| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright 2016 Broadcom |
| */ |
| |
| /* |
| * This file works with the SPU2 version of the SPU. SPU2 has different message |
| * formats than the previous version of the SPU. All SPU message format |
| * differences should be hidden in the spux.c,h files. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| |
| #include "util.h" |
| #include "spu.h" |
| #include "spu2.h" |
| |
| #define SPU2_TX_STATUS_LEN 0 /* SPU2 has no STATUS in input packet */ |
| |
| /* |
| * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0 |
| * register. Defaults to 2. |
| */ |
| #define SPU2_RX_STATUS_LEN 2 |
| |
| enum spu2_proto_sel { |
| SPU2_PROTO_RESV = 0, |
| SPU2_MACSEC_SECTAG8_ECB = 1, |
| SPU2_MACSEC_SECTAG8_SCB = 2, |
| SPU2_MACSEC_SECTAG16 = 3, |
| SPU2_MACSEC_SECTAG16_8_XPN = 4, |
| SPU2_IPSEC = 5, |
| SPU2_IPSEC_ESN = 6, |
| SPU2_TLS_CIPHER = 7, |
| SPU2_TLS_AEAD = 8, |
| SPU2_DTLS_CIPHER = 9, |
| SPU2_DTLS_AEAD = 10 |
| }; |
| |
| static char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256", |
| "DES", "3DES" |
| }; |
| |
| static char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB", |
| "XTS", "CCM", "GCM" |
| }; |
| |
| static char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256", |
| "Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384", |
| "SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256", |
| "SHA3-384", "SHA3-512" |
| }; |
| |
| static char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC", |
| "Rabin", "CCM", "GCM", "Reserved" |
| }; |
| |
| static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type) |
| { |
| if (cipher_type >= SPU2_CIPHER_TYPE_LAST) |
| return "Reserved"; |
| return spu2_cipher_type_names[cipher_type]; |
| } |
| |
| static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode) |
| { |
| if (cipher_mode >= SPU2_CIPHER_MODE_LAST) |
| return "Reserved"; |
| return spu2_cipher_mode_names[cipher_mode]; |
| } |
| |
| static char *spu2_hash_type_name(enum spu2_hash_type hash_type) |
| { |
| if (hash_type >= SPU2_HASH_TYPE_LAST) |
| return "Reserved"; |
| return spu2_hash_type_names[hash_type]; |
| } |
| |
| static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode) |
| { |
| if (hash_mode >= SPU2_HASH_MODE_LAST) |
| return "Reserved"; |
| return spu2_hash_mode_names[hash_mode]; |
| } |
| |
| /* |
| * Convert from a software cipher mode value to the corresponding value |
| * for SPU2. |
| */ |
| static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode, |
| enum spu2_cipher_mode *spu2_mode) |
| { |
| switch (cipher_mode) { |
| case CIPHER_MODE_ECB: |
| *spu2_mode = SPU2_CIPHER_MODE_ECB; |
| break; |
| case CIPHER_MODE_CBC: |
| *spu2_mode = SPU2_CIPHER_MODE_CBC; |
| break; |
| case CIPHER_MODE_OFB: |
| *spu2_mode = SPU2_CIPHER_MODE_OFB; |
| break; |
| case CIPHER_MODE_CFB: |
| *spu2_mode = SPU2_CIPHER_MODE_CFB; |
| break; |
| case CIPHER_MODE_CTR: |
| *spu2_mode = SPU2_CIPHER_MODE_CTR; |
| break; |
| case CIPHER_MODE_CCM: |
| *spu2_mode = SPU2_CIPHER_MODE_CCM; |
| break; |
| case CIPHER_MODE_GCM: |
| *spu2_mode = SPU2_CIPHER_MODE_GCM; |
| break; |
| case CIPHER_MODE_XTS: |
| *spu2_mode = SPU2_CIPHER_MODE_XTS; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2 |
| * cipher type and mode. |
| * @cipher_alg: [in] cipher algorithm value from software enumeration |
| * @cipher_mode: [in] cipher mode value from software enumeration |
| * @cipher_type: [in] cipher type value from software enumeration |
| * @spu2_type: [out] cipher type value used by spu2 hardware |
| * @spu2_mode: [out] cipher mode value used by spu2 hardware |
| * |
| * Return: 0 if successful |
| */ |
| static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg, |
| enum spu_cipher_mode cipher_mode, |
| enum spu_cipher_type cipher_type, |
| enum spu2_cipher_type *spu2_type, |
| enum spu2_cipher_mode *spu2_mode) |
| { |
| int err; |
| |
| err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode); |
| if (err) { |
| flow_log("Invalid cipher mode %d\n", cipher_mode); |
| return err; |
| } |
| |
| switch (cipher_alg) { |
| case CIPHER_ALG_NONE: |
| *spu2_type = SPU2_CIPHER_TYPE_NONE; |
| break; |
| case CIPHER_ALG_RC4: |
| /* SPU2 does not support RC4 */ |
| err = -EINVAL; |
| *spu2_type = SPU2_CIPHER_TYPE_NONE; |
| break; |
| case CIPHER_ALG_DES: |
| *spu2_type = SPU2_CIPHER_TYPE_DES; |
| break; |
| case CIPHER_ALG_3DES: |
| *spu2_type = SPU2_CIPHER_TYPE_3DES; |
| break; |
| case CIPHER_ALG_AES: |
| switch (cipher_type) { |
| case CIPHER_TYPE_AES128: |
| *spu2_type = SPU2_CIPHER_TYPE_AES128; |
| break; |
| case CIPHER_TYPE_AES192: |
| *spu2_type = SPU2_CIPHER_TYPE_AES192; |
| break; |
| case CIPHER_TYPE_AES256: |
| *spu2_type = SPU2_CIPHER_TYPE_AES256; |
| break; |
| default: |
| err = -EINVAL; |
| } |
| break; |
| case CIPHER_ALG_LAST: |
| default: |
| err = -EINVAL; |
| break; |
| } |
| |
| if (err) |
| flow_log("Invalid cipher alg %d or type %d\n", |
| cipher_alg, cipher_type); |
| return err; |
| } |
| |
| /* |
| * Convert from a software hash mode value to the corresponding value |
| * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value. |
| */ |
| static int spu2_hash_mode_xlate(enum hash_mode hash_mode, |
| enum spu2_hash_mode *spu2_mode) |
| { |
| switch (hash_mode) { |
| case HASH_MODE_XCBC: |
