| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * Copyright (c) 2016-2018 Christoph Hellwig. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_alloc.h" |
| #include "xfs_error.h" |
| #include "xfs_iomap.h" |
| #include "xfs_trace.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_reflink.h" |
| #include <linux/writeback.h> |
| |
| /* |
| * structure owned by writepages passed to individual writepage calls |
| */ |
| struct xfs_writepage_ctx { |
| struct xfs_bmbt_irec imap; |
| unsigned int io_type; |
| unsigned int data_seq; |
| unsigned int cow_seq; |
| struct xfs_ioend *ioend; |
| }; |
| |
| struct block_device * |
| xfs_find_bdev_for_inode( |
| struct inode *inode) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| |
| if (XFS_IS_REALTIME_INODE(ip)) |
| return mp->m_rtdev_targp->bt_bdev; |
| else |
| return mp->m_ddev_targp->bt_bdev; |
| } |
| |
| struct dax_device * |
| xfs_find_daxdev_for_inode( |
| struct inode *inode) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| |
| if (XFS_IS_REALTIME_INODE(ip)) |
| return mp->m_rtdev_targp->bt_daxdev; |
| else |
| return mp->m_ddev_targp->bt_daxdev; |
| } |
| |
| static void |
| xfs_finish_page_writeback( |
| struct inode *inode, |
| struct bio_vec *bvec, |
| int error) |
| { |
| struct iomap_page *iop = to_iomap_page(bvec->bv_page); |
| |
| if (error) { |
| SetPageError(bvec->bv_page); |
| mapping_set_error(inode->i_mapping, -EIO); |
| } |
| |
| ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); |
| ASSERT(!iop || atomic_read(&iop->write_count) > 0); |
| |
| if (!iop || atomic_dec_and_test(&iop->write_count)) |
| end_page_writeback(bvec->bv_page); |
| } |
| |
| /* |
| * We're now finished for good with this ioend structure. Update the page |
| * state, release holds on bios, and finally free up memory. Do not use the |
| * ioend after this. |
| */ |
| STATIC void |
| xfs_destroy_ioend( |
| struct xfs_ioend *ioend, |
| int error) |
| { |
| struct inode *inode = ioend->io_inode; |
| struct bio *bio = &ioend->io_inline_bio; |
| struct bio *last = ioend->io_bio, *next; |
| u64 start = bio->bi_iter.bi_sector; |
| bool quiet = bio_flagged(bio, BIO_QUIET); |
| |
| for (bio = &ioend->io_inline_bio; bio; bio = next) { |
| struct bio_vec *bvec; |
| int i; |
| |
| /* |
| * For the last bio, bi_private points to the ioend, so we |
| * need to explicitly end the iteration here. |
| */ |
| if (bio == last) |
| next = NULL; |
| else |
| next = bio->bi_private; |
| |
| /* walk each page on bio, ending page IO on them */ |
| bio_for_each_segment_all(bvec, bio, i) |
| xfs_finish_page_writeback(inode, bvec, error); |
| bio_put(bio); |
| } |
| |
| if (unlikely(error && !quiet)) { |
| xfs_err_ratelimited(XFS_I(inode)->i_mount, |
| "writeback error on sector %llu", start); |
| } |
| } |
| |
| /* |
| * Fast and loose check if this write could update the on-disk inode size. |
| */ |
| static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) |
| { |
| return ioend->io_offset + ioend->io_size > |
| XFS_I(ioend->io_inode)->i_d.di_size; |
| } |
| |
| STATIC int |
| xfs_setfilesize_trans_alloc( |
| struct xfs_ioend *ioend) |
| { |
| struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, |
| XFS_TRANS_NOFS, &tp); |
| if (error) |
| return error; |
| |
| ioend->io_append_trans = tp; |
| |
| /* |
| * We may pass freeze protection with a transaction. So tell lockdep |
| * we released it. |
| */ |
| __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); |
| /* |
| * We hand off the transaction to the completion thread now, so |
| * clear the flag here. |
| */ |
| current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); |
| return 0; |
| } |
| |
| /* |
| * Update on-disk file size now that data has been written to disk. |
| */ |
| STATIC int |
| __xfs_setfilesize( |
| struct xfs_inode *ip, |
| struct xfs_trans *tp, |
| xfs_off_t offset, |
| size_t size) |
| { |
| xfs_fsize_t isize; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| isize = xfs_new_eof(ip, offset + size); |
| if (!isize) { |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_cancel(tp); |
