| // SPDX-License-Identifier: GPL-2.0-only |
| |
| /* |
| * Local APIC virtualization |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright (C) 2007 Novell |
| * Copyright (C) 2007 Intel |
| * Copyright 2009 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Dor Laor <dor.laor@qumranet.com> |
| * Gregory Haskins <ghaskins@novell.com> |
| * Yaozu (Eddie) Dong <eddie.dong@intel.com> |
| * |
| * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_host.h> |
| #include <linux/kvm.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/smp.h> |
| #include <linux/hrtimer.h> |
| #include <linux/io.h> |
| #include <linux/export.h> |
| #include <linux/math64.h> |
| #include <linux/slab.h> |
| #include <asm/processor.h> |
| #include <asm/mce.h> |
| #include <asm/msr.h> |
| #include <asm/page.h> |
| #include <asm/current.h> |
| #include <asm/apicdef.h> |
| #include <asm/delay.h> |
| #include <linux/atomic.h> |
| #include <linux/jump_label.h> |
| #include "kvm_cache_regs.h" |
| #include "irq.h" |
| #include "ioapic.h" |
| #include "trace.h" |
| #include "x86.h" |
| #include "xen.h" |
| #include "cpuid.h" |
| #include "hyperv.h" |
| #include "smm.h" |
| |
| #ifndef CONFIG_X86_64 |
| #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) |
| #else |
| #define mod_64(x, y) ((x) % (y)) |
| #endif |
| |
| /* 14 is the version for Xeon and Pentium 8.4.8*/ |
| #define APIC_VERSION 0x14UL |
| #define LAPIC_MMIO_LENGTH (1 << 12) |
| /* followed define is not in apicdef.h */ |
| #define MAX_APIC_VECTOR 256 |
| #define APIC_VECTORS_PER_REG 32 |
| |
| /* |
| * Enable local APIC timer advancement (tscdeadline mode only) with adaptive |
| * tuning. When enabled, KVM programs the host timer event to fire early, i.e. |
| * before the deadline expires, to account for the delay between taking the |
| * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume |
| * the guest, i.e. so that the interrupt arrives in the guest with minimal |
| * latency relative to the deadline programmed by the guest. |
| */ |
| static bool lapic_timer_advance __read_mostly = true; |
| module_param(lapic_timer_advance, bool, 0444); |
| |
| #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ |
| #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ |
| #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 |
| #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 |
| /* step-by-step approximation to mitigate fluctuation */ |
| #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 |
| static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); |
| static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); |
| |
| static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) |
| { |
| *((u32 *) (regs + reg_off)) = val; |
| } |
| |
| static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) |
| { |
| __kvm_lapic_set_reg(apic->regs, reg_off, val); |
| } |
| |
| static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) |
| { |
| BUILD_BUG_ON(reg != APIC_ICR); |
| return *((u64 *) (regs + reg)); |
| } |
| |
| static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) |
| { |
| return __kvm_lapic_get_reg64(apic->regs, reg); |
| } |
| |
| static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) |
| { |
| BUILD_BUG_ON(reg != APIC_ICR); |
| *((u64 *) (regs + reg)) = val; |
| } |
| |
| static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, |
| int reg, u64 val) |
| { |
| __kvm_lapic_set_reg64(apic->regs, reg, val); |
| } |
| |
| static inline int apic_test_vector(int vec, void *bitmap) |
| { |
| return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); |
| } |
| |
| bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| return apic_test_vector(vector, apic->regs + APIC_ISR) || |
| apic_test_vector(vector, apic->regs + APIC_IRR); |
| } |
| |
| static inline int __apic_test_and_set_vector(int vec, void *bitmap) |
| { |
| return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); |
| } |
| |
| static inline int __apic_test_and_clear_vector(int vec, void *bitmap) |
| { |
| return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); |
| } |
| |
| __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); |
| EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); |
| |
| __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); |
| __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); |
| |
| static inline int apic_enabled(struct kvm_lapic *apic) |
| { |
| return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); |
| } |
| |
| #define LVT_MASK \ |
| (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) |
| |
| #define LINT_MASK \ |
| (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ |
| APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) |
| |
| static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) |
| { |
| return apic->vcpu->vcpu_id; |
| } |
| |
| static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) |
| { |
| return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && |
| (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); |
| } |
| |
| bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) |
| { |
| return kvm_x86_ops.set_hv_timer |
| && !(kvm_mwait_in_guest(vcpu->kvm) || |
| kvm_can_post_timer_interrupt(vcpu)); |
| } |
| |
| static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) |
| { |
| return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; |
| } |
| |
| static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) |
| { |
| return ((id >> 4) << 16) | (1 << (id & 0xf)); |
| } |
| |
| static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, |
| u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { |
| switch (map->logical_mode) { |
| case KVM_APIC_MODE_SW_DISABLED: |
| /* Arbitrarily use the flat map so that @cluster isn't NULL. */ |
| *cluster = map->xapic_flat_map; |
| *mask = 0; |
| return true; |
| case KVM_APIC_MODE_X2APIC: { |
| u32 offset = (dest_id >> 16) * 16; |
| u32 max_apic_id = map->max_apic_id; |
| |
| if (offset <= max_apic_id) { |
| u8 cluster_size = min(max_apic_id - offset + 1, 16U); |
| |
| offset = array_index_nospec(offset, map->max_apic_id + 1); |
| *cluster = &map->phys_map[offset]; |
| *mask = dest_id & (0xffff >> (16 - cluster_size)); |
| } else { |
| *mask = 0; |
| } |
| |
| return true; |
| } |
| case KVM_APIC_MODE_XAPIC_FLAT: |
| *cluster = map->xapic_flat_map; |
| *mask = dest_id & 0xff; |
| return true; |
| case KVM_APIC_MODE_XAPIC_CLUSTER: |
| *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; |
| *mask = dest_id & 0xf; |
| return true; |
| case KVM_APIC_MODE_MAP_DISABLED: |
| return false; |
| default: |
| WARN_ON_ONCE(1); |
| return false; |
| } |
| } |
| |
| static void kvm_apic_map_free(struct rcu_head *rcu) |
| { |
| struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); |
| |
| kvfree(map); |
| } |
| |
| static int kvm_recalculate_phys_map(struct kvm_apic_map *new, |
| struct kvm_vcpu *vcpu, |
| bool *xapic_id_mismatch) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u32 x2apic_id = kvm_x2apic_id(apic); |
| u32 xapic_id = kvm_xapic_id(apic); |
| u32 physical_id; |
| |
| /* |
| * For simplicity, KVM always allocates enough space for all possible |
| * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on |
| * without the optimized map. |
| */ |
| if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) |
| return -EINVAL; |
| |
| /* |
| * Bail if a vCPU was added and/or enabled its APIC between allocating |
| * the map and doing the actual calculations for the map. Note, KVM |
| * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if |
| * the compiler decides to reload x2apic_id after this check. |
| */ |
| if (x2apic_id > new->max_apic_id) |
| return -E2BIG; |
| |
| /* |
| * Deliberately truncate the vCPU ID when detecting a mismatched APIC |
| * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a |
| * 32-bit value. Any unwanted aliasing due to truncation results will |
| * be detected below. |
| */ |
| if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) |
| *xapic_id_mismatch = true; |
| |
| /* |
| * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. |
| * Allow sending events to vCPUs by their x2APIC ID even if the target |
| * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs |
| * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap |
| * and collide). |
| * |
| * Honor the architectural (and KVM's non-optimized) behavior if |
| * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed |
| * to process messages independently. If multiple vCPUs have the same |
| * effective APIC ID, e.g. due to the x2APIC wrap or because the guest |
| * manually modified its xAPIC IDs, events targeting that ID are |
| * supposed to be recognized by all vCPUs with said ID. |
| */ |
| if (vcpu->kvm->arch.x2apic_format) { |
| /* See also kvm_apic_match_physical_addr(). */ |
| if (apic_x2apic_mode(apic) || x2apic_id > 0xff) |
| new->phys_map[x2apic_id] = apic; |
| |
| if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) |
| new->phys_map[xapic_id] = apic; |
| } else { |
| /* |
| * Disable the optimized map if the physical APIC ID is already |
| * mapped, i.e. is aliased to multiple vCPUs. The optimized |
| * map requires a strict 1:1 mapping between IDs and vCPUs. |
| */ |
| if (apic_x2apic_mode(apic)) |
| physical_id = x2apic_id; |
| else |
| physical_id = xapic_id; |
| |
| if (new->phys_map[physical_id]) |
| return -EINVAL; |
| |
| new->phys_map[physical_id] = apic; |
| } |
| |
| return 0; |
| } |
| |
| static void kvm_recalculate_logical_map(struct kvm_apic_map *new, |
| struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| enum kvm_apic_logical_mode logical_mode; |
| struct kvm_lapic **cluster; |
| u16 mask; |
| u32 ldr; |
| |
| if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) |
| return; |
| |
| if (!kvm_apic_sw_enabled(apic)) |
| return; |
| |
| ldr = kvm_lapic_get_reg(apic, APIC_LDR); |
| if (!ldr) |
| return; |
| |
| if (apic_x2apic_mode(apic)) { |
| logical_mode = KVM_APIC_MODE_X2APIC; |
| } else { |
| ldr = GET_APIC_LOGICAL_ID(ldr); |
| if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) |
| logical_mode = KVM_APIC_MODE_XAPIC_FLAT; |
| else |
| logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; |
| } |
| |
| /* |
| * To optimize logical mode delivery, all software-enabled APICs must |
| * be configured for the same mode. |
| */ |
| if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { |
| new->logical_mode = logical_mode; |
| } else if (new->logical_mode != logical_mode) { |
| new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; |
| return; |
| } |
| |
| /* |
| * In x2APIC mode, the LDR is read-only and derived directly from the |
| * x2APIC ID, thus is guaranteed to be addressable. KVM reuses |
| * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by |
| * reversing the LDR calculation to get cluster of APICs, i.e. no |
| * additional work is required. |
| */ |
| if (apic_x2apic_mode(apic)) |
| return; |
| |
| if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, |
| &cluster, &mask))) { |
| new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; |
| return; |
| } |
| |
| if (!mask) |
| return; |
| |
| ldr = ffs(mask) - 1; |
| if (!is_power_of_2(mask) || cluster[ldr]) |
| new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; |
| else |
| cluster[ldr] = apic; |
| } |
| |
| /* |
| * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. |
| * |
| * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with |
| * apic_map_lock_held. |
| */ |
| enum { |
| CLEAN, |
| UPDATE_IN_PROGRESS, |
| DIRTY |
| }; |
| |
| void kvm_recalculate_apic_map(struct kvm *kvm) |
| { |
| struct kvm_apic_map *new, *old = NULL; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| u32 max_id = 255; /* enough space for any xAPIC ID */ |
| bool xapic_id_mismatch; |
| int r; |
| |
| /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ |
| if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) |
| return; |
| |