| *spu2_mode = SPU2_HASH_MODE_XCBC_MAC; |
| break; |
| case HASH_MODE_CMAC: |
| *spu2_mode = SPU2_HASH_MODE_CMAC; |
| break; |
| case HASH_MODE_HMAC: |
| *spu2_mode = SPU2_HASH_MODE_HMAC; |
| break; |
| case HASH_MODE_CCM: |
| *spu2_mode = SPU2_HASH_MODE_CCM; |
| break; |
| case HASH_MODE_GCM: |
| *spu2_mode = SPU2_HASH_MODE_GCM; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type |
| * and mode. |
| * @hash_alg: [in] hash algorithm value from software enumeration |
| * @hash_mode: [in] hash mode value from software enumeration |
| * @hash_type: [in] hash type value from software enumeration |
| * @ciph_type: [in] cipher type value from software enumeration |
| * @spu2_type: [out] hash type value used by SPU2 hardware |
| * @spu2_mode: [out] hash mode value used by SPU2 hardware |
| * |
| * Return: 0 if successful |
| */ |
| static int |
| spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode, |
| enum hash_type hash_type, enum spu_cipher_type ciph_type, |
| enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode) |
| { |
| int err; |
| |
| err = spu2_hash_mode_xlate(hash_mode, spu2_mode); |
| if (err) { |
| flow_log("Invalid hash mode %d\n", hash_mode); |
| return err; |
| } |
| |
| switch (hash_alg) { |
| case HASH_ALG_NONE: |
| *spu2_type = SPU2_HASH_TYPE_NONE; |
| break; |
| case HASH_ALG_MD5: |
| *spu2_type = SPU2_HASH_TYPE_MD5; |
| break; |
| case HASH_ALG_SHA1: |
| *spu2_type = SPU2_HASH_TYPE_SHA1; |
| break; |
| case HASH_ALG_SHA224: |
| *spu2_type = SPU2_HASH_TYPE_SHA224; |
| break; |
| case HASH_ALG_SHA256: |
| *spu2_type = SPU2_HASH_TYPE_SHA256; |
| break; |
| case HASH_ALG_SHA384: |
| *spu2_type = SPU2_HASH_TYPE_SHA384; |
| break; |
| case HASH_ALG_SHA512: |
| *spu2_type = SPU2_HASH_TYPE_SHA512; |
| break; |
| case HASH_ALG_AES: |
| switch (ciph_type) { |
| case CIPHER_TYPE_AES128: |
| *spu2_type = SPU2_HASH_TYPE_AES128; |
| break; |
| case CIPHER_TYPE_AES192: |
| *spu2_type = SPU2_HASH_TYPE_AES192; |
| break; |
| case CIPHER_TYPE_AES256: |
| *spu2_type = SPU2_HASH_TYPE_AES256; |
| break; |
| default: |
| err = -EINVAL; |
| } |
| break; |
| case HASH_ALG_SHA3_224: |
| *spu2_type = SPU2_HASH_TYPE_SHA3_224; |
| break; |
| case HASH_ALG_SHA3_256: |
| *spu2_type = SPU2_HASH_TYPE_SHA3_256; |
| break; |
| case HASH_ALG_SHA3_384: |
| *spu2_type = SPU2_HASH_TYPE_SHA3_384; |
| break; |
| case HASH_ALG_SHA3_512: |
| *spu2_type = SPU2_HASH_TYPE_SHA3_512; |
| break; |
| case HASH_ALG_LAST: |
| default: |
| err = -EINVAL; |
| break; |
| } |
| |
| if (err) |
| flow_log("Invalid hash alg %d or type %d\n", |
| hash_alg, hash_type); |
| return err; |
| } |
| |
| /* Dump FMD ctrl0. The ctrl0 input is in host byte order */ |
| static void spu2_dump_fmd_ctrl0(u64 ctrl0) |
| { |
| enum spu2_cipher_type ciph_type; |
| enum spu2_cipher_mode ciph_mode; |
| enum spu2_hash_type hash_type; |
| enum spu2_hash_mode hash_mode; |
| char *ciph_name; |
| char *ciph_mode_name; |
| char *hash_name; |
| char *hash_mode_name; |
| u8 cfb; |
| u8 proto; |
| |
| packet_log(" FMD CTRL0 %#16llx\n", ctrl0); |
| if (ctrl0 & SPU2_CIPH_ENCRYPT_EN) |
| packet_log(" encrypt\n"); |
| else |
| packet_log(" decrypt\n"); |
| |
| ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT; |
| ciph_name = spu2_ciph_type_name(ciph_type); |
| packet_log(" Cipher type: %s\n", ciph_name); |
| |
| if (ciph_type != SPU2_CIPHER_TYPE_NONE) { |
| ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT; |
| ciph_mode_name = spu2_ciph_mode_name(ciph_mode); |
| packet_log(" Cipher mode: %s\n", ciph_mode_name); |
| } |
| |
| cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT; |
| packet_log(" CFB %#x\n", cfb); |
| |
| proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT; |
| packet_log(" protocol %#x\n", proto); |
| |
| if (ctrl0 & SPU2_HASH_FIRST) |
| packet_log(" hash first\n"); |
| else |
| packet_log(" cipher first\n"); |
| |
| if (ctrl0 & SPU2_CHK_TAG) |
| packet_log(" check tag\n"); |
| |
| hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT; |
| hash_name = spu2_hash_type_name(hash_type); |
| packet_log(" Hash type: %s\n", hash_name); |
| |
| if (hash_type != SPU2_HASH_TYPE_NONE) { |
| hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT; |
| hash_mode_name = spu2_hash_mode_name(hash_mode); |
| packet_log(" Hash mode: %s\n", hash_mode_name); |
| } |
| |
| if (ctrl0 & SPU2_CIPH_PAD_EN) { |
| packet_log(" Cipher pad: %#2llx\n", |
| (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT); |
| } |
| } |
| |
| /* Dump FMD ctrl1. The ctrl1 input is in host byte order */ |
| static void spu2_dump_fmd_ctrl1(u64 ctrl1) |
| { |
| u8 hash_key_len; |
| u8 ciph_key_len; |
| u8 ret_iv_len; |
| u8 iv_offset; |
| u8 iv_len; |
| u8 hash_tag_len; |
| u8 ret_md; |
| |
| packet_log(" FMD CTRL1 %#16llx\n", ctrl1); |
| if (ctrl1 & SPU2_TAG_LOC) |
| packet_log(" Tag after payload\n"); |
| |
| packet_log(" Msg includes "); |
| if (ctrl1 & SPU2_HAS_FR_DATA) |
| packet_log("FD "); |
| if (ctrl1 & SPU2_HAS_AAD1) |
| packet_log("AAD1 "); |
| if (ctrl1 & SPU2_HAS_NAAD) |
| packet_log("NAAD "); |
| if (ctrl1 & SPU2_HAS_AAD2) |
| packet_log("AAD2 "); |
| if (ctrl1 & SPU2_HAS_ESN) |
| packet_log("ESN "); |
| packet_log("\n"); |
| |
| hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT; |
| packet_log(" Hash key len %u\n", hash_key_len); |
| |
| ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT; |
| packet_log(" Cipher key len %u\n", ciph_key_len); |
| |
| if (ctrl1 & SPU2_GENIV) |
| packet_log(" Generate IV\n"); |
| |
| if (ctrl1 & SPU2_HASH_IV) |
| packet_log(" IV included in hash\n"); |
| |
| if (ctrl1 & SPU2_RET_IV) |
| packet_log(" Return IV in output before payload\n"); |
| |
| ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT; |
| packet_log(" Length of returned IV %u bytes\n", |
| ret_iv_len ? ret_iv_len : 16); |
| |
| iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT; |
| packet_log(" IV offset %u\n", iv_offset); |
| |
| iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT; |
| packet_log(" Input IV len %u bytes\n", iv_len); |
| |
| hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT; |
| packet_log(" Hash tag length %u bytes\n", hash_tag_len); |
| |
| packet_log(" Return "); |
| ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT; |
| if (ret_md) |
| packet_log("FMD "); |
| if (ret_md == SPU2_RET_FMD_OMD) |
| packet_log("OMD "); |
| else if (ret_md == SPU2_RET_FMD_OMD_IV) |
| packet_log("OMD IV "); |
| if (ctrl1 & SPU2_RETURN_FD) |
| packet_log("FD "); |
| if (ctrl1 & SPU2_RETURN_AAD1) |
| packet_log("AAD1 "); |
| if (ctrl1 & SPU2_RETURN_NAAD) |
| packet_log("NAAD "); |
| if (ctrl1 & SPU2_RETURN_AAD2) |
| packet_log("AAD2 "); |
| if (ctrl1 & SPU2_RETURN_PAY) |
| packet_log("Payload"); |
| packet_log("\n"); |
| } |
| |
| /* Dump FMD ctrl2. The ctrl2 input is in host byte order */ |
| static void spu2_dump_fmd_ctrl2(u64 ctrl2) |
| { |
| packet_log(" FMD CTRL2 %#16llx\n", ctrl2); |
| |
| packet_log(" AAD1 offset %llu length %llu bytes\n", |
| ctrl2 & SPU2_AAD1_OFFSET, |
| (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT); |
| packet_log(" AAD2 offset %llu\n", |
| (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT); |
| packet_log(" Payload offset %llu\n", |
| (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT); |
| } |
| |
| /* Dump FMD ctrl3. The ctrl3 input is in host byte order */ |
| static void spu2_dump_fmd_ctrl3(u64 ctrl3) |
| { |
| packet_log(" FMD CTRL3 %#16llx\n", ctrl3); |
| |
| packet_log(" Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN); |
| packet_log(" TLS length %llu bytes\n", |
| (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT); |
| } |
| |
| static void spu2_dump_fmd(struct SPU2_FMD *fmd) |
| { |
| spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0)); |
| spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1)); |
| spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2)); |
| spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3)); |
| } |
| |
| static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len, |
| u16 hash_iv_len, u16 ciph_iv_len) |
| { |
| u8 *ptr = omd; |
| |
| packet_log(" OMD:\n"); |
| |
| if (hash_key_len) { |
| packet_log(" Hash Key Length %u bytes\n", hash_key_len); |
| packet_dump(" KEY: ", ptr, hash_key_len); |
| ptr += hash_key_len; |
| } |
| |
| if (ciph_key_len) { |
| packet_log(" Cipher Key Length %u bytes\n", ciph_key_len); |
| packet_dump(" KEY: ", ptr, ciph_key_len); |
| ptr += ciph_key_len; |
| } |
| |
| if (hash_iv_len) { |
| packet_log(" Hash IV Length %u bytes\n", hash_iv_len); |
| packet_dump(" hash IV: ", ptr, hash_iv_len); |
| ptr += hash_iv_len; |
| } |
| |
| if (ciph_iv_len) { |
| packet_log(" Cipher IV Length %u bytes\n", ciph_iv_len); |
| packet_dump(" cipher IV: ", ptr, ciph_iv_len); |
| } |
| } |
| |
| /* Dump a SPU2 header for debug */ |
| void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len) |
| { |
| struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf; |
| u8 *omd; |
| u64 ctrl1; |
| u16 hash_key_len; |
| u16 ciph_key_len; |
| u16 hash_iv_len; |
| u16 ciph_iv_len; |
| u16 omd_len; |
| |
| packet_log("\n"); |
| packet_log("SPU2 message header %p len: %u\n", buf, buf_len); |
| |
| spu2_dump_fmd(fmd); |
| omd = (u8 *)(fmd + 1); |
| |
| ctrl1 = le64_to_cpu(fmd->ctrl1); |
| hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT; |
| ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT; |
| hash_iv_len = 0; |
| ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT; |
| spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len, |
| ciph_iv_len); |
| |
| /* Double check sanity */ |
| omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len; |
| if (FMD_SIZE + omd_len != buf_len) { |
| packet_log |
| (" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n", |
| buf_len, FMD_SIZE + omd_len); |
| } |
| packet_log("\n"); |
| } |
| |
| /** |
| * spu2_fmd_init() - At setkey time, initialize the fixed meta data for |
| * subsequent skcipher requests for this context. |
| * @fmd: Start of FMD field to be written |
| * @spu2_type: Cipher algorithm |
| * @spu2_mode: Cipher mode |
| * @cipher_key_len: Length of cipher key, in bytes |
| * @cipher_iv_len: Length of cipher initialization vector, in bytes |
| * |
| * Return: 0 (success) |
| */ |
| static int spu2_fmd_init(struct SPU2_FMD *fmd, |
| enum spu2_cipher_type spu2_type, |
| enum spu2_cipher_mode spu2_mode, |
| u32 cipher_key_len, u32 cipher_iv_len) |
| { |
| u64 ctrl0; |
| u64 ctrl1; |
| u64 ctrl2; |
| u64 ctrl3; |
| u32 aad1_offset; |
| u32 aad2_offset; |
| u16 aad1_len = 0; |
| u64 payload_offset; |
| |
| ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) | |
