| /* |
| * drivers/media/i2c/smiapp/smiapp-core.c |
| * |
| * Generic driver for SMIA/SMIA++ compliant camera modules |
| * |
| * Copyright (C) 2010--2012 Nokia Corporation |
| * Contact: Sakari Ailus <sakari.ailus@iki.fi> |
| * |
| * Based on smiapp driver by Vimarsh Zutshi |
| * Based on jt8ev1.c by Vimarsh Zutshi |
| * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/gpio.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/module.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/property.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/slab.h> |
| #include <linux/smiapp.h> |
| #include <linux/v4l2-mediabus.h> |
| #include <media/v4l2-fwnode.h> |
| #include <media/v4l2-device.h> |
| |
| #include "smiapp.h" |
| |
| #define SMIAPP_ALIGN_DIM(dim, flags) \ |
| ((flags) & V4L2_SEL_FLAG_GE \ |
| ? ALIGN((dim), 2) \ |
| : (dim) & ~1) |
| |
| /* |
| * smiapp_module_idents - supported camera modules |
| */ |
| static const struct smiapp_module_ident smiapp_module_idents[] = { |
| SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"), |
| SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"), |
| SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"), |
| SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"), |
| SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"), |
| SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk), |
| SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"), |
| SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"), |
| SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk), |
| SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk), |
| SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk), |
| }; |
| |
| /* |
| * |
| * Dynamic Capability Identification |
| * |
| */ |
| |
| static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc; |
| unsigned int i; |
| int pixel_count = 0; |
| int line_count = 0; |
| int rval; |
| |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE, |
| &fmt_model_type); |
| if (rval) |
| return rval; |
| |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE, |
| &fmt_model_subtype); |
| if (rval) |
| return rval; |
| |
| ncol_desc = (fmt_model_subtype |
| & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK) |
| >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT; |
| nrow_desc = fmt_model_subtype |
| & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK; |
| |
| dev_dbg(&client->dev, "format_model_type %s\n", |
| fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE |
| ? "2 byte" : |
| fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE |
| ? "4 byte" : "is simply bad"); |
| |
| for (i = 0; i < ncol_desc + nrow_desc; i++) { |
| u32 desc; |
| u32 pixelcode; |
| u32 pixels; |
| char *which; |
| char *what; |
| u32 reg; |
| |
| if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) { |
| reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i); |
| rval = smiapp_read(sensor, reg, &desc); |
| if (rval) |
| return rval; |
| |
| pixelcode = |
| (desc |
| & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK) |
| >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT; |
| pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK; |
| } else if (fmt_model_type |
| == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) { |
| reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i); |
| rval = smiapp_read(sensor, reg, &desc); |
| if (rval) |
| return rval; |
| |
| pixelcode = |
| (desc |
| & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK) |
| >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT; |
| pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK; |
| } else { |
| dev_dbg(&client->dev, |
| "invalid frame format model type %d\n", |
| fmt_model_type); |
| return -EINVAL; |
| } |
| |
| if (i < ncol_desc) |
| which = "columns"; |
| else |
| which = "rows"; |
| |
| switch (pixelcode) { |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED: |
| what = "embedded"; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY: |
| what = "dummy"; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK: |
| what = "black"; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK: |
| what = "dark"; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE: |
| what = "visible"; |
| break; |
| default: |
| what = "invalid"; |
| break; |
| } |
| |
| dev_dbg(&client->dev, |
| "0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg, |
| what, pixels, which, pixelcode); |
| |
| if (i < ncol_desc) { |
| if (pixelcode == |
| SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE) |
| sensor->visible_pixel_start = pixel_count; |
| pixel_count += pixels; |
| continue; |
| } |
| |
| /* Handle row descriptors */ |
| switch (pixelcode) { |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED: |
| if (sensor->embedded_end) |
| break; |
| sensor->embedded_start = line_count; |
| sensor->embedded_end = line_count + pixels; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE: |
| sensor->image_start = line_count; |
| break; |
| } |
| line_count += pixels; |
| } |
| |
| if (sensor->embedded_end > sensor->image_start) { |
| dev_dbg(&client->dev, |
| "adjusting image start line to %u (was %u)\n", |
| sensor->embedded_end, sensor->image_start); |
| sensor->image_start = sensor->embedded_end; |
| } |
| |
| dev_dbg(&client->dev, "embedded data from lines %d to %d\n", |
| sensor->embedded_start, sensor->embedded_end); |
| dev_dbg(&client->dev, "image data starts at line %d\n", |
| sensor->image_start); |
| |
| return 0; |
| } |
| |
| static int smiapp_pll_configure(struct smiapp_sensor *sensor) |
| { |
| struct smiapp_pll *pll = &sensor->pll; |
| int rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier); |
| if (rval < 0) |
| return rval; |
| |
| /* Lane op clock ratio does not apply here. */ |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS, |
| DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256)); |
| if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) |
| return rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div); |
| } |
| |
| static int smiapp_pll_try(struct smiapp_sensor *sensor, |
| struct smiapp_pll *pll) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct smiapp_pll_limits lim = { |
| .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV], |
| .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV], |
| .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ], |
| .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ], |
| .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER], |
| .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER], |
| .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ], |
| .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ], |
| |
| .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV], |
| .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV], |
| .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV], |
| .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV], |
| .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ], |
| .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ], |
| .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ], |
| .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ], |
| |
| .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV], |
| .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV], |
| .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV], |
| .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV], |
| .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ], |
| .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ], |
| .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ], |
| .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ], |
| |
| .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN], |
| .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK], |
| }; |
| |
| return smiapp_pll_calculate(&client->dev, &lim, pll); |
| } |
| |
| static int smiapp_pll_update(struct smiapp_sensor *sensor) |
| { |
| struct smiapp_pll *pll = &sensor->pll; |
| int rval; |
| |
| pll->binning_horizontal = sensor->binning_horizontal; |
| pll->binning_vertical = sensor->binning_vertical; |
| pll->link_freq = |
| sensor->link_freq->qmenu_int[sensor->link_freq->val]; |
| pll->scale_m = sensor->scale_m; |
| pll->bits_per_pixel = sensor->csi_format->compressed; |
| |
| rval = smiapp_pll_try(sensor, pll); |
| if (rval < 0) |
| return rval; |
| |
| __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray, |
| pll->pixel_rate_pixel_array); |
| __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * |
| * V4L2 Controls handling |
| * |
| */ |
| |
| static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor) |
| { |
| struct v4l2_ctrl *ctrl = sensor->exposure; |
| int max; |
| |
| max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height |
| + sensor->vblank->val |
| - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN]; |
| |
| __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max); |
| } |
| |
| /* |
| * Order matters. |
| * |
| * 1. Bits-per-pixel, descending. |
| * 2. Bits-per-pixel compressed, descending. |
| * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel |
| * orders must be defined. |
| */ |
| static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = { |
| { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, }, |
| }; |
| |
| static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" }; |
| |
| #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \ |
| - (unsigned long)smiapp_csi_data_formats) \ |
| / sizeof(*smiapp_csi_data_formats)) |
| |
| static u32 smiapp_pixel_order(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int flip = 0; |
| |
| if (sensor->hflip) { |
| if (sensor->hflip->val) |
| flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP; |
| |
| if (sensor->vflip->val) |
| flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP; |
| } |
| |
| flip ^= sensor->hvflip_inv_mask; |
| |
| dev_dbg(&client->dev, "flip %d\n", flip); |
| return sensor->default_pixel_order ^ flip; |
| } |
| |
| static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int csi_format_idx = |
| to_csi_format_idx(sensor->csi_format) & ~3; |
| unsigned int internal_csi_format_idx = |
| to_csi_format_idx(sensor->internal_csi_format) & ~3; |
| unsigned int pixel_order = smiapp_pixel_order(sensor); |
| |
| sensor->mbus_frame_fmts = |
| sensor->default_mbus_frame_fmts << pixel_order; |
