blob: 07983af9e3e22904cb9aadd2dbdb14feaf6ffefd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <asm/page.h>
#include <linux/acpi.h>
#include <linux/bitmap.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/io.h>
#include <linux/irqreturn.h>
#include <linux/log2.h>
#include <linux/pm_runtime.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/uacce.h>
#include <linux/uaccess.h>
#include <uapi/misc/uacce/hisi_qm.h>
#include <linux/hisi_acc_qm.h>
#include "qm_common.h"
/* eq/aeq irq enable */
#define QM_VF_AEQ_INT_SOURCE 0x0
#define QM_VF_AEQ_INT_MASK 0x4
#define QM_VF_EQ_INT_SOURCE 0x8
#define QM_VF_EQ_INT_MASK 0xc
#define QM_IRQ_VECTOR_MASK GENMASK(15, 0)
#define QM_IRQ_TYPE_MASK GENMASK(15, 0)
#define QM_IRQ_TYPE_SHIFT 16
#define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0)
/* mailbox */
#define QM_MB_PING_ALL_VFS 0xffff
#define QM_MB_CMD_DATA_SHIFT 32
#define QM_MB_CMD_DATA_MASK GENMASK(31, 0)
#define QM_MB_STATUS_MASK GENMASK(12, 9)
/* sqc shift */
#define QM_SQ_HOP_NUM_SHIFT 0
#define QM_SQ_PAGE_SIZE_SHIFT 4
#define QM_SQ_BUF_SIZE_SHIFT 8
#define QM_SQ_SQE_SIZE_SHIFT 12
#define QM_SQ_PRIORITY_SHIFT 0
#define QM_SQ_ORDERS_SHIFT 4
#define QM_SQ_TYPE_SHIFT 8
#define QM_QC_PASID_ENABLE 0x1
#define QM_QC_PASID_ENABLE_SHIFT 7
#define QM_SQ_TYPE_MASK GENMASK(3, 0)
#define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1)
/* cqc shift */
#define QM_CQ_HOP_NUM_SHIFT 0
#define QM_CQ_PAGE_SIZE_SHIFT 4
#define QM_CQ_BUF_SIZE_SHIFT 8
#define QM_CQ_CQE_SIZE_SHIFT 12
#define QM_CQ_PHASE_SHIFT 0
#define QM_CQ_FLAG_SHIFT 1
#define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1)
#define QM_QC_CQE_SIZE 4
#define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1)
/* eqc shift */
#define QM_EQE_AEQE_SIZE (2UL << 12)
#define QM_EQC_PHASE_SHIFT 16
#define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
#define QM_EQE_CQN_MASK GENMASK(15, 0)
#define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
#define QM_AEQE_TYPE_SHIFT 17
#define QM_AEQE_TYPE_MASK 0xf
#define QM_AEQE_CQN_MASK GENMASK(15, 0)
#define QM_CQ_OVERFLOW 0
#define QM_EQ_OVERFLOW 1
#define QM_CQE_ERROR 2
#define QM_XQ_DEPTH_SHIFT 16
#define QM_XQ_DEPTH_MASK GENMASK(15, 0)
#define QM_DOORBELL_CMD_SQ 0
#define QM_DOORBELL_CMD_CQ 1
#define QM_DOORBELL_CMD_EQ 2
#define QM_DOORBELL_CMD_AEQ 3
#define QM_DOORBELL_BASE_V1 0x340
#define QM_DB_CMD_SHIFT_V1 16
#define QM_DB_INDEX_SHIFT_V1 32
#define QM_DB_PRIORITY_SHIFT_V1 48
#define QM_PAGE_SIZE 0x0034
#define QM_QP_DB_INTERVAL 0x10000
#define QM_DB_TIMEOUT_CFG 0x100074
#define QM_DB_TIMEOUT_SET 0x1fffff
#define QM_MEM_START_INIT 0x100040
#define QM_MEM_INIT_DONE 0x100044
#define QM_VFT_CFG_RDY 0x10006c
#define QM_VFT_CFG_OP_WR 0x100058
#define QM_VFT_CFG_TYPE 0x10005c
#define QM_VFT_CFG 0x100060
#define QM_VFT_CFG_OP_ENABLE 0x100054
#define QM_PM_CTRL 0x100148
#define QM_IDLE_DISABLE BIT(9)
#define QM_VFT_CFG_DATA_L 0x100064
#define QM_VFT_CFG_DATA_H 0x100068
#define QM_SQC_VFT_BUF_SIZE (7ULL << 8)
#define QM_SQC_VFT_SQC_SIZE (5ULL << 12)
#define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16)
#define QM_SQC_VFT_START_SQN_SHIFT 28
#define QM_SQC_VFT_VALID (1ULL << 44)
#define QM_SQC_VFT_SQN_SHIFT 45
#define QM_CQC_VFT_BUF_SIZE (7ULL << 8)
#define QM_CQC_VFT_SQC_SIZE (5ULL << 12)
#define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16)
#define QM_CQC_VFT_VALID (1ULL << 28)
#define QM_SQC_VFT_BASE_SHIFT_V2 28
#define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0)
#define QM_SQC_VFT_NUM_SHIFT_V2 45
#define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0)
#define QM_ABNORMAL_INT_SOURCE 0x100000
#define QM_ABNORMAL_INT_MASK 0x100004
#define QM_ABNORMAL_INT_MASK_VALUE 0x7fff
#define QM_ABNORMAL_INT_STATUS 0x100008
#define QM_ABNORMAL_INT_SET 0x10000c
#define QM_ABNORMAL_INF00 0x100010
#define QM_FIFO_OVERFLOW_TYPE 0xc0
#define QM_FIFO_OVERFLOW_TYPE_SHIFT 6
#define QM_FIFO_OVERFLOW_VF 0x3f
#define QM_FIFO_OVERFLOW_QP_SHIFT 16
#define QM_ABNORMAL_INF01 0x100014
#define QM_DB_TIMEOUT_TYPE 0xc0
#define QM_DB_TIMEOUT_TYPE_SHIFT 6
#define QM_DB_TIMEOUT_VF 0x3f
#define QM_DB_TIMEOUT_QP_SHIFT 16
#define QM_ABNORMAL_INF02 0x100018