| (spu2_mode << SPU2_CIPH_MODE_SHIFT); |
| |
| ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) | |
| ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) | |
| ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY; |
| |
| /* |
| * AAD1 offset is from start of FD. FD length is always 0 for this |
| * driver. So AAD1_offset is always 0. |
| */ |
| aad1_offset = 0; |
| aad2_offset = aad1_offset; |
| payload_offset = 0; |
| ctrl2 = aad1_offset | |
| (aad1_len << SPU2_AAD1_LEN_SHIFT) | |
| (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) | |
| (payload_offset << SPU2_PL_OFFSET_SHIFT); |
| |
| ctrl3 = 0; |
| |
| fmd->ctrl0 = cpu_to_le64(ctrl0); |
| fmd->ctrl1 = cpu_to_le64(ctrl1); |
| fmd->ctrl2 = cpu_to_le64(ctrl2); |
| fmd->ctrl3 = cpu_to_le64(ctrl3); |
| |
| return 0; |
| } |
| |
| /** |
| * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of |
| * SPU request packet. |
| * @fmd: Start of FMD field to be written |
| * @is_inbound: true if decrypting. false if encrypting. |
| * @auth_first: true if alg authenticates before encrypting |
| * @protocol: protocol selector |
| * @cipher_type: cipher algorithm |
| * @cipher_mode: cipher mode |
| * @auth_type: authentication type |
| * @auth_mode: authentication mode |
| */ |
| static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd, |
| bool is_inbound, bool auth_first, |
| enum spu2_proto_sel protocol, |
| enum spu2_cipher_type cipher_type, |
| enum spu2_cipher_mode cipher_mode, |
| enum spu2_hash_type auth_type, |
| enum spu2_hash_mode auth_mode) |
| { |
| u64 ctrl0 = 0; |
| |
| if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound) |
| ctrl0 |= SPU2_CIPH_ENCRYPT_EN; |
| |
| ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) | |
| ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT); |
| |
| if (protocol) |
| ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT; |
| |
| if (auth_first) |
| ctrl0 |= SPU2_HASH_FIRST; |
| |
| if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE)) |
| ctrl0 |= SPU2_CHK_TAG; |
| |
| ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) | |
| ((u64)auth_mode << SPU2_HASH_MODE_SHIFT)); |
| |
| fmd->ctrl0 = cpu_to_le64(ctrl0); |
| } |
| |
| /** |
| * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of |
| * SPU request packet. |
| * @fmd: Start of FMD field to be written |
| * @is_inbound: true if decrypting. false if encrypting. |
| * @assoc_size: Length of additional associated data, in bytes |
| * @auth_key_len: Length of authentication key, in bytes |
| * @cipher_key_len: Length of cipher key, in bytes |
| * @gen_iv: If true, hw generates IV and returns in response |
| * @hash_iv: IV participates in hash. Used for IPSEC and TLS. |
| * @return_iv: Return IV in output packet before payload |
| * @ret_iv_len: Length of IV returned from SPU, in bytes |
| * @ret_iv_offset: Offset into full IV of start of returned IV |
| * @cipher_iv_len: Length of input cipher IV, in bytes |
| * @digest_size: Length of digest (aka, hash tag or ICV), in bytes |
| * @return_payload: Return payload in SPU response |
| * @return_md : return metadata in SPU response |
| * |
| * Packet can have AAD2 w/o AAD1. For algorithms currently supported, |
| * associated data goes in AAD2. |
| */ |
| static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound, |
| u64 assoc_size, |
| u64 auth_key_len, u64 cipher_key_len, |
| bool gen_iv, bool hash_iv, bool return_iv, |
| u64 ret_iv_len, u64 ret_iv_offset, |
| u64 cipher_iv_len, u64 digest_size, |
| bool return_payload, bool return_md) |
| { |
| u64 ctrl1 = 0; |
| |
| if (is_inbound && digest_size) |
| ctrl1 |= SPU2_TAG_LOC; |
| |
| if (assoc_size) { |
| ctrl1 |= SPU2_HAS_AAD2; |
| ctrl1 |= SPU2_RETURN_AAD2; /* need aad2 for gcm aes esp */ |
| } |
| |
| if (auth_key_len) |
| ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) & |
| SPU2_HASH_KEY_LEN); |
| |
| if (cipher_key_len) |
| ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) & |
| SPU2_CIPH_KEY_LEN); |
| |
| if (gen_iv) |
| ctrl1 |= SPU2_GENIV; |
| |
| if (hash_iv) |
| ctrl1 |= SPU2_HASH_IV; |
| |
| if (return_iv) { |
| ctrl1 |= SPU2_RET_IV; |
| ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT; |
| ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT; |
| } |
| |
| ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN); |
| |
| if (digest_size) |
| ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) & |
| SPU2_HASH_TAG_LEN); |
| |
| /* Let's ask for the output pkt to include FMD, but don't need to |
| * get keys and IVs back in OMD. |
| */ |
| if (return_md) |
| ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT); |
| else |
| ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT); |
| |
| /* Crypto API does not get assoc data back. So no need for AAD2. */ |
| |
| if (return_payload) |
| ctrl1 |= SPU2_RETURN_PAY; |
| |
| fmd->ctrl1 = cpu_to_le64(ctrl1); |
| } |
| |
| /** |
| * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of |
| * SPU2 header. |
| * @fmd: Start of FMD field to be written |
| * @cipher_offset: Number of bytes from Start of Packet (end of FD field) where |
| * data to be encrypted or decrypted begins |
| * @auth_key_len: Length of authentication key, in bytes |
| * @auth_iv_len: Length of authentication initialization vector, in bytes |
| * @cipher_key_len: Length of cipher key, in bytes |