| sensor->csi_format = |
| &smiapp_csi_data_formats[csi_format_idx + pixel_order]; |
| sensor->internal_csi_format = |
| &smiapp_csi_data_formats[internal_csi_format_idx |
| + pixel_order]; |
| |
| BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order |
| >= ARRAY_SIZE(smiapp_csi_data_formats)); |
| |
| dev_dbg(&client->dev, "new pixel order %s\n", |
| pixel_order_str[pixel_order]); |
| } |
| |
| static const char * const smiapp_test_patterns[] = { |
| "Disabled", |
| "Solid Colour", |
| "Eight Vertical Colour Bars", |
| "Colour Bars With Fade to Grey", |
| "Pseudorandom Sequence (PN9)", |
| }; |
| |
| static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct smiapp_sensor *sensor = |
| container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler) |
| ->sensor; |
| u32 orient = 0; |
| int exposure; |
| int rval; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_ANALOGUE_GAIN: |
| return smiapp_write( |
| sensor, |
| SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val); |
| |
| case V4L2_CID_EXPOSURE: |
| return smiapp_write( |
| sensor, |
| SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val); |
| |
| case V4L2_CID_HFLIP: |
| case V4L2_CID_VFLIP: |
| if (sensor->streaming) |
| return -EBUSY; |
| |
| if (sensor->hflip->val) |
| orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP; |
| |
| if (sensor->vflip->val) |
| orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP; |
| |
| orient ^= sensor->hvflip_inv_mask; |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION, |
| orient); |
| if (rval < 0) |
| return rval; |
| |
| smiapp_update_mbus_formats(sensor); |
| |
| return 0; |
| |
| case V4L2_CID_VBLANK: |
| exposure = sensor->exposure->val; |
| |
| __smiapp_update_exposure_limits(sensor); |
| |
| if (exposure > sensor->exposure->maximum) { |
| sensor->exposure->val = sensor->exposure->maximum; |
| rval = smiapp_set_ctrl(sensor->exposure); |
| if (rval < 0) |
| return rval; |
| } |
| |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height |
| + ctrl->val); |
| |
| case V4L2_CID_HBLANK: |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width |
| + ctrl->val); |
| |
| case V4L2_CID_LINK_FREQ: |
| if (sensor->streaming) |
| return -EBUSY; |
| |
| return smiapp_pll_update(sensor); |
| |
| case V4L2_CID_TEST_PATTERN: { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) |
| v4l2_ctrl_activate( |
| sensor->test_data[i], |
| ctrl->val == |
| V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR); |
| |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val); |
| } |
| |
| case V4L2_CID_TEST_PATTERN_RED: |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val); |
| |
| case V4L2_CID_TEST_PATTERN_GREENR: |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val); |
| |
| case V4L2_CID_TEST_PATTERN_BLUE: |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val); |
| |
| case V4L2_CID_TEST_PATTERN_GREENB: |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val); |
| |
| case V4L2_CID_PIXEL_RATE: |
| /* For v4l2_ctrl_s_ctrl_int64() used internally. */ |
| return 0; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const struct v4l2_ctrl_ops smiapp_ctrl_ops = { |
| .s_ctrl = smiapp_set_ctrl, |
| }; |
| |
| static int smiapp_init_controls(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12); |
| if (rval) |
| return rval; |
| |
| sensor->pixel_array->ctrl_handler.lock = &sensor->mutex; |
| |
| sensor->analog_gain = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_ANALOGUE_GAIN, |
| sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN], |
| sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX], |
| max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U), |
| sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]); |
| |
| /* Exposure limits will be updated soon, use just something here. */ |
| sensor->exposure = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_EXPOSURE, 0, 0, 1, 0); |
| |
| sensor->hflip = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_HFLIP, 0, 1, 1, 0); |
| sensor->vflip = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_VFLIP, 0, 1, 1, 0); |
| |
| sensor->vblank = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_VBLANK, 0, 1, 1, 0); |
| |
| if (sensor->vblank) |
| sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE; |
| |
| sensor->hblank = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_HBLANK, 0, 1, 1, 0); |
| |
| if (sensor->hblank) |
| sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE; |
| |
| sensor->pixel_rate_parray = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); |
| |
| v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler, |
| &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN, |
| ARRAY_SIZE(smiapp_test_patterns) - 1, |
| 0, 0, smiapp_test_patterns); |
| |
| if (sensor->pixel_array->ctrl_handler.error) { |
| dev_err(&client->dev, |
| "pixel array controls initialization failed (%d)\n", |
| sensor->pixel_array->ctrl_handler.error); |
| return sensor->pixel_array->ctrl_handler.error; |
| } |
| |
| sensor->pixel_array->sd.ctrl_handler = |
| &sensor->pixel_array->ctrl_handler; |
| |
| v4l2_ctrl_cluster(2, &sensor->hflip); |
| |
| rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0); |
| if (rval) |
| return rval; |
| |
| sensor->src->ctrl_handler.lock = &sensor->mutex; |
| |
| sensor->pixel_rate_csi = v4l2_ctrl_new_std( |
| &sensor->src->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); |
| |
| if (sensor->src->ctrl_handler.error) { |
| dev_err(&client->dev, |
| "src controls initialization failed (%d)\n", |
| sensor->src->ctrl_handler.error); |
| return sensor->src->ctrl_handler.error; |
| } |
| |
| sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler; |
| |
| return 0; |
| } |
| |
| /* |
| * For controls that require information on available media bus codes |
| * and linke frequencies. |
| */ |
| static int smiapp_init_late_controls(struct smiapp_sensor *sensor) |
| { |
| unsigned long *valid_link_freqs = &sensor->valid_link_freqs[ |
| sensor->csi_format->compressed - sensor->compressed_min_bpp]; |
| unsigned int max, i; |
| |
| for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) { |
| int max_value = (1 << sensor->csi_format->width) - 1; |
| |
| sensor->test_data[i] = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, |
| &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i, |
| 0, max_value, 1, max_value); |
| } |
| |
| for (max = 0; sensor->hwcfg->op_sys_clock[max + 1]; max++); |
| |
| sensor->link_freq = v4l2_ctrl_new_int_menu( |
| &sensor->src->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs), |
| __ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock); |
| |
| return sensor->src->ctrl_handler.error; |
| } |
| |
| static void smiapp_free_controls(struct smiapp_sensor *sensor) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sensor->ssds_used; i++) |
| v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler); |
| } |
| |
| static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit, |
| unsigned int n) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int i; |
| u32 val; |
| int rval; |
| |
| for (i = 0; i < n; i++) { |
| rval = smiapp_read( |
| sensor, smiapp_reg_limits[limit[i]].addr, &val); |
| if (rval) |
| return rval; |
| sensor->limits[limit[i]] = val; |
| dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n", |
| smiapp_reg_limits[limit[i]].addr, |
| smiapp_reg_limits[limit[i]].what, val, val); |
| } |
| |
| return 0; |
| } |
| |
| static int smiapp_get_all_limits(struct smiapp_sensor *sensor) |
| { |
| unsigned int i; |
| int rval; |
| |
| for (i = 0; i < SMIAPP_LIMIT_LAST; i++) { |
| rval = smiapp_get_limits(sensor, &i, 1); |
| if (rval < 0) |
| return rval; |
| } |
| |
| if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0) |
| smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16); |
| |
| return 0; |
| } |
| |
| static int smiapp_get_limits_binning(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| static u32 const limits[] = { |
| SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN, |
| SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN, |
| SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN, |
| SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN, |
| SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN, |
| SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN, |
| SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN, |
| }; |
| static u32 const limits_replace[] = { |
| SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES, |
| SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES, |
| SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK, |
| SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK, |
| SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK, |
| SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN, |
| SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN, |
| }; |
| unsigned int i; |
| int rval; |
| |
| if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] == |
| SMIAPP_BINNING_CAPABILITY_NO) { |
| for (i = 0; i < ARRAY_SIZE(limits); i++) |
| sensor->limits[limits[i]] = |
| sensor->limits[limits_replace[i]]; |
| |
| return 0; |
| } |
| |
| rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits)); |
| if (rval < 0) |
| return rval; |
| |
| /* |
| * Sanity check whether the binning limits are valid. If not, |
| * use the non-binning ones. |
| */ |
| if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] |
| && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] |
| && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]) |
| return 0; |
| |
| for (i = 0; i < ARRAY_SIZE(limits); i++) { |
| dev_dbg(&client->dev, |
| "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n", |
| smiapp_reg_limits[limits[i]].addr, |
| smiapp_reg_limits[limits[i]].what, |
| sensor->limits[limits_replace[i]], |
| sensor->limits[limits_replace[i]]); |
| sensor->limits[limits[i]] = |
| sensor->limits[limits_replace[i]]; |
| } |
| |
| return 0; |
| } |
| |
| static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct smiapp_pll *pll = &sensor->pll; |
| u8 compressed_max_bpp = 0; |
| unsigned int type, n; |
| unsigned int i, pixel_order; |
| int rval; |
| |
| rval = smiapp_read( |
| sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type); |
| if (rval) |
| return rval; |
| |
| dev_dbg(&client->dev, "data_format_model_type %d\n", type); |