#define QM_AXI_POISON_ERR BIT(22)
#define QM_RAS_CE_ENABLE 0x1000ec
#define QM_RAS_FE_ENABLE 0x1000f0
#define QM_RAS_NFE_ENABLE 0x1000f4
#define QM_RAS_CE_THRESHOLD 0x1000f8
#define QM_RAS_CE_TIMES_PER_IRQ 1
#define QM_OOO_SHUTDOWN_SEL 0x1040f8
#define QM_AXI_RRESP_ERR BIT(0)
#define QM_ECC_MBIT BIT(2)
#define QM_DB_TIMEOUT BIT(10)
#define QM_OF_FIFO_OF BIT(11)
#define QM_RESET_WAIT_TIMEOUT 400
#define QM_PEH_VENDOR_ID 0x1000d8
#define ACC_VENDOR_ID_VALUE 0x5a5a
#define QM_PEH_DFX_INFO0 0x1000fc
#define QM_PEH_DFX_INFO1 0x100100
#define QM_PEH_DFX_MASK (BIT(0) | BIT(2))
#define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16)
#define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3
#define ACC_PEH_MSI_DISABLE GENMASK(31, 0)
#define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1
#define ACC_MASTER_TRANS_RETURN_RW 3
#define ACC_MASTER_TRANS_RETURN 0x300150
#define ACC_MASTER_GLOBAL_CTRL 0x300000
#define ACC_AM_CFG_PORT_WR_EN 0x30001c
#define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT
#define ACC_AM_ROB_ECC_INT_STS 0x300104
#define ACC_ROB_ECC_ERR_MULTPL BIT(1)
#define QM_MSI_CAP_ENABLE BIT(16)
/* interfunction communication */
#define QM_IFC_READY_STATUS 0x100128
#define QM_IFC_INT_SET_P 0x100130
#define QM_IFC_INT_CFG 0x100134
#define QM_IFC_INT_SOURCE_P 0x100138
#define QM_IFC_INT_SOURCE_V 0x0020
#define QM_IFC_INT_MASK 0x0024
#define QM_IFC_INT_STATUS 0x0028
#define QM_IFC_INT_SET_V 0x002C
#define QM_IFC_SEND_ALL_VFS GENMASK(6, 0)
#define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0)
#define QM_IFC_INT_SOURCE_MASK BIT(0)
#define QM_IFC_INT_DISABLE BIT(0)
#define QM_IFC_INT_STATUS_MASK BIT(0)
#define QM_IFC_INT_SET_MASK BIT(0)
#define QM_WAIT_DST_ACK 10
#define QM_MAX_PF_WAIT_COUNT 10
#define QM_MAX_VF_WAIT_COUNT 40
#define QM_VF_RESET_WAIT_US 20000
#define QM_VF_RESET_WAIT_CNT 3000
#define QM_VF_RESET_WAIT_TIMEOUT_US \
(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
#define POLL_PERIOD 10
#define POLL_TIMEOUT 1000
#define WAIT_PERIOD_US_MAX 200
#define WAIT_PERIOD_US_MIN 100
#define MAX_WAIT_COUNTS 1000
#define QM_CACHE_WB_START 0x204
#define QM_CACHE_WB_DONE 0x208
#define QM_FUNC_CAPS_REG 0x3100
#define QM_CAPBILITY_VERSION GENMASK(7, 0)
#define PCI_BAR_2 2
#define PCI_BAR_4 4
#define QMC_ALIGN(sz) ALIGN(sz, 32)
#define QM_DBG_READ_LEN 256
#define QM_PCI_COMMAND_INVALID ~0
#define QM_RESET_STOP_TX_OFFSET 1
#define QM_RESET_STOP_RX_OFFSET 2
#define WAIT_PERIOD 20
#define REMOVE_WAIT_DELAY 10
#define QM_QOS_PARAM_NUM 2
#define QM_QOS_MAX_VAL 1000
#define QM_QOS_RATE 100
#define QM_QOS_EXPAND_RATE 1000
#define QM_SHAPER_CIR_B_MASK GENMASK(7, 0)
#define QM_SHAPER_CIR_U_MASK GENMASK(10, 8)
#define QM_SHAPER_CIR_S_MASK GENMASK(14, 11)
#define QM_SHAPER_FACTOR_CIR_U_SHIFT 8
#define QM_SHAPER_FACTOR_CIR_S_SHIFT 11
#define QM_SHAPER_FACTOR_CBS_B_SHIFT 15
#define QM_SHAPER_FACTOR_CBS_S_SHIFT 19
#define QM_SHAPER_CBS_B 1
#define QM_SHAPER_VFT_OFFSET 6
#define QM_QOS_MIN_ERROR_RATE 5
#define QM_SHAPER_MIN_CBS_S 8
#define QM_QOS_TICK 0x300U
#define QM_QOS_DIVISOR_CLK 0x1f40U
#define QM_QOS_MAX_CIR_B 200
#define QM_QOS_MIN_CIR_B 100
#define QM_QOS_MAX_CIR_U 6
#define QM_AUTOSUSPEND_DELAY 3000
#define QM_DEV_ALG_MAX_LEN 256
/* abnormal status value for stopping queue */
#define QM_STOP_QUEUE_FAIL 1
#define QM_DUMP_SQC_FAIL 3
#define QM_DUMP_CQC_FAIL 4
#define QM_FINISH_WAIT 5
#define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
#define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
#define QM_MK_SQC_W13(priority, orders, alg_type) \
(((priority) << QM_SQ_PRIORITY_SHIFT) | \
((orders) << QM_SQ_ORDERS_SHIFT) | \
(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
#define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
#define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
enum vft_type {
SQC_VFT = 0,
CQC_VFT,
SHAPER_VFT,
};
enum acc_err_result {
ACC_ERR_NONE,
ACC_ERR_NEED_RESET,
ACC_ERR_RECOVERED,
};
enum qm_alg_type {
ALG_TYPE_0,
ALG_TYPE_1,
};
enum qm_mb_cmd {
QM_PF_FLR_PREPARE = 0x01,
QM_PF_SRST_PREPARE,
QM_PF_RESET_DONE,
QM_VF_PREPARE_DONE,
QM_VF_PREPARE_FAIL,
QM_VF_START_DONE,
QM_VF_START_FAIL,
QM_PF_SET_QOS,
QM_VF_GET_QOS,
};
enum qm_basic_type {