| WARN_ONCE(!irqchip_in_kernel(kvm), |
| "Dirty APIC map without an in-kernel local APIC"); |
| |
| mutex_lock(&kvm->arch.apic_map_lock); |
| |
| retry: |
| /* |
| * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) |
| * or the APIC registers (if dirty). Note, on retry the map may have |
| * not yet been marked dirty by whatever task changed a vCPU's x2APIC |
| * ID, i.e. the map may still show up as in-progress. In that case |
| * this task still needs to retry and complete its calculation. |
| */ |
| if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, |
| DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { |
| /* Someone else has updated the map. */ |
| mutex_unlock(&kvm->arch.apic_map_lock); |
| return; |
| } |
| |
| /* |
| * Reset the mismatch flag between attempts so that KVM does the right |
| * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. |
| * keep max_id strictly increasing. Disallowing max_id from shrinking |
| * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU |
| * with the highest x2APIC ID is toggling its APIC on and off. |
| */ |
| xapic_id_mismatch = false; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| if (kvm_apic_present(vcpu)) |
| max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); |
| |
| new = kvzalloc(sizeof(struct kvm_apic_map) + |
| sizeof(struct kvm_lapic *) * ((u64)max_id + 1), |
| GFP_KERNEL_ACCOUNT); |
| |
| if (!new) |
| goto out; |
| |
| new->max_apic_id = max_id; |
| new->logical_mode = KVM_APIC_MODE_SW_DISABLED; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!kvm_apic_present(vcpu)) |
| continue; |
| |
| r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); |
| if (r) { |
| kvfree(new); |
| new = NULL; |
| if (r == -E2BIG) { |
| cond_resched(); |
| goto retry; |
| } |
| |
| goto out; |
| } |
| |
| kvm_recalculate_logical_map(new, vcpu); |
| } |
| out: |
| /* |
| * The optimized map is effectively KVM's internal version of APICv, |
| * and all unwanted aliasing that results in disabling the optimized |
| * map also applies to APICv. |
| */ |
| if (!new) |
| kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); |
| else |
| kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); |
| |
| if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) |
| kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); |
| else |
| kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); |
| |
| if (xapic_id_mismatch) |
| kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); |
| else |
| kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); |
| |
| old = rcu_dereference_protected(kvm->arch.apic_map, |
| lockdep_is_held(&kvm->arch.apic_map_lock)); |
| rcu_assign_pointer(kvm->arch.apic_map, new); |
| /* |
| * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. |
| * If another update has come in, leave it DIRTY. |
| */ |
| atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, |
| UPDATE_IN_PROGRESS, CLEAN); |
| mutex_unlock(&kvm->arch.apic_map_lock); |
| |
| if (old) |
| call_rcu(&old->rcu, kvm_apic_map_free); |
| |
| kvm_make_scan_ioapic_request(kvm); |
| } |
| |
| static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) |
| { |
| bool enabled = val & APIC_SPIV_APIC_ENABLED; |
| |
| kvm_lapic_set_reg(apic, APIC_SPIV, val); |
| |
| if (enabled != apic->sw_enabled) { |
| apic->sw_enabled = enabled; |
| if (enabled) |
| static_branch_slow_dec_deferred(&apic_sw_disabled); |
| else |
| static_branch_inc(&apic_sw_disabled.key); |
| |
| atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); |
| } |
| |
| /* Check if there are APF page ready requests pending */ |
| if (enabled) { |
| kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); |
| kvm_xen_sw_enable_lapic(apic->vcpu); |
| } |
| } |
| |
| static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) |
| { |
| kvm_lapic_set_reg(apic, APIC_ID, id << 24); |
| atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); |
| } |
| |
| static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) |
| { |
| kvm_lapic_set_reg(apic, APIC_LDR, id); |
| atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); |
| } |
| |
| static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) |
| { |
| kvm_lapic_set_reg(apic, APIC_DFR, val); |
| atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); |
| } |
| |
| static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) |
| { |
| u32 ldr = kvm_apic_calc_x2apic_ldr(id); |
| |
| WARN_ON_ONCE(id != apic->vcpu->vcpu_id); |
| |
| kvm_lapic_set_reg(apic, APIC_ID, id); |
| kvm_lapic_set_reg(apic, APIC_LDR, ldr); |
| atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); |
| } |
| |
| static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) |
| { |
| return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); |
| } |
| |
| static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) |
| { |
| return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; |
| } |
| |
| static inline int apic_lvtt_period(struct kvm_lapic *apic) |
| { |
| return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; |
| } |
| |
| static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) |
| { |
| return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; |
| } |
| |
| static inline int apic_lvt_nmi_mode(u32 lvt_val) |
| { |
| return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; |
| } |
| |
| static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) |
| { |
| return apic->nr_lvt_entries > lvt_index; |
| } |
| |
| static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) |
| { |
| return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); |
| } |
| |
| void kvm_apic_set_version(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u32 v = 0; |
| |
| if (!lapic_in_kernel(vcpu)) |
| return; |
| |
| v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); |
| |
| /* |
| * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) |
| * which doesn't have EOI register; Some buggy OSes (e.g. Windows with |
| * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC |
| * version first and level-triggered interrupts never get EOIed in |
| * IOAPIC. |
| */ |
| if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && |
| !ioapic_in_kernel(vcpu->kvm)) |
| v |= APIC_LVR_DIRECTED_EOI; |
| kvm_lapic_set_reg(apic, APIC_LVR, v); |
| } |
| |
| void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) |
| { |
| int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| int i; |
| |
| if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) |
| return; |
| |
| /* Initialize/mask any "new" LVT entries. */ |
| for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) |
| kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); |
| |
| apic->nr_lvt_entries = nr_lvt_entries; |
| |
| /* The number of LVT entries is reflected in the version register. */ |
| kvm_apic_set_version(vcpu); |
| } |
| |
| static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { |
| [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ |
| [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, |
| [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, |
| [LVT_LINT0] = LINT_MASK, |
| [LVT_LINT1] = LINT_MASK, |
| [LVT_ERROR] = LVT_MASK, |
| [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK |
| }; |
| |
| static int find_highest_vector(void *bitmap) |
| { |
| int vec; |
| u32 *reg; |
| |
| for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; |
| vec >= 0; vec -= APIC_VECTORS_PER_REG) { |
| reg = bitmap + REG_POS(vec); |
| if (*reg) |
| return __fls(*reg) + vec; |
| } |
| |
| return -1; |
| } |
| |
| static u8 count_vectors(void *bitmap) |
| { |
| int vec; |
| u32 *reg; |
| u8 count = 0; |
| |
| for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { |
| reg = bitmap + REG_POS(vec); |
| count += hweight32(*reg); |
| } |
| |
| return count; |
| } |
| |
| bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) |
| { |
| u32 i, vec; |
| u32 pir_val, irr_val, prev_irr_val; |
| int max_updated_irr; |
| |
| max_updated_irr = -1; |
| *max_irr = -1; |
| |
| for (i = vec = 0; i <= 7; i++, vec += 32) { |
| u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); |
| |
| irr_val = *p_irr; |
| pir_val = READ_ONCE(pir[i]); |
| |
| if (pir_val) { |
| pir_val = xchg(&pir[i], 0); |
| |
| prev_irr_val = irr_val; |
| do { |
| irr_val = prev_irr_val | pir_val; |
| } while (prev_irr_val != irr_val && |
| !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); |
| |
| if (prev_irr_val != irr_val) |
| max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; |
| } |
| if (irr_val) |
| *max_irr = __fls(irr_val) + vec; |
| } |
| |
| return ((max_updated_irr != -1) && |
| (max_updated_irr == *max_irr)); |
| } |
| EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); |
| |
| bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); |
| |
| if (unlikely(!apic->apicv_active && irr_updated)) |
| apic->irr_pending = true; |
| return irr_updated; |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_update_irr); |
| |
| static inline int apic_search_irr(struct kvm_lapic *apic) |
| { |
| return find_highest_vector(apic->regs + APIC_IRR); |
| } |
| |
| static inline int apic_find_highest_irr(struct kvm_lapic *apic) |
| { |
| int result; |
| |
| /* |
| * Note that irr_pending is just a hint. It will be always |
| * true with virtual interrupt delivery enabled. |
| */ |
| if (!apic->irr_pending) |
| return -1; |
| |
| result = apic_search_irr(apic); |
| ASSERT(result == -1 || result >= 16); |
| |
| return result; |
| } |
| |
| static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) |
| { |
| if (unlikely(apic->apicv_active)) { |
| /* need to update RVI */ |
| kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); |
| kvm_x86_call(hwapic_irr_update)(apic->vcpu, |
| apic_find_highest_irr(apic)); |
| } else { |
| apic->irr_pending = false; |
| kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); |
| if (apic_search_irr(apic) != -1) |
| apic->irr_pending = true; |
| } |
| } |
| |
| void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) |
| { |
| apic_clear_irr(vec, vcpu->arch.apic); |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); |
| |
| static inline void apic_set_isr(int vec, struct kvm_lapic *apic) |
| { |
| if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) |
| return; |
| |
| /* |
| * With APIC virtualization enabled, all caching is disabled |
| * because the processor can modify ISR under the hood. Instead |
| * just set SVI. |
| */ |
| if (unlikely(apic->apicv_active)) |
| kvm_x86_call(hwapic_isr_update)(vec); |
| else { |
| ++apic->isr_count; |
| BUG_ON(apic->isr_count > MAX_APIC_VECTOR); |
| /* |
| * ISR (in service register) bit is set when injecting an interrupt. |
| * The highest vector is injected. Thus the latest bit set matches |
| * the highest bit in ISR. |
| */ |
| apic->highest_isr_cache = vec; |
| } |
| } |
| |
| static inline int apic_find_highest_isr(struct kvm_lapic *apic) |
| { |
| int result; |
| |
| /* |
| * Note that isr_count is always 1, and highest_isr_cache |
| * is always -1, with APIC virtualization enabled. |
| */ |
| if (!apic->isr_count) |
| return -1; |
| if (likely(apic->highest_isr_cache != -1)) |
| return apic->highest_isr_cache; |
| |
| result = find_highest_vector(apic->regs + APIC_ISR); |
| ASSERT(result == -1 || result >= 16); |
| |
| return result; |
| } |
| |
| static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) |
| { |
| if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) |
| return; |
| |
| /* |
| * We do get here for APIC virtualization enabled if the guest |
| * uses the Hyper-V APIC enlightenment. In this case we may need |
| * to trigger a new interrupt delivery by writing the SVI field; |
| * on the other hand isr_count and highest_isr_cache are unused |
| * and must be left alone. |
| */ |
| if (unlikely(apic->apicv_active)) |
| kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic)); |
| else { |
| --apic->isr_count; |
| BUG_ON(apic->isr_count < 0); |
| apic->highest_isr_cache = -1; |