| |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER, |
| &pixel_order); |
| if (rval) |
| return rval; |
| |
| if (pixel_order >= ARRAY_SIZE(pixel_order_str)) { |
| dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order); |
| return -EINVAL; |
| } |
| |
| dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order, |
| pixel_order_str[pixel_order]); |
| |
| switch (type) { |
| case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL: |
| n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N; |
| break; |
| case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED: |
| n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| sensor->default_pixel_order = pixel_order; |
| sensor->mbus_frame_fmts = 0; |
| |
| for (i = 0; i < n; i++) { |
| unsigned int fmt, j; |
| |
| rval = smiapp_read( |
| sensor, |
| SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt); |
| if (rval) |
| return rval; |
| |
| dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n", |
| i, fmt >> 8, (u8)fmt); |
| |
| for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) { |
| const struct smiapp_csi_data_format *f = |
| &smiapp_csi_data_formats[j]; |
| |
| if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG) |
| continue; |
| |
| if (f->width != fmt >> 8 || f->compressed != (u8)fmt) |
| continue; |
| |
| dev_dbg(&client->dev, "jolly good! %d\n", j); |
| |
| sensor->default_mbus_frame_fmts |= 1 << j; |
| } |
| } |
| |
| /* Figure out which BPP values can be used with which formats. */ |
| pll->binning_horizontal = 1; |
| pll->binning_vertical = 1; |
| pll->scale_m = sensor->scale_m; |
| |
| for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) { |
| sensor->compressed_min_bpp = |
| min(smiapp_csi_data_formats[i].compressed, |
| sensor->compressed_min_bpp); |
| compressed_max_bpp = |
| max(smiapp_csi_data_formats[i].compressed, |
| compressed_max_bpp); |
| } |
| |
| sensor->valid_link_freqs = devm_kcalloc( |
| &client->dev, |
| compressed_max_bpp - sensor->compressed_min_bpp + 1, |
| sizeof(*sensor->valid_link_freqs), GFP_KERNEL); |
| if (!sensor->valid_link_freqs) |
| return -ENOMEM; |
| |
| for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) { |
| const struct smiapp_csi_data_format *f = |
| &smiapp_csi_data_formats[i]; |
| unsigned long *valid_link_freqs = |
| &sensor->valid_link_freqs[ |
| f->compressed - sensor->compressed_min_bpp]; |
| unsigned int j; |
| |
| if (!(sensor->default_mbus_frame_fmts & 1 << i)) |
| continue; |
| |
| pll->bits_per_pixel = f->compressed; |
| |
| for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) { |
| pll->link_freq = sensor->hwcfg->op_sys_clock[j]; |
| |
| rval = smiapp_pll_try(sensor, pll); |
| dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n", |
| pll->link_freq, pll->bits_per_pixel, |
| rval ? "not ok" : "ok"); |
| if (rval) |
| continue; |
| |
| set_bit(j, valid_link_freqs); |
| } |
| |
| if (!*valid_link_freqs) { |
| dev_info(&client->dev, |
| "no valid link frequencies for %u bpp\n", |
| f->compressed); |
| sensor->default_mbus_frame_fmts &= ~BIT(i); |
| continue; |
| } |
| |
| if (!sensor->csi_format |
| || f->width > sensor->csi_format->width |
| || (f->width == sensor->csi_format->width |
| && f->compressed > sensor->csi_format->compressed)) { |
| sensor->csi_format = f; |
| sensor->internal_csi_format = f; |
| } |
| } |
| |
| if (!sensor->csi_format) { |
| dev_err(&client->dev, "no supported mbus code found\n"); |
| return -EINVAL; |
| } |
| |
| smiapp_update_mbus_formats(sensor); |
| |
| return 0; |
| } |
| |
| static void smiapp_update_blanking(struct smiapp_sensor *sensor) |
| { |
| struct v4l2_ctrl *vblank = sensor->vblank; |
| struct v4l2_ctrl *hblank = sensor->hblank; |
| int min, max; |
| |
| min = max_t(int, |
| sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES], |
| sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] - |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height); |
| max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] - |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height; |
| |
| __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min); |
| |
| min = max_t(int, |
| sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] - |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width, |
| sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]); |
| max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] - |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width; |
| |
| __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min); |
| |
| __smiapp_update_exposure_limits(sensor); |
| } |
| |
| static int smiapp_update_mode(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int binning_mode; |
| int rval; |
| |
| /* Binning has to be set up here; it affects limits */ |
| if (sensor->binning_horizontal == 1 && |
| sensor->binning_vertical == 1) { |
| binning_mode = 0; |
| } else { |
| u8 binning_type = |
| (sensor->binning_horizontal << 4) |
| | sensor->binning_vertical; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type); |
| if (rval < 0) |
| return rval; |
| |
| binning_mode = 1; |
| } |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode); |
| if (rval < 0) |
| return rval; |
| |
| /* Get updated limits due to binning */ |
| rval = smiapp_get_limits_binning(sensor); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_pll_update(sensor); |
| if (rval < 0) |
| return rval; |
| |
| /* Output from pixel array, including blanking */ |
| smiapp_update_blanking(sensor); |
| |
| dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val); |
| dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val); |
| |
| dev_dbg(&client->dev, "real timeperframe\t100/%d\n", |
| sensor->pll.pixel_rate_pixel_array / |
| ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width |
| + sensor->hblank->val) * |
| (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height |
| + sensor->vblank->val) / 100)); |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * SMIA++ NVM handling |
| * |
| */ |
| static int smiapp_read_nvm(struct smiapp_sensor *sensor, |
| unsigned char *nvm) |
| { |
| u32 i, s, p, np, v; |
| int rval = 0, rval2; |
| |
| np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE; |
| for (p = 0; p < np; p++) { |
| rval = smiapp_write( |
| sensor, |
| SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p); |
| if (rval) |
| goto out; |
| |
| rval = smiapp_write(sensor, |
| SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, |
| SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN | |
| SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN); |
| if (rval) |
| goto out; |
| |
| for (i = 1000; i > 0; i--) { |
| rval = smiapp_read( |
| sensor, |
| SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s); |
| |
| if (rval) |
| goto out; |
| |
| if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY) |
| break; |
| |
| } |
| if (!i) { |
| rval = -ETIMEDOUT; |
| goto out; |
| } |
| |
| for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) { |
| rval = smiapp_read( |
| sensor, |
| SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i, |
| &v); |
| if (rval) |
| goto out; |
| |
| *nvm++ = v; |
| } |
| } |
| |
| out: |
| rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0); |
| if (rval < 0) |
| return rval; |
| else |
| return rval2; |
| } |
| |
| /* |
| * |
| * SMIA++ CCI address control |
| * |
| */ |
| static int smiapp_change_cci_addr(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| u32 val; |
| |
| client->addr = sensor->hwcfg->i2c_addr_dfl; |
| |
| rval = smiapp_write(sensor, |
| SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, |
| sensor->hwcfg->i2c_addr_alt << 1); |
| if (rval) |
| return rval; |
| |
| client->addr = sensor->hwcfg->i2c_addr_alt; |
| |
| /* verify addr change went ok */ |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val); |
| if (rval) |
| return rval; |
| |
| if (val != sensor->hwcfg->i2c_addr_alt << 1) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * SMIA++ Mode Control |
| * |
| */ |
| static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor) |
| { |
| struct smiapp_flash_strobe_parms *strobe_setup; |
| unsigned int ext_freq = sensor->hwcfg->ext_clk; |
| u32 tmp; |
| u32 strobe_adjustment; |
| u32 strobe_width_high_rs; |
| int rval; |
| |
| strobe_setup = sensor->hwcfg->strobe_setup; |
| |
| /* |
| * How to calculate registers related to strobe length. Please |
| * do not change, or if you do at least know what you're |
| * doing. :-) |
| * |
| * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25 |
| * |
| * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl |
| * / EXTCLK freq [Hz]) * flash_strobe_adjustment |
| * |
| * tFlash_strobe_width_ctrl E N, [1 - 0xffff] |
| * flash_strobe_adjustment E N, [1 - 0xff] |
| * |
| * The formula above is written as below to keep it on one |
| * line: |
| * |
| * l / 10^6 = w / e * a |
| * |
| * Let's mark w * a by x: |
| * |
| * x = w * a |
| * |
| * Thus, we get: |
| * |
| * x = l * e / 10^6 |
| * |
| * The strobe width must be at least as long as requested, |
| * thus rounding upwards is needed. |
| * |
| * x = (l * e + 10^6 - 1) / 10^6 |
| * ----------------------------- |
| * |
| * Maximum possible accuracy is wanted at all times. Thus keep |
| * a as small as possible. |
| * |
| * Calculate a, assuming maximum w, with rounding upwards: |
| * |
| * a = (x + (2^16 - 1) - 1) / (2^16 - 1) |
| * ------------------------------------- |
| * |
| * Thus, we also get w, with that a, with rounding upwards: |
| * |
| * w = (x + a - 1) / a |
| * ------------------- |
| * |
| * To get limits: |
| * |
| * x E [1, (2^16 - 1) * (2^8 - 1)] |
| * |
| * Substituting maximum x to the original formula (with rounding), |
| * the maximum l is thus |
| * |
| * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1 |
| * |
| * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e |
| * -------------------------------------------------- |
| * |
| * flash_strobe_length must be clamped between 1 and |
| * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq. |
| * |
| * Then, |
| * |
| * flash_strobe_adjustment = ((flash_strobe_length * |
| * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1) |
| * |
| * tFlash_strobe_width_ctrl = ((flash_strobe_length * |
| * EXTCLK freq + 10^6 - 1) / 10^6 + |
| * flash_strobe_adjustment - 1) / flash_strobe_adjustment |
| */ |
| tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) - |
| 1000000 + 1, ext_freq); |
| strobe_setup->strobe_width_high_us = |
| clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp); |
| |
| tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq + |
| 1000000 - 1), 1000000ULL); |
| strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1); |
| strobe_width_high_rs = (tmp + strobe_adjustment - 1) / |
| strobe_adjustment; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS, |
| strobe_setup->mode); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT, |
| strobe_adjustment); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL, |
| strobe_width_high_rs); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL, |
| strobe_setup->strobe_delay); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT, |
| strobe_setup->stobe_start_point); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS, |
| strobe_setup->trigger); |
| |
| out: |
| sensor->hwcfg->strobe_setup->trigger = 0; |
| |
| return rval; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Power management |
| */ |
| |
| static int smiapp_power_on(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| /* |
| * The sub-device related to the I2C device is always the |
| * source one, i.e. ssds[0]. |
| */ |
| struct smiapp_sensor *sensor = |
| container_of(ssd, struct smiapp_sensor, ssds[0]); |
| unsigned int sleep; |
| int rval; |
| |
| rval = regulator_enable(sensor->vana); |
| if (rval) { |
| dev_err(&client->dev, "failed to enable vana regulator\n"); |
| return rval; |
| } |
| usleep_range(1000, 1000); |
| |
| rval = clk_prepare_enable(sensor->ext_clk); |
| if (rval < 0) { |
| dev_dbg(&client->dev, "failed to enable xclk\n"); |
| goto out_xclk_fail; |
| } |
| usleep_range(1000, 1000); |
| |
| gpiod_set_value(sensor->xshutdown, 1); |
| |
| sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk); |
| usleep_range(sleep, sleep); |
| |
| mutex_lock(&sensor->mutex); |
| |
| sensor->active = true; |
| |
| /* |
| * Failures to respond to the address change command have been noticed. |
| * Those failures seem to be caused by the sensor requiring a longer |
| * boot time than advertised. An additional 10ms delay seems to work |
| * around the issue, but the SMIA++ I2C write retry hack makes the delay |
| * unnecessary. The failures need to be investigated to find a proper |
| * fix, and a delay will likely need to be added here if the I2C write |
| * retry hack is reverted before the root cause of the boot time issue |
| * is found. |
| */ |
| |
| if (sensor->hwcfg->i2c_addr_alt) { |
| rval = smiapp_change_cci_addr(sensor); |
| if (rval) { |
| dev_err(&client->dev, "cci address change error\n"); |
| goto out_cci_addr_fail; |
| } |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET, |
| SMIAPP_SOFTWARE_RESET); |
| if (rval < 0) { |
| dev_err(&client->dev, "software reset failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| if (sensor->hwcfg->i2c_addr_alt) { |
| rval = smiapp_change_cci_addr(sensor); |
| if (rval) { |
| dev_err(&client->dev, "cci address change error\n"); |
| goto out_cci_addr_fail; |
| } |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE, |
| SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR); |
| if (rval) { |
| dev_err(&client->dev, "compression mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ, |
| sensor->hwcfg->ext_clk / (1000000 / (1 << 8))); |
| if (rval) { |
| dev_err(&client->dev, "extclk frequency set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE, |
| sensor->hwcfg->lanes - 1); |
| if (rval) { |
| dev_err(&client->dev, "csi lane mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL, |
| SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE); |
| if (rval) { |
| dev_err(&client->dev, "fast standby set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE, |
| sensor->hwcfg->csi_signalling_mode); |
| if (rval) { |
| dev_err(&client->dev, "csi signalling mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| /* DPHY control done by sensor based on requested link rate */ |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL, |
| SMIAPP_DPHY_CTRL_UI); |
| if (rval < 0) |
| goto out_cci_addr_fail; |
| |
| rval = smiapp_call_quirk(sensor, post_poweron); |
| if (rval) { |
| dev_err(&client->dev, "post_poweron quirks failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| /* Are we still initialising...? If not, proceed with control setup. */ |
| if (sensor->pixel_array) { |
| rval = __v4l2_ctrl_handler_setup( |
| &sensor->pixel_array->ctrl_handler); |
| if (rval) |
| goto out_cci_addr_fail; |
| |
| rval = __v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler); |
| if (rval) |
| goto out_cci_addr_fail; |
| |
| rval = smiapp_update_mode(sensor); |
| if (rval < 0) |
| goto out_cci_addr_fail; |
| } |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return 0; |
| |
| out_cci_addr_fail: |
| mutex_unlock(&sensor->mutex); |
| gpiod_set_value(sensor->xshutdown, 0); |
| clk_disable_unprepare(sensor->ext_clk); |
| |
| out_xclk_fail: |
| regulator_disable(sensor->vana); |
| |
| return rval; |
| } |
| |
| static int smiapp_power_off(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct smiapp_sensor *sensor = |
| container_of(ssd, struct smiapp_sensor, ssds[0]); |
| |
| mutex_lock(&sensor->mutex); |
| |
| /* |
| * Currently power/clock to lens are enable/disabled separately |
| * but they are essentially the same signals. So if the sensor is |
| * powered off while the lens is powered on the sensor does not |
| * really see a power off and next time the cci address change |
| * will fail. So do a soft reset explicitly here. |
| */ |
| if (sensor->hwcfg->i2c_addr_alt) |
| smiapp_write(sensor, |
| SMIAPP_REG_U8_SOFTWARE_RESET, |
| SMIAPP_SOFTWARE_RESET); |
| |
| sensor->active = false; |
| |
| mutex_unlock(&sensor->mutex); |
| |
| gpiod_set_value(sensor->xshutdown, 0); |
| clk_disable_unprepare(sensor->ext_clk); |
| usleep_range(5000, 5000); |
| regulator_disable(sensor->vana); |
| sensor->streaming = false; |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Video stream management |
| */ |
| |
| static int smiapp_start_streaming(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT, |
| (sensor->csi_format->width << 8) | |
| sensor->csi_format->compressed); |
| if (rval) |
| goto out; |
| |
| rval = smiapp_pll_configure(sensor); |
| if (rval) |
| goto out; |
| |
| /* Analog crop start coordinates */ |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top); |
| if (rval < 0) |
| goto out; |
| |
| /* Analog crop end coordinates */ |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_X_ADDR_END, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left |
| + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_Y_ADDR_END, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top |
| + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1); |
| if (rval < 0) |
| goto out; |
| |
| /* |
| * Output from pixel array, including blanking, is set using |
| * controls below. No need to set here. |
| */ |
| |
| /* Digital crop */ |
| if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] |
| == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET, |
| sensor->scaler->crop[SMIAPP_PAD_SINK].left); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET, |
| sensor->scaler->crop[SMIAPP_PAD_SINK].top); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH, |
| sensor->scaler->crop[SMIAPP_PAD_SINK].width); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT, |
| sensor->scaler->crop[SMIAPP_PAD_SINK].height); |
| if (rval < 0) |
| goto out; |
| } |
| |
| /* Scaling */ |
| if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| != SMIAPP_SCALING_CAPABILITY_NONE) { |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE, |
| sensor->scaling_mode); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M, |
| sensor->scale_m); |
| if (rval < 0) |
| goto out; |
| } |
| |
| /* Output size from sensor */ |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE, |
| sensor->src->crop[SMIAPP_PAD_SRC].width); |
| if (rval < 0) |
| goto out; |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE, |
| sensor->src->crop[SMIAPP_PAD_SRC].height); |
| if (rval < 0) |
| goto out; |
| |
| if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] & |
| (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE | |
| SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) && |
| sensor->hwcfg->strobe_setup != NULL && |
| sensor->hwcfg->strobe_setup->trigger != 0) { |
| rval = smiapp_setup_flash_strobe(sensor); |
| if (rval) |
| goto out; |
| } |
| |
| rval = smiapp_call_quirk(sensor, pre_streamon); |
| if (rval) { |
| dev_err(&client->dev, "pre_streamon quirks failed\n"); |
| goto out; |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT, |
| SMIAPP_MODE_SELECT_STREAMING); |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static int smiapp_stop_streaming(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT, |
| SMIAPP_MODE_SELECT_SOFTWARE_STANDBY); |
| if (rval) |
| goto out; |
| |
| rval = smiapp_call_quirk(sensor, post_streamoff); |
| if (rval) |
| dev_err(&client->dev, "post_streamoff quirks failed\n"); |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| return rval; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 subdev video operations |
| */ |
| |
| static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| if (sensor->streaming == enable) |
| return 0; |
| |
| if (enable) { |
| rval = pm_runtime_get_sync(&client->dev); |
| if (rval < 0) { |
| if (rval != -EBUSY && rval != -EAGAIN) |
| pm_runtime_set_active(&client->dev); |
| pm_runtime_put(&client->dev); |
| return rval; |
| } |
| |
| sensor->streaming = true; |
| |
| rval = smiapp_start_streaming(sensor); |
| if (rval < 0) |
| sensor->streaming = false; |
| } else { |
| rval = smiapp_stop_streaming(sensor); |
| sensor->streaming = false; |
| pm_runtime_mark_last_busy(&client->dev); |
| pm_runtime_put_autosuspend(&client->dev); |
| } |
| |
| return rval; |
| } |
| |
| static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_mbus_code_enum *code) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int i; |
| int idx = -1; |
| int rval = -EINVAL; |
| |
| mutex_lock(&sensor->mutex); |
| |
| dev_err(&client->dev, "subdev %s, pad %d, index %d\n", |
| subdev->name, code->pad, code->index); |
| |
| if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) { |