| * @cipher_iv_len: Length of cipher IV, in bytes |
| */ |
| static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset, |
| u64 auth_key_len, u64 auth_iv_len, |
| u64 cipher_key_len, u64 cipher_iv_len) |
| { |
| u64 ctrl2; |
| u64 aad1_offset; |
| u64 aad2_offset; |
| u16 aad1_len = 0; |
| u64 payload_offset; |
| |
| /* AAD1 offset is from start of FD. FD length always 0. */ |
| aad1_offset = 0; |
| |
| aad2_offset = aad1_offset; |
| payload_offset = cipher_offset; |
| ctrl2 = aad1_offset | |
| (aad1_len << SPU2_AAD1_LEN_SHIFT) | |
| (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) | |
| (payload_offset << SPU2_PL_OFFSET_SHIFT); |
| |
| fmd->ctrl2 = cpu_to_le64(ctrl2); |
| } |
| |
| /** |
| * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD |
| * @fmd: Fixed meta data. First field in SPU2 msg header. |
| * @payload_len: Length of payload, in bytes |
| */ |
| static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len) |
| { |
| u64 ctrl3; |
| |
| ctrl3 = payload_len & SPU2_PL_LEN; |
| |
| fmd->ctrl3 = cpu_to_le64(ctrl3); |
| } |
| |
| /** |
| * spu2_ctx_max_payload() - Determine the maximum length of the payload for a |
| * SPU message for a given cipher and hash alg context. |
| * @cipher_alg: The cipher algorithm |
| * @cipher_mode: The cipher mode |
| * @blocksize: The size of a block of data for this algo |
| * |
| * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of |
| * FMD and just keeps computing until it receives a DMA descriptor with the EOF |
| * flag set. So we consider the max payload to be infinite. AES CCM is an |
| * exception. |
| * |
| * Return: Max payload length in bytes |
| */ |
| u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg, |
| enum spu_cipher_mode cipher_mode, |
| unsigned int blocksize) |
| { |
| if ((cipher_alg == CIPHER_ALG_AES) && |
| (cipher_mode == CIPHER_MODE_CCM)) { |
| u32 excess = SPU2_MAX_PAYLOAD % blocksize; |
| |
| return SPU2_MAX_PAYLOAD - excess; |
| } else { |
| return SPU_MAX_PAYLOAD_INF; |
| } |
| } |
| |
| /** |
| * spu2_payload_length() - Given a SPU2 message header, extract the payload |
| * length. |
| * @spu_hdr: Start of SPU message header (FMD) |
| * |
| * Return: payload length, in bytes |
| */ |
| u32 spu2_payload_length(u8 *spu_hdr) |
| { |
| struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr; |
| u32 pl_len; |
| u64 ctrl3; |
| |
| ctrl3 = le64_to_cpu(fmd->ctrl3); |
| pl_len = ctrl3 & SPU2_PL_LEN; |
| |
| return pl_len; |
| } |
| |
| /** |
| * spu2_response_hdr_len() - Determine the expected length of a SPU response |
| * header. |
| * @auth_key_len: Length of authentication key, in bytes |
| * @enc_key_len: Length of encryption key, in bytes |
| * @is_hash: Unused |
| * |
| * For SPU2, includes just FMD. OMD is never requested. |
| * |
| * Return: Length of FMD, in bytes |
| */ |
| u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash) |
| { |
| return FMD_SIZE; |
| } |
| |
| /** |
| * spu2_hash_pad_len() - Calculate the length of hash padding required to extend |
| * data to a full block size. |
| * @hash_alg: hash algorithm |
| * @hash_mode: hash mode |
| * @chunksize: length of data, in bytes |
| * @hash_block_size: size of a hash block, in bytes |
| * |
| * SPU2 hardware does all hash padding |
| * |
| * Return: length of hash pad in bytes |
| */ |
| u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode, |
| u32 chunksize, u16 hash_block_size) |
| { |
| return 0; |
| } |
| |
| /** |
| * spu2_gcm_ccm_pad_len() - Determine the length of GCM/CCM padding for either |
| * the AAD field or the data. |
| * @cipher_mode: Unused |
| * @data_size: Unused |
| * |
| * Return: 0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required. |
| */ |
| u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode, |
| unsigned int data_size) |
| { |
| return 0; |
| } |
| |
| /** |
| * spu2_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch |
| * associated data in a SPU2 output packet. |
| * @cipher_mode: cipher mode |
| * @assoc_len: length of additional associated data, in bytes |
| * @iv_len: length of initialization vector, in bytes |
| * @is_encrypt: true if encrypting. false if decrypt. |
| * |
| * Return: Length of buffer to catch associated data in response |
| */ |
| u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode, |
| unsigned int assoc_len, unsigned int iv_len, |
| bool is_encrypt) |
| { |
| u32 resp_len = assoc_len; |
| |
| if (is_encrypt) |
| /* gcm aes esp has to write 8-byte IV in response */ |
| resp_len += iv_len; |
| return resp_len; |
| } |
| |
| /** |
| * spu2_aead_ivlen() - Calculate the length of the AEAD IV to be included |
| * in a SPU request after the AAD and before the payload. |
| * @cipher_mode: cipher mode |
| * @iv_len: initialization vector length in bytes |
| * |
| * For SPU2, AEAD IV is included in OMD and does not need to be repeated |
| * prior to the payload. |
| * |
| * Return: Length of AEAD IV in bytes |
| */ |
| u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len) |
| { |
| return 0; |
| } |
| |
| /** |
| * spu2_hash_type() - Determine the type of hash operation. |
| * @src_sent: The number of bytes in the current request that have already |
| * been sent to the SPU to be hashed. |
| * |
| * SPU2 always does a FULL hash operation |
| */ |