| return 0; |
| } |
| |
| trace_xfs_setfilesize(ip, offset, size); |
| |
| ip->i_d.di_size = isize; |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| return xfs_trans_commit(tp); |
| } |
| |
| int |
| xfs_setfilesize( |
| struct xfs_inode *ip, |
| xfs_off_t offset, |
| size_t size) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); |
| if (error) |
| return error; |
| |
| return __xfs_setfilesize(ip, tp, offset, size); |
| } |
| |
| STATIC int |
| xfs_setfilesize_ioend( |
| struct xfs_ioend *ioend, |
| int error) |
| { |
| struct xfs_inode *ip = XFS_I(ioend->io_inode); |
| struct xfs_trans *tp = ioend->io_append_trans; |
| |
| /* |
| * The transaction may have been allocated in the I/O submission thread, |
| * thus we need to mark ourselves as being in a transaction manually. |
| * Similarly for freeze protection. |
| */ |
| current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); |
| __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); |
| |
| /* we abort the update if there was an IO error */ |
| if (error) { |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); |
| } |
| |
| /* |
| * IO write completion. |
| */ |
| STATIC void |
| xfs_end_io( |
| struct work_struct *work) |
| { |
| struct xfs_ioend *ioend = |
| container_of(work, struct xfs_ioend, io_work); |
| struct xfs_inode *ip = XFS_I(ioend->io_inode); |
| xfs_off_t offset = ioend->io_offset; |
| size_t size = ioend->io_size; |
| int error; |
| |
| /* |
| * Just clean up the in-memory strutures if the fs has been shut down. |
| */ |
| if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
| error = -EIO; |
| goto done; |
| } |
| |
| /* |
| * Clean up any COW blocks on an I/O error. |
| */ |
| error = blk_status_to_errno(ioend->io_bio->bi_status); |
| if (unlikely(error)) { |
| switch (ioend->io_type) { |
| case XFS_IO_COW: |
| xfs_reflink_cancel_cow_range(ip, offset, size, true); |
| break; |
| } |
| |
| goto done; |
| } |
| |
| /* |
| * Success: commit the COW or unwritten blocks if needed. |
| */ |
| switch (ioend->io_type) { |
| case XFS_IO_COW: |
| error = xfs_reflink_end_cow(ip, offset, size); |
| break; |
| case XFS_IO_UNWRITTEN: |
| /* writeback should never update isize */ |
| error = xfs_iomap_write_unwritten(ip, offset, size, false); |
| break; |
| default: |
| ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); |
| break; |
| } |
| |
| done: |
| if (ioend->io_append_trans) |
| error = xfs_setfilesize_ioend(ioend, error); |
| xfs_destroy_ioend(ioend, error); |
| } |
| |
| STATIC void |
| xfs_end_bio( |
| struct bio *bio) |
| { |
| struct xfs_ioend *ioend = bio->bi_private; |
| struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; |
| |
| if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) |
| queue_work(mp->m_unwritten_workqueue, &ioend->io_work); |
| else if (ioend->io_append_trans) |
| queue_work(mp->m_data_workqueue, &ioend->io_work); |
| else |
| xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); |
| } |
| |
| /* |
| * Fast revalidation of the cached writeback mapping. Return true if the current |
| * mapping is valid, false otherwise. |
| */ |
| static bool |
| xfs_imap_valid( |
| struct xfs_writepage_ctx *wpc, |
| struct xfs_inode *ip, |
| xfs_fileoff_t offset_fsb) |
| { |
| if (offset_fsb < wpc->imap.br_startoff || |
| offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount) |
| return false; |
| /* |
| * If this is a COW mapping, it is sufficient to check that the mapping |
| * covers the offset. Be careful to check this first because the caller |
| * can revalidate a COW mapping without updating the data seqno. |
| */ |
| if (wpc->io_type == XFS_IO_COW) |
| return true; |
| |
| /* |
| * This is not a COW mapping. Check the sequence number of the data fork |
| * because concurrent changes could have invalidated the extent. Check |
| * the COW fork because concurrent changes since the last time we |
| * checked (and found nothing at this offset) could have added |
| * overlapping blocks. |
| */ |
| if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq)) |