QM_TOTAL_QP_NUM_CAP = 0x0,
QM_FUNC_MAX_QP_CAP,
QM_XEQ_DEPTH_CAP,
QM_QP_DEPTH_CAP,
QM_EQ_IRQ_TYPE_CAP,
QM_AEQ_IRQ_TYPE_CAP,
QM_ABN_IRQ_TYPE_CAP,
QM_PF2VF_IRQ_TYPE_CAP,
QM_PF_IRQ_NUM_CAP,
QM_VF_IRQ_NUM_CAP,
};
enum qm_pre_store_cap_idx {
QM_EQ_IRQ_TYPE_CAP_IDX = 0x0,
QM_AEQ_IRQ_TYPE_CAP_IDX,
QM_ABN_IRQ_TYPE_CAP_IDX,
QM_PF2VF_IRQ_TYPE_CAP_IDX,
};
static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
{QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0},
{QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1},
{QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1},
{QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
{QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
};
static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
};
static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
};
static const struct hisi_qm_cap_info qm_basic_info[] = {
{QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400},
{QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400},
{QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800},
{QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
{QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000},
{QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001},
{QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003},
{QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002},
{QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4},
{QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3},
};
static const u32 qm_pre_store_caps[] = {
QM_EQ_IRQ_TYPE_CAP,
QM_AEQ_IRQ_TYPE_CAP,
QM_ABN_IRQ_TYPE_CAP,
QM_PF2VF_IRQ_TYPE_CAP,
};
struct qm_mailbox {
__le16 w0;
__le16 queue_num;
__le32 base_l;
__le32 base_h;
__le32 rsvd;
};
struct qm_doorbell {
__le16 queue_num;
__le16 cmd;
__le16 index;
__le16 priority;
};
struct hisi_qm_resource {
struct hisi_qm *qm;
int distance;
struct list_head list;
};
/**
* struct qm_hw_err - Structure describing the device errors
* @list: hardware error list
* @timestamp: timestamp when the error occurred
*/
struct qm_hw_err {
struct list_head list;
unsigned long long timestamp;
};
struct hisi_qm_hw_ops {
int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
void (*qm_db)(struct hisi_qm *qm, u16 qn,
u8 cmd, u16 index, u8 priority);
int (*debug_init)(struct hisi_qm *qm);
void (*hw_error_init)(struct hisi_qm *qm);
void (*hw_error_uninit)(struct hisi_qm *qm);
enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
int (*set_msi)(struct hisi_qm *qm, bool set);
};
struct hisi_qm_hw_error {
u32 int_msk;
const char *msg;
};
static const struct hisi_qm_hw_error qm_hw_error[] = {
{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
};
static const char * const qm_db_timeout[] = {
"sq", "cq", "eq", "aeq",
};
static const char * const qm_fifo_overflow[] = {
"cq", "eq", "aeq",
};
struct qm_typical_qos_table {
u32 start;
u32 end;
u32 val;
};
/* the qos step is 100 */
static struct qm_typical_qos_table shaper_cir_s[] = {
{100, 100, 4},
{200, 200, 3},
{300, 500, 2},
{600, 1000, 1},
{1100, 100000, 0},
};
static struct qm_typical_qos_table shaper_cbs_s[] = {
{100, 200, 9},
{300, 500, 11},
{600, 1000, 12},
{1100, 10000, 16},
{10100, 25000, 17},
{25100, 50000, 18},
{50100, 100000, 19}
};
static void qm_irqs_unregister(struct hisi_qm *qm);
static int qm_reset_device(struct hisi_qm *qm);
static u32 qm_get_hw_error_status(struct hisi_qm *qm)
{
return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
}
static u32 qm_get_dev_err_status(struct hisi_qm *qm)
{
return qm->err_ini->get_dev_hw_err_status(qm);
}
/* Check if the error causes the master ooo block */
static bool qm_check_dev_error(struct hisi_qm *qm)
{
u32 val, dev_val;
if (qm->fun_type == QM_HW_VF)
return false;
val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
return val || dev_val;
}
static int qm_wait_reset_finish(struct hisi_qm *qm)
{
int delay = 0;
/* All reset requests need to be queued for processing */
while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
msleep(++delay);
if (delay > QM_RESET_WAIT_TIMEOUT)
return -EBUSY;
}
return 0;
}
static int qm_reset_prepare_ready(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
/*