| enum hash_type spu2_hash_type(u32 src_sent) |
| { |
| return HASH_TYPE_FULL; |
| } |
| |
| /** |
| * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to |
| * return. |
| * @alg_digest_size: Number of bytes in the final digest for the given algo |
| * @alg: The hash algorithm |
| * @htype: Type of hash operation (init, update, full, etc) |
| * |
| */ |
| u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg, |
| enum hash_type htype) |
| { |
| return alg_digest_size; |
| } |
| |
| /** |
| * spu2_create_request() - Build a SPU2 request message header, includint FMD and |
| * OMD. |
| * @spu_hdr: Start of buffer where SPU request header is to be written |
| * @req_opts: SPU request message options |
| * @cipher_parms: Parameters related to cipher algorithm |
| * @hash_parms: Parameters related to hash algorithm |
| * @aead_parms: Parameters related to AEAD operation |
| * @data_size: Length of data to be encrypted or authenticated. If AEAD, does |
| * not include length of AAD. |
| * |
| * Construct the message starting at spu_hdr. Caller should allocate this buffer |
| * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long. |
| * |
| * Return: the length of the SPU header in bytes. 0 if an error occurs. |
| */ |
| u32 spu2_create_request(u8 *spu_hdr, |
| struct spu_request_opts *req_opts, |
| struct spu_cipher_parms *cipher_parms, |
| struct spu_hash_parms *hash_parms, |
| struct spu_aead_parms *aead_parms, |
| unsigned int data_size) |
| { |
| struct SPU2_FMD *fmd; |
| u8 *ptr; |
| unsigned int buf_len; |
| int err; |
| enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE; |
| enum spu2_cipher_mode spu2_ciph_mode; |
| enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE; |
| enum spu2_hash_mode spu2_auth_mode; |
| bool return_md = true; |
| enum spu2_proto_sel proto = SPU2_PROTO_RESV; |
| |
| /* size of the payload */ |
| unsigned int payload_len = |
| hash_parms->prebuf_len + data_size + hash_parms->pad_len - |
| ((req_opts->is_aead && req_opts->is_inbound) ? |
| hash_parms->digestsize : 0); |
| |
| /* offset of prebuf or data from start of AAD2 */ |
| unsigned int cipher_offset = aead_parms->assoc_size + |
| aead_parms->aad_pad_len + aead_parms->iv_len; |
| |
| /* total size of the data following OMD (without STAT word padding) */ |
| unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size, |
| aead_parms->iv_len, |
| hash_parms->prebuf_len, |
| data_size, |
| aead_parms->aad_pad_len, |
| aead_parms->data_pad_len, |
| hash_parms->pad_len); |
| unsigned int assoc_size = aead_parms->assoc_size; |
| |
| if (req_opts->is_aead && |
| (cipher_parms->alg == CIPHER_ALG_AES) && |
| (cipher_parms->mode == CIPHER_MODE_GCM)) |
| /* |
| * On SPU 2, aes gcm cipher first on encrypt, auth first on |
| * decrypt |
| */ |
| req_opts->auth_first = req_opts->is_inbound; |
| |
| /* and do opposite for ccm (auth 1st on encrypt) */ |
| if (req_opts->is_aead && |
| (cipher_parms->alg == CIPHER_ALG_AES) && |
| (cipher_parms->mode == CIPHER_MODE_CCM)) |
| req_opts->auth_first = !req_opts->is_inbound; |
| |
| flow_log("%s()\n", __func__); |
| flow_log(" in:%u authFirst:%u\n", |
| req_opts->is_inbound, req_opts->auth_first); |
| flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg, |
| cipher_parms->mode, cipher_parms->type); |
| flow_log(" is_esp: %s\n", req_opts->is_esp ? "yes" : "no"); |
| flow_log(" key: %d\n", cipher_parms->key_len); |
| flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); |
| flow_log(" iv: %d\n", cipher_parms->iv_len); |
| flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len); |
| flow_log(" auth alg:%u mode:%u type %u\n", |
| hash_parms->alg, hash_parms->mode, hash_parms->type); |
| flow_log(" digestsize: %u\n", hash_parms->digestsize); |
| flow_log(" authkey: %d\n", hash_parms->key_len); |
| flow_dump(" authkey: ", hash_parms->key_buf, hash_parms->key_len); |
| flow_log(" assoc_size:%u\n", assoc_size); |
| flow_log(" prebuf_len:%u\n", hash_parms->prebuf_len); |
| flow_log(" data_size:%u\n", data_size); |
| flow_log(" hash_pad_len:%u\n", hash_parms->pad_len); |
| flow_log(" real_db_size:%u\n", real_db_size); |
| flow_log(" cipher_offset:%u payload_len:%u\n", |
| cipher_offset, payload_len); |
| flow_log(" aead_iv: %u\n", aead_parms->iv_len); |
| |
| /* Convert to spu2 values for cipher alg, hash alg */ |
| err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode, |
| cipher_parms->type, |
| &spu2_ciph_type, &spu2_ciph_mode); |
| |
| /* If we are doing GCM hashing only - either via rfc4543 transform |
| * or because we happen to do GCM with AAD only and no payload - we |
| * need to configure hardware to use hash key rather than cipher key |
| * and put data into payload. This is because unlike SPU-M, running |
| * GCM cipher with 0 size payload is not permitted. |
| */ |
| if ((req_opts->is_rfc4543) || |
| ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) && |
| (payload_len == 0))) { |
| /* Use hashing (only) and set up hash key */ |
| spu2_ciph_type = SPU2_CIPHER_TYPE_NONE; |
| hash_parms->key_len = cipher_parms->key_len; |
| memcpy(hash_parms->key_buf, cipher_parms->key_buf, |
| cipher_parms->key_len); |
| cipher_parms->key_len = 0; |
| |
| if (req_opts->is_rfc4543) |
| payload_len += assoc_size; |
| else |
| payload_len = assoc_size; |
| cipher_offset = 0; |