| return false; |
| if (xfs_inode_has_cow_data(ip) && |
| wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) |
| return false; |
| return true; |
| } |
| |
| STATIC int |
| xfs_map_blocks( |
| struct xfs_writepage_ctx *wpc, |
| struct inode *inode, |
| loff_t offset) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| ssize_t count = i_blocksize(inode); |
| xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb; |
| xfs_fileoff_t cow_fsb = NULLFILEOFF; |
| struct xfs_bmbt_irec imap; |
| int whichfork = XFS_DATA_FORK; |
| struct xfs_iext_cursor icur; |
| int error = 0; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| /* |
| * COW fork blocks can overlap data fork blocks even if the blocks |
| * aren't shared. COW I/O always takes precedent, so we must always |
| * check for overlap on reflink inodes unless the mapping is already a |
| * COW one, or the COW fork hasn't changed from the last time we looked |
| * at it. |
| * |
| * It's safe to check the COW fork if_seq here without the ILOCK because |
| * we've indirectly protected against concurrent updates: writeback has |
| * the page locked, which prevents concurrent invalidations by reflink |
| * and directio and prevents concurrent buffered writes to the same |
| * page. Changes to if_seq always happen under i_lock, which protects |
| * against concurrent updates and provides a memory barrier on the way |
| * out that ensures that we always see the current value. |
| */ |
| if (xfs_imap_valid(wpc, ip, offset_fsb)) |
| return 0; |
| |
| /* |
| * If we don't have a valid map, now it's time to get a new one for this |
| * offset. This will convert delayed allocations (including COW ones) |
| * into real extents. If we return without a valid map, it means we |
| * landed in a hole and we skip the block. |
| */ |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| (ip->i_df.if_flags & XFS_IFEXTENTS)); |
| ASSERT(offset <= mp->m_super->s_maxbytes); |
| |
| if (offset > mp->m_super->s_maxbytes - count) |
| count = mp->m_super->s_maxbytes - offset; |
| end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); |
| |
| /* |
| * Check if this is offset is covered by a COW extents, and if yes use |
| * it directly instead of looking up anything in the data fork. |
| */ |
| if (xfs_inode_has_cow_data(ip) && |
| xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) |
| cow_fsb = imap.br_startoff; |
| if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { |
| wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| /* |
| * Truncate can race with writeback since writeback doesn't |
| * take the iolock and truncate decreases the file size before |
| * it starts truncating the pages between new_size and old_size. |
| * Therefore, we can end up in the situation where writeback |
| * gets a CoW fork mapping but the truncate makes the mapping |
| * invalid and we end up in here trying to get a new mapping. |
| * bail out here so that we simply never get a valid mapping |
| * and so we drop the write altogether. The page truncation |
| * will kill the contents anyway. |
| */ |
| if (offset > i_size_read(inode)) { |
| wpc->io_type = XFS_IO_HOLE; |
| return 0; |
| } |
| whichfork = XFS_COW_FORK; |
| wpc->io_type = XFS_IO_COW; |
| goto allocate_blocks; |
| } |
| |
| /* |
| * No COW extent overlap. Revalidate now that we may have updated |
| * ->cow_seq. If the data mapping is still valid, we're done. |
| */ |
| if (xfs_imap_valid(wpc, ip, offset_fsb)) { |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| return 0; |
| } |
| |
| /* |
| * If we don't have a valid map, now it's time to get a new one for this |
| * offset. This will convert delayed allocations (including COW ones) |
| * into real extents. |
| */ |
| if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) |
| imap.br_startoff = end_fsb; /* fake a hole past EOF */ |
| wpc->data_seq = READ_ONCE(ip->i_df.if_seq); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| |
| if (imap.br_startoff > offset_fsb) { |
| /* landed in a hole or beyond EOF */ |
| imap.br_blockcount = imap.br_startoff - offset_fsb; |