| if (code->index) |
| goto out; |
| |
| code->code = sensor->internal_csi_format->code; |
| rval = 0; |
| goto out; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) { |
| if (sensor->mbus_frame_fmts & (1 << i)) |
| idx++; |
| |
| if (idx == code->index) { |
| code->code = smiapp_csi_data_formats[i].code; |
| dev_err(&client->dev, "found index %d, i %d, code %x\n", |
| code->index, i, code->code); |
| rval = 0; |
| break; |
| } |
| } |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev, |
| unsigned int pad) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| |
| if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC) |
| return sensor->csi_format->code; |
| else |
| return sensor->internal_csi_format->code; |
| } |
| |
| static int __smiapp_get_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| |
| if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { |
| fmt->format = *v4l2_subdev_get_try_format(subdev, cfg, |
| fmt->pad); |
| } else { |
| struct v4l2_rect *r; |
| |
| if (fmt->pad == ssd->source_pad) |
| r = &ssd->crop[ssd->source_pad]; |
| else |
| r = &ssd->sink_fmt; |
| |
| fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad); |
| fmt->format.width = r->width; |
| fmt->format.height = r->height; |
| fmt->format.field = V4L2_FIELD_NONE; |
| } |
| |
| return 0; |
| } |
| |
| static int smiapp_get_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = __smiapp_get_format(subdev, cfg, fmt); |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static void smiapp_get_crop_compose(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_rect **crops, |
| struct v4l2_rect **comps, int which) |
| { |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| unsigned int i; |
| |
| if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (crops) |
| for (i = 0; i < subdev->entity.num_pads; i++) |
| crops[i] = &ssd->crop[i]; |
| if (comps) |
| *comps = &ssd->compose; |
| } else { |
| if (crops) { |
| for (i = 0; i < subdev->entity.num_pads; i++) { |
| crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i); |
| BUG_ON(!crops[i]); |
| } |
| } |
| if (comps) { |
| *comps = v4l2_subdev_get_try_compose(subdev, cfg, |
| SMIAPP_PAD_SINK); |
| BUG_ON(!*comps); |
| } |
| } |
| } |
| |
| /* Changes require propagation only on sink pad. */ |
| static void smiapp_propagate(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, int which, |
| int target) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *comp, *crops[SMIAPP_PADS]; |
| |
| smiapp_get_crop_compose(subdev, cfg, crops, &comp, which); |
| |
| switch (target) { |
| case V4L2_SEL_TGT_CROP: |
| comp->width = crops[SMIAPP_PAD_SINK]->width; |
| comp->height = crops[SMIAPP_PAD_SINK]->height; |
| if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (ssd == sensor->scaler) { |
| sensor->scale_m = |
| sensor->limits[ |
| SMIAPP_LIMIT_SCALER_N_MIN]; |
| sensor->scaling_mode = |
| SMIAPP_SCALING_MODE_NONE; |
| } else if (ssd == sensor->binner) { |
| sensor->binning_horizontal = 1; |
| sensor->binning_vertical = 1; |
| } |
| } |
| /* Fall through */ |
| case V4L2_SEL_TGT_COMPOSE: |
| *crops[SMIAPP_PAD_SRC] = *comp; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static const struct smiapp_csi_data_format |
| *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) { |
| if (sensor->mbus_frame_fmts & (1 << i) |
| && smiapp_csi_data_formats[i].code == code) |
| return &smiapp_csi_data_formats[i]; |
| } |
| |
| return sensor->csi_format; |
| } |
| |
| static int smiapp_set_format_source(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| const struct smiapp_csi_data_format *csi_format, |
| *old_csi_format = sensor->csi_format; |
| unsigned long *valid_link_freqs; |
| u32 code = fmt->format.code; |
| unsigned int i; |
| int rval; |
| |
| rval = __smiapp_get_format(subdev, cfg, fmt); |
| if (rval) |
| return rval; |
| |
| /* |
| * Media bus code is changeable on src subdev's source pad. On |
| * other source pads we just get format here. |
| */ |
| if (subdev != &sensor->src->sd) |
| return 0; |
| |
| csi_format = smiapp_validate_csi_data_format(sensor, code); |
| |
| fmt->format.code = csi_format->code; |
| |
| if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE) |
| return 0; |
| |
| sensor->csi_format = csi_format; |
| |
| if (csi_format->width != old_csi_format->width) |
| for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) |
| __v4l2_ctrl_modify_range( |
| sensor->test_data[i], 0, |
| (1 << csi_format->width) - 1, 1, 0); |
| |
| if (csi_format->compressed == old_csi_format->compressed) |
| return 0; |
| |
| valid_link_freqs = |
| &sensor->valid_link_freqs[sensor->csi_format->compressed |
| - sensor->compressed_min_bpp]; |
| |
| __v4l2_ctrl_modify_range( |
| sensor->link_freq, 0, |
| __fls(*valid_link_freqs), ~*valid_link_freqs, |
| __ffs(*valid_link_freqs)); |
| |
| return smiapp_pll_update(sensor); |
| } |
| |
| static int smiapp_set_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *crops[SMIAPP_PADS]; |
| |
| mutex_lock(&sensor->mutex); |
| |
| if (fmt->pad == ssd->source_pad) { |
| int rval; |
| |
| rval = smiapp_set_format_source(subdev, cfg, fmt); |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| /* Sink pad. Width and height are changeable here. */ |
| fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad); |
| fmt->format.width &= ~1; |
| fmt->format.height &= ~1; |
| fmt->format.field = V4L2_FIELD_NONE; |
| |
| fmt->format.width = |
| clamp(fmt->format.width, |
| sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE], |
| sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]); |
| fmt->format.height = |
| clamp(fmt->format.height, |
| sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE], |
| sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]); |
| |
| smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which); |
| |
| crops[ssd->sink_pad]->left = 0; |
| crops[ssd->sink_pad]->top = 0; |
| crops[ssd->sink_pad]->width = fmt->format.width; |
| crops[ssd->sink_pad]->height = fmt->format.height; |
| if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) |
| ssd->sink_fmt = *crops[ssd->sink_pad]; |
| smiapp_propagate(subdev, cfg, fmt->which, |
| V4L2_SEL_TGT_CROP); |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate goodness of scaled image size compared to expected image |
| * size and flags provided. |
| */ |
| #define SCALING_GOODNESS 100000 |
| #define SCALING_GOODNESS_EXTREME 100000000 |
| static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w, |
| int h, int ask_h, u32 flags) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| int val = 0; |
| |
| w &= ~1; |
| ask_w &= ~1; |
| h &= ~1; |
| ask_h &= ~1; |
| |
| if (flags & V4L2_SEL_FLAG_GE) { |
| if (w < ask_w) |
| val -= SCALING_GOODNESS; |
| if (h < ask_h) |
| val -= SCALING_GOODNESS; |
| } |
| |
| if (flags & V4L2_SEL_FLAG_LE) { |
| if (w > ask_w) |
| val -= SCALING_GOODNESS; |
| if (h > ask_h) |
| val -= SCALING_GOODNESS; |
| } |
| |
| val -= abs(w - ask_w); |
| val -= abs(h - ask_h); |
| |
| if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE]) |
| val -= SCALING_GOODNESS_EXTREME; |
| |
| dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n", |
| w, ask_h, h, ask_h, val); |
| |
| return val; |
| } |
| |
| static void smiapp_set_compose_binner(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_selection *sel, |
| struct v4l2_rect **crops, |
| struct v4l2_rect *comp) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int i; |
| unsigned int binh = 1, binv = 1; |
| int best = scaling_goodness( |
| subdev, |
| crops[SMIAPP_PAD_SINK]->width, sel->r.width, |
| crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags); |
| |
| for (i = 0; i < sensor->nbinning_subtypes; i++) { |
| int this = scaling_goodness( |
| subdev, |
| crops[SMIAPP_PAD_SINK]->width |
| / sensor->binning_subtypes[i].horizontal, |
| sel->r.width, |
| crops[SMIAPP_PAD_SINK]->height |
| / sensor->binning_subtypes[i].vertical, |
| sel->r.height, sel->flags); |
| |
| if (this > best) { |
| binh = sensor->binning_subtypes[i].horizontal; |
| binv = sensor->binning_subtypes[i].vertical; |
| best = this; |
| } |
| } |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sensor->binning_vertical = binv; |
| sensor->binning_horizontal = binh; |
| } |
| |
| sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1; |
| sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1; |
| } |
| |
| /* |
| * Calculate best scaling ratio and mode for given output resolution. |
| * |
| * Try all of these: horizontal ratio, vertical ratio and smallest |
| * size possible (horizontally). |
| * |
| * Also try whether horizontal scaler or full scaler gives a better |
| * result. |
| */ |
| static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_selection *sel, |
| struct v4l2_rect **crops, |
| struct v4l2_rect *comp) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| u32 min, max, a, b, max_m; |
| u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; |
| int mode = SMIAPP_SCALING_MODE_HORIZONTAL; |
| u32 try[4]; |
| u32 ntry = 0; |
| unsigned int i; |
| int best = INT_MIN; |
| |
| sel->r.width = min_t(unsigned int, sel->r.width, |
| crops[SMIAPP_PAD_SINK]->width); |
| sel->r.height = min_t(unsigned int, sel->r.height, |
| crops[SMIAPP_PAD_SINK]->height); |
| |
| a = crops[SMIAPP_PAD_SINK]->width |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width; |
| b = crops[SMIAPP_PAD_SINK]->height |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height; |
| max_m = crops[SMIAPP_PAD_SINK]->width |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] |
| / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE]; |
| |
| a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN], |
| sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]); |
| b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN], |
| sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]); |
| max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN], |
| sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]); |
| |
| dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m); |
| |
| min = min(max_m, min(a, b)); |
| max = min(max_m, max(a, b)); |
| |
| try[ntry] = min; |
| ntry++; |
| if (min != max) { |
| try[ntry] = max; |
| ntry++; |
| } |
| if (max != max_m) { |
| try[ntry] = min + 1; |
| ntry++; |
| if (min != max) { |
| try[ntry] = max + 1; |
| ntry++; |
| } |
| } |
| |