| assoc_size = 0; |
| } |
| |
| if (err) |
| return 0; |
| |
| flow_log("spu2 cipher type %s, cipher mode %s\n", |
| spu2_ciph_type_name(spu2_ciph_type), |
| spu2_ciph_mode_name(spu2_ciph_mode)); |
| |
| err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode, |
| hash_parms->type, |
| cipher_parms->type, |
| &spu2_auth_type, &spu2_auth_mode); |
| if (err) |
| return 0; |
| |
| flow_log("spu2 hash type %s, hash mode %s\n", |
| spu2_hash_type_name(spu2_auth_type), |
| spu2_hash_mode_name(spu2_auth_mode)); |
| |
| fmd = (struct SPU2_FMD *)spu_hdr; |
| |
| spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first, |
| proto, spu2_ciph_type, spu2_ciph_mode, |
| spu2_auth_type, spu2_auth_mode); |
| |
| spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size, |
| hash_parms->key_len, cipher_parms->key_len, |
| false, false, |
| aead_parms->return_iv, aead_parms->ret_iv_len, |
| aead_parms->ret_iv_off, |
| cipher_parms->iv_len, hash_parms->digestsize, |
| !req_opts->bd_suppress, return_md); |
| |
| spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0, |
| cipher_parms->key_len, cipher_parms->iv_len); |
| |
| spu2_fmd_ctrl3_write(fmd, payload_len); |
| |
| ptr = (u8 *)(fmd + 1); |
| buf_len = sizeof(struct SPU2_FMD); |
| |
| /* Write OMD */ |
| if (hash_parms->key_len) { |
| memcpy(ptr, hash_parms->key_buf, hash_parms->key_len); |
| ptr += hash_parms->key_len; |
| buf_len += hash_parms->key_len; |
| } |
| if (cipher_parms->key_len) { |
| memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len); |
| ptr += cipher_parms->key_len; |
| buf_len += cipher_parms->key_len; |
| } |
| if (cipher_parms->iv_len) { |
| memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len); |
| ptr += cipher_parms->iv_len; |
| buf_len += cipher_parms->iv_len; |
| } |
| |
| packet_dump(" SPU request header: ", spu_hdr, buf_len); |
| |
| return buf_len; |
| } |
| |
| /** |
| * spu2_cipher_req_init() - Build an skcipher SPU2 request message header, |
| * including FMD and OMD. |
| * @spu_hdr: Location of start of SPU request (FMD field) |
| * @cipher_parms: Parameters describing cipher request |
| * |
| * Called at setkey time to initialize a msg header that can be reused for all |
| * subsequent skcipher requests. Construct the message starting at spu_hdr. |
| * Caller should allocate this buffer in DMA-able memory at least |
| * SPU_HEADER_ALLOC_LEN bytes long. |
| * |
| * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an |
| * error occurs. |
| */ |
| u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms) |
| { |
| struct SPU2_FMD *fmd; |
| u8 *omd; |
| enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE; |
| enum spu2_cipher_mode spu2_mode; |
| int err; |
| |
| flow_log("%s()\n", __func__); |
| flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg, |
| cipher_parms->mode, cipher_parms->type); |
| flow_log(" cipher_iv_len: %u\n", cipher_parms->iv_len); |
| flow_log(" key: %d\n", cipher_parms->key_len); |
| flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); |
| |
| /* Convert to spu2 values */ |
| err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode, |
| cipher_parms->type, &spu2_type, &spu2_mode); |
| if (err) |
| return 0; |
| |
| flow_log("spu2 cipher type %s, cipher mode %s\n", |
| spu2_ciph_type_name(spu2_type), |
| spu2_ciph_mode_name(spu2_mode)); |
| |
| /* Construct the FMD header */ |
| fmd = (struct SPU2_FMD *)spu_hdr; |
| err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len, |
| cipher_parms->iv_len); |
| if (err) |
| return 0; |
| |
| /* Write cipher key to OMD */ |
| omd = (u8 *)(fmd + 1); |
| if (cipher_parms->key_buf && cipher_parms->key_len) |
| memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len); |
| |
| packet_dump(" SPU request header: ", spu_hdr, |
| FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len); |
| |
| return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len; |
| } |
| |
| /** |
| * spu2_cipher_req_finish() - Finish building a SPU request message header for a |
| * block cipher request. |
| * @spu_hdr: Start of the request message header (MH field) |
| * @spu_req_hdr_len: Length in bytes of the SPU request header |
| * @is_inbound: 0 encrypt, 1 decrypt |
| * @cipher_parms: Parameters describing cipher operation to be performed |
| * @data_size: Length of the data in the BD field |
| * |
| * Assumes much of the header was already filled in at setkey() time in |
| * spu_cipher_req_init(). |
| * spu_cipher_req_init() fills in the encryption key. |
| */ |
| void spu2_cipher_req_finish(u8 *spu_hdr, |
| u16 spu_req_hdr_len, |
| unsigned int is_inbound, |
| struct spu_cipher_parms *cipher_parms, |
| unsigned int data_size) |
| { |
| struct SPU2_FMD *fmd; |
| u8 *omd; /* start of optional metadata */ |
| u64 ctrl0; |
| u64 ctrl3; |
| |
| flow_log("%s()\n", __func__); |
| flow_log(" in: %u\n", is_inbound); |
| flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg, |
| cipher_parms->type); |
| flow_log(" iv len: %d\n", cipher_parms->iv_len); |
| flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len); |
| flow_log(" data_size: %u\n", data_size); |
| |
| fmd = (struct SPU2_FMD *)spu_hdr; |
| omd = (u8 *)(fmd + 1); |
| |
| /* |
| * FMD ctrl0 was initialized at setkey time. update it to indicate |
| * whether we are encrypting or decrypting. |
