| * It doesn't make any sense to retry for the compaction if the order-0 |
| * reclaim is not able to make any progress because the current |
| * implementation of the compaction depends on the sufficient amount |
| * of free memory (see __compaction_suitable) |
| */ |
| if (did_some_progress > 0 && |
| should_compact_retry(ac, order, alloc_flags, |
| compact_result, &compact_priority, |
| &compaction_retries)) |
| goto retry; |
| |
| |
| /* |
| * Deal with possible cpuset update races or zonelist updates to avoid |
| * a unnecessary OOM kill. |
| */ |
| if (check_retry_cpuset(cpuset_mems_cookie, ac) || |
| check_retry_zonelist(zonelist_iter_cookie)) |
| goto restart; |
| |
| /* Reclaim has failed us, start killing things */ |
| page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); |
| if (page) |
| goto got_pg; |
| |
| /* Avoid allocations with no watermarks from looping endlessly */ |
| if (tsk_is_oom_victim(current) && |
| (alloc_flags & ALLOC_OOM || |
| (gfp_mask & __GFP_NOMEMALLOC))) |
| goto nopage; |
| |
| /* Retry as long as the OOM killer is making progress */ |
| if (did_some_progress) { |
| no_progress_loops = 0; |
| goto retry; |
| } |
| |
| nopage: |
| /* |
| * Deal with possible cpuset update races or zonelist updates to avoid |
| * a unnecessary OOM kill. |
| */ |
| if (check_retry_cpuset(cpuset_mems_cookie, ac) || |
| check_retry_zonelist(zonelist_iter_cookie)) |
| goto restart; |
| |
| /* |
| * Make sure that __GFP_NOFAIL request doesn't leak out and make sure |
| * we always retry |
| */ |
| if (gfp_mask & __GFP_NOFAIL) { |
| /* |
| * All existing users of the __GFP_NOFAIL are blockable, so warn |
| * of any new users that actually require GFP_NOWAIT |
| */ |
| if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) |
| goto fail; |
| |
| /* |
| * PF_MEMALLOC request from this context is rather bizarre |
| * because we cannot reclaim anything and only can loop waiting |
| * for somebody to do a work for us |
| */ |
| WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); |
| |
| /* |
| * non failing costly orders are a hard requirement which we |
| * are not prepared for much so let's warn about these users |
| * so that we can identify them and convert them to something |
| * else. |
| */ |
| WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask); |
| |
| /* |
| * Help non-failing allocations by giving them access to memory |
| * reserves but do not use ALLOC_NO_WATERMARKS because this |
| * could deplete whole memory reserves which would just make |
| * the situation worse |
| */ |
| page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); |
| if (page) |
| goto got_pg; |
| |
| cond_resched(); |
| goto retry; |
| } |
| fail: |
| warn_alloc(gfp_mask, ac->nodemask, |
| "page allocation failure: order:%u", order); |
| got_pg: |
| return page; |
| } |
| |
| static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, |
| int preferred_nid, nodemask_t *nodemask, |
| struct alloc_context *ac, gfp_t *alloc_gfp, |
| unsigned int *alloc_flags) |
| { |
| ac->highest_zoneidx = gfp_zone(gfp_mask); |
| ac->zonelist = node_zonelist(preferred_nid, gfp_mask); |
| ac->nodemask = nodemask; |
| ac->migratetype = gfp_migratetype(gfp_mask); |
| |
| if (cpusets_enabled()) { |
| *alloc_gfp |= __GFP_HARDWALL; |
| /* |
| * When we are in the interrupt context, it is irrelevant |
| * to the current task context. It means that any node ok. |
| */ |
| if (in_task() && !ac->nodemask) |
| ac->nodemask = &cpuset_current_mems_allowed; |
| else |
| *alloc_flags |= ALLOC_CPUSET; |
| } |
| |
| might_alloc(gfp_mask); |
| |
| if (should_fail_alloc_page(gfp_mask, order)) |
| return false; |
| |
| *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); |
| |
| /* Dirty zone balancing only done in the fast path */ |
| ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); |
| |
| /* |
| * The preferred zone is used for statistics but crucially it is |
| * also used as the starting point for the zonelist iterator. It |
| * may get reset for allocations that ignore memory policies. |
| */ |
| ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask); |
| |
| return true; |
| } |
| |
| /* |
| * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array |
| * @gfp: GFP flags for the allocation |
| * @preferred_nid: The preferred NUMA node ID to allocate from |
| * @nodemask: Set of nodes to allocate from, may be NULL |
| * @nr_pages: The number of pages desired on the list or array |
| * @page_list: Optional list to store the allocated pages |
| * @page_array: Optional array to store the pages |
| * |
| * This is a batched version of the page allocator that attempts to |
| * allocate nr_pages quickly. Pages are added to page_list if page_list |
| * is not NULL, otherwise it is assumed that the page_array is valid. |
| * |
| * For lists, nr_pages is the number of pages that should be allocated. |
| * |
| * For arrays, only NULL elements are populated with pages and nr_pages |
| * is the maximum number of pages that will be stored in the array. |
| * |
| * Returns the number of pages on the list or array. |
| */ |
| unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, |
| nodemask_t *nodemask, int nr_pages, |
| struct list_head *page_list, |
| struct page **page_array) |
| { |
| struct page *page; |
| unsigned long flags; |
| unsigned long __maybe_unused UP_flags; |
| struct zone *zone; |
| struct zoneref *z; |
| struct per_cpu_pages *pcp; |
| struct list_head *pcp_list; |
| struct alloc_context ac; |
| gfp_t alloc_gfp; |
| unsigned int alloc_flags = ALLOC_WMARK_LOW; |
| int nr_populated = 0, nr_account = 0; |
| |
| /* |
| * Skip populated array elements to determine if any pages need |
| * to be allocated before disabling IRQs. |
| */ |
| while (page_array && nr_populated < nr_pages && page_array[nr_populated]) |
| nr_populated++; |
| |
| /* No pages requested? */ |
| if (unlikely(nr_pages <= 0)) |
| goto out; |
| |
| /* Already populated array? */ |
| if (unlikely(page_array && nr_pages - nr_populated == 0)) |
| goto out; |
| |
| /* Bulk allocator does not support memcg accounting. */ |
| if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) |
| goto failed; |
| |
| /* Use the single page allocator for one page. */ |
| if (nr_pages - nr_populated == 1) |
| goto failed; |
| |
| #ifdef CONFIG_PAGE_OWNER |
| /* |
| * PAGE_OWNER may recurse into the allocator to allocate space to |
| * save the stack with pagesets.lock held. Releasing/reacquiring |
| * removes much of the performance benefit of bulk allocation so |
| * force the caller to allocate one page at a time as it'll have |
| * similar performance to added complexity to the bulk allocator. |
| */ |
| if (static_branch_unlikely(&page_owner_inited)) |
| goto failed; |
| #endif |
| |
| /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ |
| gfp &= gfp_allowed_mask; |
| alloc_gfp = gfp; |
| if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) |
| goto out; |
| gfp = alloc_gfp; |
| |
| /* Find an allowed local zone that meets the low watermark. */ |
| for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { |
| unsigned long mark; |
| |
| if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && |
| !__cpuset_zone_allowed(zone, gfp)) { |
| continue; |
| } |
| |
| if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && |
| zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { |
| goto failed; |
| } |
| |
| mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; |
| if (zone_watermark_fast(zone, 0, mark, |
| zonelist_zone_idx(ac.preferred_zoneref), |
| alloc_flags, gfp)) { |
| break; |
| } |
| } |
| |
| /* |
| * If there are no allowed local zones that meets the watermarks then |
| * try to allocate a single page and reclaim if necessary. |
| */ |
| if (unlikely(!zone)) |
| goto failed; |
| |
| /* Is a parallel drain in progress? */ |
| pcp_trylock_prepare(UP_flags); |
| pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); |
| if (!pcp) |
| goto failed_irq; |
| |
| /* Attempt the batch allocation */ |
| pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; |
| while (nr_populated < nr_pages) { |
| |
| /* Skip existing pages */ |
| if (page_array && page_array[nr_populated]) { |
| nr_populated++; |
| continue; |
| } |
| |
| page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, |
| pcp, pcp_list); |
| if (unlikely(!page)) { |
| /* Try and allocate at least one page */ |
| if (!nr_account) { |
| pcp_spin_unlock_irqrestore(pcp, flags); |
| goto failed_irq; |
| } |
| break; |
| } |
| nr_account++; |
| |
| prep_new_page(page, 0, gfp, 0); |
| if (page_list) |
| list_add(&page->lru, page_list); |
| else |
| page_array[nr_populated] = page; |
| nr_populated++; |
| } |
| |
| pcp_spin_unlock_irqrestore(pcp, flags); |
| pcp_trylock_finish(UP_flags); |
| |
| __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); |
| zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); |
| |
| out: |
| return nr_populated; |
| |
| failed_irq: |
| pcp_trylock_finish(UP_flags); |
| |
| failed: |
| page = __alloc_pages(gfp, 0, preferred_nid, nodemask); |
| if (page) { |
| if (page_list) |
| list_add(&page->lru, page_list); |
| else |
| page_array[nr_populated] = page; |
| nr_populated++; |
| } |
| |
| goto out; |
| } |
| EXPORT_SYMBOL_GPL(__alloc_pages_bulk); |
| |
| /* |
| * This is the 'heart' of the zoned buddy allocator. |
| */ |
| struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, |
| nodemask_t *nodemask) |
| { |
| struct page *page; |
| unsigned int alloc_flags = ALLOC_WMARK_LOW; |
| gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ |
| struct alloc_context ac = { }; |
| |
| /* |
| * There are several places where we assume that the order value is sane |
| * so bail out early if the request is out of bound. |
| */ |
| if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) |
| return NULL; |
| |
| gfp &= gfp_allowed_mask; |
| /* |
| * Apply scoped allocation constraints. This is mainly about GFP_NOFS |
| * resp. GFP_NOIO which has to be inherited for all allocation requests |
| * from a particular context which has been marked by |
| * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures |
| * movable zones are not used during allocation. |
| */ |
| gfp = current_gfp_context(gfp); |
| alloc_gfp = gfp; |
| if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, |
| &alloc_gfp, &alloc_flags)) |
| return NULL; |
| |
| /* |
| * Forbid the first pass from falling back to types that fragment |
| * memory until all local zones are considered. |
| */ |
| alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); |
| |
| /* First allocation attempt */ |
| page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); |
| if (likely(page)) |
| goto out; |
| |
| alloc_gfp = gfp; |
| ac.spread_dirty_pages = false; |
| |
| /* |
| * Restore the original nodemask if it was potentially replaced with |
| * &cpuset_current_mems_allowed to optimize the fast-path attempt. |
| */ |
| ac.nodemask = nodemask; |
| |
| page = __alloc_pages_slowpath(alloc_gfp, order, &ac); |
| |
| out: |
| if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && |
| unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { |
| __free_pages(page, order); |
| page = NULL; |
| } |
| |
| trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); |
| |
| return page; |
| } |
| EXPORT_SYMBOL(__alloc_pages); |
| |
| struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, |
| nodemask_t *nodemask) |
| { |
| struct page *page = __alloc_pages(gfp | __GFP_COMP, order, |
| preferred_nid, nodemask); |
| |
| if (page && order > 1) |
| prep_transhuge_page(page); |
| return (struct folio *)page; |
| } |
| EXPORT_SYMBOL(__folio_alloc); |
| |
| /* |
| * Common helper functions. Never use with __GFP_HIGHMEM because the returned |
| * address cannot represent highmem pages. Use alloc_pages and then kmap if |
| * you need to access high mem. |
| */ |
| unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
| { |
| struct page *page; |
| |
| page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); |
| if (!page) |
| return 0; |
| return (unsigned long) page_address(page); |
| } |
| EXPORT_SYMBOL(__get_free_pages); |
| |
| unsigned long get_zeroed_page(gfp_t gfp_mask) |
| { |
| return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
| } |
| EXPORT_SYMBOL(get_zeroed_page); |
| |
| /** |
| * __free_pages - Free pages allocated with alloc_pages(). |
| * @page: The page pointer returned from alloc_pages(). |
| * @order: The order of the allocation. |
| * |
| * This function can free multi-page allocations that are not compound |
| * pages. It does not check that the @order passed in matches that of |
| * the allocation, so it is easy to leak memory. Freeing more memory |
| * than was allocated will probably emit a warning. |
| * |
| * If the last reference to this page is speculative, it will be released |
| * by put_page() which only frees the first page of a non-compound |
| * allocation. To prevent the remaining pages from being leaked, we free |
| * the subsequent pages here. If you want to use the page's reference |
| * count to decide when to free the allocation, you should allocate a |
| * compound page, and use put_page() instead of __free_pages(). |
| * |
| * Context: May be called in interrupt context or while holding a normal |
| * spinlock, but not in NMI context or while holding a raw spinlock. |
| */ |
| void __free_pages(struct page *page, unsigned int order) |
| { |
| if (put_page_testzero(page)) |
| free_the_page(page, order); |
| else if (!PageHead(page)) |
| while (order-- > 0) |
| free_the_page(page + (1 << order), order); |
| } |
| EXPORT_SYMBOL(__free_pages); |
| |
| void free_pages(unsigned long addr, unsigned int order) |
| { |
| if (addr != 0) { |
| VM_BUG_ON(!virt_addr_valid((void *)addr)); |
| __free_pages(virt_to_page((void *)addr), order); |
| } |
| } |
| |
| EXPORT_SYMBOL(free_pages); |
| |
| /* |
| * Page Fragment: |
| * An arbitrary-length arbitrary-offset area of memory which resides |
| * within a 0 or higher order page. Multiple fragments within that page |
| * are individually refcounted, in the page's reference counter. |
| * |
| * The page_frag functions below provide a simple allocation framework for |
| * page fragments. This is used by the network stack and network device |
| * drivers to provide a backing region of memory for use as either an |
| * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. |
| */ |
| static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, |
| gfp_t gfp_mask) |
| { |
| struct page *page = NULL; |
| gfp_t gfp = gfp_mask; |
| |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) |
| gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | |
| __GFP_NOMEMALLOC; |
| page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, |
| PAGE_FRAG_CACHE_MAX_ORDER); |
| nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; |
| #endif |
| if (unlikely(!page)) |
| page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); |
| |
| nc->va = page ? page_address(page) : NULL; |
| |
| return page; |
| } |
| |
| void __page_frag_cache_drain(struct page *page, unsigned int count) |
| { |
| VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); |
| |
| if (page_ref_sub_and_test(page, count)) |
| free_the_page(page, compound_order(page)); |
| } |
| EXPORT_SYMBOL(__page_frag_cache_drain); |
| |
| void *page_frag_alloc_align(struct page_frag_cache *nc, |
| unsigned int fragsz, gfp_t gfp_mask, |
| unsigned int align_mask) |
| { |
| unsigned int size = PAGE_SIZE; |
| struct page *page; |
| int offset; |
| |
| if (unlikely(!nc->va)) { |
| refill: |
| page = __page_frag_cache_refill(nc, gfp_mask); |
| if (!page) |
| return NULL; |
| |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) |
| /* if size can vary use size else just use PAGE_SIZE */ |
| size = nc->size; |
| #endif |
| /* Even if we own the page, we do not use atomic_set(). |
| * This would break get_page_unless_zero() users. |
| */ |
| page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); |
| |
| /* reset page count bias and offset to start of new frag */ |
| nc->pfmemalloc = page_is_pfmemalloc(page); |
| nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; |
| nc->offset = size; |
| } |
| |
| offset = nc->offset - fragsz; |
| if (unlikely(offset < 0)) { |
| page = virt_to_page(nc->va); |
| |
| if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) |
| goto refill; |
| |
| if (unlikely(nc->pfmemalloc)) { |
| free_the_page(page, compound_order(page)); |
| goto refill; |
| } |
| |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) |
| /* if size can vary use size else just use PAGE_SIZE */ |
| size = nc->size; |
| #endif |
| /* OK, page count is 0, we can safely set it */ |
| set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); |
| |
| /* reset page count bias and offset to start of new frag */ |
| nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; |
| offset = size - fragsz; |
| if (unlikely(offset < 0)) { |
| /* |
| * The caller is trying to allocate a fragment |