| } |
| } |
| |
| int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) |
| { |
| /* This may race with setting of irr in __apic_accept_irq() and |
| * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq |
| * will cause vmexit immediately and the value will be recalculated |
| * on the next vmentry. |
| */ |
| return apic_find_highest_irr(vcpu->arch.apic); |
| } |
| EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); |
| |
| static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, |
| int vector, int level, int trig_mode, |
| struct dest_map *dest_map); |
| |
| int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, |
| struct dest_map *dest_map) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, |
| irq->level, irq->trig_mode, dest_map); |
| } |
| |
| static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, |
| struct kvm_lapic_irq *irq, u32 min) |
| { |
| int i, count = 0; |
| struct kvm_vcpu *vcpu; |
| |
| if (min > map->max_apic_id) |
| return 0; |
| |
| for_each_set_bit(i, ipi_bitmap, |
| min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { |
| if (map->phys_map[min + i]) { |
| vcpu = map->phys_map[min + i]->vcpu; |
| count += kvm_apic_set_irq(vcpu, irq, NULL); |
| } |
| } |
| |
| return count; |
| } |
| |
| int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, |
| unsigned long ipi_bitmap_high, u32 min, |
| unsigned long icr, int op_64_bit) |
| { |
| struct kvm_apic_map *map; |
| struct kvm_lapic_irq irq = {0}; |
| int cluster_size = op_64_bit ? 64 : 32; |
| int count; |
| |
| if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) |
| return -KVM_EINVAL; |
| |
| irq.vector = icr & APIC_VECTOR_MASK; |
| irq.delivery_mode = icr & APIC_MODE_MASK; |
| irq.level = (icr & APIC_INT_ASSERT) != 0; |
| irq.trig_mode = icr & APIC_INT_LEVELTRIG; |
| |
| rcu_read_lock(); |
| map = rcu_dereference(kvm->arch.apic_map); |
| |
| count = -EOPNOTSUPP; |
| if (likely(map)) { |
| count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); |
| min += cluster_size; |
| count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); |
| } |
| |
| rcu_read_unlock(); |
| return count; |
| } |
| |
| static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) |
| { |
| |
| return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, |
| sizeof(val)); |
| } |
| |
| static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) |
| { |
| |
| return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, |
| sizeof(*val)); |
| } |
| |
| static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; |
| } |
| |
| static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) |
| { |
| if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) |
| return; |
| |
| __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); |
| } |
| |
| static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) |
| { |
| u8 val; |
| |
| if (pv_eoi_get_user(vcpu, &val) < 0) |
| return false; |
| |
| val &= KVM_PV_EOI_ENABLED; |
| |
| if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) |
| return false; |
| |
| /* |
| * Clear pending bit in any case: it will be set again on vmentry. |
| * While this might not be ideal from performance point of view, |
| * this makes sure pv eoi is only enabled when we know it's safe. |
| */ |
| __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); |
| |
| return val; |
| } |
| |
| static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) |
| { |
| int highest_irr; |
| if (kvm_x86_ops.sync_pir_to_irr) |
| highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); |
| else |
| highest_irr = apic_find_highest_irr(apic); |
| if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) |
| return -1; |
| return highest_irr; |
| } |
| |
| static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) |
| { |
| u32 tpr, isrv, ppr, old_ppr; |
| int isr; |
| |
| old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); |
| tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); |
| isr = apic_find_highest_isr(apic); |
| isrv = (isr != -1) ? isr : 0; |
| |
| if ((tpr & 0xf0) >= (isrv & 0xf0)) |
| ppr = tpr & 0xff; |
| else |
| ppr = isrv & 0xf0; |
| |
| *new_ppr = ppr; |
| if (old_ppr != ppr) |
| kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); |
| |
| return ppr < old_ppr; |
| } |
| |
| static void apic_update_ppr(struct kvm_lapic *apic) |
| { |
| u32 ppr; |
| |
| if (__apic_update_ppr(apic, &ppr) && |
| apic_has_interrupt_for_ppr(apic, ppr) != -1) |
| kvm_make_request(KVM_REQ_EVENT, apic->vcpu); |
| } |
| |
| void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) |
| { |
| apic_update_ppr(vcpu->arch.apic); |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); |
| |
| static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) |
| { |
| kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); |
| apic_update_ppr(apic); |
| } |
| |
| static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) |
| { |
| return mda == (apic_x2apic_mode(apic) ? |
| X2APIC_BROADCAST : APIC_BROADCAST); |
| } |
| |
| static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) |
| { |
| if (kvm_apic_broadcast(apic, mda)) |
| return true; |
| |
| /* |
| * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they |
| * were in x2APIC mode if the target APIC ID can't be encoded as an |
| * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which |
| * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC |
| * mode. Match the x2APIC ID if and only if the target APIC ID can't |
| * be encoded in xAPIC to avoid spurious matches against a vCPU that |
| * changed its (addressable) xAPIC ID (which is writable). |
| */ |
| if (apic_x2apic_mode(apic) || mda > 0xff) |
| return mda == kvm_x2apic_id(apic); |
| |
| return mda == kvm_xapic_id(apic); |
| } |
| |
| static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) |
| { |
| u32 logical_id; |
| |
| if (kvm_apic_broadcast(apic, mda)) |
| return true; |
| |
| logical_id = kvm_lapic_get_reg(apic, APIC_LDR); |
| |
| if (apic_x2apic_mode(apic)) |
| return ((logical_id >> 16) == (mda >> 16)) |
| && (logical_id & mda & 0xffff) != 0; |
| |
| logical_id = GET_APIC_LOGICAL_ID(logical_id); |
| |
| switch (kvm_lapic_get_reg(apic, APIC_DFR)) { |
| case APIC_DFR_FLAT: |
| return (logical_id & mda) != 0; |
| case APIC_DFR_CLUSTER: |
| return ((logical_id >> 4) == (mda >> 4)) |
| && (logical_id & mda & 0xf) != 0; |
| default: |
| return false; |
| } |
| } |
| |
| /* The KVM local APIC implementation has two quirks: |
| * |
| * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs |
| * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. |
| * KVM doesn't do that aliasing. |
| * |
| * - in-kernel IOAPIC messages have to be delivered directly to |
| * x2APIC, because the kernel does not support interrupt remapping. |
| * In order to support broadcast without interrupt remapping, x2APIC |
| * rewrites the destination of non-IPI messages from APIC_BROADCAST |
| * to X2APIC_BROADCAST. |
| * |
| * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is |
| * important when userspace wants to use x2APIC-format MSIs, because |
| * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". |
| */ |
| static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, |
| struct kvm_lapic *source, struct kvm_lapic *target) |
| { |
| bool ipi = source != NULL; |
| |
| if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && |
| !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) |
| return X2APIC_BROADCAST; |
| |
| return dest_id; |
| } |
| |
| bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, |
| int shorthand, unsigned int dest, int dest_mode) |
| { |
| struct kvm_lapic *target = vcpu->arch.apic; |
| u32 mda = kvm_apic_mda(vcpu, dest, source, target); |
| |
| ASSERT(target); |
| switch (shorthand) { |
| case APIC_DEST_NOSHORT: |
| if (dest_mode == APIC_DEST_PHYSICAL) |
| return kvm_apic_match_physical_addr(target, mda); |
| else |
| return kvm_apic_match_logical_addr(target, mda); |
| case APIC_DEST_SELF: |
| return target == source; |
| case APIC_DEST_ALLINC: |
| return true; |
| case APIC_DEST_ALLBUT: |
| return target != source; |
| default: |
| return false; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_match_dest); |
| |
| int kvm_vector_to_index(u32 vector, u32 dest_vcpus, |
| const unsigned long *bitmap, u32 bitmap_size) |
| { |
| u32 mod; |
| int i, idx = -1; |
| |
| mod = vector % dest_vcpus; |
| |
| for (i = 0; i <= mod; i++) { |
| idx = find_next_bit(bitmap, bitmap_size, idx + 1); |
| BUG_ON(idx == bitmap_size); |
| } |
| |
| return idx; |
| } |
| |
| static void kvm_apic_disabled_lapic_found(struct kvm *kvm) |
| { |
| if (!kvm->arch.disabled_lapic_found) { |
| kvm->arch.disabled_lapic_found = true; |
| pr_info("Disabled LAPIC found during irq injection\n"); |
| } |
| } |
| |
| static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, |
| struct kvm_lapic_irq *irq, struct kvm_apic_map *map) |
| { |
| if (kvm->arch.x2apic_broadcast_quirk_disabled) { |
| if ((irq->dest_id == APIC_BROADCAST && |
| map->logical_mode != KVM_APIC_MODE_X2APIC)) |
| return true; |
| if (irq->dest_id == X2APIC_BROADCAST) |
| return true; |
| } else { |
| bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); |
| if (irq->dest_id == (x2apic_ipi ? |
| X2APIC_BROADCAST : APIC_BROADCAST)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Return true if the interrupt can be handled by using *bitmap as index mask |
| * for valid destinations in *dst array. |
| * Return false if kvm_apic_map_get_dest_lapic did nothing useful. |
| * Note: we may have zero kvm_lapic destinations when we return true, which |
| * means that the interrupt should be dropped. In this case, *bitmap would be |
| * zero and *dst undefined. |
| */ |
| static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, |
| struct kvm_lapic **src, struct kvm_lapic_irq *irq, |
| struct kvm_apic_map *map, struct kvm_lapic ***dst, |
| unsigned long *bitmap) |
| { |
| int i, lowest; |
| |
| if (irq->shorthand == APIC_DEST_SELF && src) { |
| *dst = src; |
| *bitmap = 1; |
| return true; |
| } else if (irq->shorthand) |
| return false; |
| |
| if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) |
| return false; |
| |
| if (irq->dest_mode == APIC_DEST_PHYSICAL) { |
| if (irq->dest_id > map->max_apic_id) { |
| *bitmap = 0; |
| } else { |
| u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); |
| *dst = &map->phys_map[dest_id]; |
| *bitmap = 1; |
| } |
| return true; |
| } |
| |
| *bitmap = 0; |
| if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, |
| (u16 *)bitmap)) |
| return false; |
| |
| if (!kvm_lowest_prio_delivery(irq)) |
| return true; |
| |
| if (!kvm_vector_hashing_enabled()) { |
| lowest = -1; |
| for_each_set_bit(i, bitmap, 16) { |
| if (!(*dst)[i]) |
| continue; |
| if (lowest < 0) |
| lowest = i; |
| else if (kvm_apic_compare_prio((*dst)[i]->vcpu, |
| (*dst)[lowest]->vcpu) < 0) |
| lowest = i; |
| } |
| } else { |
| if (!*bitmap) |
| return true; |
| |
| lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), |
| bitmap, 16); |
| |
| if (!(*dst)[lowest]) { |
| kvm_apic_disabled_lapic_found(kvm); |
| *bitmap = 0; |
| return true; |
| } |
| } |
| |
| *bitmap = (lowest >= 0) ? 1 << lowest : 0; |
| |
| return true; |
| } |
| |
| bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, |
| struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) |
| { |
| struct kvm_apic_map *map; |
| unsigned long bitmap; |
| struct kvm_lapic **dst = NULL; |
| int i; |
| bool ret; |
| |
| *r = -1; |
| |
| if (irq->shorthand == APIC_DEST_SELF) { |
| if (KVM_BUG_ON(!src, kvm)) { |
| *r = 0; |
| return true; |
| } |
| *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); |
| return true; |
| } |
| |
| rcu_read_lock(); |
| map = rcu_dereference(kvm->arch.apic_map); |
| |
| ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); |
| if (ret) { |
| *r = 0; |
| for_each_set_bit(i, &bitmap, 16) { |
| if (!dst[i]) |
| continue; |
| *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); |