| imap.br_startoff = offset_fsb; |
| imap.br_startblock = HOLESTARTBLOCK; |
| wpc->io_type = XFS_IO_HOLE; |
| } else { |
| /* |
| * Truncate to the next COW extent if there is one. This is the |
| * only opportunity to do this because we can skip COW fork |
| * lookups for the subsequent blocks in the mapping; however, |
| * the requirement to treat the COW range separately remains. |
| */ |
| if (cow_fsb != NULLFILEOFF && |
| cow_fsb < imap.br_startoff + imap.br_blockcount) |
| imap.br_blockcount = cow_fsb - imap.br_startoff; |
| |
| if (isnullstartblock(imap.br_startblock)) { |
| /* got a delalloc extent */ |
| wpc->io_type = XFS_IO_DELALLOC; |
| goto allocate_blocks; |
| } |
| |
| if (imap.br_state == XFS_EXT_UNWRITTEN) |
| wpc->io_type = XFS_IO_UNWRITTEN; |
| else |
| wpc->io_type = XFS_IO_OVERWRITE; |
| } |
| |
| wpc->imap = imap; |
| trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap); |
| return 0; |
| allocate_blocks: |
| error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap, |
| whichfork == XFS_COW_FORK ? |
| &wpc->cow_seq : &wpc->data_seq); |
| if (error) |
| return error; |
| ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF || |
| imap.br_startoff + imap.br_blockcount <= cow_fsb); |
| wpc->imap = imap; |
| trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap); |
| return 0; |
| } |
| |
| /* |
| * Submit the bio for an ioend. We are passed an ioend with a bio attached to |
| * it, and we submit that bio. The ioend may be used for multiple bio |
| * submissions, so we only want to allocate an append transaction for the ioend |
| * once. In the case of multiple bio submission, each bio will take an IO |
| * reference to the ioend to ensure that the ioend completion is only done once |
| * all bios have been submitted and the ioend is really done. |
| * |
| * If @fail is non-zero, it means that we have a situation where some part of |
| * the submission process has failed after we have marked paged for writeback |
| * and unlocked them. In this situation, we need to fail the bio and ioend |
| * rather than submit it to IO. This typically only happens on a filesystem |
| * shutdown. |
| */ |
| STATIC int |
| xfs_submit_ioend( |
| struct writeback_control *wbc, |
| struct xfs_ioend *ioend, |
| int status) |
| { |
| /* Convert CoW extents to regular */ |
| if (!status && ioend->io_type == XFS_IO_COW) { |
| /* |
| * Yuk. This can do memory allocation, but is not a |
| * transactional operation so everything is done in GFP_KERNEL |
| * context. That can deadlock, because we hold pages in |
| * writeback state and GFP_KERNEL allocations can block on them. |
| * Hence we must operate in nofs conditions here. |
| */ |
| unsigned nofs_flag; |
| |
| nofs_flag = memalloc_nofs_save(); |
| status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), |
| ioend->io_offset, ioend->io_size); |
| memalloc_nofs_restore(nofs_flag); |
| } |
| |
| /* Reserve log space if we might write beyond the on-disk inode size. */ |
| if (!status && |
| ioend->io_type != XFS_IO_UNWRITTEN && |
| xfs_ioend_is_append(ioend) && |
| !ioend->io_append_trans) |
| status = xfs_setfilesize_trans_alloc(ioend); |
| |
| ioend->io_bio->bi_private = ioend; |
| ioend->io_bio->bi_end_io = xfs_end_bio; |
| ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); |
| |
| /* |
| * If we are failing the IO now, just mark the ioend with an |
| * error and finish it. This will run IO completion immediately |
| * as there is only one reference to the ioend at this point in |
| * time. |
| */ |
| if (status) { |
| ioend->io_bio->bi_status = errno_to_blk_status(status); |
| bio_endio(ioend->io_bio); |
| return status; |
| } |
| |
| ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; |
| submit_bio(ioend->io_bio); |
| return 0; |
| } |
| |
| static struct xfs_ioend * |
| xfs_alloc_ioend( |
| struct inode *inode, |
| unsigned int type, |
| xfs_off_t offset, |
| struct block_device *bdev, |
| sector_t sector) |
| { |
| struct xfs_ioend *ioend; |
| struct bio *bio; |
| |
| bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset); |