| * with fragsz > PAGE_SIZE but the cache isn't big |
| * enough to satisfy the request, this may |
| * happen in low memory conditions. |
| * We don't release the cache page because |
| * it could make memory pressure worse |
| * so we simply return NULL here. |
| */ |
| return NULL; |
| } |
| } |
| |
| nc->pagecnt_bias--; |
| offset &= align_mask; |
| nc->offset = offset; |
| |
| return nc->va + offset; |
| } |
| EXPORT_SYMBOL(page_frag_alloc_align); |
| |
| /* |
| * Frees a page fragment allocated out of either a compound or order 0 page. |
| */ |
| void page_frag_free(void *addr) |
| { |
| struct page *page = virt_to_head_page(addr); |
| |
| if (unlikely(put_page_testzero(page))) |
| free_the_page(page, compound_order(page)); |
| } |
| EXPORT_SYMBOL(page_frag_free); |
| |
| static void *make_alloc_exact(unsigned long addr, unsigned int order, |
| size_t size) |
| { |
| if (addr) { |
| unsigned long alloc_end = addr + (PAGE_SIZE << order); |
| unsigned long used = addr + PAGE_ALIGN(size); |
| |
| split_page(virt_to_page((void *)addr), order); |
| while (used < alloc_end) { |
| free_page(used); |
| used += PAGE_SIZE; |
| } |
| } |
| return (void *)addr; |
| } |
| |
| /** |
| * alloc_pages_exact - allocate an exact number physically-contiguous pages. |
| * @size: the number of bytes to allocate |
| * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP |
| * |
| * This function is similar to alloc_pages(), except that it allocates the |
| * minimum number of pages to satisfy the request. alloc_pages() can only |
| * allocate memory in power-of-two pages. |
| * |
| * This function is also limited by MAX_ORDER. |
| * |
| * Memory allocated by this function must be released by free_pages_exact(). |
| * |
| * Return: pointer to the allocated area or %NULL in case of error. |
| */ |
| void *alloc_pages_exact(size_t size, gfp_t gfp_mask) |
| { |
| unsigned int order = get_order(size); |
| unsigned long addr; |
| |
| if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) |
| gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); |
| |
| addr = __get_free_pages(gfp_mask, order); |
| return make_alloc_exact(addr, order, size); |
| } |
| EXPORT_SYMBOL(alloc_pages_exact); |
| |
| /** |
| * alloc_pages_exact_nid - allocate an exact number of physically-contiguous |
| * pages on a node. |
| * @nid: the preferred node ID where memory should be allocated |
| * @size: the number of bytes to allocate |
| * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP |
| * |
| * Like alloc_pages_exact(), but try to allocate on node nid first before falling |
| * back. |
| * |
| * Return: pointer to the allocated area or %NULL in case of error. |
| */ |
| void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
| { |
| unsigned int order = get_order(size); |
| struct page *p; |
| |
| if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) |
| gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); |
| |
| p = alloc_pages_node(nid, gfp_mask, order); |
| if (!p) |
| return NULL; |
| return make_alloc_exact((unsigned long)page_address(p), order, size); |
| } |
| |
| /** |
| * free_pages_exact - release memory allocated via alloc_pages_exact() |
| * @virt: the value returned by alloc_pages_exact. |
| * @size: size of allocation, same value as passed to alloc_pages_exact(). |
| * |
| * Release the memory allocated by a previous call to alloc_pages_exact. |
| */ |
| void free_pages_exact(void *virt, size_t size) |
| { |
| unsigned long addr = (unsigned long)virt; |
| unsigned long end = addr + PAGE_ALIGN(size); |
| |
| while (addr < end) { |
| free_page(addr); |
| addr += PAGE_SIZE; |
| } |
| } |
| EXPORT_SYMBOL(free_pages_exact); |
| |
| /** |
| * nr_free_zone_pages - count number of pages beyond high watermark |
| * @offset: The zone index of the highest zone |
| * |
| * nr_free_zone_pages() counts the number of pages which are beyond the |
| * high watermark within all zones at or below a given zone index. For each |
| * zone, the number of pages is calculated as: |
| * |
| * nr_free_zone_pages = managed_pages - high_pages |
| * |
| * Return: number of pages beyond high watermark. |
| */ |
| static unsigned long nr_free_zone_pages(int offset) |
| { |
| struct zoneref *z; |
| struct zone *zone; |
| |
| /* Just pick one node, since fallback list is circular */ |
| unsigned long sum = 0; |
| |
| struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
| |
| for_each_zone_zonelist(zone, z, zonelist, offset) { |
| unsigned long size = zone_managed_pages(zone); |
| unsigned long high = high_wmark_pages(zone); |
| if (size > high) |
| sum += size - high; |
| } |
| |
| return sum; |
| } |
| |
| /** |
| * nr_free_buffer_pages - count number of pages beyond high watermark |
| * |
| * nr_free_buffer_pages() counts the number of pages which are beyond the high |
| * watermark within ZONE_DMA and ZONE_NORMAL. |
| * |
| * Return: number of pages beyond high watermark within ZONE_DMA and |
| * ZONE_NORMAL. |
| */ |
| unsigned long nr_free_buffer_pages(void) |
| { |
| return nr_free_zone_pages(gfp_zone(GFP_USER)); |
| } |
| EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
| |
| static inline void show_node(struct zone *zone) |
| { |
| if (IS_ENABLED(CONFIG_NUMA)) |
| printk("Node %d ", zone_to_nid(zone)); |
| } |
| |
| long si_mem_available(void) |
| { |
| long available; |
| unsigned long pagecache; |
| unsigned long wmark_low = 0; |
| unsigned long pages[NR_LRU_LISTS]; |
| unsigned long reclaimable; |
| struct zone *zone; |
| int lru; |
| |
| for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) |
| pages[lru] = global_node_page_state(NR_LRU_BASE + lru); |
| |
| for_each_zone(zone) |
| wmark_low += low_wmark_pages(zone); |
| |
| /* |
| * Estimate the amount of memory available for userspace allocations, |
| * without causing swapping or OOM. |
| */ |
| available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; |
| |
| /* |
| * Not all the page cache can be freed, otherwise the system will |
| * start swapping or thrashing. Assume at least half of the page |
| * cache, or the low watermark worth of cache, needs to stay. |
| */ |
| pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; |
| pagecache -= min(pagecache / 2, wmark_low); |
| available += pagecache; |
| |
| /* |
| * Part of the reclaimable slab and other kernel memory consists of |
| * items that are in use, and cannot be freed. Cap this estimate at the |
| * low watermark. |
| */ |
| reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + |
| global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); |
| available += reclaimable - min(reclaimable / 2, wmark_low); |
| |
| if (available < 0) |
| available = 0; |
| return available; |
| } |
| EXPORT_SYMBOL_GPL(si_mem_available); |
| |
| void si_meminfo(struct sysinfo *val) |
| { |
| val->totalram = totalram_pages(); |
| val->sharedram = global_node_page_state(NR_SHMEM); |
| val->freeram = global_zone_page_state(NR_FREE_PAGES); |
| val->bufferram = nr_blockdev_pages(); |
| val->totalhigh = totalhigh_pages(); |
| val->freehigh = nr_free_highpages(); |
| val->mem_unit = PAGE_SIZE; |
| } |
| |
| EXPORT_SYMBOL(si_meminfo); |
| |
| #ifdef CONFIG_NUMA |
| void si_meminfo_node(struct sysinfo *val, int nid) |
| { |
| int zone_type; /* needs to be signed */ |
| unsigned long managed_pages = 0; |
| unsigned long managed_highpages = 0; |
| unsigned long free_highpages = 0; |
| pg_data_t *pgdat = NODE_DATA(nid); |
| |
| for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
| managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); |
| val->totalram = managed_pages; |
| val->sharedram = node_page_state(pgdat, NR_SHMEM); |
| val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); |
| #ifdef CONFIG_HIGHMEM |
| for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { |
| struct zone *zone = &pgdat->node_zones[zone_type]; |
| |
| if (is_highmem(zone)) { |
| managed_highpages += zone_managed_pages(zone); |
| free_highpages += zone_page_state(zone, NR_FREE_PAGES); |
| } |
| } |
| val->totalhigh = managed_highpages; |
| val->freehigh = free_highpages; |
| #else |
| val->totalhigh = managed_highpages; |
| val->freehigh = free_highpages; |
| #endif |
| val->mem_unit = PAGE_SIZE; |
| } |
| #endif |
| |
| /* |
| * Determine whether the node should be displayed or not, depending on whether |
| * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). |
| */ |
| static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) |
| { |
| if (!(flags & SHOW_MEM_FILTER_NODES)) |
| return false; |
| |
| /* |
| * no node mask - aka implicit memory numa policy. Do not bother with |
| * the synchronization - read_mems_allowed_begin - because we do not |
| * have to be precise here. |
| */ |
| if (!nodemask) |
| nodemask = &cpuset_current_mems_allowed; |
| |
| return !node_isset(nid, *nodemask); |
| } |
| |
| #define K(x) ((x) << (PAGE_SHIFT-10)) |
| |
| static void show_migration_types(unsigned char type) |
| { |
| static const char types[MIGRATE_TYPES] = { |
| [MIGRATE_UNMOVABLE] = 'U', |
| [MIGRATE_MOVABLE] = 'M', |
| [MIGRATE_RECLAIMABLE] = 'E', |
| [MIGRATE_HIGHATOMIC] = 'H', |
| #ifdef CONFIG_CMA |
| [MIGRATE_CMA] = 'C', |
| #endif |
| #ifdef CONFIG_MEMORY_ISOLATION |
| [MIGRATE_ISOLATE] = 'I', |
| #endif |
| }; |
| char tmp[MIGRATE_TYPES + 1]; |
| char *p = tmp; |
| int i; |
| |
| for (i = 0; i < MIGRATE_TYPES; i++) { |
| if (type & (1 << i)) |
| *p++ = types[i]; |
| } |
| |
| *p = '\0'; |
| printk(KERN_CONT "(%s) ", tmp); |
| } |
| |
| /* |
| * Show free area list (used inside shift_scroll-lock stuff) |
| * We also calculate the percentage fragmentation. We do this by counting the |
| * memory on each free list with the exception of the first item on the list. |
| * |
| * Bits in @filter: |
| * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's |
| * cpuset. |
| */ |
| void show_free_areas(unsigned int filter, nodemask_t *nodemask) |
| { |
| unsigned long free_pcp = 0; |
| int cpu, nid; |
| struct zone *zone; |
| pg_data_t *pgdat; |
| |
| for_each_populated_zone(zone) { |
| if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
| continue; |
| |
| for_each_online_cpu(cpu) |
| free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; |
| } |
| |
| printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
| " active_file:%lu inactive_file:%lu isolated_file:%lu\n" |
| " unevictable:%lu dirty:%lu writeback:%lu\n" |
| " slab_reclaimable:%lu slab_unreclaimable:%lu\n" |
| " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
| " kernel_misc_reclaimable:%lu\n" |
| " free:%lu free_pcp:%lu free_cma:%lu\n", |
| global_node_page_state(NR_ACTIVE_ANON), |
| global_node_page_state(NR_INACTIVE_ANON), |
| global_node_page_state(NR_ISOLATED_ANON), |
| global_node_page_state(NR_ACTIVE_FILE), |
| global_node_page_state(NR_INACTIVE_FILE), |
| global_node_page_state(NR_ISOLATED_FILE), |
| global_node_page_state(NR_UNEVICTABLE), |
| global_node_page_state(NR_FILE_DIRTY), |
| global_node_page_state(NR_WRITEBACK), |
| global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), |
| global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), |
| global_node_page_state(NR_FILE_MAPPED), |
| global_node_page_state(NR_SHMEM), |
| global_node_page_state(NR_PAGETABLE), |
| global_zone_page_state(NR_BOUNCE), |
| global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), |
| global_zone_page_state(NR_FREE_PAGES), |
| free_pcp, |
| global_zone_page_state(NR_FREE_CMA_PAGES)); |
| |
| for_each_online_pgdat(pgdat) { |
| if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) |
| continue; |
| |
| printk("Node %d" |
| " active_anon:%lukB" |
| " inactive_anon:%lukB" |
| " active_file:%lukB" |
| " inactive_file:%lukB" |
| " unevictable:%lukB" |
| " isolated(anon):%lukB" |
| " isolated(file):%lukB" |
| " mapped:%lukB" |
| " dirty:%lukB" |
| " writeback:%lukB" |
| " shmem:%lukB" |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| " shmem_thp: %lukB" |
| " shmem_pmdmapped: %lukB" |
| " anon_thp: %lukB" |
| #endif |
| " writeback_tmp:%lukB" |
| " kernel_stack:%lukB" |
| #ifdef CONFIG_SHADOW_CALL_STACK |
| " shadow_call_stack:%lukB" |
| #endif |
| " pagetables:%lukB" |
| " all_unreclaimable? %s" |
| "\n", |
| pgdat->node_id, |
| K(node_page_state(pgdat, NR_ACTIVE_ANON)), |
| K(node_page_state(pgdat, NR_INACTIVE_ANON)), |
| K(node_page_state(pgdat, NR_ACTIVE_FILE)), |
| K(node_page_state(pgdat, NR_INACTIVE_FILE)), |
| K(node_page_state(pgdat, NR_UNEVICTABLE)), |
| K(node_page_state(pgdat, NR_ISOLATED_ANON)), |
| K(node_page_state(pgdat, NR_ISOLATED_FILE)), |
| K(node_page_state(pgdat, NR_FILE_MAPPED)), |
| K(node_page_state(pgdat, NR_FILE_DIRTY)), |
| K(node_page_state(pgdat, NR_WRITEBACK)), |
| K(node_page_state(pgdat, NR_SHMEM)), |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| K(node_page_state(pgdat, NR_SHMEM_THPS)), |
| K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), |
| K(node_page_state(pgdat, NR_ANON_THPS)), |
| #endif |
| K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), |
| node_page_state(pgdat, NR_KERNEL_STACK_KB), |
| #ifdef CONFIG_SHADOW_CALL_STACK |
| node_page_state(pgdat, NR_KERNEL_SCS_KB), |
| #endif |
| K(node_page_state(pgdat, NR_PAGETABLE)), |
| pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? |
| "yes" : "no"); |
| } |
| |
| for_each_populated_zone(zone) { |
| int i; |
| |
| if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
| continue; |
| |
| free_pcp = 0; |
| for_each_online_cpu(cpu) |
| free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; |
| |
| show_node(zone); |
| printk(KERN_CONT |
| "%s" |
| " free:%lukB" |
| " boost:%lukB" |
| " min:%lukB" |
| " low:%lukB" |
| " high:%lukB" |
| " reserved_highatomic:%luKB" |
| " active_anon:%lukB" |
| " inactive_anon:%lukB" |
| " active_file:%lukB" |
| " inactive_file:%lukB" |
| " unevictable:%lukB" |
| " writepending:%lukB" |
| " present:%lukB" |
| " managed:%lukB" |
| " mlocked:%lukB" |
| " bounce:%lukB" |
| " free_pcp:%lukB" |
| " local_pcp:%ukB" |
| " free_cma:%lukB" |
| "\n", |
| zone->name, |
| K(zone_page_state(zone, NR_FREE_PAGES)), |
| K(zone->watermark_boost), |
| K(min_wmark_pages(zone)), |
| K(low_wmark_pages(zone)), |
| K(high_wmark_pages(zone)), |
| K(zone->nr_reserved_highatomic), |
| K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), |
| K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), |
| K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), |
| K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), |
| K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), |
| K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), |
| K(zone->present_pages), |
| K(zone_managed_pages(zone)), |
| K(zone_page_state(zone, NR_MLOCK)), |
| K(zone_page_state(zone, NR_BOUNCE)), |
| K(free_pcp), |
| K(this_cpu_read(zone->per_cpu_pageset->count)), |
| K(zone_page_state(zone, NR_FREE_CMA_PAGES))); |
| printk("lowmem_reserve[]:"); |
| for (i = 0; i < MAX_NR_ZONES; i++) |
| printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); |
| printk(KERN_CONT "\n"); |
| } |
| |
| for_each_populated_zone(zone) { |
| unsigned int order; |
| unsigned long nr[MAX_ORDER], flags, total = 0; |
| unsigned char types[MAX_ORDER]; |
| |
| if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) |
| continue; |
| show_node(zone); |
| printk(KERN_CONT "%s: ", zone->name); |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| for (order = 0; order < MAX_ORDER; order++) { |
| struct free_area *area = &zone->free_area[order]; |
| int type; |
| |
| nr[order] = area->nr_free; |
| total += nr[order] << order; |
| |
| types[order] = 0; |
| for (type = 0; type < MIGRATE_TYPES; type++) { |
| if (!free_area_empty(area, type)) |
| types[order] |= 1 << type; |
| } |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| for (order = 0; order < MAX_ORDER; order++) { |
| printk(KERN_CONT "%lu*%lukB ", |
| nr[order], K(1UL) << order); |
| if (nr[order]) |
| show_migration_types(types[order]); |
| } |
| printk(KERN_CONT "= %lukB\n", K(total)); |
| } |
| |
| for_each_online_node(nid) { |
| if (show_mem_node_skip(filter, nid, nodemask)) |
| continue; |
| hugetlb_show_meminfo_node(nid); |
| } |
| |
| printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); |
| |
| show_swap_cache_info(); |
| } |
| |
| static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
| { |
| zoneref->zone = zone; |
| zoneref->zone_idx = zone_idx(zone); |
| } |
| |
| /* |
| * Builds allocation fallback zone lists. |
| * |
| * Add all populated zones of a node to the zonelist. |
| */ |
| static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) |
| { |
| struct zone *zone; |
| enum zone_type zone_type = MAX_NR_ZONES; |
| int nr_zones = 0; |
| |
| do { |
| zone_type--; |
| zone = pgdat->node_zones + zone_type; |
| if (populated_zone(zone)) { |
| zoneref_set_zone(zone, &zonerefs[nr_zones++]); |
| check_highest_zone(zone_type); |
| } |
| } while (zone_type); |
| |
| return nr_zones; |
| } |
| |
| #ifdef CONFIG_NUMA |
| |
| static int __parse_numa_zonelist_order(char *s) |