| for (i = 0; i < ntry; i++) { |
| int this = scaling_goodness( |
| subdev, |
| crops[SMIAPP_PAD_SINK]->width |
| / try[i] |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], |
| sel->r.width, |
| crops[SMIAPP_PAD_SINK]->height, |
| sel->r.height, |
| sel->flags); |
| |
| dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i); |
| |
| if (this > best) { |
| scale_m = try[i]; |
| mode = SMIAPP_SCALING_MODE_HORIZONTAL; |
| best = this; |
| } |
| |
| if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| == SMIAPP_SCALING_CAPABILITY_HORIZONTAL) |
| continue; |
| |
| this = scaling_goodness( |
| subdev, crops[SMIAPP_PAD_SINK]->width |
| / try[i] |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], |
| sel->r.width, |
| crops[SMIAPP_PAD_SINK]->height |
| / try[i] |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], |
| sel->r.height, |
| sel->flags); |
| |
| if (this > best) { |
| scale_m = try[i]; |
| mode = SMIAPP_SCALING_MODE_BOTH; |
| best = this; |
| } |
| } |
| |
| sel->r.width = |
| (crops[SMIAPP_PAD_SINK]->width |
| / scale_m |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1; |
| if (mode == SMIAPP_SCALING_MODE_BOTH) |
| sel->r.height = |
| (crops[SMIAPP_PAD_SINK]->height |
| / scale_m |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) |
| & ~1; |
| else |
| sel->r.height = crops[SMIAPP_PAD_SINK]->height; |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sensor->scale_m = scale_m; |
| sensor->scaling_mode = mode; |
| } |
| } |
| /* We're only called on source pads. This function sets scaling. */ |
| static int smiapp_set_compose(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *comp, *crops[SMIAPP_PADS]; |
| |
| smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which); |
| |
| sel->r.top = 0; |
| sel->r.left = 0; |
| |
| if (ssd == sensor->binner) |
| smiapp_set_compose_binner(subdev, cfg, sel, crops, comp); |
| else |
| smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp); |
| |
| *comp = sel->r; |
| smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) |
| return smiapp_update_mode(sensor); |
| |
| return 0; |
| } |
| |
| static int __smiapp_sel_supported(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| |
| /* We only implement crop in three places. */ |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP: |
| case V4L2_SEL_TGT_CROP_BOUNDS: |
| if (ssd == sensor->pixel_array |
| && sel->pad == SMIAPP_PA_PAD_SRC) |
| return 0; |
| if (ssd == sensor->src |
| && sel->pad == SMIAPP_PAD_SRC) |
| return 0; |
| if (ssd == sensor->scaler |
| && sel->pad == SMIAPP_PAD_SINK |
| && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] |
| == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) |
| return 0; |
| return -EINVAL; |
| case V4L2_SEL_TGT_NATIVE_SIZE: |
| if (ssd == sensor->pixel_array |
| && sel->pad == SMIAPP_PA_PAD_SRC) |
| return 0; |
| return -EINVAL; |
| case V4L2_SEL_TGT_COMPOSE: |
| case V4L2_SEL_TGT_COMPOSE_BOUNDS: |
| if (sel->pad == ssd->source_pad) |
| return -EINVAL; |
| if (ssd == sensor->binner) |
| return 0; |
| if (ssd == sensor->scaler |
| && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| != SMIAPP_SCALING_CAPABILITY_NONE) |
| return 0; |
| /* Fall through */ |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int smiapp_set_crop(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *src_size, *crops[SMIAPP_PADS]; |
| struct v4l2_rect _r; |
| |
| smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (sel->pad == ssd->sink_pad) |
| src_size = &ssd->sink_fmt; |
| else |
| src_size = &ssd->compose; |
| } else { |
| if (sel->pad == ssd->sink_pad) { |
| _r.left = 0; |
| _r.top = 0; |
| _r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad) |
| ->width; |
| _r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad) |
| ->height; |
| src_size = &_r; |
| } else { |
| src_size = v4l2_subdev_get_try_compose( |
| subdev, cfg, ssd->sink_pad); |
| } |
| } |
| |
| if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) { |
| sel->r.left = 0; |
| sel->r.top = 0; |
| } |
| |
| sel->r.width = min(sel->r.width, src_size->width); |
| sel->r.height = min(sel->r.height, src_size->height); |
| |
| sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width); |
| sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height); |
| |
| *crops[sel->pad] = sel->r; |
| |
| if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK) |
| smiapp_propagate(subdev, cfg, sel->which, |
| V4L2_SEL_TGT_CROP); |
| |
| return 0; |
| } |
| |
| static void smiapp_get_native_size(struct smiapp_subdev *ssd, |
| struct v4l2_rect *r) |
| { |
| r->top = 0; |
| r->left = 0; |
| r->width = ssd->sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1; |
| r->height = ssd->sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1; |
| } |
| |
| static int __smiapp_get_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *comp, *crops[SMIAPP_PADS]; |
| struct v4l2_rect sink_fmt; |
| int ret; |
| |
| ret = __smiapp_sel_supported(subdev, sel); |
| if (ret) |
| return ret; |
| |
| smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sink_fmt = ssd->sink_fmt; |
| } else { |
| struct v4l2_mbus_framefmt *fmt = |
| v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad); |
| |
| sink_fmt.left = 0; |
| sink_fmt.top = 0; |
| sink_fmt.width = fmt->width; |
| sink_fmt.height = fmt->height; |
| } |
| |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP_BOUNDS: |
| case V4L2_SEL_TGT_NATIVE_SIZE: |
| if (ssd == sensor->pixel_array) |
| smiapp_get_native_size(ssd, &sel->r); |
| else if (sel->pad == ssd->sink_pad) |
| sel->r = sink_fmt; |
| else |
| sel->r = *comp; |
| break; |
| case V4L2_SEL_TGT_CROP: |
| case V4L2_SEL_TGT_COMPOSE_BOUNDS: |
| sel->r = *crops[sel->pad]; |
| break; |
| case V4L2_SEL_TGT_COMPOSE: |
| sel->r = *comp; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int smiapp_get_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = __smiapp_get_selection(subdev, cfg, sel); |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| static int smiapp_set_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_pad_config *cfg, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int ret; |
| |
| ret = __smiapp_sel_supported(subdev, sel); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&sensor->mutex); |
| |
| sel->r.left = max(0, sel->r.left & ~1); |
| sel->r.top = max(0, sel->r.top & ~1); |
| sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags); |
| sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags); |
| |
| sel->r.width = max_t(unsigned int, |
| sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE], |
| sel->r.width); |
| sel->r.height = max_t(unsigned int, |
| sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE], |
| sel->r.height); |
| |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP: |
| ret = smiapp_set_crop(subdev, cfg, sel); |
| break; |
| case V4L2_SEL_TGT_COMPOSE: |
| ret = smiapp_set_compose(subdev, cfg, sel); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| mutex_unlock(&sensor->mutex); |
| return ret; |
| } |
| |
| static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| |
| *frames = sensor->frame_skip; |
| return 0; |
| } |
| |
| static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| |
| *lines = sensor->image_start; |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * sysfs attributes |
| */ |
| |
| static ssize_t |
| smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int nbytes; |
| |
| if (!sensor->dev_init_done) |
| return -EBUSY; |
| |
| if (!sensor->nvm_size) { |
| int rval; |
| |
| /* NVM not read yet - read it now */ |
| sensor->nvm_size = sensor->hwcfg->nvm_size; |
| |
| rval = pm_runtime_get_sync(&client->dev); |
| if (rval < 0) { |
| if (rval != -EBUSY && rval != -EAGAIN) |
| pm_runtime_set_active(&client->dev); |
| pm_runtime_put(&client->dev); |
| return -ENODEV; |
| } |
| |
| if (smiapp_read_nvm(sensor, sensor->nvm)) { |
| dev_err(&client->dev, "nvm read failed\n"); |
| return -ENODEV; |
| } |
| |
| pm_runtime_mark_last_busy(&client->dev); |
| pm_runtime_put_autosuspend(&client->dev); |
| } |
| /* |
| * NVM is still way below a PAGE_SIZE, so we can safely |
| * assume this for now. |
| */ |
| nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE); |
| memcpy(buf, sensor->nvm, nbytes); |
| |
| return nbytes; |
| } |
| static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL); |
| |
| static ssize_t |
| smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_module_info *minfo = &sensor->minfo; |
| |
| return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n", |
| minfo->manufacturer_id, minfo->model_id, |
| minfo->revision_number_major) + 1; |
| } |
| |
| static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL); |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 subdev core operations |
| */ |
| |
| static int smiapp_identify_module(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct smiapp_module_info *minfo = &sensor->minfo; |
| unsigned int i; |
| int rval = 0; |
| |
| minfo->name = SMIAPP_NAME; |
| |
| /* Module info */ |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID, |
| &minfo->manufacturer_id); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID, |
| &minfo->model_id); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_REVISION_NUMBER_MAJOR, |
| &minfo->revision_number_major); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_REVISION_NUMBER_MINOR, |
| &minfo->revision_number_minor); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_MODULE_DATE_YEAR, |
| &minfo->module_year); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_MODULE_DATE_MONTH, |
| &minfo->module_month); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY, |
| &minfo->module_day); |
| |
| /* Sensor info */ |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID, |
| &minfo->sensor_manufacturer_id); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U16_SENSOR_MODEL_ID, |
| &minfo->sensor_model_id); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_SENSOR_REVISION_NUMBER, |
| &minfo->sensor_revision_number); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION, |
| &minfo->sensor_firmware_version); |
| |
| /* SMIA */ |
| if (!rval) |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION, |
| &minfo->smia_version); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION, |
| &minfo->smiapp_version); |
| |
| if (rval) { |
| dev_err(&client->dev, "sensor detection failed\n"); |