| } |
| } |
| |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* |
| * This routine tries to handle interrupts in posted mode, here is how |
| * it deals with different cases: |
| * - For single-destination interrupts, handle it in posted mode |
| * - Else if vector hashing is enabled and it is a lowest-priority |
| * interrupt, handle it in posted mode and use the following mechanism |
| * to find the destination vCPU. |
| * 1. For lowest-priority interrupts, store all the possible |
| * destination vCPUs in an array. |
| * 2. Use "guest vector % max number of destination vCPUs" to find |
| * the right destination vCPU in the array for the lowest-priority |
| * interrupt. |
| * - Otherwise, use remapped mode to inject the interrupt. |
| */ |
| bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, |
| struct kvm_vcpu **dest_vcpu) |
| { |
| struct kvm_apic_map *map; |
| unsigned long bitmap; |
| struct kvm_lapic **dst = NULL; |
| bool ret = false; |
| |
| if (irq->shorthand) |
| return false; |
| |
| rcu_read_lock(); |
| map = rcu_dereference(kvm->arch.apic_map); |
| |
| if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && |
| hweight16(bitmap) == 1) { |
| unsigned long i = find_first_bit(&bitmap, 16); |
| |
| if (dst[i]) { |
| *dest_vcpu = dst[i]->vcpu; |
| ret = true; |
| } |
| } |
| |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* |
| * Add a pending IRQ into lapic. |
| * Return 1 if successfully added and 0 if discarded. |
| */ |
| static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, |
| int vector, int level, int trig_mode, |
| struct dest_map *dest_map) |
| { |
| int result = 0; |
| struct kvm_vcpu *vcpu = apic->vcpu; |
| |
| trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, |
| trig_mode, vector); |
| switch (delivery_mode) { |
| case APIC_DM_LOWEST: |
| vcpu->arch.apic_arb_prio++; |
| fallthrough; |
| case APIC_DM_FIXED: |
| if (unlikely(trig_mode && !level)) |
| break; |
| |
| /* FIXME add logic for vcpu on reset */ |
| if (unlikely(!apic_enabled(apic))) |
| break; |
| |
| result = 1; |
| |
| if (dest_map) { |
| __set_bit(vcpu->vcpu_id, dest_map->map); |
| dest_map->vectors[vcpu->vcpu_id] = vector; |
| } |
| |
| if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { |
| if (trig_mode) |
| kvm_lapic_set_vector(vector, |
| apic->regs + APIC_TMR); |
| else |
| kvm_lapic_clear_vector(vector, |
| apic->regs + APIC_TMR); |
| } |
| |
| kvm_x86_call(deliver_interrupt)(apic, delivery_mode, |
| trig_mode, vector); |
| break; |
| |
| case APIC_DM_REMRD: |
| result = 1; |
| vcpu->arch.pv.pv_unhalted = 1; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| kvm_vcpu_kick(vcpu); |
| break; |
| |
| case APIC_DM_SMI: |
| if (!kvm_inject_smi(vcpu)) { |
| kvm_vcpu_kick(vcpu); |
| result = 1; |
| } |
| break; |
| |
| case APIC_DM_NMI: |
| result = 1; |
| kvm_inject_nmi(vcpu); |
| kvm_vcpu_kick(vcpu); |
| break; |
| |
| case APIC_DM_INIT: |
| if (!trig_mode || level) { |
| result = 1; |
| /* assumes that there are only KVM_APIC_INIT/SIPI */ |
| apic->pending_events = (1UL << KVM_APIC_INIT); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } |
| break; |
| |
| case APIC_DM_STARTUP: |
| result = 1; |
| apic->sipi_vector = vector; |
| /* make sure sipi_vector is visible for the receiver */ |
| smp_wmb(); |
| set_bit(KVM_APIC_SIPI, &apic->pending_events); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| kvm_vcpu_kick(vcpu); |
| break; |
| |
| case APIC_DM_EXTINT: |
| /* |
| * Should only be called by kvm_apic_local_deliver() with LVT0, |
| * before NMI watchdog was enabled. Already handled by |
| * kvm_apic_accept_pic_intr(). |
| */ |
| break; |
| |
| default: |
| printk(KERN_ERR "TODO: unsupported delivery mode %x\n", |
| delivery_mode); |
| break; |
| } |
| return result; |
| } |
| |
| /* |
| * This routine identifies the destination vcpus mask meant to receive the |
| * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find |
| * out the destination vcpus array and set the bitmap or it traverses to |
| * each available vcpu to identify the same. |
| */ |
| void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, |
| unsigned long *vcpu_bitmap) |
| { |
| struct kvm_lapic **dest_vcpu = NULL; |
| struct kvm_lapic *src = NULL; |
| struct kvm_apic_map *map; |
| struct kvm_vcpu *vcpu; |
| unsigned long bitmap, i; |
| int vcpu_idx; |
| bool ret; |
| |
| rcu_read_lock(); |
| map = rcu_dereference(kvm->arch.apic_map); |
| |
| ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, |
| &bitmap); |
| if (ret) { |
| for_each_set_bit(i, &bitmap, 16) { |
| if (!dest_vcpu[i]) |
| continue; |
| vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; |
| __set_bit(vcpu_idx, vcpu_bitmap); |
| } |
| } else { |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!kvm_apic_present(vcpu)) |
| continue; |
| if (!kvm_apic_match_dest(vcpu, NULL, |
| irq->shorthand, |
| irq->dest_id, |
| irq->dest_mode)) |
| continue; |
| __set_bit(i, vcpu_bitmap); |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) |
| { |
| return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; |
| } |
| |
| static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) |
| { |
| return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); |
| } |
| |
| static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) |
| { |
| int trigger_mode; |
| |
| /* Eoi the ioapic only if the ioapic doesn't own the vector. */ |
| if (!kvm_ioapic_handles_vector(apic, vector)) |
| return; |
| |
| /* Request a KVM exit to inform the userspace IOAPIC. */ |
| if (irqchip_split(apic->vcpu->kvm)) { |
| apic->vcpu->arch.pending_ioapic_eoi = vector; |
| kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); |
| return; |
| } |
| |
| if (apic_test_vector(vector, apic->regs + APIC_TMR)) |
| trigger_mode = IOAPIC_LEVEL_TRIG; |
| else |
| trigger_mode = IOAPIC_EDGE_TRIG; |
| |
| kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); |
| } |
| |
| static int apic_set_eoi(struct kvm_lapic *apic) |
| { |
| int vector = apic_find_highest_isr(apic); |
| |
| trace_kvm_eoi(apic, vector); |
| |
| /* |
| * Not every write EOI will has corresponding ISR, |
| * one example is when Kernel check timer on setup_IO_APIC |
| */ |
| if (vector == -1) |
| return vector; |
| |
| apic_clear_isr(vector, apic); |
| apic_update_ppr(apic); |
| |
| if (kvm_hv_synic_has_vector(apic->vcpu, vector)) |
| kvm_hv_synic_send_eoi(apic->vcpu, vector); |
| |
| kvm_ioapic_send_eoi(apic, vector); |
| kvm_make_request(KVM_REQ_EVENT, apic->vcpu); |
| return vector; |
| } |
| |
| /* |
| * this interface assumes a trap-like exit, which has already finished |
| * desired side effect including vISR and vPPR update. |
| */ |
| void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| trace_kvm_eoi(apic, vector); |
| |
| kvm_ioapic_send_eoi(apic, vector); |
| kvm_make_request(KVM_REQ_EVENT, apic->vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); |
| |
| void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) |
| { |
| struct kvm_lapic_irq irq; |
| |
| /* KVM has no delay and should always clear the BUSY/PENDING flag. */ |
| WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); |
| |
| irq.vector = icr_low & APIC_VECTOR_MASK; |
| irq.delivery_mode = icr_low & APIC_MODE_MASK; |
| irq.dest_mode = icr_low & APIC_DEST_MASK; |
| irq.level = (icr_low & APIC_INT_ASSERT) != 0; |
| irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; |
| irq.shorthand = icr_low & APIC_SHORT_MASK; |
| irq.msi_redir_hint = false; |
| if (apic_x2apic_mode(apic)) |
| irq.dest_id = icr_high; |
| else |
| irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); |
| |
| trace_kvm_apic_ipi(icr_low, irq.dest_id); |
| |
| kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); |
| |
| static u32 apic_get_tmcct(struct kvm_lapic *apic) |
| { |
| ktime_t remaining, now; |
| s64 ns; |
| |
| ASSERT(apic != NULL); |
| |
| /* if initial count is 0, current count should also be 0 */ |
| if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || |
| apic->lapic_timer.period == 0) |
| return 0; |
| |
| now = ktime_get(); |
| remaining = ktime_sub(apic->lapic_timer.target_expiration, now); |
| if (ktime_to_ns(remaining) < 0) |
| remaining = 0; |
| |
| ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); |
| return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * |
| apic->divide_count)); |
| } |
| |
| static void __report_tpr_access(struct kvm_lapic *apic, bool write) |
| { |
| struct kvm_vcpu *vcpu = apic->vcpu; |
| struct kvm_run *run = vcpu->run; |
| |
| kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); |
| run->tpr_access.rip = kvm_rip_read(vcpu); |
| run->tpr_access.is_write = write; |
| } |
| |
| static inline void report_tpr_access(struct kvm_lapic *apic, bool write) |
| { |
| if (apic->vcpu->arch.tpr_access_reporting) |
| __report_tpr_access(apic, write); |
| } |
| |
| static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) |
| { |
| u32 val = 0; |
| |
| if (offset >= LAPIC_MMIO_LENGTH) |
| return 0; |
| |
| switch (offset) { |
| case APIC_ARBPRI: |
| break; |
| |
| case APIC_TMCCT: /* Timer CCR */ |
| if (apic_lvtt_tscdeadline(apic)) |
| return 0; |
| |
| val = apic_get_tmcct(apic); |
| break; |
| case APIC_PROCPRI: |
| apic_update_ppr(apic); |
| val = kvm_lapic_get_reg(apic, offset); |
| break; |
| case APIC_TASKPRI: |
| report_tpr_access(apic, false); |
| fallthrough; |
| default: |
| val = kvm_lapic_get_reg(apic, offset); |
| break; |
| } |
| |
| return val; |
| } |
| |
| static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) |
| { |
| return container_of(dev, struct kvm_lapic, dev); |
| } |
| |
| #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) |
| #define APIC_REGS_MASK(first, count) \ |
| (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) |
| |
| u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) |
| { |
| /* Leave bits '0' for reserved and write-only registers. */ |
| u64 valid_reg_mask = |
| APIC_REG_MASK(APIC_ID) | |
| APIC_REG_MASK(APIC_LVR) | |
| APIC_REG_MASK(APIC_TASKPRI) | |
| APIC_REG_MASK(APIC_PROCPRI) | |
| APIC_REG_MASK(APIC_LDR) | |
| APIC_REG_MASK(APIC_SPIV) | |
| APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | |
| APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | |
| APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | |
| APIC_REG_MASK(APIC_ESR) | |
| APIC_REG_MASK(APIC_ICR) | |
| APIC_REG_MASK(APIC_LVTT) | |
| APIC_REG_MASK(APIC_LVTTHMR) | |
| APIC_REG_MASK(APIC_LVTPC) | |
| APIC_REG_MASK(APIC_LVT0) | |
| APIC_REG_MASK(APIC_LVT1) | |
| APIC_REG_MASK(APIC_LVTERR) | |
| APIC_REG_MASK(APIC_TMICT) | |
| APIC_REG_MASK(APIC_TMCCT) | |
| APIC_REG_MASK(APIC_TDCR); |
| |
| if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) |
| valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); |
| |
| /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ |
| if (!apic_x2apic_mode(apic)) |
| valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | |
| APIC_REG_MASK(APIC_DFR) | |
| APIC_REG_MASK(APIC_ICR2); |
| |
| return valid_reg_mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); |
| |
| static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, |
| void *data) |
| { |
| unsigned char alignment = offset & 0xf; |
| u32 result; |
| |
| /* |
| * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in |
| * x2APIC and needs to be manually handled by the caller. |
| */ |
| WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); |
| |
| if (alignment + len > 4) |
| return 1; |
| |
| if (offset > 0x3f0 || |
| !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) |
| return 1; |
| |
| result = __apic_read(apic, offset & ~0xf); |
| |
| trace_kvm_apic_read(offset, result); |
| |
| switch (len) { |
| case 1: |
| case 2: |
| case 4: |
| memcpy(data, (char *)&result + alignment, len); |
| break; |
| default: |
| printk(KERN_ERR "Local APIC read with len = %x, " |
| "should be 1,2, or 4 instead\n", len); |
| break; |
| } |
| return 0; |
| } |
| |