| { |
| /* |
| * We used to support different zonelists modes but they turned |
| * out to be just not useful. Let's keep the warning in place |
| * if somebody still use the cmd line parameter so that we do |
| * not fail it silently |
| */ |
| if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { |
| pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| char numa_zonelist_order[] = "Node"; |
| |
| /* |
| * sysctl handler for numa_zonelist_order |
| */ |
| int numa_zonelist_order_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| if (write) |
| return __parse_numa_zonelist_order(buffer); |
| return proc_dostring(table, write, buffer, length, ppos); |
| } |
| |
| |
| static int node_load[MAX_NUMNODES]; |
| |
| /** |
| * find_next_best_node - find the next node that should appear in a given node's fallback list |
| * @node: node whose fallback list we're appending |
| * @used_node_mask: nodemask_t of already used nodes |
| * |
| * We use a number of factors to determine which is the next node that should |
| * appear on a given node's fallback list. The node should not have appeared |
| * already in @node's fallback list, and it should be the next closest node |
| * according to the distance array (which contains arbitrary distance values |
| * from each node to each node in the system), and should also prefer nodes |
| * with no CPUs, since presumably they'll have very little allocation pressure |
| * on them otherwise. |
| * |
| * Return: node id of the found node or %NUMA_NO_NODE if no node is found. |
| */ |
| int find_next_best_node(int node, nodemask_t *used_node_mask) |
| { |
| int n, val; |
| int min_val = INT_MAX; |
| int best_node = NUMA_NO_NODE; |
| |
| /* Use the local node if we haven't already */ |
| if (!node_isset(node, *used_node_mask)) { |
| node_set(node, *used_node_mask); |
| return node; |
| } |
| |
| for_each_node_state(n, N_MEMORY) { |
| |
| /* Don't want a node to appear more than once */ |
| if (node_isset(n, *used_node_mask)) |
| continue; |
| |
| /* Use the distance array to find the distance */ |
| val = node_distance(node, n); |
| |
| /* Penalize nodes under us ("prefer the next node") */ |
| val += (n < node); |
| |
| /* Give preference to headless and unused nodes */ |
| if (!cpumask_empty(cpumask_of_node(n))) |
| val += PENALTY_FOR_NODE_WITH_CPUS; |
| |
| /* Slight preference for less loaded node */ |
| val *= MAX_NUMNODES; |
| val += node_load[n]; |
| |
| if (val < min_val) { |
| min_val = val; |
| best_node = n; |
| } |
| } |
| |
| if (best_node >= 0) |
| node_set(best_node, *used_node_mask); |
| |
| return best_node; |
| } |
| |
| |
| /* |
| * Build zonelists ordered by node and zones within node. |
| * This results in maximum locality--normal zone overflows into local |
| * DMA zone, if any--but risks exhausting DMA zone. |
| */ |
| static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, |
| unsigned nr_nodes) |
| { |
| struct zoneref *zonerefs; |
| int i; |
| |
| zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
| |
| for (i = 0; i < nr_nodes; i++) { |
| int nr_zones; |
| |
| pg_data_t *node = NODE_DATA(node_order[i]); |
| |
| nr_zones = build_zonerefs_node(node, zonerefs); |
| zonerefs += nr_zones; |
| } |
| zonerefs->zone = NULL; |
| zonerefs->zone_idx = 0; |
| } |
| |
| /* |
| * Build gfp_thisnode zonelists |
| */ |
| static void build_thisnode_zonelists(pg_data_t *pgdat) |
| { |
| struct zoneref *zonerefs; |
| int nr_zones; |
| |
| zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; |
| nr_zones = build_zonerefs_node(pgdat, zonerefs); |
| zonerefs += nr_zones; |
| zonerefs->zone = NULL; |
| zonerefs->zone_idx = 0; |
| } |
| |
| /* |
| * Build zonelists ordered by zone and nodes within zones. |
| * This results in conserving DMA zone[s] until all Normal memory is |
| * exhausted, but results in overflowing to remote node while memory |
| * may still exist in local DMA zone. |
| */ |
| |
| static void build_zonelists(pg_data_t *pgdat) |
| { |
| static int node_order[MAX_NUMNODES]; |
| int node, nr_nodes = 0; |
| nodemask_t used_mask = NODE_MASK_NONE; |
| int local_node, prev_node; |
| |
| /* NUMA-aware ordering of nodes */ |
| local_node = pgdat->node_id; |
| prev_node = local_node; |
| |
| memset(node_order, 0, sizeof(node_order)); |
| while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
| /* |
| * We don't want to pressure a particular node. |
| * So adding penalty to the first node in same |
| * distance group to make it round-robin. |
| */ |
| if (node_distance(local_node, node) != |
| node_distance(local_node, prev_node)) |
| node_load[node] += 1; |
| |
| node_order[nr_nodes++] = node; |
| prev_node = node; |
| } |
| |
| build_zonelists_in_node_order(pgdat, node_order, nr_nodes); |
| build_thisnode_zonelists(pgdat); |
| pr_info("Fallback order for Node %d: ", local_node); |
| for (node = 0; node < nr_nodes; node++) |
| pr_cont("%d ", node_order[node]); |
| pr_cont("\n"); |
| } |
| |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| /* |
| * Return node id of node used for "local" allocations. |
| * I.e., first node id of first zone in arg node's generic zonelist. |
| * Used for initializing percpu 'numa_mem', which is used primarily |
| * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. |
| */ |
| int local_memory_node(int node) |
| { |
| struct zoneref *z; |
| |
| z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
| gfp_zone(GFP_KERNEL), |
| NULL); |
| return zone_to_nid(z->zone); |
| } |
| #endif |
| |
| static void setup_min_unmapped_ratio(void); |
| static void setup_min_slab_ratio(void); |
| #else /* CONFIG_NUMA */ |
| |
| static void build_zonelists(pg_data_t *pgdat) |
| { |
| int node, local_node; |
| struct zoneref *zonerefs; |
| int nr_zones; |
| |
| local_node = pgdat->node_id; |
| |
| zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
| nr_zones = build_zonerefs_node(pgdat, zonerefs); |
| zonerefs += nr_zones; |
| |
| /* |
| * Now we build the zonelist so that it contains the zones |
| * of all the other nodes. |
| * We don't want to pressure a particular node, so when |
| * building the zones for node N, we make sure that the |
| * zones coming right after the local ones are those from |
| * node N+1 (modulo N) |
| */ |
| for (node = local_node + 1; node < MAX_NUMNODES; node++) { |
| if (!node_online(node)) |
| continue; |
| nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); |
| zonerefs += nr_zones; |
| } |
| for (node = 0; node < local_node; node++) { |
| if (!node_online(node)) |
| continue; |
| nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); |
| zonerefs += nr_zones; |
| } |
| |
| zonerefs->zone = NULL; |
| zonerefs->zone_idx = 0; |
| } |
| |
| #endif /* CONFIG_NUMA */ |
| |
| /* |
| * Boot pageset table. One per cpu which is going to be used for all |
| * zones and all nodes. The parameters will be set in such a way |
| * that an item put on a list will immediately be handed over to |
| * the buddy list. This is safe since pageset manipulation is done |
| * with interrupts disabled. |
| * |
| * The boot_pagesets must be kept even after bootup is complete for |
| * unused processors and/or zones. They do play a role for bootstrapping |
| * hotplugged processors. |
| * |
| * zoneinfo_show() and maybe other functions do |
| * not check if the processor is online before following the pageset pointer. |
| * Other parts of the kernel may not check if the zone is available. |
| */ |
| static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); |
| /* These effectively disable the pcplists in the boot pageset completely */ |
| #define BOOT_PAGESET_HIGH 0 |
| #define BOOT_PAGESET_BATCH 1 |
| static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); |
| static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); |
| DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); |
| |
| static void __build_all_zonelists(void *data) |
| { |
| int nid; |
| int __maybe_unused cpu; |
| pg_data_t *self = data; |
| |
| write_seqlock(&zonelist_update_seq); |
| |
| #ifdef CONFIG_NUMA |
| memset(node_load, 0, sizeof(node_load)); |
| #endif |
| |
| /* |
| * This node is hotadded and no memory is yet present. So just |
| * building zonelists is fine - no need to touch other nodes. |
| */ |
| if (self && !node_online(self->node_id)) { |
| build_zonelists(self); |
| } else { |
| /* |
| * All possible nodes have pgdat preallocated |
| * in free_area_init |
| */ |
| for_each_node(nid) { |
| pg_data_t *pgdat = NODE_DATA(nid); |
| |
| build_zonelists(pgdat); |
| } |
| |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| /* |
| * We now know the "local memory node" for each node-- |
| * i.e., the node of the first zone in the generic zonelist. |
| * Set up numa_mem percpu variable for on-line cpus. During |
| * boot, only the boot cpu should be on-line; we'll init the |
| * secondary cpus' numa_mem as they come on-line. During |
| * node/memory hotplug, we'll fixup all on-line cpus. |
| */ |
| for_each_online_cpu(cpu) |
| set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); |
| #endif |
| } |
| |
| write_sequnlock(&zonelist_update_seq); |
| } |
| |
| static noinline void __init |
| build_all_zonelists_init(void) |
| { |
| int cpu; |
| |
| __build_all_zonelists(NULL); |
| |
| /* |
| * Initialize the boot_pagesets that are going to be used |
| * for bootstrapping processors. The real pagesets for |
| * each zone will be allocated later when the per cpu |
| * allocator is available. |
| * |
| * boot_pagesets are used also for bootstrapping offline |
| * cpus if the system is already booted because the pagesets |
| * are needed to initialize allocators on a specific cpu too. |
| * F.e. the percpu allocator needs the page allocator which |
| * needs the percpu allocator in order to allocate its pagesets |
| * (a chicken-egg dilemma). |
| */ |
| for_each_possible_cpu(cpu) |
| per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); |
| |
| mminit_verify_zonelist(); |
| cpuset_init_current_mems_allowed(); |
| } |
| |
| /* |
| * unless system_state == SYSTEM_BOOTING. |
| * |
| * __ref due to call of __init annotated helper build_all_zonelists_init |
| * [protected by SYSTEM_BOOTING]. |
| */ |
| void __ref build_all_zonelists(pg_data_t *pgdat) |
| { |
| unsigned long vm_total_pages; |
| |
| if (system_state == SYSTEM_BOOTING) { |
| build_all_zonelists_init(); |
| } else { |
| __build_all_zonelists(pgdat); |
| /* cpuset refresh routine should be here */ |
| } |
| /* Get the number of free pages beyond high watermark in all zones. */ |
| vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
| /* |
| * Disable grouping by mobility if the number of pages in the |
| * system is too low to allow the mechanism to work. It would be |
| * more accurate, but expensive to check per-zone. This check is |
| * made on memory-hotadd so a system can start with mobility |
| * disabled and enable it later |
| */ |
| if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
| page_group_by_mobility_disabled = 1; |
| else |
| page_group_by_mobility_disabled = 0; |
| |
| pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", |
| nr_online_nodes, |
| page_group_by_mobility_disabled ? "off" : "on", |
| vm_total_pages); |
| #ifdef CONFIG_NUMA |
| pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
| #endif |
| } |
| |
| /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ |
| static bool __meminit |
| overlap_memmap_init(unsigned long zone, unsigned long *pfn) |
| { |
| static struct memblock_region *r; |
| |
| if (mirrored_kernelcore && zone == ZONE_MOVABLE) { |
| if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { |
| for_each_mem_region(r) { |
| if (*pfn < memblock_region_memory_end_pfn(r)) |
| break; |
| } |
| } |
| if (*pfn >= memblock_region_memory_base_pfn(r) && |
| memblock_is_mirror(r)) { |
| *pfn = memblock_region_memory_end_pfn(r); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* |
| * Initially all pages are reserved - free ones are freed |
| * up by memblock_free_all() once the early boot process is |
| * done. Non-atomic initialization, single-pass. |
| * |
| * All aligned pageblocks are initialized to the specified migratetype |
| * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related |
| * zone stats (e.g., nr_isolate_pageblock) are touched. |
| */ |
| void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, |
| unsigned long start_pfn, unsigned long zone_end_pfn, |
| enum meminit_context context, |
| struct vmem_altmap *altmap, int migratetype) |
| { |
| unsigned long pfn, end_pfn = start_pfn + size; |
| struct page *page; |
| |
| if (highest_memmap_pfn < end_pfn - 1) |
| highest_memmap_pfn = end_pfn - 1; |
| |
| #ifdef CONFIG_ZONE_DEVICE |
| /* |
| * Honor reservation requested by the driver for this ZONE_DEVICE |
| * memory. We limit the total number of pages to initialize to just |
| * those that might contain the memory mapping. We will defer the |
| * ZONE_DEVICE page initialization until after we have released |
| * the hotplug lock. |
| */ |
| if (zone == ZONE_DEVICE) { |
| if (!altmap) |
| return; |
| |
| if (start_pfn == altmap->base_pfn) |
| start_pfn += altmap->reserve; |
| end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); |
| } |
| #endif |
| |
| for (pfn = start_pfn; pfn < end_pfn; ) { |
| /* |
| * There can be holes in boot-time mem_map[]s handed to this |
| * function. They do not exist on hotplugged memory. |
| */ |
| if (context == MEMINIT_EARLY) { |
| if (overlap_memmap_init(zone, &pfn)) |
| continue; |
| if (defer_init(nid, pfn, zone_end_pfn)) |
| break; |
| } |
| |
| page = pfn_to_page(pfn); |
| __init_single_page(page, pfn, zone, nid); |
| if (context == MEMINIT_HOTPLUG) |
| __SetPageReserved(page); |
| |
| /* |
| * Usually, we want to mark the pageblock MIGRATE_MOVABLE, |
| * such that unmovable allocations won't be scattered all |
| * over the place during system boot. |
| */ |
| if (IS_ALIGNED(pfn, pageblock_nr_pages)) { |
| set_pageblock_migratetype(page, migratetype); |
| cond_resched(); |
| } |
| pfn++; |
| } |
| } |
| |
| #ifdef CONFIG_ZONE_DEVICE |
| static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, |
| unsigned long zone_idx, int nid, |
| struct dev_pagemap *pgmap) |
| { |
| |
| __init_single_page(page, pfn, zone_idx, nid); |
| |
| /* |
| * Mark page reserved as it will need to wait for onlining |
| * phase for it to be fully associated with a zone. |
| * |
| * We can use the non-atomic __set_bit operation for setting |
| * the flag as we are still initializing the pages. |
| */ |
| __SetPageReserved(page); |
| |
| /* |
| * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer |
| * and zone_device_data. It is a bug if a ZONE_DEVICE page is |
| * ever freed or placed on a driver-private list. |
| */ |
| page->pgmap = pgmap; |
| page->zone_device_data = NULL; |
| |
| /* |
| * Mark the block movable so that blocks are reserved for |
| * movable at startup. This will force kernel allocations |
| * to reserve their blocks rather than leaking throughout |
| * the address space during boot when many long-lived |
| * kernel allocations are made. |
| * |
| * Please note that MEMINIT_HOTPLUG path doesn't clear memmap |
| * because this is done early in section_activate() |
| */ |
| if (IS_ALIGNED(pfn, pageblock_nr_pages)) { |
| set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
| cond_resched(); |
| } |
| } |
| |
| /* |
| * With compound page geometry and when struct pages are stored in ram most |
| * tail pages are reused. Consequently, the amount of unique struct pages to |
| * initialize is a lot smaller that the total amount of struct pages being |
| * mapped. This is a paired / mild layering violation with explicit knowledge |
| * of how the sparse_vmemmap internals handle compound pages in the lack |
| * of an altmap. See vmemmap_populate_compound_pages(). |
| */ |
| static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, |
| unsigned long nr_pages) |
| { |
| return is_power_of_2(sizeof(struct page)) && |
| !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; |
| } |
| |
| static void __ref memmap_init_compound(struct page *head, |
| unsigned long head_pfn, |
| unsigned long zone_idx, int nid, |
| struct dev_pagemap *pgmap, |
| unsigned long nr_pages) |
| { |
| unsigned long pfn, end_pfn = head_pfn + nr_pages; |
| unsigned int order = pgmap->vmemmap_shift; |
| |
| __SetPageHead(head); |
| for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { |
| struct page *page = pfn_to_page(pfn); |
| |
| __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); |
| prep_compound_tail(head, pfn - head_pfn); |
| set_page_count(page, 0); |
| |
| /* |
| * The first tail page stores compound_mapcount_ptr() and |
| * compound_order() and the second tail page stores |
| * compound_pincount_ptr(). Call prep_compound_head() after |
| * the first and second tail pages have been initialized to |
| * not have the data overwritten. |
| */ |
| if (pfn == head_pfn + 2) |
| prep_compound_head(head, order); |
| } |
| } |
| |