| bio_set_dev(bio, bdev); |
| bio->bi_iter.bi_sector = sector; |
| |
| ioend = container_of(bio, struct xfs_ioend, io_inline_bio); |
| INIT_LIST_HEAD(&ioend->io_list); |
| ioend->io_type = type; |
| ioend->io_inode = inode; |
| ioend->io_size = 0; |
| ioend->io_offset = offset; |
| INIT_WORK(&ioend->io_work, xfs_end_io); |
| ioend->io_append_trans = NULL; |
| ioend->io_bio = bio; |
| return ioend; |
| } |
| |
| /* |
| * Allocate a new bio, and chain the old bio to the new one. |
| * |
| * Note that we have to do perform the chaining in this unintuitive order |
| * so that the bi_private linkage is set up in the right direction for the |
| * traversal in xfs_destroy_ioend(). |
| */ |
| static void |
| xfs_chain_bio( |
| struct xfs_ioend *ioend, |
| struct writeback_control *wbc, |
| struct block_device *bdev, |
| sector_t sector) |
| { |
| struct bio *new; |
| |
| new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); |
| bio_set_dev(new, bdev); |
| new->bi_iter.bi_sector = sector; |
| bio_chain(ioend->io_bio, new); |
| bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ |
| ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); |
| ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; |
| submit_bio(ioend->io_bio); |
| ioend->io_bio = new; |
| } |
| |
| /* |
| * Test to see if we have an existing ioend structure that we could append to |
| * first, otherwise finish off the current ioend and start another. |
| */ |
| STATIC void |
| xfs_add_to_ioend( |
| struct inode *inode, |
| xfs_off_t offset, |
| struct page *page, |
| struct iomap_page *iop, |
| struct xfs_writepage_ctx *wpc, |
| struct writeback_control *wbc, |
| struct list_head *iolist) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| struct block_device *bdev = xfs_find_bdev_for_inode(inode); |
| unsigned len = i_blocksize(inode); |
| unsigned poff = offset & (PAGE_SIZE - 1); |
| sector_t sector; |
| |
| sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) + |
| ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9); |
| |
| if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || |
| sector != bio_end_sector(wpc->ioend->io_bio) || |
| offset != wpc->ioend->io_offset + wpc->ioend->io_size) { |
| if (wpc->ioend) |
| list_add(&wpc->ioend->io_list, iolist); |
| wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, |
| bdev, sector); |
| } |
| |
| if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) { |
| if (iop) |
| atomic_inc(&iop->write_count); |
| if (bio_full(wpc->ioend->io_bio)) |
| xfs_chain_bio(wpc->ioend, wbc, bdev, sector); |
| __bio_add_page(wpc->ioend->io_bio, page, len, poff); |
| } |
| |
| wpc->ioend->io_size += len; |
| } |
| |
| STATIC void |
| xfs_vm_invalidatepage( |
| struct page *page, |
| unsigned int offset, |
| unsigned int length) |
| { |
| trace_xfs_invalidatepage(page->mapping->host, page, offset, length); |
| iomap_invalidatepage(page, offset, length); |
| } |
| |
| /* |
| * If the page has delalloc blocks on it, we need to punch them out before we |
| * invalidate the page. If we don't, we leave a stale delalloc mapping on the |
| * inode that can trip up a later direct I/O read operation on the same region. |
| * |
| * We prevent this by truncating away the delalloc regions on the page. Because |
| * they are delalloc, we can do this without needing a transaction. Indeed - if |
| * we get ENOSPC errors, we have to be able to do this truncation without a |
| * transaction as there is no space left for block reservation (typically why we |
| * see a ENOSPC in writeback). |
| */ |
| STATIC void |
| xfs_aops_discard_page( |
| struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| loff_t offset = page_offset(page); |
| xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); |
| int error; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| goto out_invalidate; |
| |
| xfs_alert(mp, |
| "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", |
| page, ip->i_ino, offset); |
| |
| error = xfs_bmap_punch_delalloc_range(ip, start_fsb, |
| PAGE_SIZE / i_blocksize(inode)); |