* PF and VF on host doesnot support resetting at the
* same time on Kunpeng920.
*/
if (qm->ver < QM_HW_V3)
return qm_wait_reset_finish(pf_qm);
return qm_wait_reset_finish(qm);
}
static void qm_reset_bit_clear(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
if (qm->ver < QM_HW_V3)
clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
clear_bit(QM_RESETTING, &qm->misc_ctl);
}
static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
u64 base, u16 queue, bool op)
{
mailbox->w0 = cpu_to_le16((cmd) |
((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
(0x1 << QM_MB_BUSY_SHIFT));
mailbox->queue_num = cpu_to_le16(queue);
mailbox->base_l = cpu_to_le32(lower_32_bits(base));
mailbox->base_h = cpu_to_le32(upper_32_bits(base));
mailbox->rsvd = 0;
}
/* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
{
u32 val;
return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
val, !((val >> QM_MB_BUSY_SHIFT) &
0x1), POLL_PERIOD, POLL_TIMEOUT);
}
EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
/* 128 bit should be written to hardware at one time to trigger a mailbox */
static void qm_mb_write(struct hisi_qm *qm, const void *src)
{
void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
#if IS_ENABLED(CONFIG_ARM64)
unsigned long tmp0 = 0, tmp1 = 0;
#endif
if (!IS_ENABLED(CONFIG_ARM64)) {
memcpy_toio(fun_base, src, 16);
dma_wmb();
return;
}
#if IS_ENABLED(CONFIG_ARM64)
asm volatile("ldp %0, %1, %3\n"
"stp %0, %1, %2\n"
"dmb oshst\n"
: "=&r" (tmp0),
"=&r" (tmp1),
"+Q" (*((char __iomem *)fun_base))
: "Q" (*((char *)src))
: "memory");
#endif
}
static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
{
int ret;
u32 val;
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
ret = -EBUSY;
goto mb_busy;
}
qm_mb_write(qm, mailbox);
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
ret = -ETIMEDOUT;
goto mb_busy;
}
val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
if (val & QM_MB_STATUS_MASK) {
dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
ret = -EIO;
goto mb_busy;
}
return 0;
mb_busy:
atomic64_inc(&qm->debug.dfx.mb_err_cnt);
return ret;
}
int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
bool op)
{
struct qm_mailbox mailbox;
int ret;
qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
mutex_lock(&qm->mailbox_lock);
ret = qm_mb_nolock(qm, &mailbox);
mutex_unlock(&qm->mailbox_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_mb);
/* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
{
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
struct qm_mailbox mailbox;
dma_addr_t xqc_dma;
void *tmp_xqc;
size_t size;
int ret;
switch (cmd) {
case QM_MB_CMD_SQC:
size = sizeof(struct qm_sqc);
tmp_xqc = qm->xqc_buf.sqc;
xqc_dma = qm->xqc_buf.sqc_dma;
break;
case QM_MB_CMD_CQC:
size = sizeof(struct qm_cqc);
tmp_xqc = qm->xqc_buf.cqc;
xqc_dma = qm->xqc_buf.cqc_dma;
break;
case QM_MB_CMD_EQC:
size = sizeof(struct qm_eqc);
tmp_xqc = qm->xqc_buf.eqc;
xqc_dma = qm->xqc_buf.eqc_dma;
break;
case QM_MB_CMD_AEQC:
size = sizeof(struct qm_aeqc);
tmp_xqc = qm->xqc_buf.aeqc;
xqc_dma = qm->xqc_buf.aeqc_dma;
break;
default:
dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
return -EINVAL;
}
/* Setting xqc will fail if master OOO is blocked. */
if (qm_check_dev_error(pf_qm)) {
dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
return -EIO;
}
mutex_lock(&qm->mailbox_lock);
if (!op)
memcpy(tmp_xqc, xqc, size);
qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
ret = qm_mb_nolock(qm, &mailbox);
if (!ret && op)
memcpy(xqc, tmp_xqc, size);
mutex_unlock(&qm->mailbox_lock);
return ret;
}
static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
u64 doorbell;
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
((u64)index << QM_DB_INDEX_SHIFT_V1) |
((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
}
static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
void __iomem *io_base = qm->io_base;
u16 randata = 0;
u64 doorbell;
if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
io_base = qm->db_io_base + (u64)qn * qm->db_interval +
QM_DOORBELL_SQ_CQ_BASE_V2;
else
io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
((u64)randata << QM_DB_RAND_SHIFT_V2) |