| void __ref memmap_init_zone_device(struct zone *zone, |
| unsigned long start_pfn, |
| unsigned long nr_pages, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long pfn, end_pfn = start_pfn + nr_pages; |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| struct vmem_altmap *altmap = pgmap_altmap(pgmap); |
| unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); |
| unsigned long zone_idx = zone_idx(zone); |
| unsigned long start = jiffies; |
| int nid = pgdat->node_id; |
| |
| if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) |
| return; |
| |
| /* |
| * The call to memmap_init should have already taken care |
| * of the pages reserved for the memmap, so we can just jump to |
| * the end of that region and start processing the device pages. |
| */ |
| if (altmap) { |
| start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); |
| nr_pages = end_pfn - start_pfn; |
| } |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { |
| struct page *page = pfn_to_page(pfn); |
| |
| __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); |
| |
| if (pfns_per_compound == 1) |
| continue; |
| |
| memmap_init_compound(page, pfn, zone_idx, nid, pgmap, |
| compound_nr_pages(altmap, pfns_per_compound)); |
| } |
| |
| pr_info("%s initialised %lu pages in %ums\n", __func__, |
| nr_pages, jiffies_to_msecs(jiffies - start)); |
| } |
| |
| #endif |
| static void __meminit zone_init_free_lists(struct zone *zone) |
| { |
| unsigned int order, t; |
| for_each_migratetype_order(order, t) { |
| INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); |
| zone->free_area[order].nr_free = 0; |
| } |
| } |
| |
| /* |
| * Only struct pages that correspond to ranges defined by memblock.memory |
| * are zeroed and initialized by going through __init_single_page() during |
| * memmap_init_zone_range(). |
| * |
| * But, there could be struct pages that correspond to holes in |
| * memblock.memory. This can happen because of the following reasons: |
| * - physical memory bank size is not necessarily the exact multiple of the |
| * arbitrary section size |
| * - early reserved memory may not be listed in memblock.memory |
| * - memory layouts defined with memmap= kernel parameter may not align |
| * nicely with memmap sections |
| * |
| * Explicitly initialize those struct pages so that: |
| * - PG_Reserved is set |
| * - zone and node links point to zone and node that span the page if the |
| * hole is in the middle of a zone |
| * - zone and node links point to adjacent zone/node if the hole falls on |
| * the zone boundary; the pages in such holes will be prepended to the |
| * zone/node above the hole except for the trailing pages in the last |
| * section that will be appended to the zone/node below. |
| */ |
| static void __init init_unavailable_range(unsigned long spfn, |
| unsigned long epfn, |
| int zone, int node) |
| { |
| unsigned long pfn; |
| u64 pgcnt = 0; |
| |
| for (pfn = spfn; pfn < epfn; pfn++) { |
| if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { |
| pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) |
| + pageblock_nr_pages - 1; |
| continue; |
| } |
| __init_single_page(pfn_to_page(pfn), pfn, zone, node); |
| __SetPageReserved(pfn_to_page(pfn)); |
| pgcnt++; |
| } |
| |
| if (pgcnt) |
| pr_info("On node %d, zone %s: %lld pages in unavailable ranges", |
| node, zone_names[zone], pgcnt); |
| } |
| |
| static void __init memmap_init_zone_range(struct zone *zone, |
| unsigned long start_pfn, |
| unsigned long end_pfn, |
| unsigned long *hole_pfn) |
| { |
| unsigned long zone_start_pfn = zone->zone_start_pfn; |
| unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; |
| int nid = zone_to_nid(zone), zone_id = zone_idx(zone); |
| |
| start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); |
| end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); |
| |
| if (start_pfn >= end_pfn) |
| return; |
| |
| memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, |
| zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); |
| |
| if (*hole_pfn < start_pfn) |
| init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); |
| |
| *hole_pfn = end_pfn; |
| } |
| |
| static void __init memmap_init(void) |
| { |
| unsigned long start_pfn, end_pfn; |
| unsigned long hole_pfn = 0; |
| int i, j, zone_id = 0, nid; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| struct pglist_data *node = NODE_DATA(nid); |
| |
| for (j = 0; j < MAX_NR_ZONES; j++) { |
| struct zone *zone = node->node_zones + j; |
| |
| if (!populated_zone(zone)) |
| continue; |
| |
| memmap_init_zone_range(zone, start_pfn, end_pfn, |
| &hole_pfn); |
| zone_id = j; |
| } |
| } |
| |
| #ifdef CONFIG_SPARSEMEM |
| /* |
| * Initialize the memory map for hole in the range [memory_end, |
| * section_end]. |
| * Append the pages in this hole to the highest zone in the last |
| * node. |
| * The call to init_unavailable_range() is outside the ifdef to |
| * silence the compiler warining about zone_id set but not used; |
| * for FLATMEM it is a nop anyway |
| */ |
| end_pfn = round_up(end_pfn, PAGES_PER_SECTION); |
| if (hole_pfn < end_pfn) |
| #endif |
| init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); |
| } |
| |
| void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, int nid, bool exact_nid) |
| { |
| void *ptr; |
| |
| if (exact_nid) |
| ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, |
| MEMBLOCK_ALLOC_ACCESSIBLE, |
| nid); |
| else |
| ptr = memblock_alloc_try_nid_raw(size, align, min_addr, |
| MEMBLOCK_ALLOC_ACCESSIBLE, |
| nid); |
| |
| if (ptr && size > 0) |
| page_init_poison(ptr, size); |
| |
| return ptr; |
| } |
| |
| static int zone_batchsize(struct zone *zone) |
| { |
| #ifdef CONFIG_MMU |
| int batch; |
| |
| /* |
| * The number of pages to batch allocate is either ~0.1% |
| * of the zone or 1MB, whichever is smaller. The batch |
| * size is striking a balance between allocation latency |
| * and zone lock contention. |
| */ |
| batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); |
| batch /= 4; /* We effectively *= 4 below */ |
| if (batch < 1) |
| batch = 1; |
| |
| /* |
| * Clamp the batch to a 2^n - 1 value. Having a power |
| * of 2 value was found to be more likely to have |
| * suboptimal cache aliasing properties in some cases. |
| * |
| * For example if 2 tasks are alternately allocating |
| * batches of pages, one task can end up with a lot |
| * of pages of one half of the possible page colors |
| * and the other with pages of the other colors. |
| */ |
| batch = rounddown_pow_of_two(batch + batch/2) - 1; |
| |
| return batch; |
| |
| #else |
| /* The deferral and batching of frees should be suppressed under NOMMU |
| * conditions. |
| * |
| * The problem is that NOMMU needs to be able to allocate large chunks |
| * of contiguous memory as there's no hardware page translation to |
| * assemble apparent contiguous memory from discontiguous pages. |
| * |
| * Queueing large contiguous runs of pages for batching, however, |
| * causes the pages to actually be freed in smaller chunks. As there |
| * can be a significant delay between the individual batches being |
| * recycled, this leads to the once large chunks of space being |
| * fragmented and becoming unavailable for high-order allocations. |
| */ |
| return 0; |
| #endif |
| } |
| |
| static int zone_highsize(struct zone *zone, int batch, int cpu_online) |
| { |
| #ifdef CONFIG_MMU |
| int high; |
| int nr_split_cpus; |
| unsigned long total_pages; |
| |
| if (!percpu_pagelist_high_fraction) { |
| /* |
| * By default, the high value of the pcp is based on the zone |
| * low watermark so that if they are full then background |
| * reclaim will not be started prematurely. |
| */ |
| total_pages = low_wmark_pages(zone); |
| } else { |
| /* |
| * If percpu_pagelist_high_fraction is configured, the high |
| * value is based on a fraction of the managed pages in the |
| * zone. |
| */ |
| total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; |
| } |
| |
| /* |
| * Split the high value across all online CPUs local to the zone. Note |
| * that early in boot that CPUs may not be online yet and that during |
| * CPU hotplug that the cpumask is not yet updated when a CPU is being |
| * onlined. For memory nodes that have no CPUs, split pcp->high across |
| * all online CPUs to mitigate the risk that reclaim is triggered |
| * prematurely due to pages stored on pcp lists. |
| */ |
| nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; |
| if (!nr_split_cpus) |
| nr_split_cpus = num_online_cpus(); |
| high = total_pages / nr_split_cpus; |
| |
| /* |
| * Ensure high is at least batch*4. The multiple is based on the |
| * historical relationship between high and batch. |
| */ |
| high = max(high, batch << 2); |
| |
| return high; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * pcp->high and pcp->batch values are related and generally batch is lower |
| * than high. They are also related to pcp->count such that count is lower |
| * than high, and as soon as it reaches high, the pcplist is flushed. |
| * |
| * However, guaranteeing these relations at all times would require e.g. write |
| * barriers here but also careful usage of read barriers at the read side, and |
| * thus be prone to error and bad for performance. Thus the update only prevents |
| * store tearing. Any new users of pcp->batch and pcp->high should ensure they |
| * can cope with those fields changing asynchronously, and fully trust only the |
| * pcp->count field on the local CPU with interrupts disabled. |
| * |
| * mutex_is_locked(&pcp_batch_high_lock) required when calling this function |
| * outside of boot time (or some other assurance that no concurrent updaters |
| * exist). |
| */ |
| static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, |
| unsigned long batch) |
| { |
| WRITE_ONCE(pcp->batch, batch); |
| WRITE_ONCE(pcp->high, high); |
| } |
| |
| static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) |
| { |
| int pindex; |
| |
| memset(pcp, 0, sizeof(*pcp)); |
| memset(pzstats, 0, sizeof(*pzstats)); |
| |
| spin_lock_init(&pcp->lock); |
| for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) |
| INIT_LIST_HEAD(&pcp->lists[pindex]); |
| |
| /* |
| * Set batch and high values safe for a boot pageset. A true percpu |
| * pageset's initialization will update them subsequently. Here we don't |
| * need to be as careful as pageset_update() as nobody can access the |
| * pageset yet. |
| */ |
| pcp->high = BOOT_PAGESET_HIGH; |
| pcp->batch = BOOT_PAGESET_BATCH; |
| pcp->free_factor = 0; |
| } |
| |
| static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, |
| unsigned long batch) |
| { |
| struct per_cpu_pages *pcp; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| pageset_update(pcp, high, batch); |
| } |
| } |
| |
| /* |
| * Calculate and set new high and batch values for all per-cpu pagesets of a |
| * zone based on the zone's size. |
| */ |
| static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) |
| { |
| int new_high, new_batch; |
| |
| new_batch = max(1, zone_batchsize(zone)); |
| new_high = zone_highsize(zone, new_batch, cpu_online); |
| |
| if (zone->pageset_high == new_high && |
| zone->pageset_batch == new_batch) |
| return; |
| |
| zone->pageset_high = new_high; |
| zone->pageset_batch = new_batch; |
| |
| __zone_set_pageset_high_and_batch(zone, new_high, new_batch); |
| } |
| |
| void __meminit setup_zone_pageset(struct zone *zone) |
| { |
| int cpu; |
| |
| /* Size may be 0 on !SMP && !NUMA */ |
| if (sizeof(struct per_cpu_zonestat) > 0) |
| zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); |
| |
| zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); |
| for_each_possible_cpu(cpu) { |
| struct per_cpu_pages *pcp; |
| struct per_cpu_zonestat *pzstats; |
| |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| per_cpu_pages_init(pcp, pzstats); |
| } |
| |
| zone_set_pageset_high_and_batch(zone, 0); |
| } |
| |
| /* |
| * Allocate per cpu pagesets and initialize them. |
| * Before this call only boot pagesets were available. |
| */ |
| void __init setup_per_cpu_pageset(void) |
| { |
| struct pglist_data *pgdat; |
| struct zone *zone; |
| int __maybe_unused cpu; |
| |
| for_each_populated_zone(zone) |
| setup_zone_pageset(zone); |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Unpopulated zones continue using the boot pagesets. |
| * The numa stats for these pagesets need to be reset. |
| * Otherwise, they will end up skewing the stats of |
| * the nodes these zones are associated with. |
| */ |
| for_each_possible_cpu(cpu) { |
| struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); |
| memset(pzstats->vm_numa_event, 0, |
| sizeof(pzstats->vm_numa_event)); |
| } |
| #endif |
| |
| for_each_online_pgdat(pgdat) |
| pgdat->per_cpu_nodestats = |
| alloc_percpu(struct per_cpu_nodestat); |
| } |
| |
| static __meminit void zone_pcp_init(struct zone *zone) |
| { |
| /* |
| * per cpu subsystem is not up at this point. The following code |
| * relies on the ability of the linker to provide the |
| * offset of a (static) per cpu variable into the per cpu area. |
| */ |
| zone->per_cpu_pageset = &boot_pageset; |
| zone->per_cpu_zonestats = &boot_zonestats; |
| zone->pageset_high = BOOT_PAGESET_HIGH; |
| zone->pageset_batch = BOOT_PAGESET_BATCH; |
| |
| if (populated_zone(zone)) |
| pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, |
| zone->present_pages, zone_batchsize(zone)); |
| } |
| |
| void __meminit init_currently_empty_zone(struct zone *zone, |
| unsigned long zone_start_pfn, |
| unsigned long size) |
| { |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| int zone_idx = zone_idx(zone) + 1; |
| |
| if (zone_idx > pgdat->nr_zones) |
| pgdat->nr_zones = zone_idx; |
| |
| zone->zone_start_pfn = zone_start_pfn; |
| |
| mminit_dprintk(MMINIT_TRACE, "memmap_init", |
| "Initialising map node %d zone %lu pfns %lu -> %lu\n", |
| pgdat->node_id, |
| (unsigned long)zone_idx(zone), |
| zone_start_pfn, (zone_start_pfn + size)); |
| |
| zone_init_free_lists(zone); |
| zone->initialized = 1; |
| } |
| |
| /** |
| * get_pfn_range_for_nid - Return the start and end page frames for a node |
| * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
| * @start_pfn: Passed by reference. On return, it will have the node start_pfn. |
| * @end_pfn: Passed by reference. On return, it will have the node end_pfn. |
| * |
| * It returns the start and end page frame of a node based on information |
| * provided by memblock_set_node(). If called for a node |
| * with no available memory, a warning is printed and the start and end |
| * PFNs will be 0. |
| */ |
| void __init get_pfn_range_for_nid(unsigned int nid, |
| unsigned long *start_pfn, unsigned long *end_pfn) |
| { |
| unsigned long this_start_pfn, this_end_pfn; |
| int i; |
| |
| *start_pfn = -1UL; |
| *end_pfn = 0; |
| |
| for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
| *start_pfn = min(*start_pfn, this_start_pfn); |
| *end_pfn = max(*end_pfn, this_end_pfn); |
| } |
| |
| if (*start_pfn == -1UL) |
| *start_pfn = 0; |
| } |
| |
| /* |
| * This finds a zone that can be used for ZONE_MOVABLE pages. The |
| * assumption is made that zones within a node are ordered in monotonic |
| * increasing memory addresses so that the "highest" populated zone is used |
| */ |
| static void __init find_usable_zone_for_movable(void) |
| { |
| int zone_index; |
| for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { |
| if (zone_index == ZONE_MOVABLE) |
| continue; |
| |
| if (arch_zone_highest_possible_pfn[zone_index] > |
| arch_zone_lowest_possible_pfn[zone_index]) |
| break; |
| } |
| |
| VM_BUG_ON(zone_index == -1); |
| movable_zone = zone_index; |
| } |
| |
| /* |
| * The zone ranges provided by the architecture do not include ZONE_MOVABLE |
| * because it is sized independent of architecture. Unlike the other zones, |
| * the starting point for ZONE_MOVABLE is not fixed. It may be different |
| * in each node depending on the size of each node and how evenly kernelcore |
| * is distributed. This helper function adjusts the zone ranges |
| * provided by the architecture for a given node by using the end of the |
| * highest usable zone for ZONE_MOVABLE. This preserves the assumption that |
| * zones within a node are in order of monotonic increases memory addresses |
| */ |
| static void __init adjust_zone_range_for_zone_movable(int nid, |
| unsigned long zone_type, |
| unsigned long node_start_pfn, |
| unsigned long node_end_pfn, |
| unsigned long *zone_start_pfn, |
| unsigned long *zone_end_pfn) |
| { |
| /* Only adjust if ZONE_MOVABLE is on this node */ |
| if (zone_movable_pfn[nid]) { |
| /* Size ZONE_MOVABLE */ |
| if (zone_type == ZONE_MOVABLE) { |
| *zone_start_pfn = zone_movable_pfn[nid]; |
| *zone_end_pfn = min(node_end_pfn, |
| arch_zone_highest_possible_pfn[movable_zone]); |
| |
| /* Adjust for ZONE_MOVABLE starting within this range */ |
| } else if (!mirrored_kernelcore && |
| *zone_start_pfn < zone_movable_pfn[nid] && |
| *zone_end_pfn > zone_movable_pfn[nid]) { |