| if (error && !XFS_FORCED_SHUTDOWN(mp)) |
| xfs_alert(mp, "page discard unable to remove delalloc mapping."); |
| out_invalidate: |
| xfs_vm_invalidatepage(page, 0, PAGE_SIZE); |
| } |
| |
| /* |
| * We implement an immediate ioend submission policy here to avoid needing to |
| * chain multiple ioends and hence nest mempool allocations which can violate |
| * forward progress guarantees we need to provide. The current ioend we are |
| * adding blocks to is cached on the writepage context, and if the new block |
| * does not append to the cached ioend it will create a new ioend and cache that |
| * instead. |
| * |
| * If a new ioend is created and cached, the old ioend is returned and queued |
| * locally for submission once the entire page is processed or an error has been |
| * detected. While ioends are submitted immediately after they are completed, |
| * batching optimisations are provided by higher level block plugging. |
| * |
| * At the end of a writeback pass, there will be a cached ioend remaining on the |
| * writepage context that the caller will need to submit. |
| */ |
| static int |
| xfs_writepage_map( |
| struct xfs_writepage_ctx *wpc, |
| struct writeback_control *wbc, |
| struct inode *inode, |
| struct page *page, |
| uint64_t end_offset) |
| { |
| LIST_HEAD(submit_list); |
| struct iomap_page *iop = to_iomap_page(page); |
| unsigned len = i_blocksize(inode); |
| struct xfs_ioend *ioend, *next; |
| uint64_t file_offset; /* file offset of page */ |
| int error = 0, count = 0, i; |
| |
| ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); |
| ASSERT(!iop || atomic_read(&iop->write_count) == 0); |
| |
| /* |
| * Walk through the page to find areas to write back. If we run off the |
| * end of the current map or find the current map invalid, grab a new |
| * one. |
| */ |
| for (i = 0, file_offset = page_offset(page); |
| i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; |
| i++, file_offset += len) { |
| if (iop && !test_bit(i, iop->uptodate)) |
| continue; |
| |
| error = xfs_map_blocks(wpc, inode, file_offset); |
| if (error) |
| break; |
| if (wpc->io_type == XFS_IO_HOLE) |
| continue; |
| xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, |
| &submit_list); |
| count++; |
| } |
| |
| ASSERT(wpc->ioend || list_empty(&submit_list)); |
| ASSERT(PageLocked(page)); |
| ASSERT(!PageWriteback(page)); |
| |
| /* |
| * On error, we have to fail the ioend here because we may have set |
| * pages under writeback, we have to make sure we run IO completion to |
| * mark the error state of the IO appropriately, so we can't cancel the |
| * ioend directly here. That means we have to mark this page as under |
| * writeback if we included any blocks from it in the ioend chain so |
| * that completion treats it correctly. |
| * |
| * If we didn't include the page in the ioend, the on error we can |
| * simply discard and unlock it as there are no other users of the page |
| * now. The caller will still need to trigger submission of outstanding |
| * ioends on the writepage context so they are treated correctly on |
| * error. |
| */ |
| if (unlikely(error)) { |
| if (!count) { |
| xfs_aops_discard_page(page); |
| ClearPageUptodate(page); |
| unlock_page(page); |
| goto done; |
| } |
| |
| /* |
| * If the page was not fully cleaned, we need to ensure that the |
| * higher layers come back to it correctly. That means we need |
| * to keep the page dirty, and for WB_SYNC_ALL writeback we need |
| * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed |
| * so another attempt to write this page in this writeback sweep |
| * will be made. |
| */ |
| set_page_writeback_keepwrite(page); |
| } else { |
| clear_page_dirty_for_io(page); |
| set_page_writeback(page); |
| } |
| |
| unlock_page(page); |
| |
| /* |
| * Preserve the original error if there was one, otherwise catch |
| * submission errors here and propagate into subsequent ioend |
| * submissions. |
| */ |
| list_for_each_entry_safe(ioend, next, &submit_list, io_list) { |
| int error2; |
| |
| list_del_init(&ioend->io_list); |