| return -ENODEV; |
| } |
| |
| dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n", |
| minfo->manufacturer_id, minfo->model_id); |
| |
| dev_dbg(&client->dev, |
| "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n", |
| minfo->revision_number_major, minfo->revision_number_minor, |
| minfo->module_year, minfo->module_month, minfo->module_day); |
| |
| dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n", |
| minfo->sensor_manufacturer_id, minfo->sensor_model_id); |
| |
| dev_dbg(&client->dev, |
| "sensor revision 0x%2.2x firmware version 0x%2.2x\n", |
| minfo->sensor_revision_number, minfo->sensor_firmware_version); |
| |
| dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n", |
| minfo->smia_version, minfo->smiapp_version); |
| |
| /* |
| * Some modules have bad data in the lvalues below. Hope the |
| * rvalues have better stuff. The lvalues are module |
| * parameters whereas the rvalues are sensor parameters. |
| */ |
| if (!minfo->manufacturer_id && !minfo->model_id) { |
| minfo->manufacturer_id = minfo->sensor_manufacturer_id; |
| minfo->model_id = minfo->sensor_model_id; |
| minfo->revision_number_major = minfo->sensor_revision_number; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) { |
| if (smiapp_module_idents[i].manufacturer_id |
| != minfo->manufacturer_id) |
| continue; |
| if (smiapp_module_idents[i].model_id != minfo->model_id) |
| continue; |
| if (smiapp_module_idents[i].flags |
| & SMIAPP_MODULE_IDENT_FLAG_REV_LE) { |
| if (smiapp_module_idents[i].revision_number_major |
| < minfo->revision_number_major) |
| continue; |
| } else { |
| if (smiapp_module_idents[i].revision_number_major |
| != minfo->revision_number_major) |
| continue; |
| } |
| |
| minfo->name = smiapp_module_idents[i].name; |
| minfo->quirk = smiapp_module_idents[i].quirk; |
| break; |
| } |
| |
| if (i >= ARRAY_SIZE(smiapp_module_idents)) |
| dev_warn(&client->dev, |
| "no quirks for this module; let's hope it's fully compliant\n"); |
| |
| dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n", |
| minfo->name, minfo->manufacturer_id, minfo->model_id, |
| minfo->revision_number_major); |
| |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_ops smiapp_ops; |
| static const struct v4l2_subdev_internal_ops smiapp_internal_ops; |
| static const struct media_entity_operations smiapp_entity_ops; |
| |
| static int smiapp_register_subdev(struct smiapp_sensor *sensor, |
| struct smiapp_subdev *ssd, |
| struct smiapp_subdev *sink_ssd, |
| u16 source_pad, u16 sink_pad, u32 link_flags) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| if (!sink_ssd) |
| return 0; |
| |
| rval = media_entity_pads_init(&ssd->sd.entity, |
| ssd->npads, ssd->pads); |
| if (rval) { |
| dev_err(&client->dev, |
| "media_entity_pads_init failed\n"); |
| return rval; |
| } |
| |
| rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, |
| &ssd->sd); |
| if (rval) { |
| dev_err(&client->dev, |
| "v4l2_device_register_subdev failed\n"); |
| return rval; |
| } |
| |
| rval = media_create_pad_link(&ssd->sd.entity, source_pad, |
| &sink_ssd->sd.entity, sink_pad, |
| link_flags); |
| if (rval) { |
| dev_err(&client->dev, |
| "media_create_pad_link failed\n"); |
| v4l2_device_unregister_subdev(&ssd->sd); |
| return rval; |
| } |
| |
| return 0; |
| } |
| |
| static void smiapp_unregistered(struct v4l2_subdev *subdev) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int i; |
| |
| for (i = 1; i < sensor->ssds_used; i++) |
| v4l2_device_unregister_subdev(&sensor->ssds[i].sd); |
| } |
| |
| static int smiapp_registered(struct v4l2_subdev *subdev) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int rval; |
| |
| if (sensor->scaler) { |
| rval = smiapp_register_subdev( |
| sensor, sensor->binner, sensor->scaler, |
| SMIAPP_PAD_SRC, SMIAPP_PAD_SINK, |
| MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); |
| if (rval < 0) |
| return rval; |
| } |
| |
| rval = smiapp_register_subdev( |
| sensor, sensor->pixel_array, sensor->binner, |
| SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK, |
| MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); |
| if (rval) |
| goto out_err; |
| |
| return 0; |
| |
| out_err: |
| smiapp_unregistered(subdev); |
| |
| return rval; |
| } |
| |
| static void smiapp_cleanup(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| |
| device_remove_file(&client->dev, &dev_attr_nvm); |
| device_remove_file(&client->dev, &dev_attr_ident); |
| |
| smiapp_free_controls(sensor); |
| } |
| |
| static void smiapp_create_subdev(struct smiapp_sensor *sensor, |
| struct smiapp_subdev *ssd, const char *name, |
| unsigned short num_pads) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| |
| if (!ssd) |
| return; |
| |
| if (ssd != sensor->src) |
| v4l2_subdev_init(&ssd->sd, &smiapp_ops); |
| |
| ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; |
| ssd->sensor = sensor; |
| |
| ssd->npads = num_pads; |
| ssd->source_pad = num_pads - 1; |
| |
| snprintf(ssd->sd.name, |
| sizeof(ssd->sd.name), "%s %s %d-%4.4x", sensor->minfo.name, |
| name, i2c_adapter_id(client->adapter), client->addr); |
| |
| smiapp_get_native_size(ssd, &ssd->sink_fmt); |
| |
| ssd->compose.width = ssd->sink_fmt.width; |
| ssd->compose.height = ssd->sink_fmt.height; |
| ssd->crop[ssd->source_pad] = ssd->compose; |
| ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE; |
| if (ssd != sensor->pixel_array) { |
| ssd->crop[ssd->sink_pad] = ssd->compose; |
| ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK; |
| } |
| |
| ssd->sd.entity.ops = &smiapp_entity_ops; |
| |
| if (ssd == sensor->src) |
| return; |
| |
| ssd->sd.internal_ops = &smiapp_internal_ops; |
| ssd->sd.owner = THIS_MODULE; |
| ssd->sd.dev = &client->dev; |
| v4l2_set_subdevdata(&ssd->sd, client); |
| } |
| |
| static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) |
| { |
| struct smiapp_subdev *ssd = to_smiapp_subdev(sd); |
| struct smiapp_sensor *sensor = ssd->sensor; |
| unsigned int i; |
| |
| mutex_lock(&sensor->mutex); |
| |
| for (i = 0; i < ssd->npads; i++) { |
| struct v4l2_mbus_framefmt *try_fmt = |
| v4l2_subdev_get_try_format(sd, fh->pad, i); |
| struct v4l2_rect *try_crop = |
| v4l2_subdev_get_try_crop(sd, fh->pad, i); |
| struct v4l2_rect *try_comp; |
| |
| smiapp_get_native_size(ssd, try_crop); |
| |
| try_fmt->width = try_crop->width; |
| try_fmt->height = try_crop->height; |
| try_fmt->code = sensor->internal_csi_format->code; |
| try_fmt->field = V4L2_FIELD_NONE; |
| |
| if (ssd != sensor->pixel_array) |
| continue; |
| |
| try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i); |
| *try_comp = *try_crop; |
| } |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_video_ops smiapp_video_ops = { |
| .s_stream = smiapp_set_stream, |
| }; |
| |
| static const struct v4l2_subdev_pad_ops smiapp_pad_ops = { |
| .enum_mbus_code = smiapp_enum_mbus_code, |
| .get_fmt = smiapp_get_format, |
| .set_fmt = smiapp_set_format, |
| .get_selection = smiapp_get_selection, |
| .set_selection = smiapp_set_selection, |
| }; |
| |
| static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = { |
| .g_skip_frames = smiapp_get_skip_frames, |
| .g_skip_top_lines = smiapp_get_skip_top_lines, |
| }; |
| |
| static const struct v4l2_subdev_ops smiapp_ops = { |
| .video = &smiapp_video_ops, |
| .pad = &smiapp_pad_ops, |
| .sensor = &smiapp_sensor_ops, |
| }; |
| |
| static const struct media_entity_operations smiapp_entity_ops = { |
| .link_validate = v4l2_subdev_link_validate, |
| }; |
| |
| static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = { |
| .registered = smiapp_registered, |
| .unregistered = smiapp_unregistered, |
| .open = smiapp_open, |
| }; |
| |
| static const struct v4l2_subdev_internal_ops smiapp_internal_ops = { |
| .open = smiapp_open, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * I2C Driver |
| */ |
| |
| static int __maybe_unused smiapp_suspend(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| bool streaming = sensor->streaming; |
| int rval; |
| |
| rval = pm_runtime_get_sync(dev); |
| if (rval < 0) { |
| if (rval != -EBUSY && rval != -EAGAIN) |
| pm_runtime_set_active(&client->dev); |
| pm_runtime_put(dev); |
| return -EAGAIN; |
| } |
| |
| if (sensor->streaming) |
| smiapp_stop_streaming(sensor); |
| |
| /* save state for resume */ |
| sensor->streaming = streaming; |
| |
| return 0; |
| } |
| |
| static int __maybe_unused smiapp_resume(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int rval = 0; |
| |
| pm_runtime_put(dev); |
| |
| if (sensor->streaming) |
| rval = smiapp_start_streaming(sensor); |
| |
| return rval; |
| } |
| |
| static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev) |
| { |
| struct smiapp_hwconfig *hwcfg; |
| struct v4l2_fwnode_endpoint *bus_cfg; |
| struct fwnode_handle *ep; |
| struct fwnode_handle *fwnode = dev_fwnode(dev); |
| int i; |
| int rval; |
| |
| if (!fwnode) |
| return dev->platform_data; |
| |
| ep = fwnode_graph_get_next_endpoint(fwnode, NULL); |
| if (!ep) |
| return NULL; |
| |
| bus_cfg = v4l2_fwnode_endpoint_alloc_parse(ep); |
| if (IS_ERR(bus_cfg)) |
| goto out_err; |
| |
| hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL); |
| if (!hwcfg) |
| goto out_err; |
| |
| switch (bus_cfg->bus_type) { |
| case V4L2_MBUS_CSI2: |
| hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2; |
| hwcfg->lanes = bus_cfg->bus.mipi_csi2.num_data_lanes; |
| break; |
| case V4L2_MBUS_CCP2: |
| hwcfg->csi_signalling_mode = (bus_cfg->bus.mipi_csi1.strobe) ? |
| SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE : |
| SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK; |
| hwcfg->lanes = 1; |
| break; |
| default: |
| dev_err(dev, "unsupported bus %u\n", bus_cfg->bus_type); |
| goto out_err; |
| } |
| |
| dev_dbg(dev, "lanes %u\n", hwcfg->lanes); |
| |
| /* NVM size is not mandatory */ |
| fwnode_property_read_u32(fwnode, "nokia,nvm-size", &hwcfg->nvm_size); |
| |
| rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency", |
| &hwcfg->ext_clk); |
| if (rval) |
| dev_info(dev, "can't get clock-frequency\n"); |
| |
| dev_dbg(dev, "nvm %d, clk %d, mode %d\n", |
| hwcfg->nvm_size, hwcfg->ext_clk, hwcfg->csi_signalling_mode); |
| |
| if (!bus_cfg->nr_of_link_frequencies) { |
| dev_warn(dev, "no link frequencies defined\n"); |
| goto out_err; |
| } |
| |
| hwcfg->op_sys_clock = devm_kcalloc( |
| dev, bus_cfg->nr_of_link_frequencies + 1 /* guardian */, |