| *zone_end_pfn = zone_movable_pfn[nid]; |
| |
| /* Check if this whole range is within ZONE_MOVABLE */ |
| } else if (*zone_start_pfn >= zone_movable_pfn[nid]) |
| *zone_start_pfn = *zone_end_pfn; |
| } |
| } |
| |
| /* |
| * Return the number of pages a zone spans in a node, including holes |
| * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() |
| */ |
| static unsigned long __init zone_spanned_pages_in_node(int nid, |
| unsigned long zone_type, |
| unsigned long node_start_pfn, |
| unsigned long node_end_pfn, |
| unsigned long *zone_start_pfn, |
| unsigned long *zone_end_pfn) |
| { |
| unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
| unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; |
| /* When hotadd a new node from cpu_up(), the node should be empty */ |
| if (!node_start_pfn && !node_end_pfn) |
| return 0; |
| |
| /* Get the start and end of the zone */ |
| *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
| *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); |
| adjust_zone_range_for_zone_movable(nid, zone_type, |
| node_start_pfn, node_end_pfn, |
| zone_start_pfn, zone_end_pfn); |
| |
| /* Check that this node has pages within the zone's required range */ |
| if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) |
| return 0; |
| |
| /* Move the zone boundaries inside the node if necessary */ |
| *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); |
| *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); |
| |
| /* Return the spanned pages */ |
| return *zone_end_pfn - *zone_start_pfn; |
| } |
| |
| /* |
| * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, |
| * then all holes in the requested range will be accounted for. |
| */ |
| unsigned long __init __absent_pages_in_range(int nid, |
| unsigned long range_start_pfn, |
| unsigned long range_end_pfn) |
| { |
| unsigned long nr_absent = range_end_pfn - range_start_pfn; |
| unsigned long start_pfn, end_pfn; |
| int i; |
| |
| for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); |
| end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); |
| nr_absent -= end_pfn - start_pfn; |
| } |
| return nr_absent; |
| } |
| |
| /** |
| * absent_pages_in_range - Return number of page frames in holes within a range |
| * @start_pfn: The start PFN to start searching for holes |
| * @end_pfn: The end PFN to stop searching for holes |
| * |
| * Return: the number of pages frames in memory holes within a range. |
| */ |
| unsigned long __init absent_pages_in_range(unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); |
| } |
| |
| /* Return the number of page frames in holes in a zone on a node */ |
| static unsigned long __init zone_absent_pages_in_node(int nid, |
| unsigned long zone_type, |
| unsigned long node_start_pfn, |
| unsigned long node_end_pfn) |
| { |
| unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
| unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; |
| unsigned long zone_start_pfn, zone_end_pfn; |
| unsigned long nr_absent; |
| |
| /* When hotadd a new node from cpu_up(), the node should be empty */ |
| if (!node_start_pfn && !node_end_pfn) |
| return 0; |
| |
| zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
| zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); |
| |
| adjust_zone_range_for_zone_movable(nid, zone_type, |
| node_start_pfn, node_end_pfn, |
| &zone_start_pfn, &zone_end_pfn); |
| nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
| |
| /* |
| * ZONE_MOVABLE handling. |
| * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages |
| * and vice versa. |
| */ |
| if (mirrored_kernelcore && zone_movable_pfn[nid]) { |
| unsigned long start_pfn, end_pfn; |
| struct memblock_region *r; |
| |
| for_each_mem_region(r) { |
| start_pfn = clamp(memblock_region_memory_base_pfn(r), |
| zone_start_pfn, zone_end_pfn); |
| end_pfn = clamp(memblock_region_memory_end_pfn(r), |
| zone_start_pfn, zone_end_pfn); |
| |
| if (zone_type == ZONE_MOVABLE && |
| memblock_is_mirror(r)) |
| nr_absent += end_pfn - start_pfn; |
| |
| if (zone_type == ZONE_NORMAL && |
| !memblock_is_mirror(r)) |
| nr_absent += end_pfn - start_pfn; |
| } |
| } |
| |
| return nr_absent; |
| } |
| |
| static void __init calculate_node_totalpages(struct pglist_data *pgdat, |
| unsigned long node_start_pfn, |
| unsigned long node_end_pfn) |
| { |
| unsigned long realtotalpages = 0, totalpages = 0; |
| enum zone_type i; |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| struct zone *zone = pgdat->node_zones + i; |
| unsigned long zone_start_pfn, zone_end_pfn; |
| unsigned long spanned, absent; |
| unsigned long size, real_size; |
| |
| spanned = zone_spanned_pages_in_node(pgdat->node_id, i, |
| node_start_pfn, |
| node_end_pfn, |
| &zone_start_pfn, |
| &zone_end_pfn); |
| absent = zone_absent_pages_in_node(pgdat->node_id, i, |
| node_start_pfn, |
| node_end_pfn); |
| |
| size = spanned; |
| real_size = size - absent; |
| |
| if (size) |
| zone->zone_start_pfn = zone_start_pfn; |
| else |
| zone->zone_start_pfn = 0; |
| zone->spanned_pages = size; |
| zone->present_pages = real_size; |
| #if defined(CONFIG_MEMORY_HOTPLUG) |
| zone->present_early_pages = real_size; |
| #endif |
| |
| totalpages += size; |
| realtotalpages += real_size; |
| } |
| |
| pgdat->node_spanned_pages = totalpages; |
| pgdat->node_present_pages = realtotalpages; |
| pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); |
| } |
| |
| #ifndef CONFIG_SPARSEMEM |
| /* |
| * Calculate the size of the zone->blockflags rounded to an unsigned long |
| * Start by making sure zonesize is a multiple of pageblock_order by rounding |
| * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally |
| * round what is now in bits to nearest long in bits, then return it in |
| * bytes. |
| */ |
| static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
| { |
| unsigned long usemapsize; |
| |
| zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
| usemapsize = roundup(zonesize, pageblock_nr_pages); |
| usemapsize = usemapsize >> pageblock_order; |
| usemapsize *= NR_PAGEBLOCK_BITS; |
| usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); |
| |
| return usemapsize / 8; |
| } |
| |
| static void __ref setup_usemap(struct zone *zone) |
| { |
| unsigned long usemapsize = usemap_size(zone->zone_start_pfn, |
| zone->spanned_pages); |
| zone->pageblock_flags = NULL; |
| if (usemapsize) { |
| zone->pageblock_flags = |
| memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, |
| zone_to_nid(zone)); |
| if (!zone->pageblock_flags) |
| panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", |
| usemapsize, zone->name, zone_to_nid(zone)); |
| } |
| } |
| #else |
| static inline void setup_usemap(struct zone *zone) {} |
| #endif /* CONFIG_SPARSEMEM */ |
| |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
| |
| /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
| void __init set_pageblock_order(void) |
| { |
| unsigned int order = MAX_ORDER - 1; |
| |
| /* Check that pageblock_nr_pages has not already been setup */ |
| if (pageblock_order) |
| return; |
| |
| /* Don't let pageblocks exceed the maximum allocation granularity. */ |
| if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) |
| order = HUGETLB_PAGE_ORDER; |
| |
| /* |
| * Assume the largest contiguous order of interest is a huge page. |
| * This value may be variable depending on boot parameters on IA64 and |
| * powerpc. |
| */ |
| pageblock_order = order; |
| } |
| #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ |
| |
| /* |
| * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() |
| * is unused as pageblock_order is set at compile-time. See |
| * include/linux/pageblock-flags.h for the values of pageblock_order based on |
| * the kernel config |
| */ |
| void __init set_pageblock_order(void) |
| { |
| } |
| |
| #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ |
| |
| static unsigned long __init calc_memmap_size(unsigned long spanned_pages, |
| unsigned long present_pages) |
| { |
| unsigned long pages = spanned_pages; |
| |
| /* |
| * Provide a more accurate estimation if there are holes within |
| * the zone and SPARSEMEM is in use. If there are holes within the |
| * zone, each populated memory region may cost us one or two extra |
| * memmap pages due to alignment because memmap pages for each |
| * populated regions may not be naturally aligned on page boundary. |
| * So the (present_pages >> 4) heuristic is a tradeoff for that. |
| */ |
| if (spanned_pages > present_pages + (present_pages >> 4) && |
| IS_ENABLED(CONFIG_SPARSEMEM)) |
| pages = present_pages; |
| |
| return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static void pgdat_init_split_queue(struct pglist_data *pgdat) |
| { |
| struct deferred_split *ds_queue = &pgdat->deferred_split_queue; |
| |
| spin_lock_init(&ds_queue->split_queue_lock); |
| INIT_LIST_HEAD(&ds_queue->split_queue); |
| ds_queue->split_queue_len = 0; |
| } |
| #else |
| static void pgdat_init_split_queue(struct pglist_data *pgdat) {} |
| #endif |
| |
| #ifdef CONFIG_COMPACTION |
| static void pgdat_init_kcompactd(struct pglist_data *pgdat) |
| { |
| init_waitqueue_head(&pgdat->kcompactd_wait); |
| } |
| #else |
| static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} |
| #endif |
| |
| static void __meminit pgdat_init_internals(struct pglist_data *pgdat) |
| { |
| int i; |
| |
| pgdat_resize_init(pgdat); |
| pgdat_kswapd_lock_init(pgdat); |
| |
| pgdat_init_split_queue(pgdat); |
| pgdat_init_kcompactd(pgdat); |
| |
| init_waitqueue_head(&pgdat->kswapd_wait); |
| init_waitqueue_head(&pgdat->pfmemalloc_wait); |
| |
| for (i = 0; i < NR_VMSCAN_THROTTLE; i++) |
| init_waitqueue_head(&pgdat->reclaim_wait[i]); |
| |
| pgdat_page_ext_init(pgdat); |
| lruvec_init(&pgdat->__lruvec); |
| } |
| |
| static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, |
| unsigned long remaining_pages) |
| { |
| atomic_long_set(&zone->managed_pages, remaining_pages); |
| zone_set_nid(zone, nid); |
| zone->name = zone_names[idx]; |
| zone->zone_pgdat = NODE_DATA(nid); |
| spin_lock_init(&zone->lock); |
| zone_seqlock_init(zone); |
| zone_pcp_init(zone); |
| } |
| |
| /* |
| * Set up the zone data structures |
| * - init pgdat internals |
| * - init all zones belonging to this node |
| * |
| * NOTE: this function is only called during memory hotplug |
| */ |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) |
| { |
| int nid = pgdat->node_id; |
| enum zone_type z; |
| int cpu; |
| |
| pgdat_init_internals(pgdat); |
| |
| if (pgdat->per_cpu_nodestats == &boot_nodestats) |
| pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); |
| |
| /* |
| * Reset the nr_zones, order and highest_zoneidx before reuse. |
| * Note that kswapd will init kswapd_highest_zoneidx properly |
| * when it starts in the near future. |
| */ |
| pgdat->nr_zones = 0; |
| pgdat->kswapd_order = 0; |
| pgdat->kswapd_highest_zoneidx = 0; |
| pgdat->node_start_pfn = 0; |
| for_each_online_cpu(cpu) { |
| struct per_cpu_nodestat *p; |
| |
| p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| for (z = 0; z < MAX_NR_ZONES; z++) |
| zone_init_internals(&pgdat->node_zones[z], z, nid, 0); |
| } |
| #endif |
| |
| /* |
| * Set up the zone data structures: |
| * - mark all pages reserved |
| * - mark all memory queues empty |
| * - clear the memory bitmaps |
| * |
| * NOTE: pgdat should get zeroed by caller. |
| * NOTE: this function is only called during early init. |
| */ |
| static void __init free_area_init_core(struct pglist_data *pgdat) |
| { |
| enum zone_type j; |
| int nid = pgdat->node_id; |
| |
| pgdat_init_internals(pgdat); |
| pgdat->per_cpu_nodestats = &boot_nodestats; |
| |
| for (j = 0; j < MAX_NR_ZONES; j++) { |
| struct zone *zone = pgdat->node_zones + j; |
| unsigned long size, freesize, memmap_pages; |
| |
| size = zone->spanned_pages; |
| freesize = zone->present_pages; |
| |
| /* |
| * Adjust freesize so that it accounts for how much memory |
| * is used by this zone for memmap. This affects the watermark |
| * and per-cpu initialisations |
| */ |
| memmap_pages = calc_memmap_size(size, freesize); |
| if (!is_highmem_idx(j)) { |
| if (freesize >= memmap_pages) { |
| freesize -= memmap_pages; |
| if (memmap_pages) |
| pr_debug(" %s zone: %lu pages used for memmap\n", |
| zone_names[j], memmap_pages); |
| } else |
| pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", |
| zone_names[j], memmap_pages, freesize); |
| } |
| |
| /* Account for reserved pages */ |
| if (j == 0 && freesize > dma_reserve) { |
| freesize -= dma_reserve; |
| pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); |
| } |
| |
| if (!is_highmem_idx(j)) |
| nr_kernel_pages += freesize; |
| /* Charge for highmem memmap if there are enough kernel pages */ |
| else if (nr_kernel_pages > memmap_pages * 2) |
| nr_kernel_pages -= memmap_pages; |
| nr_all_pages += freesize; |
| |
| /* |
| * Set an approximate value for lowmem here, it will be adjusted |
| * when the bootmem allocator frees pages into the buddy system. |
| * And all highmem pages will be managed by the buddy system. |
| */ |
| zone_init_internals(zone, j, nid, freesize); |
| |
| if (!size) |
| continue; |
| |
| set_pageblock_order(); |
| setup_usemap(zone); |
| init_currently_empty_zone(zone, zone->zone_start_pfn, size); |
| } |
| } |
| |
| #ifdef CONFIG_FLATMEM |
| static void __init alloc_node_mem_map(struct pglist_data *pgdat) |
| { |
| unsigned long __maybe_unused start = 0; |
| unsigned long __maybe_unused offset = 0; |
| |
| /* Skip empty nodes */ |
| if (!pgdat->node_spanned_pages) |
| return; |
| |
| start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
| offset = pgdat->node_start_pfn - start; |
| /* ia64 gets its own node_mem_map, before this, without bootmem */ |
| if (!pgdat->node_mem_map) { |
| unsigned long size, end; |
| struct page *map; |
| |
| /* |
| * The zone's endpoints aren't required to be MAX_ORDER |
| * aligned but the node_mem_map endpoints must be in order |
| * for the buddy allocator to function correctly. |
| */ |
| end = pgdat_end_pfn(pgdat); |
| end = ALIGN(end, MAX_ORDER_NR_PAGES); |
| size = (end - start) * sizeof(struct page); |
| map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, |
| pgdat->node_id, false); |
| if (!map) |
| panic("Failed to allocate %ld bytes for node %d memory map\n", |
| size, pgdat->node_id); |
| pgdat->node_mem_map = map + offset; |
| } |
| pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", |
| __func__, pgdat->node_id, (unsigned long)pgdat, |
| (unsigned long)pgdat->node_mem_map); |
| #ifndef CONFIG_NUMA |
| /* |
| * With no DISCONTIG, the global mem_map is just set as node 0's |
| */ |
| if (pgdat == NODE_DATA(0)) { |
| mem_map = NODE_DATA(0)->node_mem_map; |
| if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
| mem_map -= offset; |
| } |
| #endif |
| } |
| #else |
| static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } |
| #endif /* CONFIG_FLATMEM */ |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| static inline void pgdat_set_deferred_range(pg_data_t *pgdat) |
| { |
| pgdat->first_deferred_pfn = ULONG_MAX; |
| } |
| #else |
| static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} |
| #endif |
| |
| static void __init free_area_init_node(int nid) |
| { |
| pg_data_t *pgdat = NODE_DATA(nid); |
| unsigned long start_pfn = 0; |
| unsigned long end_pfn = 0; |
| |
| /* pg_data_t should be reset to zero when it's allocated */ |
| WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| |
| pgdat->node_id = nid; |
| pgdat->node_start_pfn = start_pfn; |
| pgdat->per_cpu_nodestats = NULL; |
| |
| if (start_pfn != end_pfn) { |
| pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, |
| (u64)start_pfn << PAGE_SHIFT, |
| end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); |
| } else { |
| pr_info("Initmem setup node %d as memoryless\n", nid); |
| } |
| |
| calculate_node_totalpages(pgdat, start_pfn, end_pfn); |
| |
| alloc_node_mem_map(pgdat); |
| pgdat_set_deferred_range(pgdat); |
| |
| free_area_init_core(pgdat); |
| } |
| |
| static void __init free_area_init_memoryless_node(int nid) |
| { |
| free_area_init_node(nid); |
| } |
| |
| #if MAX_NUMNODES > 1 |
| /* |
| * Figure out the number of possible node ids. |
| */ |
| void __init setup_nr_node_ids(void) |
| { |
| unsigned int highest; |
| |
| highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); |
| nr_node_ids = highest + 1; |
| } |
| #endif |
| |
| /** |
| * node_map_pfn_alignment - determine the maximum internode alignment |
| * |
| * This function should be called after node map is populated and sorted. |
| * It calculates the maximum power of two alignment which can distinguish |
| * all the nodes. |
| * |
| * For example, if all nodes are 1GiB and aligned to 1GiB, the return value |
| * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the |
| * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is |
| * shifted, 1GiB is enough and this function will indicate so. |
| * |