((u64)index << QM_DB_INDEX_SHIFT_V2) |
((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
writeq(doorbell, io_base);
}
static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
{
dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
qn, cmd, index);
qm->ops->qm_db(qm, qn, cmd, index, priority);
}
static void qm_disable_clock_gate(struct hisi_qm *qm)
{
u32 val;
/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
if (qm->ver < QM_HW_V3)
return;
val = readl(qm->io_base + QM_PM_CTRL);
val |= QM_IDLE_DISABLE;
writel(val, qm->io_base + QM_PM_CTRL);
}
static int qm_dev_mem_reset(struct hisi_qm *qm)
{
u32 val;
writel(0x1, qm->io_base + QM_MEM_START_INIT);
return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
}
/**
* hisi_qm_get_hw_info() - Get device information.
* @qm: The qm which want to get information.
* @info_table: Array for storing device information.
* @index: Index in info_table.
* @is_read: Whether read from reg, 0: not support read from reg.
*
* This function returns device information the caller needs.
*/
u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
const struct hisi_qm_cap_info *info_table,
u32 index, bool is_read)
{
u32 val;
switch (qm->ver) {
case QM_HW_V1:
return info_table[index].v1_val;
case QM_HW_V2:
return info_table[index].v2_val;
default:
if (!is_read)
return info_table[index].v3_val;
val = readl(qm->io_base + info_table[index].offset);
return (val >> info_table[index].shift) & info_table[index].mask;
}
}
EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
u16 *high_bits, enum qm_basic_type type)
{
u32 depth;
depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
*low_bits = depth & QM_XQ_DEPTH_MASK;
*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
}
int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
u32 dev_algs_size)
{
struct device *dev = &qm->pdev->dev;
char *algs, *ptr;
int i;
if (!qm->uacce)
return 0;
if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
dev_err(dev, "algs size %u is equal or larger than %d.\n",
dev_algs_size, QM_DEV_ALG_MAX_LEN);
return -EINVAL;
}
algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL);
if (!algs)
return -ENOMEM;
for (i = 0; i < dev_algs_size; i++)
if (alg_msk & dev_algs[i].alg_msk)
strcat(algs, dev_algs[i].alg);
ptr = strrchr(algs, '\n');
if (ptr) {
*ptr = '\0';
qm->uacce->algs = algs;
}
return 0;
}
EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
static u32 qm_get_irq_num(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_PF)
return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
}
static int qm_pm_get_sync(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret;
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
return 0;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "failed to get_sync(%d).\n", ret);
return ret;
}
return 0;
}
static void qm_pm_put_sync(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
return;
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
static void qm_cq_head_update(struct hisi_qp *qp)
{
if (qp->qp_status.cq_head == qp->cq_depth - 1) {
qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
qp->qp_status.cq_head = 0;
} else {
qp->qp_status.cq_head++;
}
}
static void qm_poll_req_cb(struct hisi_qp *qp)
{
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
struct hisi_qm *qm = qp->qm;
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
dma_rmb();
qp->req_cb(qp, qp->sqe + qm->sqe_size *
le16_to_cpu(cqe->sq_head));
qm_cq_head_update(qp);
cqe = qp->cqe + qp->qp_status.cq_head;
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
qp->qp_status.cq_head, 0);
atomic_dec(&qp->qp_status.used);
cond_resched();
}
/* set c_flag */
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
}
static void qm_work_process(struct work_struct *work)
{
struct hisi_qm_poll_data *poll_data =
container_of(work, struct hisi_qm_poll_data, work);
struct hisi_qm *qm = poll_data->qm;
u16 eqe_num = poll_data->eqe_num;
struct hisi_qp *qp;
int i;
for (i = eqe_num - 1; i >= 0; i--) {
qp = &qm->qp_array[poll_data->qp_finish_id[i]];
if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
continue;
if (qp->event_cb) {
qp->event_cb(qp);
continue;
}
if (likely(qp->req_cb))