| static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) |
| { |
| return addr >= apic->base_address && |
| addr < apic->base_address + LAPIC_MMIO_LENGTH; |
| } |
| |
| static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, |
| gpa_t address, int len, void *data) |
| { |
| struct kvm_lapic *apic = to_lapic(this); |
| u32 offset = address - apic->base_address; |
| |
| if (!apic_mmio_in_range(apic, address)) |
| return -EOPNOTSUPP; |
| |
| if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { |
| if (!kvm_check_has_quirk(vcpu->kvm, |
| KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) |
| return -EOPNOTSUPP; |
| |
| memset(data, 0xff, len); |
| return 0; |
| } |
| |
| kvm_lapic_reg_read(apic, offset, len, data); |
| |
| return 0; |
| } |
| |
| static void update_divide_count(struct kvm_lapic *apic) |
| { |
| u32 tmp1, tmp2, tdcr; |
| |
| tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); |
| tmp1 = tdcr & 0xf; |
| tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; |
| apic->divide_count = 0x1 << (tmp2 & 0x7); |
| } |
| |
| static void limit_periodic_timer_frequency(struct kvm_lapic *apic) |
| { |
| /* |
| * Do not allow the guest to program periodic timers with small |
| * interval, since the hrtimers are not throttled by the host |
| * scheduler. |
| */ |
| if (apic_lvtt_period(apic) && apic->lapic_timer.period) { |
| s64 min_period = min_timer_period_us * 1000LL; |
| |
| if (apic->lapic_timer.period < min_period) { |
| pr_info_once( |
| "vcpu %i: requested %lld ns " |
| "lapic timer period limited to %lld ns\n", |
| apic->vcpu->vcpu_id, |
| apic->lapic_timer.period, min_period); |
| apic->lapic_timer.period = min_period; |
| } |
| } |
| } |
| |
| static void cancel_hv_timer(struct kvm_lapic *apic); |
| |
| static void cancel_apic_timer(struct kvm_lapic *apic) |
| { |
| hrtimer_cancel(&apic->lapic_timer.timer); |
| preempt_disable(); |
| if (apic->lapic_timer.hv_timer_in_use) |
| cancel_hv_timer(apic); |
| preempt_enable(); |
| atomic_set(&apic->lapic_timer.pending, 0); |
| } |
| |
| static void apic_update_lvtt(struct kvm_lapic *apic) |
| { |
| u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & |
| apic->lapic_timer.timer_mode_mask; |
| |
| if (apic->lapic_timer.timer_mode != timer_mode) { |
| if (apic_lvtt_tscdeadline(apic) != (timer_mode == |
| APIC_LVT_TIMER_TSCDEADLINE)) { |
| cancel_apic_timer(apic); |
| kvm_lapic_set_reg(apic, APIC_TMICT, 0); |
| apic->lapic_timer.period = 0; |
| apic->lapic_timer.tscdeadline = 0; |
| } |
| apic->lapic_timer.timer_mode = timer_mode; |
| limit_periodic_timer_frequency(apic); |
| } |
| } |
| |
| /* |
| * On APICv, this test will cause a busy wait |
| * during a higher-priority task. |
| */ |
| |
| static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); |
| |
| if (kvm_apic_hw_enabled(apic)) { |
| int vec = reg & APIC_VECTOR_MASK; |
| void *bitmap = apic->regs + APIC_ISR; |
| |
| if (apic->apicv_active) |
| bitmap = apic->regs + APIC_IRR; |
| |
| if (apic_test_vector(vec, bitmap)) |
| return true; |
| } |
| return false; |
| } |
| |
| static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) |
| { |
| u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; |
| |
| /* |
| * If the guest TSC is running at a different ratio than the host, then |
| * convert the delay to nanoseconds to achieve an accurate delay. Note |
| * that __delay() uses delay_tsc whenever the hardware has TSC, thus |
| * always for VMX enabled hardware. |
| */ |
| if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { |
| __delay(min(guest_cycles, |
| nsec_to_cycles(vcpu, timer_advance_ns))); |
| } else { |
| u64 delay_ns = guest_cycles * 1000000ULL; |
| do_div(delay_ns, vcpu->arch.virtual_tsc_khz); |
| ndelay(min_t(u32, delay_ns, timer_advance_ns)); |
| } |
| } |
| |
| static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, |
| s64 advance_expire_delta) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; |
| u64 ns; |
| |
| /* Do not adjust for tiny fluctuations or large random spikes. */ |
| if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || |
| abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) |
| return; |
| |
| /* too early */ |
| if (advance_expire_delta < 0) { |
| ns = -advance_expire_delta * 1000000ULL; |
| do_div(ns, vcpu->arch.virtual_tsc_khz); |
| timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; |
| } else { |
| /* too late */ |
| ns = advance_expire_delta * 1000000ULL; |
| do_div(ns, vcpu->arch.virtual_tsc_khz); |
| timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; |
| } |
| |
| if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) |
| timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; |
| apic->lapic_timer.timer_advance_ns = timer_advance_ns; |
| } |
| |
| static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u64 guest_tsc, tsc_deadline; |
| |
| tsc_deadline = apic->lapic_timer.expired_tscdeadline; |
| apic->lapic_timer.expired_tscdeadline = 0; |
| guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
| trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); |
| |
| adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); |
| |
| /* |
| * If the timer fired early, reread the TSC to account for the overhead |
| * of the above adjustment to avoid waiting longer than is necessary. |
| */ |
| if (guest_tsc < tsc_deadline) |
| guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
| |
| if (guest_tsc < tsc_deadline) |
| __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); |
| } |
| |
| void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) |
| { |
| if (lapic_in_kernel(vcpu) && |
| vcpu->arch.apic->lapic_timer.expired_tscdeadline && |
| vcpu->arch.apic->lapic_timer.timer_advance_ns && |
| lapic_timer_int_injected(vcpu)) |
| __kvm_wait_lapic_expire(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); |
| |
| static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) |
| { |
| struct kvm_timer *ktimer = &apic->lapic_timer; |
| |
| kvm_apic_local_deliver(apic, APIC_LVTT); |
| if (apic_lvtt_tscdeadline(apic)) { |
| ktimer->tscdeadline = 0; |
| } else if (apic_lvtt_oneshot(apic)) { |
| ktimer->tscdeadline = 0; |
| ktimer->target_expiration = 0; |
| } |
| } |
| |
| static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) |
| { |
| struct kvm_vcpu *vcpu = apic->vcpu; |
| struct kvm_timer *ktimer = &apic->lapic_timer; |
| |
| if (atomic_read(&apic->lapic_timer.pending)) |
| return; |
| |
| if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) |
| ktimer->expired_tscdeadline = ktimer->tscdeadline; |
| |
| if (!from_timer_fn && apic->apicv_active) { |
| WARN_ON(kvm_get_running_vcpu() != vcpu); |
| kvm_apic_inject_pending_timer_irqs(apic); |
| return; |
| } |
| |
| if (kvm_use_posted_timer_interrupt(apic->vcpu)) { |
| /* |
| * Ensure the guest's timer has truly expired before posting an |
| * interrupt. Open code the relevant checks to avoid querying |
| * lapic_timer_int_injected(), which will be false since the |
| * interrupt isn't yet injected. Waiting until after injecting |
| * is not an option since that won't help a posted interrupt. |
| */ |
| if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && |
| vcpu->arch.apic->lapic_timer.timer_advance_ns) |
| __kvm_wait_lapic_expire(vcpu); |
| kvm_apic_inject_pending_timer_irqs(apic); |
| return; |
| } |
| |
| atomic_inc(&apic->lapic_timer.pending); |
| kvm_make_request(KVM_REQ_UNBLOCK, vcpu); |
| if (from_timer_fn) |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| static void start_sw_tscdeadline(struct kvm_lapic *apic) |
| { |
| struct kvm_timer *ktimer = &apic->lapic_timer; |
| u64 guest_tsc, tscdeadline = ktimer->tscdeadline; |
| u64 ns = 0; |
| ktime_t expire; |
| struct kvm_vcpu *vcpu = apic->vcpu; |
| u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; |
| unsigned long flags; |
| ktime_t now; |
| |
| if (unlikely(!tscdeadline || !this_tsc_khz)) |
| return; |
| |
| local_irq_save(flags); |
| |
| now = ktime_get(); |
| guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
| |
| ns = (tscdeadline - guest_tsc) * 1000000ULL; |
| do_div(ns, this_tsc_khz); |
| |
| if (likely(tscdeadline > guest_tsc) && |
| likely(ns > apic->lapic_timer.timer_advance_ns)) { |
| expire = ktime_add_ns(now, ns); |
| expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); |
| hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); |
| } else |
| apic_timer_expired(apic, false); |
| |
| local_irq_restore(flags); |
| } |
| |
| static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) |
| { |
| return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * |
| (u64)apic->divide_count; |
| } |
| |
| static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) |
| { |
| ktime_t now, remaining; |
| u64 ns_remaining_old, ns_remaining_new; |
| |
| apic->lapic_timer.period = |
| tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); |
| limit_periodic_timer_frequency(apic); |
| |
| now = ktime_get(); |
| remaining = ktime_sub(apic->lapic_timer.target_expiration, now); |
| if (ktime_to_ns(remaining) < 0) |
| remaining = 0; |
| |
| ns_remaining_old = ktime_to_ns(remaining); |
| ns_remaining_new = mul_u64_u32_div(ns_remaining_old, |
| apic->divide_count, old_divisor); |
| |
| apic->lapic_timer.tscdeadline += |
| nsec_to_cycles(apic->vcpu, ns_remaining_new) - |
| nsec_to_cycles(apic->vcpu, ns_remaining_old); |
| apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); |
| } |
| |
| static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) |
| { |
| ktime_t now; |
| u64 tscl = rdtsc(); |
| s64 deadline; |
| |
| now = ktime_get(); |
| apic->lapic_timer.period = |
| tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); |
| |
| if (!apic->lapic_timer.period) { |
| apic->lapic_timer.tscdeadline = 0; |
| return false; |
| } |
| |
| limit_periodic_timer_frequency(apic); |
| deadline = apic->lapic_timer.period; |
| |
| if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { |
| if (unlikely(count_reg != APIC_TMICT)) { |
| deadline = tmict_to_ns(apic, |
| kvm_lapic_get_reg(apic, count_reg)); |
| if (unlikely(deadline <= 0)) { |
| if (apic_lvtt_period(apic)) |
| deadline = apic->lapic_timer.period; |
| else |
| deadline = 0; |
| } |
| else if (unlikely(deadline > apic->lapic_timer.period)) { |
| pr_info_ratelimited( |
| "vcpu %i: requested lapic timer restore with " |
| "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " |
| "Using initial count to start timer.\n", |
| apic->vcpu->vcpu_id, |
| count_reg, |
| kvm_lapic_get_reg(apic, count_reg), |
| deadline, apic->lapic_timer.period); |
| kvm_lapic_set_reg(apic, count_reg, 0); |
| deadline = apic->lapic_timer.period; |
| } |
| } |
| } |
| |
| apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + |
| nsec_to_cycles(apic->vcpu, deadline); |
| apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); |
| |
| return true; |
| } |
| |
| static void advance_periodic_target_expiration(struct kvm_lapic *apic) |
| { |
| ktime_t now = ktime_get(); |
| u64 tscl = rdtsc(); |
| ktime_t delta; |
| |
| /* |
| * Synchronize both deadlines to the same time source or |
| * differences in the periods (caused by differences in the |
| * underlying clocks or numerical approximation errors) will |
| * cause the two to drift apart over time as the errors |
| * accumulate. |
| */ |
| apic->lapic_timer.target_expiration = |
| ktime_add_ns(apic->lapic_timer.target_expiration, |
| apic->lapic_timer.period); |
| delta = ktime_sub(apic->lapic_timer.target_expiration, now); |
| apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + |
| nsec_to_cycles(apic->vcpu, delta); |
| } |
| |
| static void start_sw_period(struct kvm_lapic *apic) |
| { |
| if (!apic->lapic_timer.period) |
| return; |
| |
| if (ktime_after(ktime_get(), |
| apic->lapic_timer.target_expiration)) { |
| apic_timer_expired(apic, false); |
| |
| if (apic_lvtt_oneshot(apic)) |
| return; |
| |
| advance_periodic_target_expiration(apic); |
| } |
| |
| hrtimer_start(&apic->lapic_timer.timer, |