| error2 = xfs_submit_ioend(wbc, ioend, error); |
| if (error2 && !error) |
| error = error2; |
| } |
| |
| /* |
| * We can end up here with no error and nothing to write only if we race |
| * with a partial page truncate on a sub-page block sized filesystem. |
| */ |
| if (!count) |
| end_page_writeback(page); |
| done: |
| mapping_set_error(page->mapping, error); |
| return error; |
| } |
| |
| /* |
| * Write out a dirty page. |
| * |
| * For delalloc space on the page we need to allocate space and flush it. |
| * For unwritten space on the page we need to start the conversion to |
| * regular allocated space. |
| */ |
| STATIC int |
| xfs_do_writepage( |
| struct page *page, |
| struct writeback_control *wbc, |
| void *data) |
| { |
| struct xfs_writepage_ctx *wpc = data; |
| struct inode *inode = page->mapping->host; |
| loff_t offset; |
| uint64_t end_offset; |
| pgoff_t end_index; |
| |
| trace_xfs_writepage(inode, page, 0, 0); |
| |
| /* |
| * Refuse to write the page out if we are called from reclaim context. |
| * |
| * This avoids stack overflows when called from deeply used stacks in |
| * random callers for direct reclaim or memcg reclaim. We explicitly |
| * allow reclaim from kswapd as the stack usage there is relatively low. |
| * |
| * This should never happen except in the case of a VM regression so |
| * warn about it. |
| */ |
| if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == |
| PF_MEMALLOC)) |
| goto redirty; |
| |
| /* |
| * Given that we do not allow direct reclaim to call us, we should |
| * never be called while in a filesystem transaction. |
| */ |
| if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) |
| goto redirty; |
| |
| /* |
| * Is this page beyond the end of the file? |
| * |
| * The page index is less than the end_index, adjust the end_offset |
| * to the highest offset that this page should represent. |
| * ----------------------------------------------------- |
| * | file mapping | <EOF> | |
| * ----------------------------------------------------- |
| * | Page ... | Page N-2 | Page N-1 | Page N | | |
| * ^--------------------------------^----------|-------- |
| * | desired writeback range | see else | |
| * ---------------------------------^------------------| |
| */ |
| offset = i_size_read(inode); |
| end_index = offset >> PAGE_SHIFT; |
| if (page->index < end_index) |
| end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; |
| else { |
| /* |
| * Check whether the page to write out is beyond or straddles |
| * i_size or not. |
| * ------------------------------------------------------- |
| * | file mapping | <EOF> | |
| * ------------------------------------------------------- |
| * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | |
| * ^--------------------------------^-----------|--------- |
| * | | Straddles | |
| * ---------------------------------^-----------|--------| |
| */ |
| unsigned offset_into_page = offset & (PAGE_SIZE - 1); |
| |
| /* |
| * Skip the page if it is fully outside i_size, e.g. due to a |
| * truncate operation that is in progress. We must redirty the |
| * page so that reclaim stops reclaiming it. Otherwise |
| * xfs_vm_releasepage() is called on it and gets confused. |
| * |
| * Note that the end_index is unsigned long, it would overflow |
| * if the given offset is greater than 16TB on 32-bit system |
| * and if we do check the page is fully outside i_size or not |
| * via "if (page->index >= end_index + 1)" as "end_index + 1" |
| * will be evaluated to 0. Hence this page will be redirtied |
| * and be written out repeatedly which would result in an |
| * infinite loop, the user program that perform this operation |
| * will hang. Instead, we can verify this situation by checking |
| * if the page to write is totally beyond the i_size or if it's |
| * offset is just equal to the EOF. |
| */ |
| if (page->index > end_index || |
| (page->index == end_index && offset_into_page == 0)) |
| goto redirty; |
| |
| /* |
| * The page straddles i_size. It must be zeroed out on each |
| * and every writepage invocation because it may be mmapped. |