qm_poll_req_cb(qp);
}
}
static void qm_get_complete_eqe_num(struct hisi_qm *qm)
{
struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
struct hisi_qm_poll_data *poll_data = NULL;
u16 eq_depth = qm->eq_depth;
u16 cqn, eqe_num = 0;
if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
atomic64_inc(&qm->debug.dfx.err_irq_cnt);
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
return;
}
cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
if (unlikely(cqn >= qm->qp_num))
return;
poll_data = &qm->poll_data[cqn];
while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
poll_data->qp_finish_id[eqe_num] = cqn;
eqe_num++;
if (qm->status.eq_head == eq_depth - 1) {
qm->status.eqc_phase = !qm->status.eqc_phase;
eqe = qm->eqe;
qm->status.eq_head = 0;
} else {
eqe++;
qm->status.eq_head++;
}
if (eqe_num == (eq_depth >> 1) - 1)
break;
}
poll_data->eqe_num = eqe_num;
queue_work(qm->wq, &poll_data->work);
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
}
static irqreturn_t qm_eq_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
/* Get qp id of completed tasks and re-enable the interrupt */
qm_get_complete_eqe_num(qm);
return IRQ_HANDLED;
}
static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
u32 val;
val = readl(qm->io_base + QM_IFC_INT_STATUS);
val &= QM_IFC_INT_STATUS_MASK;
if (!val)
return IRQ_NONE;
if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
return IRQ_HANDLED;
}
schedule_work(&qm->cmd_process);
return IRQ_HANDLED;
}
static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
{
u32 *addr;
if (qp->is_in_kernel)
return;
addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
*addr = 1;
/* make sure setup is completed */
smp_wmb();
}
static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
{
struct hisi_qp *qp = &qm->qp_array[qp_id];
qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
hisi_qm_stop_qp(qp);
qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
}
static void qm_reset_function(struct hisi_qm *qm)
{
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
struct device *dev = &qm->pdev->dev;
int ret;
if (qm_check_dev_error(pf_qm))
return;
ret = qm_reset_prepare_ready(qm);
if (ret) {
dev_err(dev, "reset function not ready\n");
return;
}
ret = hisi_qm_stop(qm, QM_DOWN);
if (ret) {
dev_err(dev, "failed to stop qm when reset function\n");
goto clear_bit;
}
ret = hisi_qm_start(qm);
if (ret)
dev_err(dev, "failed to start qm when reset function\n");
clear_bit:
qm_reset_bit_clear(qm);
}
static irqreturn_t qm_aeq_thread(int irq, void *data)
{
struct hisi_qm *qm = data;
struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
u16 aeq_depth = qm->aeq_depth;
u32 type, qp_id;
atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
QM_AEQE_TYPE_MASK;
qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
switch (type) {
case QM_EQ_OVERFLOW:
dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
qm_reset_function(qm);
return IRQ_HANDLED;
case QM_CQ_OVERFLOW:
dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
qp_id);
fallthrough;
case QM_CQE_ERROR:
qm_disable_qp(qm, qp_id);
break;
default:
dev_err(&qm->pdev->dev, "unknown error type %u\n",
type);
break;
}
if (qm->status.aeq_head == aeq_depth - 1) {
qm->status.aeqc_phase = !qm->status.aeqc_phase;
aeqe = qm->aeqe;
qm->status.aeq_head = 0;
} else {
aeqe++;
qm->status.aeq_head++;
}
}
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
return IRQ_HANDLED;
}
static void qm_init_qp_status(struct hisi_qp *qp)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
qp_status->sq_tail = 0;
qp_status->cq_head = 0;
qp_status->cqc_phase = true;
atomic_set(&qp_status->used, 0);
}
static void qm_init_prefetch(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u32 page_type = 0x0;
if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
return;
switch (PAGE_SIZE) {
case SZ_4K:
page_type = 0x0;
break;
case SZ_16K:
page_type = 0x1;
break;
case SZ_64K:
page_type = 0x2;
break;
default:
dev_err(dev, "system page size is not support: %lu, default set to 4KB",
PAGE_SIZE);
}
writel(page_type, qm->io_base + QM_PAGE_SIZE);
}
/*
* acc_shaper_para_calc() Get the IR value by the qos formula, the return value
* is the expected qos calculated.