| apic->lapic_timer.target_expiration, |
| HRTIMER_MODE_ABS_HARD); |
| } |
| |
| bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) |
| { |
| if (!lapic_in_kernel(vcpu)) |
| return false; |
| |
| return vcpu->arch.apic->lapic_timer.hv_timer_in_use; |
| } |
| |
| static void cancel_hv_timer(struct kvm_lapic *apic) |
| { |
| WARN_ON(preemptible()); |
| WARN_ON(!apic->lapic_timer.hv_timer_in_use); |
| kvm_x86_call(cancel_hv_timer)(apic->vcpu); |
| apic->lapic_timer.hv_timer_in_use = false; |
| } |
| |
| static bool start_hv_timer(struct kvm_lapic *apic) |
| { |
| struct kvm_timer *ktimer = &apic->lapic_timer; |
| struct kvm_vcpu *vcpu = apic->vcpu; |
| bool expired; |
| |
| WARN_ON(preemptible()); |
| if (!kvm_can_use_hv_timer(vcpu)) |
| return false; |
| |
| if (!ktimer->tscdeadline) |
| return false; |
| |
| if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) |
| return false; |
| |
| ktimer->hv_timer_in_use = true; |
| hrtimer_cancel(&ktimer->timer); |
| |
| /* |
| * To simplify handling the periodic timer, leave the hv timer running |
| * even if the deadline timer has expired, i.e. rely on the resulting |
| * VM-Exit to recompute the periodic timer's target expiration. |
| */ |
| if (!apic_lvtt_period(apic)) { |
| /* |
| * Cancel the hv timer if the sw timer fired while the hv timer |
| * was being programmed, or if the hv timer itself expired. |
| */ |
| if (atomic_read(&ktimer->pending)) { |
| cancel_hv_timer(apic); |
| } else if (expired) { |
| apic_timer_expired(apic, false); |
| cancel_hv_timer(apic); |
| } |
| } |
| |
| trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); |
| |
| return true; |
| } |
| |
| static void start_sw_timer(struct kvm_lapic *apic) |
| { |
| struct kvm_timer *ktimer = &apic->lapic_timer; |
| |
| WARN_ON(preemptible()); |
| if (apic->lapic_timer.hv_timer_in_use) |
| cancel_hv_timer(apic); |
| if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) |
| return; |
| |
| if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) |
| start_sw_period(apic); |
| else if (apic_lvtt_tscdeadline(apic)) |
| start_sw_tscdeadline(apic); |
| trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); |
| } |
| |
| static void restart_apic_timer(struct kvm_lapic *apic) |
| { |
| preempt_disable(); |
| |
| if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) |
| goto out; |
| |
| if (!start_hv_timer(apic)) |
| start_sw_timer(apic); |
| out: |
| preempt_enable(); |
| } |
| |
| void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| preempt_disable(); |
| /* If the preempt notifier has already run, it also called apic_timer_expired */ |
| if (!apic->lapic_timer.hv_timer_in_use) |
| goto out; |
| WARN_ON(kvm_vcpu_is_blocking(vcpu)); |
| apic_timer_expired(apic, false); |
| cancel_hv_timer(apic); |
| |
| if (apic_lvtt_period(apic) && apic->lapic_timer.period) { |
| advance_periodic_target_expiration(apic); |
| restart_apic_timer(apic); |
| } |
| out: |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); |
| |
| void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) |
| { |
| restart_apic_timer(vcpu->arch.apic); |
| } |
| |
| void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| preempt_disable(); |
| /* Possibly the TSC deadline timer is not enabled yet */ |
| if (apic->lapic_timer.hv_timer_in_use) |
| start_sw_timer(apic); |
| preempt_enable(); |
| } |
| |
| void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| WARN_ON(!apic->lapic_timer.hv_timer_in_use); |
| restart_apic_timer(apic); |
| } |
| |
| static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) |
| { |
| atomic_set(&apic->lapic_timer.pending, 0); |
| |
| if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) |
| && !set_target_expiration(apic, count_reg)) |
| return; |
| |
| restart_apic_timer(apic); |
| } |
| |
| static void start_apic_timer(struct kvm_lapic *apic) |
| { |
| __start_apic_timer(apic, APIC_TMICT); |
| } |
| |
| static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) |
| { |
| bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); |
| |
| if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { |
| apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; |
| if (lvt0_in_nmi_mode) { |
| atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); |
| } else |
| atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); |
| } |
| } |
| |
| static int get_lvt_index(u32 reg) |
| { |
| if (reg == APIC_LVTCMCI) |
| return LVT_CMCI; |
| if (reg < APIC_LVTT || reg > APIC_LVTERR) |
| return -1; |
| return array_index_nospec( |
| (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); |
| } |
| |
| static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) |
| { |
| int ret = 0; |
| |
| trace_kvm_apic_write(reg, val); |
| |
| switch (reg) { |
| case APIC_ID: /* Local APIC ID */ |
| if (!apic_x2apic_mode(apic)) { |
| kvm_apic_set_xapic_id(apic, val >> 24); |
| } else { |
| ret = 1; |
| } |
| break; |
| |
| case APIC_TASKPRI: |
| report_tpr_access(apic, true); |
| apic_set_tpr(apic, val & 0xff); |
| break; |
| |
| case APIC_EOI: |
| apic_set_eoi(apic); |
| break; |
| |
| case APIC_LDR: |
| if (!apic_x2apic_mode(apic)) |
| kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); |
| else |
| ret = 1; |
| break; |
| |
| case APIC_DFR: |
| if (!apic_x2apic_mode(apic)) |
| kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); |
| else |
| ret = 1; |
| break; |
| |
| case APIC_SPIV: { |
| u32 mask = 0x3ff; |
| if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) |
| mask |= APIC_SPIV_DIRECTED_EOI; |
| apic_set_spiv(apic, val & mask); |
| if (!(val & APIC_SPIV_APIC_ENABLED)) { |
| int i; |
| |
| for (i = 0; i < apic->nr_lvt_entries; i++) { |
| kvm_lapic_set_reg(apic, APIC_LVTx(i), |
| kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); |
| } |
| apic_update_lvtt(apic); |
| atomic_set(&apic->lapic_timer.pending, 0); |
| |
| } |
| break; |
| } |
| case APIC_ICR: |
| WARN_ON_ONCE(apic_x2apic_mode(apic)); |
| |
| /* No delay here, so we always clear the pending bit */ |
| val &= ~APIC_ICR_BUSY; |
| kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); |
| kvm_lapic_set_reg(apic, APIC_ICR, val); |
| break; |
| case APIC_ICR2: |
| if (apic_x2apic_mode(apic)) |
| ret = 1; |
| else |
| kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); |
| break; |
| |
| case APIC_LVT0: |
| apic_manage_nmi_watchdog(apic, val); |
| fallthrough; |
| case APIC_LVTTHMR: |
| case APIC_LVTPC: |
| case APIC_LVT1: |
| case APIC_LVTERR: |
| case APIC_LVTCMCI: { |
| u32 index = get_lvt_index(reg); |
| if (!kvm_lapic_lvt_supported(apic, index)) { |
| ret = 1; |
| break; |
| } |
| if (!kvm_apic_sw_enabled(apic)) |
| val |= APIC_LVT_MASKED; |
| val &= apic_lvt_mask[index]; |
| kvm_lapic_set_reg(apic, reg, val); |
| break; |
| } |
| |
| case APIC_LVTT: |
| if (!kvm_apic_sw_enabled(apic)) |
| val |= APIC_LVT_MASKED; |
| val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); |
| kvm_lapic_set_reg(apic, APIC_LVTT, val); |
| apic_update_lvtt(apic); |
| break; |
| |
| case APIC_TMICT: |
| if (apic_lvtt_tscdeadline(apic)) |
| break; |
| |
| cancel_apic_timer(apic); |
| kvm_lapic_set_reg(apic, APIC_TMICT, val); |
| start_apic_timer(apic); |
| break; |
| |
| case APIC_TDCR: { |
| uint32_t old_divisor = apic->divide_count; |
| |
| kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); |
| update_divide_count(apic); |
| if (apic->divide_count != old_divisor && |
| apic->lapic_timer.period) { |
| hrtimer_cancel(&apic->lapic_timer.timer); |
| update_target_expiration(apic, old_divisor); |
| restart_apic_timer(apic); |
| } |
| break; |
| } |
| case APIC_ESR: |
| if (apic_x2apic_mode(apic) && val != 0) |
| ret = 1; |
| break; |
| |
| case APIC_SELF_IPI: |
| /* |
| * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold |
| * the vector, everything else is reserved. |
| */ |
| if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) |
| ret = 1; |
| else |
| kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); |
| break; |
| default: |
| ret = 1; |
| break; |
| } |
| |
| /* |
| * Recalculate APIC maps if necessary, e.g. if the software enable bit |
| * was toggled, the APIC ID changed, etc... The maps are marked dirty |
| * on relevant changes, i.e. this is a nop for most writes. |
| */ |
| kvm_recalculate_apic_map(apic->vcpu->kvm); |
| |
| return ret; |
| } |
| |
| static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, |
| gpa_t address, int len, const void *data) |
| { |
| struct kvm_lapic *apic = to_lapic(this); |
| unsigned int offset = address - apic->base_address; |
| u32 val; |
| |
| if (!apic_mmio_in_range(apic, address)) |
| return -EOPNOTSUPP; |
| |
| if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { |
| if (!kvm_check_has_quirk(vcpu->kvm, |
| KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) |
| return -EOPNOTSUPP; |
| |
| return 0; |
| } |
| |
| /* |
| * APIC register must be aligned on 128-bits boundary. |
| * 32/64/128 bits registers must be accessed thru 32 bits. |
| * Refer SDM 8.4.1 |
| */ |
| if (len != 4 || (offset & 0xf)) |
| return 0; |
| |
| val = *(u32*)data; |
| |
| kvm_lapic_reg_write(apic, offset & 0xff0, val); |
| |
| return 0; |
| } |
| |
| void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) |
| { |
| kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); |
| } |
| EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); |
| |
| #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) |
| |
| int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) |
| { |
| if (data & X2APIC_ICR_RESERVED_BITS) |
| return 1; |
| |
| /* |
| * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but |
| * only AMD requires it to be zero, Intel essentially just ignores the |
| * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, |
| * the CPU performs the reserved bits checks, i.e. the underlying CPU |
| * behavior will "win". Arbitrarily clear the BUSY bit, as there is no |
| * sane way to provide consistent behavior with respect to hardware. |
| */ |
| data &= ~APIC_ICR_BUSY; |
| |
| kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); |
| if (kvm_x86_ops.x2apic_icr_is_split) { |
| kvm_lapic_set_reg(apic, APIC_ICR, data); |
| kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); |
| } else { |
| kvm_lapic_set_reg64(apic, APIC_ICR, data); |
| } |
| trace_kvm_apic_write(APIC_ICR, data); |
| return 0; |
| } |
| |
| static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) |
| { |
| if (kvm_x86_ops.x2apic_icr_is_split) |
| return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | |
| (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; |
| |
| return kvm_lapic_get_reg64(apic, APIC_ICR); |
| } |
| |
| /* emulate APIC access in a trap manner */ |
| void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| /* |
| * ICR is a single 64-bit register when x2APIC is enabled, all others |
| * registers hold 32-bit values. For legacy xAPIC, ICR writes need to |
| * go down the common path to get the upper half from ICR2. |
| * |
| * Note, using the write helpers may incur an unnecessary write to the |
| * virtual APIC state, but KVM needs to conditionally modify the value |
| * in certain cases, e.g. to clear the ICR busy bit. The cost of extra |
| * conditional branches is likely a wash relative to the cost of the |
| * maybe-unecessary write, and both are in the noise anyways. |
| */ |
| if (apic_x2apic_mode(apic) && offset == APIC_ICR) |
| WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); |
| else |
| kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); |
| |
| void kvm_free_lapic(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| if (!vcpu->arch.apic) { |
| static_branch_dec(&kvm_has_noapic_vcpu); |
| return; |
| } |
| |
| hrtimer_cancel(&apic->lapic_timer.timer); |
| |
| if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) |
| static_branch_slow_dec_deferred(&apic_hw_disabled); |
| |
| if (!apic->sw_enabled) |
| static_branch_slow_dec_deferred(&apic_sw_disabled); |
| |
| if (apic->regs) |