| * This is used to test whether pfn -> nid mapping of the chosen memory |
| * model has fine enough granularity to avoid incorrect mapping for the |
| * populated node map. |
| * |
| * Return: the determined alignment in pfn's. 0 if there is no alignment |
| * requirement (single node). |
| */ |
| unsigned long __init node_map_pfn_alignment(void) |
| { |
| unsigned long accl_mask = 0, last_end = 0; |
| unsigned long start, end, mask; |
| int last_nid = NUMA_NO_NODE; |
| int i, nid; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
| if (!start || last_nid < 0 || last_nid == nid) { |
| last_nid = nid; |
| last_end = end; |
| continue; |
| } |
| |
| /* |
| * Start with a mask granular enough to pin-point to the |
| * start pfn and tick off bits one-by-one until it becomes |
| * too coarse to separate the current node from the last. |
| */ |
| mask = ~((1 << __ffs(start)) - 1); |
| while (mask && last_end <= (start & (mask << 1))) |
| mask <<= 1; |
| |
| /* accumulate all internode masks */ |
| accl_mask |= mask; |
| } |
| |
| /* convert mask to number of pages */ |
| return ~accl_mask + 1; |
| } |
| |
| /* |
| * early_calculate_totalpages() |
| * Sum pages in active regions for movable zone. |
| * Populate N_MEMORY for calculating usable_nodes. |
| */ |
| static unsigned long __init early_calculate_totalpages(void) |
| { |
| unsigned long totalpages = 0; |
| unsigned long start_pfn, end_pfn; |
| int i, nid; |
| |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| unsigned long pages = end_pfn - start_pfn; |
| |
| totalpages += pages; |
| if (pages) |
| node_set_state(nid, N_MEMORY); |
| } |
| return totalpages; |
| } |
| |
| /* |
| * Find the PFN the Movable zone begins in each node. Kernel memory |
| * is spread evenly between nodes as long as the nodes have enough |
| * memory. When they don't, some nodes will have more kernelcore than |
| * others |
| */ |
| static void __init find_zone_movable_pfns_for_nodes(void) |
| { |
| int i, nid; |
| unsigned long usable_startpfn; |
| unsigned long kernelcore_node, kernelcore_remaining; |
| /* save the state before borrow the nodemask */ |
| nodemask_t saved_node_state = node_states[N_MEMORY]; |
| unsigned long totalpages = early_calculate_totalpages(); |
| int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
| struct memblock_region *r; |
| |
| /* Need to find movable_zone earlier when movable_node is specified. */ |
| find_usable_zone_for_movable(); |
| |
| /* |
| * If movable_node is specified, ignore kernelcore and movablecore |
| * options. |
| */ |
| if (movable_node_is_enabled()) { |
| for_each_mem_region(r) { |
| if (!memblock_is_hotpluggable(r)) |
| continue; |
| |
| nid = memblock_get_region_node(r); |
| |
| usable_startpfn = PFN_DOWN(r->base); |
| zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
| min(usable_startpfn, zone_movable_pfn[nid]) : |
| usable_startpfn; |
| } |
| |
| goto out2; |
| } |
| |
| /* |
| * If kernelcore=mirror is specified, ignore movablecore option |
| */ |
| if (mirrored_kernelcore) { |
| bool mem_below_4gb_not_mirrored = false; |
| |
| for_each_mem_region(r) { |
| if (memblock_is_mirror(r)) |
| continue; |
| |
| nid = memblock_get_region_node(r); |
| |
| usable_startpfn = memblock_region_memory_base_pfn(r); |
| |
| if (usable_startpfn < PHYS_PFN(SZ_4G)) { |
| mem_below_4gb_not_mirrored = true; |
| continue; |
| } |
| |
| zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
| min(usable_startpfn, zone_movable_pfn[nid]) : |
| usable_startpfn; |
| } |
| |
| if (mem_below_4gb_not_mirrored) |
| pr_warn("This configuration results in unmirrored kernel memory.\n"); |
| |
| goto out2; |
| } |
| |
| /* |
| * If kernelcore=nn% or movablecore=nn% was specified, calculate the |
| * amount of necessary memory. |
| */ |
| if (required_kernelcore_percent) |
| required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / |
| 10000UL; |
| if (required_movablecore_percent) |
| required_movablecore = (totalpages * 100 * required_movablecore_percent) / |
| 10000UL; |
| |
| /* |
| * If movablecore= was specified, calculate what size of |
| * kernelcore that corresponds so that memory usable for |
| * any allocation type is evenly spread. If both kernelcore |
| * and movablecore are specified, then the value of kernelcore |
| * will be used for required_kernelcore if it's greater than |
| * what movablecore would have allowed. |
| */ |
| if (required_movablecore) { |
| unsigned long corepages; |
| |
| /* |
| * Round-up so that ZONE_MOVABLE is at least as large as what |
| * was requested by the user |
| */ |
| required_movablecore = |
| roundup(required_movablecore, MAX_ORDER_NR_PAGES); |
| required_movablecore = min(totalpages, required_movablecore); |
| corepages = totalpages - required_movablecore; |
| |
| required_kernelcore = max(required_kernelcore, corepages); |
| } |
| |
| /* |
| * If kernelcore was not specified or kernelcore size is larger |
| * than totalpages, there is no ZONE_MOVABLE. |
| */ |
| if (!required_kernelcore || required_kernelcore >= totalpages) |
| goto out; |
| |
| /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ |
| usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
| |
| restart: |
| /* Spread kernelcore memory as evenly as possible throughout nodes */ |
| kernelcore_node = required_kernelcore / usable_nodes; |
| for_each_node_state(nid, N_MEMORY) { |
| unsigned long start_pfn, end_pfn; |
| |
| /* |
| * Recalculate kernelcore_node if the division per node |
| * now exceeds what is necessary to satisfy the requested |
| * amount of memory for the kernel |
| */ |
| if (required_kernelcore < kernelcore_node) |
| kernelcore_node = required_kernelcore / usable_nodes; |
| |
| /* |
| * As the map is walked, we track how much memory is usable |
| * by the kernel using kernelcore_remaining. When it is |
| * 0, the rest of the node is usable by ZONE_MOVABLE |
| */ |
| kernelcore_remaining = kernelcore_node; |
| |
| /* Go through each range of PFNs within this node */ |
| for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| unsigned long size_pages; |
| |
| start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
| if (start_pfn >= end_pfn) |
| continue; |
| |
| /* Account for what is only usable for kernelcore */ |
| if (start_pfn < usable_startpfn) { |
| unsigned long kernel_pages; |
| kernel_pages = min(end_pfn, usable_startpfn) |
| - start_pfn; |
| |
| kernelcore_remaining -= min(kernel_pages, |
| kernelcore_remaining); |
| required_kernelcore -= min(kernel_pages, |
| required_kernelcore); |
| |
| /* Continue if range is now fully accounted */ |
| if (end_pfn <= usable_startpfn) { |
| |
| /* |
| * Push zone_movable_pfn to the end so |
| * that if we have to rebalance |
| * kernelcore across nodes, we will |
| * not double account here |
| */ |
| zone_movable_pfn[nid] = end_pfn; |
| continue; |
| } |
| start_pfn = usable_startpfn; |
| } |
| |
| /* |
| * The usable PFN range for ZONE_MOVABLE is from |
| * start_pfn->end_pfn. Calculate size_pages as the |
| * number of pages used as kernelcore |
| */ |
| size_pages = end_pfn - start_pfn; |
| if (size_pages > kernelcore_remaining) |
| size_pages = kernelcore_remaining; |
| zone_movable_pfn[nid] = start_pfn + size_pages; |
| |
| /* |
| * Some kernelcore has been met, update counts and |
| * break if the kernelcore for this node has been |
| * satisfied |
| */ |
| required_kernelcore -= min(required_kernelcore, |
| size_pages); |
| kernelcore_remaining -= size_pages; |
| if (!kernelcore_remaining) |
| break; |
| } |
| } |
| |
| /* |
| * If there is still required_kernelcore, we do another pass with one |
| * less node in the count. This will push zone_movable_pfn[nid] further |
| * along on the nodes that still have memory until kernelcore is |
| * satisfied |
| */ |
| usable_nodes--; |
| if (usable_nodes && required_kernelcore > usable_nodes) |
| goto restart; |
| |
| out2: |
| /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
| for (nid = 0; nid < MAX_NUMNODES; nid++) { |
| unsigned long start_pfn, end_pfn; |
| |
| zone_movable_pfn[nid] = |
| roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| if (zone_movable_pfn[nid] >= end_pfn) |
| zone_movable_pfn[nid] = 0; |
| } |
| |
| out: |
| /* restore the node_state */ |
| node_states[N_MEMORY] = saved_node_state; |
| } |
| |
| /* Any regular or high memory on that node ? */ |
| static void check_for_memory(pg_data_t *pgdat, int nid) |
| { |
| enum zone_type zone_type; |
| |
| for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { |
| struct zone *zone = &pgdat->node_zones[zone_type]; |
| if (populated_zone(zone)) { |
| if (IS_ENABLED(CONFIG_HIGHMEM)) |
| node_set_state(nid, N_HIGH_MEMORY); |
| if (zone_type <= ZONE_NORMAL) |
| node_set_state(nid, N_NORMAL_MEMORY); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For |
| * such cases we allow max_zone_pfn sorted in the descending order |
| */ |
| bool __weak arch_has_descending_max_zone_pfns(void) |
| { |
| return false; |
| } |
| |
| /** |
| * free_area_init - Initialise all pg_data_t and zone data |
| * @max_zone_pfn: an array of max PFNs for each zone |
| * |
| * This will call free_area_init_node() for each active node in the system. |
| * Using the page ranges provided by memblock_set_node(), the size of each |
| * zone in each node and their holes is calculated. If the maximum PFN |
| * between two adjacent zones match, it is assumed that the zone is empty. |
| * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed |
| * that arch_max_dma32_pfn has no pages. It is also assumed that a zone |
| * starts where the previous one ended. For example, ZONE_DMA32 starts |
| * at arch_max_dma_pfn. |
| */ |
| void __init free_area_init(unsigned long *max_zone_pfn) |
| { |
| unsigned long start_pfn, end_pfn; |
| int i, nid, zone; |
| bool descending; |
| |
| /* Record where the zone boundaries are */ |
| memset(arch_zone_lowest_possible_pfn, 0, |
| sizeof(arch_zone_lowest_possible_pfn)); |
| memset(arch_zone_highest_possible_pfn, 0, |
| sizeof(arch_zone_highest_possible_pfn)); |
| |
| start_pfn = PHYS_PFN(memblock_start_of_DRAM()); |
| descending = arch_has_descending_max_zone_pfns(); |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| if (descending) |
| zone = MAX_NR_ZONES - i - 1; |
| else |
| zone = i; |
| |
| if (zone == ZONE_MOVABLE) |
| continue; |
| |
| end_pfn = max(max_zone_pfn[zone], start_pfn); |
| arch_zone_lowest_possible_pfn[zone] = start_pfn; |
| arch_zone_highest_possible_pfn[zone] = end_pfn; |
| |
| start_pfn = end_pfn; |
| } |
| |
| /* Find the PFNs that ZONE_MOVABLE begins at in each node */ |
| memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); |
| find_zone_movable_pfns_for_nodes(); |
| |
| /* Print out the zone ranges */ |
| pr_info("Zone ranges:\n"); |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| if (i == ZONE_MOVABLE) |
| continue; |
| pr_info(" %-8s ", zone_names[i]); |
| if (arch_zone_lowest_possible_pfn[i] == |
| arch_zone_highest_possible_pfn[i]) |
| pr_cont("empty\n"); |
| else |
| pr_cont("[mem %#018Lx-%#018Lx]\n", |
| (u64)arch_zone_lowest_possible_pfn[i] |
| << PAGE_SHIFT, |
| ((u64)arch_zone_highest_possible_pfn[i] |
| << PAGE_SHIFT) - 1); |
| } |
| |
| /* Print out the PFNs ZONE_MOVABLE begins at in each node */ |
| pr_info("Movable zone start for each node\n"); |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| if (zone_movable_pfn[i]) |
| pr_info(" Node %d: %#018Lx\n", i, |
| (u64)zone_movable_pfn[i] << PAGE_SHIFT); |
| } |
| |
| /* |
| * Print out the early node map, and initialize the |
| * subsection-map relative to active online memory ranges to |
| * enable future "sub-section" extensions of the memory map. |
| */ |
| pr_info("Early memory node ranges\n"); |
| for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, |
| (u64)start_pfn << PAGE_SHIFT, |
| ((u64)end_pfn << PAGE_SHIFT) - 1); |
| subsection_map_init(start_pfn, end_pfn - start_pfn); |
| } |
| |
| /* Initialise every node */ |
| mminit_verify_pageflags_layout(); |
| setup_nr_node_ids(); |
| for_each_node(nid) { |
| pg_data_t *pgdat; |
| |
| if (!node_online(nid)) { |
| pr_info("Initializing node %d as memoryless\n", nid); |
| |
| /* Allocator not initialized yet */ |
| pgdat = arch_alloc_nodedata(nid); |
| if (!pgdat) { |
| pr_err("Cannot allocate %zuB for node %d.\n", |
| sizeof(*pgdat), nid); |
| continue; |
| } |
| arch_refresh_nodedata(nid, pgdat); |
| free_area_init_memoryless_node(nid); |
| |
| /* |
| * We do not want to confuse userspace by sysfs |
| * files/directories for node without any memory |
| * attached to it, so this node is not marked as |
| * N_MEMORY and not marked online so that no sysfs |
| * hierarchy will be created via register_one_node for |
| * it. The pgdat will get fully initialized by |
| * hotadd_init_pgdat() when memory is hotplugged into |
| * this node. |
| */ |
| continue; |
| } |
| |
| pgdat = NODE_DATA(nid); |
| free_area_init_node(nid); |
| |
| /* Any memory on that node */ |
| if (pgdat->node_present_pages) |
| node_set_state(nid, N_MEMORY); |
| check_for_memory(pgdat, nid); |
| } |
| |
| memmap_init(); |
| } |
| |
| static int __init cmdline_parse_core(char *p, unsigned long *core, |
| unsigned long *percent) |
| { |
| unsigned long long coremem; |
| char *endptr; |
| |
| if (!p) |
| return -EINVAL; |
| |
| /* Value may be a percentage of total memory, otherwise bytes */ |
| coremem = simple_strtoull(p, &endptr, 0); |
| if (*endptr == '%') { |
| /* Paranoid check for percent values greater than 100 */ |
| WARN_ON(coremem > 100); |
| |
| *percent = coremem; |
| } else { |
| coremem = memparse(p, &p); |
| /* Paranoid check that UL is enough for the coremem value */ |
| WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
| |
| *core = coremem >> PAGE_SHIFT; |
| *percent = 0UL; |
| } |
| return 0; |
| } |
| |
| /* |
| * kernelcore=size sets the amount of memory for use for allocations that |
| * cannot be reclaimed or migrated. |
| */ |
| static int __init cmdline_parse_kernelcore(char *p) |
| { |
| /* parse kernelcore=mirror */ |
| if (parse_option_str(p, "mirror")) { |
| mirrored_kernelcore = true; |
| return 0; |
| } |
| |
| return cmdline_parse_core(p, &required_kernelcore, |
| &required_kernelcore_percent); |
| } |
| |
| /* |
| * movablecore=size sets the amount of memory for use for allocations that |
| * can be reclaimed or migrated. |
| */ |
| static int __init cmdline_parse_movablecore(char *p) |
| { |
| return cmdline_parse_core(p, &required_movablecore, |
| &required_movablecore_percent); |
| } |
| |
| early_param("kernelcore", cmdline_parse_kernelcore); |
| early_param("movablecore", cmdline_parse_movablecore); |
| |
| void adjust_managed_page_count(struct page *page, long count) |
| { |
| atomic_long_add(count, &page_zone(page)->managed_pages); |
| totalram_pages_add(count); |
| #ifdef CONFIG_HIGHMEM |
| if (PageHighMem(page)) |
| totalhigh_pages_add(count); |
| #endif |
| } |
| EXPORT_SYMBOL(adjust_managed_page_count); |
| |
| unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) |
| { |
| void *pos; |
| unsigned long pages = 0; |
| |
| start = (void *)PAGE_ALIGN((unsigned long)start); |
| end = (void *)((unsigned long)end & PAGE_MASK); |
| for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { |
| struct page *page = virt_to_page(pos); |
| void *direct_map_addr; |
| |
| /* |
| * 'direct_map_addr' might be different from 'pos' |
| * because some architectures' virt_to_page() |
| * work with aliases. Getting the direct map |
| * address ensures that we get a _writeable_ |
| * alias for the memset(). |
| */ |
| direct_map_addr = page_address(page); |
| /* |
| * Perform a kasan-unchecked memset() since this memory |
| * has not been initialized. |
| */ |
| direct_map_addr = kasan_reset_tag(direct_map_addr); |
| if ((unsigned int)poison <= 0xFF) |
| memset(direct_map_addr, poison, PAGE_SIZE); |
| |
| free_reserved_page(page); |
| } |
| |
| if (pages && s) |
| pr_info("Freeing %s memory: %ldK\n", s, K(pages)); |
| |
| return pages; |
| } |
| |
| void __init mem_init_print_info(void) |
| { |
| unsigned long physpages, codesize, datasize, rosize, bss_size; |
| unsigned long init_code_size, init_data_size; |
| |
| physpages = get_num_physpages(); |
| codesize = _etext - _stext; |
| datasize = _edata - _sdata; |
| rosize = __end_rodata - __start_rodata; |
| bss_size = __bss_stop - __bss_start; |
| init_data_size = __init_end - __init_begin; |
| init_code_size = _einittext - _sinittext; |
| |
| /* |
| * Detect special cases and adjust section sizes accordingly: |
| * 1) .init.* may be embedded into .data sections |
| * 2) .init.text.* may be out of [__init_begin, __init_end], |
| * please refer to arch/tile/kernel/vmlinux.lds.S. |
| * 3) .rodata.* may be embedded into .text or .data sections. |
| */ |
| #define adj_init_size(start, end, size, pos, adj) \ |
| do { \ |
| if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ |
| size -= adj; \ |
| } while (0) |
| |
| adj_init_size(__init_begin, __init_end, init_data_size, |
| _sinittext, init_code_size); |
| adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); |
| adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); |
| adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); |
| adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); |
| |
| #undef adj_init_size |
| |
| pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" |
| #ifdef CONFIG_HIGHMEM |
| ", %luK highmem" |
| #endif |
| ")\n", |
| K(nr_free_pages()), K(physpages), |
| codesize >> 10, datasize >> 10, rosize >> 10, |
| (init_data_size + init_code_size) >> 10, bss_size >> 10, |
| K(physpages - totalram_pages() - totalcma_pages), |
| K(totalcma_pages) |
| #ifdef CONFIG_HIGHMEM |
| , K(totalhigh_pages()) |
| #endif |
| ); |
| } |
| |
| /** |
| * set_dma_reserve - set the specified number of pages reserved in the first zone |
| * @new_dma_reserve: The number of pages to mark reserved |
| * |
| * The per-cpu batchsize and zone watermarks are determined by managed_pages. |
| * In the DMA zone, a significant percentage may be consumed by kernel image |
| * and other unfreeable allocations which can skew the watermarks badly. This |
| * function may optionally be used to account for unfreeable pages in the |
| * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and |
| * smaller per-cpu batchsize. |
| */ |
| void __init set_dma_reserve(unsigned long new_dma_reserve) |
| { |
| dma_reserve = new_dma_reserve; |
| } |
| |
| static int page_alloc_cpu_dead(unsigned int cpu) |
| { |
| struct zone *zone; |
| |
| lru_add_drain_cpu(cpu); |
| mlock_page_drain_remote(cpu); |
| drain_pages(cpu); |
| |
| /* |
| * Spill the event counters of the dead processor |
| * into the current processors event counters. |
| * This artificially elevates the count of the current |
| * processor. |
| */ |
| vm_events_fold_cpu(cpu); |
| |
| /* |
| * Zero the differential counters of the dead processor |
| * so that the vm statistics are consistent. |
| * |
| * This is only okay since the processor is dead and cannot |
| * race with what we are doing. |
| */ |
| cpu_vm_stats_fold(cpu); |
| |
| for_each_populated_zone(zone) |
| zone_pcp_update(zone, 0); |
| |
| return 0; |
| } |
| |
| static int page_alloc_cpu_online(unsigned int cpu) |
| { |
| struct zone *zone; |
| |
| for_each_populated_zone(zone) |
| zone_pcp_update(zone, 1); |
| return 0; |
| } |
| |
| #ifdef CONFIG_NUMA |
| int hashdist = HASHDIST_DEFAULT; |
| |
| static int __init set_hashdist(char *str) |
| { |
| if (!str) |
| return 0; |
| hashdist = simple_strtoul(str, &str, 0); |
| return 1; |
| } |
| __setup("hashdist=", set_hashdist); |
| #endif |
| |
| void __init page_alloc_init(void) |
| { |
| int ret; |
| |
| #ifdef CONFIG_NUMA |
| if (num_node_state(N_MEMORY) == 1) |
| hashdist = 0; |
| #endif |
| |
| ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, |
| "mm/page_alloc:pcp", |
| page_alloc_cpu_online, |
| page_alloc_cpu_dead); |
| WARN_ON(ret < 0); |
| } |
| |
| /* |
| * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
| * or min_free_kbytes changes. |
| */ |
| static void calculate_totalreserve_pages(void) |
| { |
| struct pglist_data *pgdat; |
| unsigned long reserve_pages = 0; |
| enum zone_type i, j; |
| |
| for_each_online_pgdat(pgdat) { |
| |
| pgdat->totalreserve_pages = 0; |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| struct zone *zone = pgdat->node_zones + i; |
| long max = 0; |
| unsigned long managed_pages = zone_managed_pages(zone); |
| |
| /* Find valid and maximum lowmem_reserve in the zone */ |
| for (j = i; j < MAX_NR_ZONES; j++) { |
| if (zone->lowmem_reserve[j] > max) |
| max = zone->lowmem_reserve[j]; |
| } |
| |
| /* we treat the high watermark as reserved pages. */ |
| max += high_wmark_pages(zone); |
| |
| if (max > managed_pages) |
| max = managed_pages; |
| |
| pgdat->totalreserve_pages += max; |
| |
| reserve_pages += max; |
| } |
| } |
| totalreserve_pages = reserve_pages; |
| } |
| |
| /* |
| * setup_per_zone_lowmem_reserve - called whenever |
| * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
| * has a correct pages reserved value, so an adequate number of |
| * pages are left in the zone after a successful __alloc_pages(). |
| */ |
| static void setup_per_zone_lowmem_reserve(void) |
| { |
| struct pglist_data *pgdat; |
| enum zone_type i, j; |
| |
| for_each_online_pgdat(pgdat) { |
| for (i = 0; i < MAX_NR_ZONES - 1; i++) { |
| struct zone *zone = &pgdat->node_zones[i]; |
| int ratio = sysctl_lowmem_reserve_ratio[i]; |
| bool clear = !ratio || !zone_managed_pages(zone); |
| unsigned long managed_pages = 0; |
| |
| for (j = i + 1; j < MAX_NR_ZONES; j++) { |
| struct zone *upper_zone = &pgdat->node_zones[j]; |
| |
| managed_pages += zone_managed_pages(upper_zone); |
| |
| if (clear) |
| zone->lowmem_reserve[j] = 0; |
| else |
| zone->lowmem_reserve[j] = managed_pages / ratio; |
| } |
| } |
| } |
| |
| /* update totalreserve_pages */ |
| calculate_totalreserve_pages(); |
| } |
| |
| static void __setup_per_zone_wmarks(void) |
| { |
| unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); |
| unsigned long lowmem_pages = 0; |
| struct zone *zone; |
| unsigned long flags; |
| |
| /* Calculate total number of !ZONE_HIGHMEM pages */ |
| for_each_zone(zone) { |
| if (!is_highmem(zone)) |
| lowmem_pages += zone_managed_pages(zone); |
| } |
| |
| for_each_zone(zone) { |
| u64 tmp; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| tmp = (u64)pages_min * zone_managed_pages(zone); |
| do_div(tmp, lowmem_pages); |
| if (is_highmem(zone)) { |
| /* |
| * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
| * need highmem pages, so cap pages_min to a small |
| * value here. |
| * |
| * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
| * deltas control async page reclaim, and so should |
| * not be capped for highmem. |
| */ |
| unsigned long min_pages; |
| |
| min_pages = zone_managed_pages(zone) / 1024; |
| min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
| zone->_watermark[WMARK_MIN] = min_pages; |
| } else { |
| /* |
| * If it's a lowmem zone, reserve a number of pages |
| * proportionate to the zone's size. |
| */ |
| zone->_watermark[WMARK_MIN] = tmp; |
| } |
| |
| /* |
| * Set the kswapd watermarks distance according to the |
| * scale factor in proportion to available memory, but |
| * ensure a minimum size on small systems. |
| */ |
| tmp = max_t(u64, tmp >> 2, |
| mult_frac(zone_managed_pages(zone), |
| watermark_scale_factor, 10000)); |
| |
| zone->watermark_boost = 0; |
| zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; |
| zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; |
| zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; |
| |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| /* update totalreserve_pages */ |
| calculate_totalreserve_pages(); |
| } |
| |
| /** |
| * setup_per_zone_wmarks - called when min_free_kbytes changes |
| * or when memory is hot-{added|removed} |
| * |
| * Ensures that the watermark[min,low,high] values for each zone are set |
| * correctly with respect to min_free_kbytes. |
| */ |
| void setup_per_zone_wmarks(void) |
| { |
| struct zone *zone; |
| static DEFINE_SPINLOCK(lock); |
| |
| spin_lock(&lock); |
| __setup_per_zone_wmarks(); |
| spin_unlock(&lock); |
| |
| /* |
| * The watermark size have changed so update the pcpu batch |
| * and high limits or the limits may be inappropriate. |
| */ |
| for_each_zone(zone) |
| zone_pcp_update(zone, 0); |
| } |
| |
| /* |
| * Initialise min_free_kbytes. |
| * |
| * For small machines we want it small (128k min). For large machines |
| * we want it large (256MB max). But it is not linear, because network |
| * bandwidth does not increase linearly with machine size. We use |
| * |
| * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
| * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
| * |
| * which yields |
| * |
| * 16MB: 512k |
| * 32MB: 724k |
| * 64MB: 1024k |
| * 128MB: 1448k |
| * 256MB: 2048k |
| * 512MB: 2896k |
| * 1024MB: 4096k |
| * 2048MB: 5792k |
| * 4096MB: 8192k |
| * 8192MB: 11584k |
| * 16384MB: 16384k |
| */ |
| void calculate_min_free_kbytes(void) |
| { |
| unsigned long lowmem_kbytes; |
| int new_min_free_kbytes; |
| |
| lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); |
| new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
| |
| if (new_min_free_kbytes > user_min_free_kbytes) |
| min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); |
| else |
| pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", |
| new_min_free_kbytes, user_min_free_kbytes); |
| |
| } |
| |
| int __meminit init_per_zone_wmark_min(void) |
| { |
| calculate_min_free_kbytes(); |
| setup_per_zone_wmarks(); |
| refresh_zone_stat_thresholds(); |
| setup_per_zone_lowmem_reserve(); |
| |
| #ifdef CONFIG_NUMA |
| setup_min_unmapped_ratio(); |
| setup_min_slab_ratio(); |
| #endif |
| |
| khugepaged_min_free_kbytes_update(); |
| |
| return 0; |
| } |
| postcore_initcall(init_per_zone_wmark_min) |
| |
| /* |
| * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
| * that we can call two helper functions whenever min_free_kbytes |
| * changes. |
| */ |
| int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int rc; |
| |
| rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (rc) |
| return rc; |
| |
| if (write) { |
| user_min_free_kbytes = min_free_kbytes; |
| setup_per_zone_wmarks(); |
| } |
| return 0; |
| } |
| |
| int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int rc; |
| |
| rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (rc) |
| return rc; |
| |
| if (write) |
| setup_per_zone_wmarks(); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_NUMA |
| static void setup_min_unmapped_ratio(void) |
| { |
| pg_data_t *pgdat; |
| struct zone *zone; |
| |
| for_each_online_pgdat(pgdat) |
| pgdat->min_unmapped_pages = 0; |
| |
| for_each_zone(zone) |
| zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * |
| sysctl_min_unmapped_ratio) / 100; |
| } |
| |
| |
| int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int rc; |
| |
| rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (rc) |
| return rc; |
| |
| setup_min_unmapped_ratio(); |
| |
| return 0; |
| } |
| |
| static void setup_min_slab_ratio(void) |
| { |
| pg_data_t *pgdat; |
| struct zone *zone; |
| |
| for_each_online_pgdat(pgdat) |
| pgdat->min_slab_pages = 0; |
| |
| for_each_zone(zone) |
| zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * |
| sysctl_min_slab_ratio) / 100; |
| } |
| |
| int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int rc; |
| |
| rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (rc) |
| return rc; |
| |
| setup_min_slab_ratio(); |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * lowmem_reserve_ratio_sysctl_handler - just a wrapper around |
| * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() |
| * whenever sysctl_lowmem_reserve_ratio changes. |
| * |
| * The reserve ratio obviously has absolutely no relation with the |
| * minimum watermarks. The lowmem reserve ratio can only make sense |
| * if in function of the boot time zone sizes. |
| */ |
| int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int i; |
| |
| proc_dointvec_minmax(table, write, buffer, length, ppos); |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| if (sysctl_lowmem_reserve_ratio[i] < 1) |
| sysctl_lowmem_reserve_ratio[i] = 0; |
| } |
| |
| setup_per_zone_lowmem_reserve(); |
| return 0; |
| } |
| |
| /* |
| * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each |
| * cpu. It is the fraction of total pages in each zone that a hot per cpu |
| * pagelist can have before it gets flushed back to buddy allocator. |
| */ |
| int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, |
| int write, void *buffer, size_t *length, loff_t *ppos) |
| { |
| struct zone *zone; |
| int old_percpu_pagelist_high_fraction; |
| int ret; |
| |
| mutex_lock(&pcp_batch_high_lock); |
| old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; |
| |
| ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (!write || ret < 0) |
| goto out; |
| |
| /* Sanity checking to avoid pcp imbalance */ |
| if (percpu_pagelist_high_fraction && |
| percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { |
| percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* No change? */ |
| if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) |
| goto out; |
| |
| for_each_populated_zone(zone) |
| zone_set_pageset_high_and_batch(zone, 0); |
| out: |
| mutex_unlock(&pcp_batch_high_lock); |
| return ret; |
| } |
| |
| #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES |
| /* |
| * Returns the number of pages that arch has reserved but |
| * is not known to alloc_large_system_hash(). |
| */ |
| static unsigned long __init arch_reserved_kernel_pages(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Adaptive scale is meant to reduce sizes of hash tables on large memory |
| * machines. As memory size is increased the scale is also increased but at |
| * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory |
| * quadruples the scale is increased by one, which means the size of hash table |
| * only doubles, instead of quadrupling as well. |
| * Because 32-bit systems cannot have large physical memory, where this scaling |
| * makes sense, it is disabled on such platforms. |
| */ |
| #if __BITS_PER_LONG > 32 |
| #define ADAPT_SCALE_BASE (64ul << 30) |
| #define ADAPT_SCALE_SHIFT 2 |
| #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) |
| #endif |
| |
| /* |
| * allocate a large system hash table from bootmem |
| * - it is assumed that the hash table must contain an exact power-of-2 |
| * quantity of entries |
| * - limit is the number of hash buckets, not the total allocation size |
| */ |
| void *__init alloc_large_system_hash(const char *tablename, |
| unsigned long bucketsize, |
| unsigned long numentries, |
| int scale, |
| int flags, |
| unsigned int *_hash_shift, |
| unsigned int *_hash_mask, |
| unsigned long low_limit, |
| unsigned long high_limit) |
| { |
| unsigned long long max = high_limit; |
| unsigned long log2qty, size; |
| void *table; |
| gfp_t gfp_flags; |
| bool virt; |
| bool huge; |
| |
| /* allow the kernel cmdline to have a say */ |
| if (!numentries) { |
| /* round applicable memory size up to nearest megabyte */ |
| numentries = nr_kernel_pages; |
| numentries -= arch_reserved_kernel_pages(); |
| |
| /* It isn't necessary when PAGE_SIZE >= 1MB */ |
| if (PAGE_SHIFT < 20) |
| numentries = round_up(numentries, (1<<20)/PAGE_SIZE); |
| |
| #if __BITS_PER_LONG > 32 |
| if (!high_limit) { |
| unsigned long adapt; |
| |
| for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; |
| adapt <<= ADAPT_SCALE_SHIFT) |
| scale++; |
| } |
| #endif |
| |
| /* limit to 1 bucket per 2^scale bytes of low memory */ |
| if (scale > PAGE_SHIFT) |
| numentries >>= (scale - PAGE_SHIFT); |
| else |
| numentries <<= (PAGE_SHIFT - scale); |
| |
| /* Make sure we've got at least a 0-order allocation.. */ |
| if (unlikely(flags & HASH_SMALL)) { |
| /* Makes no sense without HASH_EARLY */ |
| WARN_ON(!(flags & HASH_EARLY)); |
| if (!(numentries >> *_hash_shift)) { |
| numentries = 1UL << *_hash_shift; |
| BUG_ON(!numentries); |
| } |
| } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) |
| numentries = PAGE_SIZE / bucketsize; |
| } |
| numentries = roundup_pow_of_two(numentries); |
| |
| /* limit allocation size to 1/16 total memory by default */ |
| if (max == 0) { |
| max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; |
| do_div(max, bucketsize); |
| } |
| max = min(max, 0x80000000ULL); |
| |
| if (numentries < low_limit) |
| numentries = low_limit; |
| if (numentries > max) |
| numentries = max; |
| |
| log2qty = ilog2(numentries); |
| |
| gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; |
| do { |
| virt = false; |
| size = bucketsize << log2qty; |
| if (flags & HASH_EARLY) { |
| if (flags & HASH_ZERO) |
| table = memblock_alloc(size, SMP_CACHE_BYTES); |
| else |
| table = memblock_alloc_raw(size, |
| SMP_CACHE_BYTES); |
| } else if (get_order(size) >= MAX_ORDER || hashdist) { |
| table = vmalloc_huge(size, gfp_flags); |
| virt = true; |
| if (table) |
| huge = is_vm_area_hugepages(table); |
| } else { |
| /* |
| * If bucketsize is not a power-of-two, we may free |
| * some pages at the end of hash table which |
| * alloc_pages_exact() automatically does |
| */ |
| table = alloc_pages_exact(size, gfp_flags); |
| kmemleak_alloc(table, size, 1, gfp_flags); |
| } |
| } while (!table && size > PAGE_SIZE && --log2qty); |
| |
| if (!table) |
| panic("Failed to allocate %s hash table\n", tablename); |
| |
| pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", |
| tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, |
| virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); |
| |
| if (_hash_shift) |
| *_hash_shift = log2qty; |
| if (_hash_mask) |
| *_hash_mask = (1 << log2qty) - 1; |
| |
| return table; |
| } |
| |
| #ifdef CONFIG_CONTIG_ALLOC |
| #if defined(CONFIG_DYNAMIC_DEBUG) || \ |
| (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) |