* the formula:
* IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
*
* IR_b * (2 ^ IR_u) * 8000
* IR(Mbps) = -------------------------
* Tick * (2 ^ IR_s)
*/
static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
{
return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
(QM_QOS_TICK * (1 << cir_s));
}
static u32 acc_shaper_calc_cbs_s(u32 ir)
{
int table_size = ARRAY_SIZE(shaper_cbs_s);
int i;
for (i = 0; i < table_size; i++) {
if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
return shaper_cbs_s[i].val;
}
return QM_SHAPER_MIN_CBS_S;
}
static u32 acc_shaper_calc_cir_s(u32 ir)
{
int table_size = ARRAY_SIZE(shaper_cir_s);
int i;
for (i = 0; i < table_size; i++) {
if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
return shaper_cir_s[i].val;
}
return 0;
}
static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
{
u32 cir_b, cir_u, cir_s, ir_calc;
u32 error_rate;
factor->cbs_s = acc_shaper_calc_cbs_s(ir);
cir_s = acc_shaper_calc_cir_s(ir);
for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
factor->cir_b = cir_b;
factor->cir_u = cir_u;
factor->cir_s = cir_s;
return 0;
}
}
}
return -EINVAL;
}
static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
u32 number, struct qm_shaper_factor *factor)
{
u64 tmp = 0;
if (number > 0) {
switch (type) {
case SQC_VFT:
if (qm->ver == QM_HW_V1) {
tmp = QM_SQC_VFT_BUF_SIZE |
QM_SQC_VFT_SQC_SIZE |
QM_SQC_VFT_INDEX_NUMBER |
QM_SQC_VFT_VALID |
(u64)base << QM_SQC_VFT_START_SQN_SHIFT;
} else {
tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
QM_SQC_VFT_VALID |
(u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
}
break;
case CQC_VFT:
if (qm->ver == QM_HW_V1) {
tmp = QM_CQC_VFT_BUF_SIZE |
QM_CQC_VFT_SQC_SIZE |
QM_CQC_VFT_INDEX_NUMBER |
QM_CQC_VFT_VALID;
} else {
tmp = QM_CQC_VFT_VALID;
}
break;
case SHAPER_VFT:
if (factor) {
tmp = factor->cir_b |
(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
}
break;
}
}
writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
}
static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
u32 fun_num, u32 base, u32 number)
{
struct qm_shaper_factor *factor = NULL;
unsigned int val;
int ret;
if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
factor = &qm->factor[fun_num];
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
if (ret)
return ret;
writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
writel(type, qm->io_base + QM_VFT_CFG_TYPE);
if (type == SHAPER_VFT)
fun_num |= base << QM_SHAPER_VFT_OFFSET;
writel(fun_num, qm->io_base + QM_VFT_CFG);
qm_vft_data_cfg(qm, type, base, number, factor);
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
}
static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
{
u32 qos = qm->factor[fun_num].func_qos;
int ret, i;
ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
if (ret) {
dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
return ret;
}
writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
/* The base number of queue reuse for different alg type */
ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
if (ret)
return ret;
}
return 0;
}
/* The config should be conducted after qm_dev_mem_reset() */
static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
u32 number)
{
int ret, i;
for (i = SQC_VFT; i <= CQC_VFT; i++) {
ret = qm_set_vft_common(qm, i, fun_num, base, number);
if (ret)
return ret;
}
/* init default shaper qos val */
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
ret = qm_shaper_init_vft(qm, fun_num);
if (ret)
goto back_sqc_cqc;
}
return 0;
back_sqc_cqc:
for (i = SQC_VFT; i <= CQC_VFT; i++)
qm_set_vft_common(qm, i, fun_num, 0, 0);
return ret;
}
static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
{
u64 sqc_vft;
int ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
if (ret)
return ret;
sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
*number = (QM_SQC_VFT_NUM_MASK_V2 &
(sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
return 0;
}
static void qm_hw_error_init_v1(struct hisi_qm *qm)
{
writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_cfg(struct hisi_qm *qm)
{
struct hisi_qm_err_info *err_info = &qm->err_info;
qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
/* clear QM hw residual error source */
writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
/* configure error type */
writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
}
static void qm_hw_error_init_v2(struct hisi_qm *qm)
{
u32 irq_unmask;
qm_hw_error_cfg(qm);
irq_unmask = ~qm->error_mask;
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
{
u32 irq_mask = qm->error_mask;
irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_init_v3(struct hisi_qm *qm)
{
u32 irq_unmask;
qm_hw_error_cfg(qm);
/* enable close master ooo when hardware error happened */
writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
irq_unmask = ~qm->error_mask;
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
}
static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
{
u32 irq_mask = qm->error_mask;
irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