| free_page((unsigned long)apic->regs); |
| |
| kfree(apic); |
| } |
| |
| /* |
| *---------------------------------------------------------------------- |
| * LAPIC interface |
| *---------------------------------------------------------------------- |
| */ |
| u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) |
| return 0; |
| |
| return apic->lapic_timer.tscdeadline; |
| } |
| |
| void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) |
| return; |
| |
| hrtimer_cancel(&apic->lapic_timer.timer); |
| apic->lapic_timer.tscdeadline = data; |
| start_apic_timer(apic); |
| } |
| |
| void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) |
| { |
| apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); |
| } |
| |
| u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) |
| { |
| u64 tpr; |
| |
| tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); |
| |
| return (tpr & 0xf0) >> 4; |
| } |
| |
| void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) |
| { |
| u64 old_value = vcpu->arch.apic_base; |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| vcpu->arch.apic_base = value; |
| |
| if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) |
| kvm_update_cpuid_runtime(vcpu); |
| |
| if (!apic) |
| return; |
| |
| /* update jump label if enable bit changes */ |
| if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { |
| if (value & MSR_IA32_APICBASE_ENABLE) { |
| kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); |
| static_branch_slow_dec_deferred(&apic_hw_disabled); |
| /* Check if there are APF page ready requests pending */ |
| kvm_make_request(KVM_REQ_APF_READY, vcpu); |
| } else { |
| static_branch_inc(&apic_hw_disabled.key); |
| atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); |
| } |
| } |
| |
| if ((old_value ^ value) & X2APIC_ENABLE) { |
| if (value & X2APIC_ENABLE) |
| kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); |
| else if (value & MSR_IA32_APICBASE_ENABLE) |
| kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); |
| } |
| |
| if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { |
| kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); |
| kvm_x86_call(set_virtual_apic_mode)(vcpu); |
| } |
| |
| apic->base_address = apic->vcpu->arch.apic_base & |
| MSR_IA32_APICBASE_BASE; |
| |
| if ((value & MSR_IA32_APICBASE_ENABLE) && |
| apic->base_address != APIC_DEFAULT_PHYS_BASE) { |
| kvm_set_apicv_inhibit(apic->vcpu->kvm, |
| APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); |
| } |
| } |
| |
| void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| if (apic->apicv_active) { |
| /* irr_pending is always true when apicv is activated. */ |
| apic->irr_pending = true; |
| apic->isr_count = 1; |
| } else { |
| /* |
| * Don't clear irr_pending, searching the IRR can race with |
| * updates from the CPU as APICv is still active from hardware's |
| * perspective. The flag will be cleared as appropriate when |
| * KVM injects the interrupt. |
| */ |
| apic->isr_count = count_vectors(apic->regs + APIC_ISR); |
| } |
| apic->highest_isr_cache = -1; |
| } |
| |
| int kvm_alloc_apic_access_page(struct kvm *kvm) |
| { |
| struct page *page; |
| void __user *hva; |
| int ret = 0; |
| |
| mutex_lock(&kvm->slots_lock); |
| if (kvm->arch.apic_access_memslot_enabled || |
| kvm->arch.apic_access_memslot_inhibited) |
| goto out; |
| |
| hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, |
| APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); |
| if (IS_ERR(hva)) { |
| ret = PTR_ERR(hva); |
| goto out; |
| } |
| |
| page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); |
| if (is_error_page(page)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| /* |
| * Do not pin the page in memory, so that memory hot-unplug |
| * is able to migrate it. |
| */ |
| put_page(page); |
| kvm->arch.apic_access_memslot_enabled = true; |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); |
| |
| void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| |
| if (!kvm->arch.apic_access_memslot_enabled) |
| return; |
| |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| if (kvm->arch.apic_access_memslot_enabled) { |
| __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); |
| /* |
| * Clear "enabled" after the memslot is deleted so that a |
| * different vCPU doesn't get a false negative when checking |
| * the flag out of slots_lock. No additional memory barrier is |
| * needed as modifying memslots requires waiting other vCPUs to |
| * drop SRCU (see above), and false positives are ok as the |
| * flag is rechecked after acquiring slots_lock. |
| */ |
| kvm->arch.apic_access_memslot_enabled = false; |
| |
| /* |
| * Mark the memslot as inhibited to prevent reallocating the |
| * memslot during vCPU creation, e.g. if a vCPU is hotplugged. |
| */ |
| kvm->arch.apic_access_memslot_inhibited = true; |
| } |
| |
| mutex_unlock(&kvm->slots_lock); |
| |
| kvm_vcpu_srcu_read_lock(vcpu); |
| } |
| |
| void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u64 msr_val; |
| int i; |
| |
| kvm_x86_call(apicv_pre_state_restore)(vcpu); |
| |
| if (!init_event) { |
| msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; |
| if (kvm_vcpu_is_reset_bsp(vcpu)) |
| msr_val |= MSR_IA32_APICBASE_BSP; |
| kvm_lapic_set_base(vcpu, msr_val); |
| } |
| |
| if (!apic) |
| return; |
| |
| /* Stop the timer in case it's a reset to an active apic */ |
| hrtimer_cancel(&apic->lapic_timer.timer); |
| |
| /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ |
| if (!init_event) |
| kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); |
| kvm_apic_set_version(apic->vcpu); |
| |
| for (i = 0; i < apic->nr_lvt_entries; i++) |
| kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); |
| apic_update_lvtt(apic); |
| if (kvm_vcpu_is_reset_bsp(vcpu) && |
| kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) |
| kvm_lapic_set_reg(apic, APIC_LVT0, |
| SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); |
| apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); |
| |
| kvm_apic_set_dfr(apic, 0xffffffffU); |
| apic_set_spiv(apic, 0xff); |
| kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); |
| if (!apic_x2apic_mode(apic)) |
| kvm_apic_set_ldr(apic, 0); |
| kvm_lapic_set_reg(apic, APIC_ESR, 0); |
| if (!apic_x2apic_mode(apic)) { |
| kvm_lapic_set_reg(apic, APIC_ICR, 0); |
| kvm_lapic_set_reg(apic, APIC_ICR2, 0); |
| } else { |
| kvm_lapic_set_reg64(apic, APIC_ICR, 0); |
| } |
| kvm_lapic_set_reg(apic, APIC_TDCR, 0); |
| kvm_lapic_set_reg(apic, APIC_TMICT, 0); |
| for (i = 0; i < 8; i++) { |
| kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); |
| kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); |
| kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); |
| } |
| kvm_apic_update_apicv(vcpu); |
| update_divide_count(apic); |
| atomic_set(&apic->lapic_timer.pending, 0); |
| |
| vcpu->arch.pv_eoi.msr_val = 0; |
| apic_update_ppr(apic); |
| if (apic->apicv_active) { |
| kvm_x86_call(apicv_post_state_restore)(vcpu); |
| kvm_x86_call(hwapic_irr_update)(vcpu, -1); |
| kvm_x86_call(hwapic_isr_update)(-1); |
| } |
| |
| vcpu->arch.apic_arb_prio = 0; |
| vcpu->arch.apic_attention = 0; |
| |
| kvm_recalculate_apic_map(vcpu->kvm); |
| } |
| |
| /* |
| *---------------------------------------------------------------------- |
| * timer interface |
| *---------------------------------------------------------------------- |
| */ |
| |
| static bool lapic_is_periodic(struct kvm_lapic *apic) |
| { |
| return apic_lvtt_period(apic); |
| } |
| |
| int apic_has_pending_timer(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) |
| return atomic_read(&apic->lapic_timer.pending); |
| |
| return 0; |
| } |
| |
| int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) |
| { |
| u32 reg = kvm_lapic_get_reg(apic, lvt_type); |
| int vector, mode, trig_mode; |
| int r; |
| |
| if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { |
| vector = reg & APIC_VECTOR_MASK; |
| mode = reg & APIC_MODE_MASK; |
| trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; |
| |
| r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); |
| if (r && lvt_type == APIC_LVTPC && |
| guest_cpuid_is_intel_compatible(apic->vcpu)) |
| kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); |
| return r; |
| } |
| return 0; |
| } |
| |
| void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| if (apic) |
| kvm_apic_local_deliver(apic, APIC_LVT0); |
| } |
| |
| static const struct kvm_io_device_ops apic_mmio_ops = { |
| .read = apic_mmio_read, |
| .write = apic_mmio_write, |
| }; |
| |
| static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) |
| { |
| struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); |
| struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); |
| |
| apic_timer_expired(apic, true); |
| |
| if (lapic_is_periodic(apic)) { |
| advance_periodic_target_expiration(apic); |
| hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); |
| return HRTIMER_RESTART; |
| } else |
| return HRTIMER_NORESTART; |
| } |
| |
| int kvm_create_lapic(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic; |
| |
| ASSERT(vcpu != NULL); |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) { |
| static_branch_inc(&kvm_has_noapic_vcpu); |
| return 0; |
| } |
| |
| apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); |
| if (!apic) |
| goto nomem; |
| |
| vcpu->arch.apic = apic; |
| |
| if (kvm_x86_ops.alloc_apic_backing_page) |
| apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); |
| else |
| apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); |
| if (!apic->regs) { |
| printk(KERN_ERR "malloc apic regs error for vcpu %x\n", |
| vcpu->vcpu_id); |
| goto nomem_free_apic; |
| } |
| apic->vcpu = vcpu; |
| |
| apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); |
| |
| hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_ABS_HARD); |
| apic->lapic_timer.timer.function = apic_timer_fn; |
| if (lapic_timer_advance) |
| apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; |
| |
| /* |
| * Stuff the APIC ENABLE bit in lieu of temporarily incrementing |
| * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). |
| */ |
| vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; |
| static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ |
| kvm_iodevice_init(&apic->dev, &apic_mmio_ops); |
| |
| /* |
| * Defer evaluating inhibits until the vCPU is first run, as this vCPU |
| * will not get notified of any changes until this vCPU is visible to |
| * other vCPUs (marked online and added to the set of vCPUs). |
| * |
| * Opportunistically mark APICv active as VMX in particularly is highly |
| * unlikely to have inhibits. Ignore the current per-VM APICv state so |
| * that vCPU creation is guaranteed to run with a deterministic value, |
| * the request will ensure the vCPU gets the correct state before VM-Entry. |
| */ |
| if (enable_apicv) { |
| apic->apicv_active = true; |
| kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); |
| } |
| |
| return 0; |
| nomem_free_apic: |
| kfree(apic); |
| vcpu->arch.apic = NULL; |
| nomem: |
| return -ENOMEM; |
| } |
| |
| int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u32 ppr; |
| |
| if (!kvm_apic_present(vcpu)) |
| return -1; |
| |
| __apic_update_ppr(apic, &ppr); |
| return apic_has_interrupt_for_ppr(apic, ppr); |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); |
| |
| int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) |
| { |
| u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); |
| |
| if (!kvm_apic_hw_enabled(vcpu->arch.apic)) |
| return 1; |
| if ((lvt0 & APIC_LVT_MASKED) == 0 && |
| GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) |
| return 1; |
| return 0; |
| } |
| |
| void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| if (atomic_read(&apic->lapic_timer.pending) > 0) { |
| kvm_apic_inject_pending_timer_irqs(apic); |
| atomic_set(&apic->lapic_timer.pending, 0); |
| } |
| } |
| |