| /* Usage: See admin-guide/dynamic-debug-howto.rst */ |
| static void alloc_contig_dump_pages(struct list_head *page_list) |
| { |
| DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); |
| |
| if (DYNAMIC_DEBUG_BRANCH(descriptor)) { |
| struct page *page; |
| |
| dump_stack(); |
| list_for_each_entry(page, page_list, lru) |
| dump_page(page, "migration failure"); |
| } |
| } |
| #else |
| static inline void alloc_contig_dump_pages(struct list_head *page_list) |
| { |
| } |
| #endif |
| |
| /* [start, end) must belong to a single zone. */ |
| int __alloc_contig_migrate_range(struct compact_control *cc, |
| unsigned long start, unsigned long end) |
| { |
| /* This function is based on compact_zone() from compaction.c. */ |
| unsigned int nr_reclaimed; |
| unsigned long pfn = start; |
| unsigned int tries = 0; |
| int ret = 0; |
| struct migration_target_control mtc = { |
| .nid = zone_to_nid(cc->zone), |
| .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, |
| }; |
| |
| lru_cache_disable(); |
| |
| while (pfn < end || !list_empty(&cc->migratepages)) { |
| if (fatal_signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| |
| if (list_empty(&cc->migratepages)) { |
| cc->nr_migratepages = 0; |
| ret = isolate_migratepages_range(cc, pfn, end); |
| if (ret && ret != -EAGAIN) |
| break; |
| pfn = cc->migrate_pfn; |
| tries = 0; |
| } else if (++tries == 5) { |
| ret = -EBUSY; |
| break; |
| } |
| |
| nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
| &cc->migratepages); |
| cc->nr_migratepages -= nr_reclaimed; |
| |
| ret = migrate_pages(&cc->migratepages, alloc_migration_target, |
| NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); |
| |
| /* |
| * On -ENOMEM, migrate_pages() bails out right away. It is pointless |
| * to retry again over this error, so do the same here. |
| */ |
| if (ret == -ENOMEM) |
| break; |
| } |
| |
| lru_cache_enable(); |
| if (ret < 0) { |
| if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) |
| alloc_contig_dump_pages(&cc->migratepages); |
| putback_movable_pages(&cc->migratepages); |
| return ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * alloc_contig_range() -- tries to allocate given range of pages |
| * @start: start PFN to allocate |
| * @end: one-past-the-last PFN to allocate |
| * @migratetype: migratetype of the underlying pageblocks (either |
| * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks |
| * in range must have the same migratetype and it must |
| * be either of the two. |
| * @gfp_mask: GFP mask to use during compaction |
| * |
| * The PFN range does not have to be pageblock aligned. The PFN range must |
| * belong to a single zone. |
| * |
| * The first thing this routine does is attempt to MIGRATE_ISOLATE all |
| * pageblocks in the range. Once isolated, the pageblocks should not |
| * be modified by others. |
| * |
| * Return: zero on success or negative error code. On success all |
| * pages which PFN is in [start, end) are allocated for the caller and |
| * need to be freed with free_contig_range(). |
| */ |
| int alloc_contig_range(unsigned long start, unsigned long end, |
| unsigned migratetype, gfp_t gfp_mask) |
| { |
| unsigned long outer_start, outer_end; |
| int order; |
| int ret = 0; |
| |
| struct compact_control cc = { |
| .nr_migratepages = 0, |
| .order = -1, |
| .zone = page_zone(pfn_to_page(start)), |
| .mode = MIGRATE_SYNC, |
| .ignore_skip_hint = true, |
| .no_set_skip_hint = true, |
| .gfp_mask = current_gfp_context(gfp_mask), |
| .alloc_contig = true, |
| }; |
| INIT_LIST_HEAD(&cc.migratepages); |
| |
| /* |
| * What we do here is we mark all pageblocks in range as |
| * MIGRATE_ISOLATE. Because pageblock and max order pages may |
| * have different sizes, and due to the way page allocator |
| * work, start_isolate_page_range() has special handlings for this. |
| * |
| * Once the pageblocks are marked as MIGRATE_ISOLATE, we |
| * migrate the pages from an unaligned range (ie. pages that |
| * we are interested in). This will put all the pages in |
| * range back to page allocator as MIGRATE_ISOLATE. |
| * |
| * When this is done, we take the pages in range from page |
| * allocator removing them from the buddy system. This way |
| * page allocator will never consider using them. |
| * |
| * This lets us mark the pageblocks back as |
| * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the |
| * aligned range but not in the unaligned, original range are |
| * put back to page allocator so that buddy can use them. |
| */ |
| |
| ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); |
| if (ret) |
| goto done; |
| |
| drain_all_pages(cc.zone); |
| |
| /* |
| * In case of -EBUSY, we'd like to know which page causes problem. |
| * So, just fall through. test_pages_isolated() has a tracepoint |
| * which will report the busy page. |
| * |
| * It is possible that busy pages could become available before |
| * the call to test_pages_isolated, and the range will actually be |
| * allocated. So, if we fall through be sure to clear ret so that |
| * -EBUSY is not accidentally used or returned to caller. |
| */ |
| ret = __alloc_contig_migrate_range(&cc, start, end); |
| if (ret && ret != -EBUSY) |
| goto done; |
| ret = 0; |
| |
| /* |
| * Pages from [start, end) are within a pageblock_nr_pages |
| * aligned blocks that are marked as MIGRATE_ISOLATE. What's |
| * more, all pages in [start, end) are free in page allocator. |
| * What we are going to do is to allocate all pages from |
| * [start, end) (that is remove them from page allocator). |
| * |
| * The only problem is that pages at the beginning and at the |
| * end of interesting range may be not aligned with pages that |
| * page allocator holds, ie. they can be part of higher order |
| * pages. Because of this, we reserve the bigger range and |
| * once this is done free the pages we are not interested in. |
| * |
| * We don't have to hold zone->lock here because the pages are |
| * isolated thus they won't get removed from buddy. |
| */ |
| |
| order = 0; |
| outer_start = start; |
| while (!PageBuddy(pfn_to_page(outer_start))) { |
| if (++order >= MAX_ORDER) { |
| outer_start = start; |
| break; |
| } |
| outer_start &= ~0UL << order; |
| } |
| |
| if (outer_start != start) { |
| order = buddy_order(pfn_to_page(outer_start)); |
| |
| /* |
| * outer_start page could be small order buddy page and |
| * it doesn't include start page. Adjust outer_start |
| * in this case to report failed page properly |
| * on tracepoint in test_pages_isolated() |
| */ |
| if (outer_start + (1UL << order) <= start) |
| outer_start = start; |
| } |
| |
| /* Make sure the range is really isolated. */ |
| if (test_pages_isolated(outer_start, end, 0)) { |
| ret = -EBUSY; |
| goto done; |
| } |
| |
| /* Grab isolated pages from freelists. */ |
| outer_end = isolate_freepages_range(&cc, outer_start, end); |
| if (!outer_end) { |
| ret = -EBUSY; |
| goto done; |
| } |
| |
| /* Free head and tail (if any) */ |
| if (start != outer_start) |
| free_contig_range(outer_start, start - outer_start); |
| if (end != outer_end) |
| free_contig_range(end, outer_end - end); |
| |
| done: |
| undo_isolate_page_range(start, end, migratetype); |
| return ret; |
| } |
| EXPORT_SYMBOL(alloc_contig_range); |
| |
| static int __alloc_contig_pages(unsigned long start_pfn, |
| unsigned long nr_pages, gfp_t gfp_mask) |
| { |
| unsigned long end_pfn = start_pfn + nr_pages; |
| |
| return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, |
| gfp_mask); |
| } |
| |
| static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| unsigned long i, end_pfn = start_pfn + nr_pages; |
| struct page *page; |
| |
| for (i = start_pfn; i < end_pfn; i++) { |
| page = pfn_to_online_page(i); |
| if (!page) |
| return false; |
| |
| if (page_zone(page) != z) |
| return false; |
| |
| if (PageReserved(page)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool zone_spans_last_pfn(const struct zone *zone, |
| unsigned long start_pfn, unsigned long nr_pages) |
| { |
| unsigned long last_pfn = start_pfn + nr_pages - 1; |
| |
| return zone_spans_pfn(zone, last_pfn); |
| } |
| |
| /** |
| * alloc_contig_pages() -- tries to find and allocate contiguous range of pages |
| * @nr_pages: Number of contiguous pages to allocate |
| * @gfp_mask: GFP mask to limit search and used during compaction |
| * @nid: Target node |
| * @nodemask: Mask for other possible nodes |
| * |
| * This routine is a wrapper around alloc_contig_range(). It scans over zones |
| * on an applicable zonelist to find a contiguous pfn range which can then be |
| * tried for allocation with alloc_contig_range(). This routine is intended |
| * for allocation requests which can not be fulfilled with the buddy allocator. |
| * |
| * The allocated memory is always aligned to a page boundary. If nr_pages is a |
| * power of two, then allocated range is also guaranteed to be aligned to same |
| * nr_pages (e.g. 1GB request would be aligned to 1GB). |
| * |
| * Allocated pages can be freed with free_contig_range() or by manually calling |
| * __free_page() on each allocated page. |
| * |
| * Return: pointer to contiguous pages on success, or NULL if not successful. |
| */ |
| struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, |
| int nid, nodemask_t *nodemask) |
| { |
| unsigned long ret, pfn, flags; |
| struct zonelist *zonelist; |
| struct zone *zone; |
| struct zoneref *z; |
| |
| zonelist = node_zonelist(nid, gfp_mask); |
| for_each_zone_zonelist_nodemask(zone, z, zonelist, |
| gfp_zone(gfp_mask), nodemask) { |
| spin_lock_irqsave(&zone->lock, flags); |
| |
| pfn = ALIGN(zone->zone_start_pfn, nr_pages); |
| while (zone_spans_last_pfn(zone, pfn, nr_pages)) { |
| if (pfn_range_valid_contig(zone, pfn, nr_pages)) { |
| /* |
| * We release the zone lock here because |
| * alloc_contig_range() will also lock the zone |
| * at some point. If there's an allocation |
| * spinning on this lock, it may win the race |
| * and cause alloc_contig_range() to fail... |
| */ |
| spin_unlock_irqrestore(&zone->lock, flags); |
| ret = __alloc_contig_pages(pfn, nr_pages, |
| gfp_mask); |
| if (!ret) |
| return pfn_to_page(pfn); |
| spin_lock_irqsave(&zone->lock, flags); |
| } |
| pfn += nr_pages; |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| return NULL; |
| } |
| #endif /* CONFIG_CONTIG_ALLOC */ |
| |
| void free_contig_range(unsigned long pfn, unsigned long nr_pages) |
| { |
| unsigned long count = 0; |
| |
| for (; nr_pages--; pfn++) { |
| struct page *page = pfn_to_page(pfn); |
| |
| count += page_count(page) != 1; |
| __free_page(page); |
| } |
| WARN(count != 0, "%lu pages are still in use!\n", count); |
| } |
| EXPORT_SYMBOL(free_contig_range); |
| |
| /* |
| * The zone indicated has a new number of managed_pages; batch sizes and percpu |
| * page high values need to be recalculated. |
| */ |
| void zone_pcp_update(struct zone *zone, int cpu_online) |
| { |
| mutex_lock(&pcp_batch_high_lock); |
| zone_set_pageset_high_and_batch(zone, cpu_online); |
| mutex_unlock(&pcp_batch_high_lock); |
| } |
| |
| /* |
| * Effectively disable pcplists for the zone by setting the high limit to 0 |
| * and draining all cpus. A concurrent page freeing on another CPU that's about |
| * to put the page on pcplist will either finish before the drain and the page |
| * will be drained, or observe the new high limit and skip the pcplist. |
| * |
| * Must be paired with a call to zone_pcp_enable(). |
| */ |
| void zone_pcp_disable(struct zone *zone) |
| { |
| mutex_lock(&pcp_batch_high_lock); |
| __zone_set_pageset_high_and_batch(zone, 0, 1); |
| __drain_all_pages(zone, true); |
| } |
| |
| void zone_pcp_enable(struct zone *zone) |
| { |
| __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); |
| mutex_unlock(&pcp_batch_high_lock); |
| } |
| |
| void zone_pcp_reset(struct zone *zone) |
| { |
| int cpu; |
| struct per_cpu_zonestat *pzstats; |
| |
| if (zone->per_cpu_pageset != &boot_pageset) { |
| for_each_online_cpu(cpu) { |
| pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| drain_zonestat(zone, pzstats); |
| } |
| free_percpu(zone->per_cpu_pageset); |
| free_percpu(zone->per_cpu_zonestats); |
| zone->per_cpu_pageset = &boot_pageset; |
| zone->per_cpu_zonestats = &boot_zonestats; |
| } |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTREMOVE |
| /* |
| * All pages in the range must be in a single zone, must not contain holes, |
| * must span full sections, and must be isolated before calling this function. |
| */ |
| void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| unsigned long pfn = start_pfn; |
| struct page *page; |
| struct zone *zone; |
| unsigned int order; |
| unsigned long flags; |
| |
| offline_mem_sections(pfn, end_pfn); |
| zone = page_zone(pfn_to_page(pfn)); |
| spin_lock_irqsave(&zone->lock, flags); |
| while (pfn < end_pfn) { |
| page = pfn_to_page(pfn); |
| /* |
| * The HWPoisoned page may be not in buddy system, and |
| * page_count() is not 0. |
| */ |
| if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { |
| pfn++; |
| continue; |
| } |
| /* |
| * At this point all remaining PageOffline() pages have a |
| * reference count of 0 and can simply be skipped. |
| */ |
| if (PageOffline(page)) { |
| BUG_ON(page_count(page)); |
| BUG_ON(PageBuddy(page)); |
| pfn++; |
| continue; |
| } |
| |
| BUG_ON(page_count(page)); |
| BUG_ON(!PageBuddy(page)); |
| order = buddy_order(page); |
| del_page_from_free_list(page, zone, order); |
| pfn += (1 << order); |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| #endif |
| |
| /* |
| * This function returns a stable result only if called under zone lock. |
| */ |
| bool is_free_buddy_page(struct page *page) |
| { |
| unsigned long pfn = page_to_pfn(page); |
| unsigned int order; |
| |
| for (order = 0; order < MAX_ORDER; order++) { |
| struct page *page_head = page - (pfn & ((1 << order) - 1)); |
| |
| if (PageBuddy(page_head) && |
| buddy_order_unsafe(page_head) >= order) |
| break; |
| } |
| |
| return order < MAX_ORDER; |
| } |
| EXPORT_SYMBOL(is_free_buddy_page); |
| |
| #ifdef CONFIG_MEMORY_FAILURE |
| /* |
| * Break down a higher-order page in sub-pages, and keep our target out of |
| * buddy allocator. |
| */ |
| static void break_down_buddy_pages(struct zone *zone, struct page *page, |
| struct page *target, int low, int high, |
| int migratetype) |
| { |
| unsigned long size = 1 << high; |
| struct page *current_buddy, *next_page; |
| |
| while (high > low) { |
| high--; |
| size >>= 1; |
| |
| if (target >= &page[size]) { |
| next_page = page + size; |
| current_buddy = page; |
| } else { |
| next_page = page; |
| current_buddy = page + size; |
| } |
| |
| if (set_page_guard(zone, current_buddy, high, migratetype)) |
| continue; |
| |
| if (current_buddy != target) { |
| add_to_free_list(current_buddy, zone, high, migratetype); |
| set_buddy_order(current_buddy, high); |
| page = next_page; |
| } |
| } |
| } |
| |
| /* |
| * Take a page that will be marked as poisoned off the buddy allocator. |
| */ |
| bool take_page_off_buddy(struct page *page) |
| { |
| struct zone *zone = page_zone(page); |
| unsigned long pfn = page_to_pfn(page); |
| unsigned long flags; |
| unsigned int order; |
| bool ret = false; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| for (order = 0; order < MAX_ORDER; order++) { |
| struct page *page_head = page - (pfn & ((1 << order) - 1)); |
| int page_order = buddy_order(page_head); |
| |
| if (PageBuddy(page_head) && page_order >= order) { |
| unsigned long pfn_head = page_to_pfn(page_head); |
| int migratetype = get_pfnblock_migratetype(page_head, |
| pfn_head); |
| |
| del_page_from_free_list(page_head, zone, page_order); |
| break_down_buddy_pages(zone, page_head, page, 0, |
| page_order, migratetype); |
| SetPageHWPoisonTakenOff(page); |
| if (!is_migrate_isolate(migratetype)) |
| __mod_zone_freepage_state(zone, -1, migratetype); |
| ret = true; |
| break; |
| } |
| if (page_count(page_head) > 0) |
| break; |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| return ret; |
| } |
| |
| /* |
| * Cancel takeoff done by take_page_off_buddy(). |
| */ |
| bool put_page_back_buddy(struct page *page) |
| { |
| struct zone *zone = page_zone(page); |
| unsigned long pfn = page_to_pfn(page); |
| unsigned long flags; |
| int migratetype = get_pfnblock_migratetype(page, pfn); |
| bool ret = false; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| if (put_page_testzero(page)) { |
| ClearPageHWPoisonTakenOff(page); |
| __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); |
| if (TestClearPageHWPoison(page)) { |
| ret = true; |
| } |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| return ret; |
| } |
| #endif |
| |
| #ifdef CONFIG_ZONE_DMA |
| bool has_managed_dma(void) |
| { |
| struct pglist_data *pgdat; |
| |
| for_each_online_pgdat(pgdat) { |
| struct zone *zone = &pgdat->node_zones[ZONE_DMA]; |
| |
| if (managed_zone(zone)) |
| return true; |
| } |
| return false; |
| } |
| #endif /* CONFIG_ZONE_DMA */ |