| sizeof(*hwcfg->op_sys_clock), GFP_KERNEL); |
| if (!hwcfg->op_sys_clock) |
| goto out_err; |
| |
| for (i = 0; i < bus_cfg->nr_of_link_frequencies; i++) { |
| hwcfg->op_sys_clock[i] = bus_cfg->link_frequencies[i]; |
| dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]); |
| } |
| |
| v4l2_fwnode_endpoint_free(bus_cfg); |
| fwnode_handle_put(ep); |
| return hwcfg; |
| |
| out_err: |
| v4l2_fwnode_endpoint_free(bus_cfg); |
| fwnode_handle_put(ep); |
| return NULL; |
| } |
| |
| static int smiapp_probe(struct i2c_client *client, |
| const struct i2c_device_id *devid) |
| { |
| struct smiapp_sensor *sensor; |
| struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev); |
| unsigned int i; |
| int rval; |
| |
| if (hwcfg == NULL) |
| return -ENODEV; |
| |
| sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL); |
| if (sensor == NULL) |
| return -ENOMEM; |
| |
| sensor->hwcfg = hwcfg; |
| mutex_init(&sensor->mutex); |
| sensor->src = &sensor->ssds[sensor->ssds_used]; |
| |
| v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops); |
| sensor->src->sd.internal_ops = &smiapp_internal_src_ops; |
| |
| sensor->vana = devm_regulator_get(&client->dev, "vana"); |
| if (IS_ERR(sensor->vana)) { |
| dev_err(&client->dev, "could not get regulator for vana\n"); |
| return PTR_ERR(sensor->vana); |
| } |
| |
| sensor->ext_clk = devm_clk_get(&client->dev, NULL); |
| if (PTR_ERR(sensor->ext_clk) == -ENOENT) { |
| dev_info(&client->dev, "no clock defined, continuing...\n"); |
| sensor->ext_clk = NULL; |
| } else if (IS_ERR(sensor->ext_clk)) { |
| dev_err(&client->dev, "could not get clock (%ld)\n", |
| PTR_ERR(sensor->ext_clk)); |
| return -EPROBE_DEFER; |
| } |
| |
| if (sensor->ext_clk) { |
| if (sensor->hwcfg->ext_clk) { |
| unsigned long rate; |
| |
| rval = clk_set_rate(sensor->ext_clk, |
| sensor->hwcfg->ext_clk); |
| if (rval < 0) { |
| dev_err(&client->dev, |
| "unable to set clock freq to %u\n", |
| sensor->hwcfg->ext_clk); |
| return rval; |
| } |
| |
| rate = clk_get_rate(sensor->ext_clk); |
| if (rate != sensor->hwcfg->ext_clk) { |
| dev_err(&client->dev, |
| "can't set clock freq, asked for %u but got %lu\n", |
| sensor->hwcfg->ext_clk, rate); |
| return rval; |
| } |
| } else { |
| sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk); |
| dev_dbg(&client->dev, "obtained clock freq %u\n", |
| sensor->hwcfg->ext_clk); |
| } |
| } else if (sensor->hwcfg->ext_clk) { |
| dev_dbg(&client->dev, "assuming clock freq %u\n", |
| sensor->hwcfg->ext_clk); |
| } else { |
| dev_err(&client->dev, "unable to obtain clock freq\n"); |
| return -EINVAL; |
| } |
| |
| sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown", |
| GPIOD_OUT_LOW); |
| if (IS_ERR(sensor->xshutdown)) |
| return PTR_ERR(sensor->xshutdown); |
| |
| rval = smiapp_power_on(&client->dev); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_identify_module(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| |
| rval = smiapp_get_all_limits(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| |
| rval = smiapp_read_frame_fmt(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| |
| /* |
| * Handle Sensor Module orientation on the board. |
| * |
| * The application of H-FLIP and V-FLIP on the sensor is modified by |
| * the sensor orientation on the board. |
| * |
| * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set |
| * both H-FLIP and V-FLIP for normal operation which also implies |
| * that a set/unset operation for user space HFLIP and VFLIP v4l2 |
| * controls will need to be internally inverted. |
| * |
| * Rotation also changes the bayer pattern. |
| */ |
| if (sensor->hwcfg->module_board_orient == |
| SMIAPP_MODULE_BOARD_ORIENT_180) |
| sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP | |
| SMIAPP_IMAGE_ORIENTATION_VFLIP; |
| |
| rval = smiapp_call_quirk(sensor, limits); |
| if (rval) { |
| dev_err(&client->dev, "limits quirks failed\n"); |
| goto out_power_off; |
| } |
| |
| if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) { |
| u32 val; |
| |
| rval = smiapp_read(sensor, |
| SMIAPP_REG_U8_BINNING_SUBTYPES, &val); |
| if (rval < 0) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| sensor->nbinning_subtypes = min_t(u8, val, |
| SMIAPP_BINNING_SUBTYPES); |
| |
| for (i = 0; i < sensor->nbinning_subtypes; i++) { |
| rval = smiapp_read( |
| sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val); |
| if (rval < 0) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| sensor->binning_subtypes[i] = |
| *(struct smiapp_binning_subtype *)&val; |
| |
| dev_dbg(&client->dev, "binning %xx%x\n", |
| sensor->binning_subtypes[i].horizontal, |
| sensor->binning_subtypes[i].vertical); |
| } |
| } |
| sensor->binning_horizontal = 1; |
| sensor->binning_vertical = 1; |
| |
| if (device_create_file(&client->dev, &dev_attr_ident) != 0) { |
| dev_err(&client->dev, "sysfs ident entry creation failed\n"); |
| rval = -ENOENT; |
| goto out_power_off; |
| } |
| /* SMIA++ NVM initialization - it will be read from the sensor |
| * when it is first requested by userspace. |
| */ |
| if (sensor->minfo.smiapp_version && sensor->hwcfg->nvm_size) { |
| sensor->nvm = devm_kzalloc(&client->dev, |
| sensor->hwcfg->nvm_size, GFP_KERNEL); |
| if (sensor->nvm == NULL) { |
| rval = -ENOMEM; |
| goto out_cleanup; |
| } |
| |
| if (device_create_file(&client->dev, &dev_attr_nvm) != 0) { |
| dev_err(&client->dev, "sysfs nvm entry failed\n"); |
| rval = -EBUSY; |
| goto out_cleanup; |
| } |
| } |
| |
| /* We consider this as profile 0 sensor if any of these are zero. */ |
| if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] || |
| !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] || |
| !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] || |
| !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) { |
| sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0; |
| } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| != SMIAPP_SCALING_CAPABILITY_NONE) { |
| if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| == SMIAPP_SCALING_CAPABILITY_HORIZONTAL) |
| sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1; |
| else |
| sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2; |
| sensor->scaler = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] |
| == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { |
| sensor->scaler = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| } |
| sensor->binner = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| sensor->pixel_array = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| |
| sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; |
| |
| /* prepare PLL configuration input values */ |
| sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2; |
| sensor->pll.csi2.lanes = sensor->hwcfg->lanes; |
| sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk; |
| sensor->pll.scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; |
| /* Profile 0 sensors have no separate OP clock branch. */ |
| if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) |
| sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS; |
| |
| smiapp_create_subdev(sensor, sensor->scaler, "scaler", 2); |
| smiapp_create_subdev(sensor, sensor->binner, "binner", 2); |
| smiapp_create_subdev(sensor, sensor->pixel_array, "pixel_array", 1); |
| |
| dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile); |
| |
| sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; |
| |
| rval = smiapp_init_controls(sensor); |
| if (rval < 0) |
| goto out_cleanup; |
| |
| rval = smiapp_call_quirk(sensor, init); |
| if (rval) |
| goto out_cleanup; |
| |
| rval = smiapp_get_mbus_formats(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_cleanup; |
| } |
| |
| rval = smiapp_init_late_controls(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_cleanup; |
| } |
| |
| mutex_lock(&sensor->mutex); |
| rval = smiapp_update_mode(sensor); |
| mutex_unlock(&sensor->mutex); |
| if (rval) { |
| dev_err(&client->dev, "update mode failed\n"); |
| goto out_cleanup; |
| } |
| |
| sensor->streaming = false; |
| sensor->dev_init_done = true; |
| |
| rval = media_entity_pads_init(&sensor->src->sd.entity, 2, |
| sensor->src->pads); |
| if (rval < 0) |
| goto out_media_entity_cleanup; |
| |
| rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd); |
| if (rval < 0) |
| goto out_media_entity_cleanup; |
| |
| pm_runtime_set_active(&client->dev); |
| pm_runtime_get_noresume(&client->dev); |
| pm_runtime_enable(&client->dev); |
| pm_runtime_set_autosuspend_delay(&client->dev, 1000); |
| pm_runtime_use_autosuspend(&client->dev); |
| pm_runtime_put_autosuspend(&client->dev); |
| |
| return 0; |
| |
| out_media_entity_cleanup: |
| media_entity_cleanup(&sensor->src->sd.entity); |
| |
| out_cleanup: |
| smiapp_cleanup(sensor); |
| |
| out_power_off: |
| smiapp_power_off(&client->dev); |
| |
| return rval; |
| } |
| |
| static int smiapp_remove(struct i2c_client *client) |
| { |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int i; |
| |
| v4l2_async_unregister_subdev(subdev); |
| |
| pm_runtime_disable(&client->dev); |
| if (!pm_runtime_status_suspended(&client->dev)) |
| smiapp_power_off(&client->dev); |
| pm_runtime_set_suspended(&client->dev); |
| |
| for (i = 0; i < sensor->ssds_used; i++) { |
| v4l2_device_unregister_subdev(&sensor->ssds[i].sd); |
| media_entity_cleanup(&sensor->ssds[i].sd.entity); |
| } |
| smiapp_cleanup(sensor); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id smiapp_of_table[] = { |
| { .compatible = "nokia,smia" }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, smiapp_of_table); |
| |
| static const struct i2c_device_id smiapp_id_table[] = { |
| { SMIAPP_NAME, 0 }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(i2c, smiapp_id_table); |
| |
| static const struct dev_pm_ops smiapp_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume) |
| SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL) |
| }; |
| |
| static struct i2c_driver smiapp_i2c_driver = { |
| .driver = { |
| .of_match_table = smiapp_of_table, |
| .name = SMIAPP_NAME, |
| .pm = &smiapp_pm_ops, |
| }, |
| .probe = smiapp_probe, |
| .remove = smiapp_remove, |
| .id_table = smiapp_id_table, |
| }; |
| |
| module_i2c_driver(smiapp_i2c_driver); |
| |
| MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>"); |
| MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver"); |
| MODULE_LICENSE("GPL"); |