| */ |
| ctrl0 = le64_to_cpu(fmd->ctrl0); |
| if (is_inbound) |
| ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN; /* decrypt */ |
| else |
| ctrl0 |= SPU2_CIPH_ENCRYPT_EN; /* encrypt */ |
| fmd->ctrl0 = cpu_to_le64(ctrl0); |
| |
| if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) { |
| /* cipher iv provided so put it in here */ |
| memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf, |
| cipher_parms->iv_len); |
| } |
| |
| ctrl3 = le64_to_cpu(fmd->ctrl3); |
| data_size &= SPU2_PL_LEN; |
| ctrl3 |= data_size; |
| fmd->ctrl3 = cpu_to_le64(ctrl3); |
| |
| packet_dump(" SPU request header: ", spu_hdr, spu_req_hdr_len); |
| } |
| |
| /** |
| * spu2_request_pad() - Create pad bytes at the end of the data. |
| * @pad_start: Start of buffer where pad bytes are to be written |
| * @gcm_padding: Length of GCM padding, in bytes |
| * @hash_pad_len: Number of bytes of padding extend data to full block |
| * @auth_alg: Authentication algorithm |
| * @auth_mode: Authentication mode |
| * @total_sent: Length inserted at end of hash pad |
| * @status_padding: Number of bytes of padding to align STATUS word |
| * |
| * There may be three forms of pad: |
| * 1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment |
| * 2. hash pad - pad to a block length, with 0x80 data terminator and |
| * size at the end |
| * 3. STAT pad - to ensure the STAT field is 4-byte aligned |
| */ |
| void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len, |
| enum hash_alg auth_alg, enum hash_mode auth_mode, |
| unsigned int total_sent, u32 status_padding) |
| { |
| u8 *ptr = pad_start; |
| |
| /* fix data alignent for GCM */ |
| if (gcm_padding > 0) { |
| flow_log(" GCM: padding to 16 byte alignment: %u bytes\n", |
| gcm_padding); |
| memset(ptr, 0, gcm_padding); |
| ptr += gcm_padding; |
| } |
| |
| if (hash_pad_len > 0) { |
| /* clear the padding section */ |
| memset(ptr, 0, hash_pad_len); |
| |
| /* terminate the data */ |
| *ptr = 0x80; |
| ptr += (hash_pad_len - sizeof(u64)); |
| |
| /* add the size at the end as required per alg */ |
| if (auth_alg == HASH_ALG_MD5) |
| *(__le64 *)ptr = cpu_to_le64(total_sent * 8ull); |
| else /* SHA1, SHA2-224, SHA2-256 */ |
| *(__be64 *)ptr = cpu_to_be64(total_sent * 8ull); |
| ptr += sizeof(u64); |
| } |
| |
| /* pad to a 4byte alignment for STAT */ |
| if (status_padding > 0) { |
| flow_log(" STAT: padding to 4 byte alignment: %u bytes\n", |
| status_padding); |
| |
| memset(ptr, 0, status_padding); |
| ptr += status_padding; |
| } |
| } |
| |
| /** |
| * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS |
| * tweak field in the packet payload (it uses IV instead) |
| * |
| * Return: 0 |
| */ |
| u8 spu2_xts_tweak_in_payload(void) |
| { |
| return 0; |
| } |
| |
| /** |
| * spu2_tx_status_len() - Return the length of the STATUS field in a SPU |
| * response message. |
| * |
| * Return: Length of STATUS field in bytes. |
| */ |
| u8 spu2_tx_status_len(void) |
| { |
| return SPU2_TX_STATUS_LEN; |
| } |
| |
| /** |
| * spu2_rx_status_len() - Return the length of the STATUS field in a SPU |
| * response message. |
| * |
| * Return: Length of STATUS field in bytes. |
| */ |
| u8 spu2_rx_status_len(void) |
| { |
| return SPU2_RX_STATUS_LEN; |
| } |
| |
| /** |
| * spu2_status_process() - Process the status from a SPU response message. |
| * @statp: start of STATUS word |
| * |
| * Return: 0 - if status is good and response should be processed |
| * !0 - status indicates an error and response is invalid |
| */ |
| int spu2_status_process(u8 *statp) |
| { |
| /* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */ |
| u16 status = le16_to_cpu(*(__le16 *)statp); |
| |
| if (status == 0) |
| return 0; |
| |
| flow_log("rx status is %#x\n", status); |
| if (status == SPU2_INVALID_ICV) |
| return SPU_INVALID_ICV; |
| |
| return -EBADMSG; |
| } |
| |
| /** |
| * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode. |
| * |
| * @digestsize: Digest size of this request |
| * @cipher_parms: (pointer to) cipher parmaeters, includes IV buf & IV len |
| * @assoclen: Length of AAD data |
| * @chunksize: length of input data to be sent in this req |
| * @is_encrypt: true if this is an output/encrypt operation |
| * @is_esp: true if this is an ESP / RFC4309 operation |
| * |
| */ |
| void spu2_ccm_update_iv(unsigned int digestsize, |
| struct spu_cipher_parms *cipher_parms, |
| unsigned int assoclen, unsigned int chunksize, |
| bool is_encrypt, bool is_esp) |
| { |
| int L; /* size of length field, in bytes */ |
| |
| /* |
| * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from |
| * testmgr contains (L-1) in bottom 3 bits of first byte, |
| * per RFC 3610. |
| */ |
| if (is_esp) |
| L = CCM_ESP_L_VALUE; |
| else |
| L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >> |
| CCM_B0_L_PRIME_SHIFT) + 1; |
| |
| /* SPU2 doesn't want these length bytes nor the first byte... */ |
| cipher_parms->iv_len -= (1 + L); |
| memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1], |
| cipher_parms->iv_len); |
| } |
| |
| /** |
| * spu2_wordalign_padlen() - SPU2 does not require padding. |
| * @data_size: length of data field in bytes |
| * |
| * Return: length of status field padding, in bytes (always 0 on SPU2) |
| */ |
| u32 spu2_wordalign_padlen(u32 data_size) |
| { |
| return 0; |
| } |