| void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u32 ppr; |
| |
| if (WARN_ON_ONCE(vector < 0 || !apic)) |
| return; |
| |
| /* |
| * We get here even with APIC virtualization enabled, if doing |
| * nested virtualization and L1 runs with the "acknowledge interrupt |
| * on exit" mode. Then we cannot inject the interrupt via RVI, |
| * because the process would deliver it through the IDT. |
| */ |
| |
| apic_clear_irr(vector, apic); |
| if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { |
| /* |
| * For auto-EOI interrupts, there might be another pending |
| * interrupt above PPR, so check whether to raise another |
| * KVM_REQ_EVENT. |
| */ |
| apic_update_ppr(apic); |
| } else { |
| /* |
| * For normal interrupts, PPR has been raised and there cannot |
| * be a higher-priority pending interrupt---except if there was |
| * a concurrent interrupt injection, but that would have |
| * triggered KVM_REQ_EVENT already. |
| */ |
| apic_set_isr(vector, apic); |
| __apic_update_ppr(apic, &ppr); |
| } |
| |
| } |
| EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); |
| |
| static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s, bool set) |
| { |
| if (apic_x2apic_mode(vcpu->arch.apic)) { |
| u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); |
| u32 *id = (u32 *)(s->regs + APIC_ID); |
| u32 *ldr = (u32 *)(s->regs + APIC_LDR); |
| u64 icr; |
| |
| if (vcpu->kvm->arch.x2apic_format) { |
| if (*id != x2apic_id) |
| return -EINVAL; |
| } else { |
| /* |
| * Ignore the userspace value when setting APIC state. |
| * KVM's model is that the x2APIC ID is readonly, e.g. |
| * KVM only supports delivering interrupts to KVM's |
| * version of the x2APIC ID. However, for backwards |
| * compatibility, don't reject attempts to set a |
| * mismatched ID for userspace that hasn't opted into |
| * x2apic_format. |
| */ |
| if (set) |
| *id = x2apic_id; |
| else |
| *id = x2apic_id << 24; |
| } |
| |
| /* |
| * In x2APIC mode, the LDR is fixed and based on the id. And |
| * if the ICR is _not_ split, ICR is internally a single 64-bit |
| * register, but needs to be split to ICR+ICR2 in userspace for |
| * backwards compatibility. |
| */ |
| if (set) |
| *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); |
| |
| if (!kvm_x86_ops.x2apic_icr_is_split) { |
| if (set) { |
| icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | |
| (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; |
| __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); |
| } else { |
| icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); |
| __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) |
| { |
| memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); |
| |
| /* |
| * Get calculated timer current count for remaining timer period (if |
| * any) and store it in the returned register set. |
| */ |
| __kvm_lapic_set_reg(s->regs, APIC_TMCCT, |
| __apic_read(vcpu->arch.apic, APIC_TMCCT)); |
| |
| return kvm_apic_state_fixup(vcpu, s, false); |
| } |
| |
| int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| int r; |
| |
| kvm_x86_call(apicv_pre_state_restore)(vcpu); |
| |
| kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); |
| /* set SPIV separately to get count of SW disabled APICs right */ |
| apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); |
| |
| r = kvm_apic_state_fixup(vcpu, s, true); |
| if (r) { |
| kvm_recalculate_apic_map(vcpu->kvm); |
| return r; |
| } |
| memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); |
| |
| atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); |
| kvm_recalculate_apic_map(vcpu->kvm); |
| kvm_apic_set_version(vcpu); |
| |
| apic_update_ppr(apic); |
| cancel_apic_timer(apic); |
| apic->lapic_timer.expired_tscdeadline = 0; |
| apic_update_lvtt(apic); |
| apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); |
| update_divide_count(apic); |
| __start_apic_timer(apic, APIC_TMCCT); |
| kvm_lapic_set_reg(apic, APIC_TMCCT, 0); |
| kvm_apic_update_apicv(vcpu); |
| if (apic->apicv_active) { |
| kvm_x86_call(apicv_post_state_restore)(vcpu); |
| kvm_x86_call(hwapic_irr_update)(vcpu, |
| apic_find_highest_irr(apic)); |
| kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic)); |
| } |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| if (ioapic_in_kernel(vcpu->kvm)) |
| kvm_rtc_eoi_tracking_restore_one(vcpu); |
| |
| vcpu->arch.apic_arb_prio = 0; |
| |
| return 0; |
| } |
| |
| void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) |
| { |
| struct hrtimer *timer; |
| |
| if (!lapic_in_kernel(vcpu) || |
| kvm_can_post_timer_interrupt(vcpu)) |
| return; |
| |
| timer = &vcpu->arch.apic->lapic_timer.timer; |
| if (hrtimer_cancel(timer)) |
| hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); |
| } |
| |
| /* |
| * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt |
| * |
| * Detect whether guest triggered PV EOI since the |
| * last entry. If yes, set EOI on guests's behalf. |
| * Clear PV EOI in guest memory in any case. |
| */ |
| static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, |
| struct kvm_lapic *apic) |
| { |
| int vector; |
| /* |
| * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host |
| * and KVM_PV_EOI_ENABLED in guest memory as follows: |
| * |
| * KVM_APIC_PV_EOI_PENDING is unset: |
| * -> host disabled PV EOI. |
| * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: |
| * -> host enabled PV EOI, guest did not execute EOI yet. |
| * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: |
| * -> host enabled PV EOI, guest executed EOI. |
| */ |
| BUG_ON(!pv_eoi_enabled(vcpu)); |
| |
| if (pv_eoi_test_and_clr_pending(vcpu)) |
| return; |
| vector = apic_set_eoi(apic); |
| trace_kvm_pv_eoi(apic, vector); |
| } |
| |
| void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) |
| { |
| u32 data; |
| |
| if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) |
| apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); |
| |
| if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) |
| return; |
| |
| if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, |
| sizeof(u32))) |
| return; |
| |
| apic_set_tpr(vcpu->arch.apic, data & 0xff); |
| } |
| |
| /* |
| * apic_sync_pv_eoi_to_guest - called before vmentry |
| * |
| * Detect whether it's safe to enable PV EOI and |
| * if yes do so. |
| */ |
| static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, |
| struct kvm_lapic *apic) |
| { |
| if (!pv_eoi_enabled(vcpu) || |
| /* IRR set or many bits in ISR: could be nested. */ |
| apic->irr_pending || |
| /* Cache not set: could be safe but we don't bother. */ |
| apic->highest_isr_cache == -1 || |
| /* Need EOI to update ioapic. */ |
| kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { |
| /* |
| * PV EOI was disabled by apic_sync_pv_eoi_from_guest |
| * so we need not do anything here. |
| */ |
| return; |
| } |
| |
| pv_eoi_set_pending(apic->vcpu); |
| } |
| |
| void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) |
| { |
| u32 data, tpr; |
| int max_irr, max_isr; |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| apic_sync_pv_eoi_to_guest(vcpu, apic); |
| |
| if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) |
| return; |
| |
| tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; |
| max_irr = apic_find_highest_irr(apic); |
| if (max_irr < 0) |
| max_irr = 0; |
| max_isr = apic_find_highest_isr(apic); |
| if (max_isr < 0) |
| max_isr = 0; |
| data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); |
| |
| kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, |
| sizeof(u32)); |
| } |
| |
| int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) |
| { |
| if (vapic_addr) { |
| if (kvm_gfn_to_hva_cache_init(vcpu->kvm, |
| &vcpu->arch.apic->vapic_cache, |
| vapic_addr, sizeof(u32))) |
| return -EINVAL; |
| __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); |
| } else { |
| __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); |
| } |
| |
| vcpu->arch.apic->vapic_addr = vapic_addr; |
| return 0; |
| } |
| |
| static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) |
| { |
| u32 low; |
| |
| if (reg == APIC_ICR) { |
| *data = kvm_x2apic_icr_read(apic); |
| return 0; |
| } |
| |
| if (kvm_lapic_reg_read(apic, reg, 4, &low)) |
| return 1; |
| |
| *data = low; |
| |
| return 0; |
| } |
| |
| static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) |
| { |
| /* |
| * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and |
| * can be written as such, all other registers remain accessible only |
| * through 32-bit reads/writes. |
| */ |
| if (reg == APIC_ICR) |
| return kvm_x2apic_icr_write(apic, data); |
| |
| /* Bits 63:32 are reserved in all other registers. */ |
| if (data >> 32) |
| return 1; |
| |
| return kvm_lapic_reg_write(apic, reg, (u32)data); |
| } |
| |
| int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u32 reg = (msr - APIC_BASE_MSR) << 4; |
| |
| if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) |
| return 1; |
| |
| return kvm_lapic_msr_write(apic, reg, data); |
| } |
| |
| int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u32 reg = (msr - APIC_BASE_MSR) << 4; |
| |
| if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) |
| return 1; |
| |
| return kvm_lapic_msr_read(apic, reg, data); |
| } |
| |
| int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) |
| { |
| if (!lapic_in_kernel(vcpu)) |
| return 1; |
| |
| return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); |
| } |
| |
| int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) |
| { |
| if (!lapic_in_kernel(vcpu)) |
| return 1; |
| |
| return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); |
| } |
| |
| int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) |
| { |
| u64 addr = data & ~KVM_MSR_ENABLED; |
| struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; |
| unsigned long new_len; |
| int ret; |
| |
| if (!IS_ALIGNED(addr, 4)) |
| return 1; |
| |
| if (data & KVM_MSR_ENABLED) { |
| if (addr == ghc->gpa && len <= ghc->len) |
| new_len = ghc->len; |
| else |
| new_len = len; |
| |
| ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); |
| if (ret) |
| return ret; |
| } |
| |
| vcpu->arch.pv_eoi.msr_val = data; |
| |
| return 0; |
| } |
| |
| int kvm_apic_accept_events(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| u8 sipi_vector; |
| int r; |
| |
| if (!kvm_apic_has_pending_init_or_sipi(vcpu)) |
| return 0; |
| |
| if (is_guest_mode(vcpu)) { |
| r = kvm_check_nested_events(vcpu); |
| if (r < 0) |
| return r == -EBUSY ? 0 : r; |
| /* |
| * Continue processing INIT/SIPI even if a nested VM-Exit |
| * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI |
| * are blocked as a result of transitioning to VMX root mode. |
| */ |
| } |
| |
| /* |
| * INITs are blocked while CPU is in specific states (SMM, VMX root |
| * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in |
| * wait-for-SIPI (WFS). |
| */ |
| if (!kvm_apic_init_sipi_allowed(vcpu)) { |
| WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); |
| clear_bit(KVM_APIC_SIPI, &apic->pending_events); |
| return 0; |
| } |
| |
| if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { |
| kvm_vcpu_reset(vcpu, true); |
| if (kvm_vcpu_is_bsp(apic->vcpu)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| else |
| vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; |
| } |
| if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { |
| if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { |
| /* evaluate pending_events before reading the vector */ |
| smp_rmb(); |
| sipi_vector = apic->sipi_vector; |
| kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, |
| sipi_vector); |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| } |
| } |
| return 0; |
| } |
| |
| void kvm_lapic_exit(void) |
| { |
| static_key_deferred_flush(&apic_hw_disabled); |
| WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); |
| static_key_deferred_flush(&apic_sw_disabled); |
| WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); |
| } |