| * "A file is mapped in multiples of the page size. For a file |
| * that is not a multiple of the page size, the remaining |
| * memory is zeroed when mapped, and writes to that region are |
| * not written out to the file." |
| */ |
| zero_user_segment(page, offset_into_page, PAGE_SIZE); |
| |
| /* Adjust the end_offset to the end of file */ |
| end_offset = offset; |
| } |
| |
| return xfs_writepage_map(wpc, wbc, inode, page, end_offset); |
| |
| redirty: |
| redirty_page_for_writepage(wbc, page); |
| unlock_page(page); |
| return 0; |
| } |
| |
| STATIC int |
| xfs_vm_writepage( |
| struct page *page, |
| struct writeback_control *wbc) |
| { |
| struct xfs_writepage_ctx wpc = { |
| .io_type = XFS_IO_HOLE, |
| }; |
| int ret; |
| |
| ret = xfs_do_writepage(page, wbc, &wpc); |
| if (wpc.ioend) |
| ret = xfs_submit_ioend(wbc, wpc.ioend, ret); |
| return ret; |
| } |
| |
| STATIC int |
| xfs_vm_writepages( |
| struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct xfs_writepage_ctx wpc = { |
| .io_type = XFS_IO_HOLE, |
| }; |
| int ret; |
| |
| xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); |
| ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); |
| if (wpc.ioend) |
| ret = xfs_submit_ioend(wbc, wpc.ioend, ret); |
| return ret; |
| } |
| |
| STATIC int |
| xfs_dax_writepages( |
| struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); |
| return dax_writeback_mapping_range(mapping, |
| xfs_find_bdev_for_inode(mapping->host), wbc); |
| } |
| |
| STATIC int |
| xfs_vm_releasepage( |
| struct page *page, |
| gfp_t gfp_mask) |
| { |
| trace_xfs_releasepage(page->mapping->host, page, 0, 0); |
| return iomap_releasepage(page, gfp_mask); |
| } |
| |
| STATIC sector_t |
| xfs_vm_bmap( |
| struct address_space *mapping, |
| sector_t block) |
| { |
| struct xfs_inode *ip = XFS_I(mapping->host); |
| |
| trace_xfs_vm_bmap(ip); |
| |
| /* |
| * The swap code (ab-)uses ->bmap to get a block mapping and then |
| * bypasses the file system for actual I/O. We really can't allow |
| * that on reflinks inodes, so we have to skip out here. And yes, |
| * 0 is the magic code for a bmap error. |
| * |
| * Since we don't pass back blockdev info, we can't return bmap |
| * information for rt files either. |
| */ |
| if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) |
| return 0; |
| return iomap_bmap(mapping, block, &xfs_iomap_ops); |
| } |
| |
| STATIC int |
| xfs_vm_readpage( |
| struct file *unused, |
| struct page *page) |
| { |
| trace_xfs_vm_readpage(page->mapping->host, 1); |
| return iomap_readpage(page, &xfs_iomap_ops); |
| } |
| |
| STATIC int |
| xfs_vm_readpages( |
| struct file *unused, |
| struct address_space *mapping, |
| struct list_head *pages, |
| unsigned nr_pages) |
| { |
| trace_xfs_vm_readpages(mapping->host, nr_pages); |
| return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops); |
| } |
| |
| static int |
| xfs_iomap_swapfile_activate( |
| struct swap_info_struct *sis, |
| struct file *swap_file, |
| sector_t *span) |
| { |
| sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file)); |
| return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops); |
| } |
| |
| const struct address_space_operations xfs_address_space_operations = { |
| .readpage = xfs_vm_readpage, |
| .readpages = xfs_vm_readpages, |
| .writepage = xfs_vm_writepage, |
| .writepages = xfs_vm_writepages, |
| .set_page_dirty = iomap_set_page_dirty, |
| .releasepage = xfs_vm_releasepage, |
| .invalidatepage = xfs_vm_invalidatepage, |
| .bmap = xfs_vm_bmap, |
| .direct_IO = noop_direct_IO, |
| .migratepage = iomap_migrate_page, |
| .is_partially_uptodate = iomap_is_partially_uptodate, |
| .error_remove_page = generic_error_remove_page, |
| .swap_activate = xfs_iomap_swapfile_activate, |
| }; |
| |
| const struct address_space_operations xfs_dax_aops = { |
| .writepages = xfs_dax_writepages, |
| .direct_IO = noop_direct_IO, |
| .set_page_dirty = noop_set_page_dirty, |
| .invalidatepage = noop_invalidatepage, |
| .swap_activate = xfs_iomap_swapfile_activate, |
| }; |