/* disable close master ooo when hardware error happened */
writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
}
static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
{
const struct hisi_qm_hw_error *err;
struct device *dev = &qm->pdev->dev;
u32 reg_val, type, vf_num, qp_id;
int i;
for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
err = &qm_hw_error[i];
if (!(err->int_msk & error_status))
continue;
dev_err(dev, "%s [error status=0x%x] found\n",
err->msg, err->int_msk);
if (err->int_msk & QM_DB_TIMEOUT) {
reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
QM_DB_TIMEOUT_TYPE_SHIFT;
vf_num = reg_val & QM_DB_TIMEOUT_VF;
qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
qm_db_timeout[type], vf_num, qp_id);
} else if (err->int_msk & QM_OF_FIFO_OF) {
reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
QM_FIFO_OVERFLOW_TYPE_SHIFT;
vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
if (type < ARRAY_SIZE(qm_fifo_overflow))
dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
qm_fifo_overflow[type], vf_num, qp_id);
else
dev_err(dev, "unknown error type\n");
} else if (err->int_msk & QM_AXI_RRESP_ERR) {
reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
if (reg_val & QM_AXI_POISON_ERR)
dev_err(dev, "qm axi poison error happened\n");
}
}
}
static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
{
u32 error_status, tmp;
/* read err sts */
tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
error_status = qm->error_mask & tmp;
if (error_status) {
if (error_status & QM_ECC_MBIT)
qm->err_status.is_qm_ecc_mbit = true;
qm_log_hw_error(qm, error_status);
if (error_status & qm->err_info.qm_reset_mask)
return ACC_ERR_NEED_RESET;
writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
}
return ACC_ERR_RECOVERED;
}
static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
{
struct qm_mailbox mailbox;
int ret;
qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
mutex_lock(&qm->mailbox_lock);
ret = qm_mb_nolock(qm, &mailbox);
if (ret)
goto err_unlock;
*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
err_unlock:
mutex_unlock(&qm->mailbox_lock);
return ret;
}
static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
{
u32 val;
if (qm->fun_type == QM_HW_PF)
writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
val |= QM_IFC_INT_SOURCE_MASK;
writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
}
static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
{
struct device *dev = &qm->pdev->dev;
u32 cmd;
u64 msg;
int ret;
ret = qm_get_mb_cmd(qm, &msg, vf_id);
if (ret) {
dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
return;
}
cmd = msg & QM_MB_CMD_DATA_MASK;
switch (cmd) {
case QM_VF_PREPARE_FAIL:
dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
break;
case QM_VF_START_FAIL:
dev_err(dev, "failed to start VF(%u)!\n", vf_id);
break;
case QM_VF_PREPARE_DONE:
case QM_VF_START_DONE:
break;
default:
dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
break;
}
}
static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u32 vfs_num = qm->vfs_num;
int cnt = 0;
int ret = 0;
u64 val;
u32 i;
if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
return 0;
while (true) {
val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
/* All VFs send command to PF, break */
if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
break;
if (++cnt > QM_MAX_PF_WAIT_COUNT) {
ret = -EBUSY;
break;
}
msleep(QM_WAIT_DST_ACK);
}
/* PF check VFs msg */
for (i = 1; i <= vfs_num; i++) {
if (val & BIT(i))
qm_handle_vf_msg(qm, i);
else
dev_err(dev, "VF(%u) not ping PF!\n", i);
}
/* PF clear interrupt to ack VFs */
qm_clear_cmd_interrupt(qm, val);
return ret;
}
static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
{
u32 val;
val = readl(qm->io_base + QM_IFC_INT_CFG);
val &= ~QM_IFC_SEND_ALL_VFS;
val |= fun_num;
writel(val, qm->io_base + QM_IFC_INT_CFG);
val = readl(qm->io_base + QM_IFC_INT_SET_P);
val |= QM_IFC_INT_SET_MASK;
writel(val, qm->io_base + QM_IFC_INT_SET_P);
}
static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
{
u32 val;
val = readl(qm->io_base + QM_IFC_INT_SET_V);
val |= QM_IFC_INT_SET_MASK;
writel(val, qm->io_base + QM_IFC_INT_SET_V);
}
static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
{
struct device *dev = &qm->pdev->dev;
struct qm_mailbox mailbox;
int cnt = 0;
u64 val;
int ret;
qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
mutex_lock(&qm->mailbox_lock);
ret = qm_mb_nolock(qm, &mailbox);
if (ret) {
dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
goto err_unlock;
}
qm_trigger_vf_interrupt(qm, fun_num);
while (true) {
msleep(QM_WAIT_DST_ACK);
val = readq(qm->io_base + QM_IFC_READY_STATUS);
/* if VF respond, PF notifies VF successfully. */
if (!(val & BIT(fun_num)))
goto err_unlock;
if (++cnt > QM_MAX_PF_WAIT_COUNT) {
dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
ret = -ETIMEDOUT;
break;
}
}
err_unlock:
mutex_unlock(&qm->mailbox_lock);
return ret;
}
static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
{
struct device *dev = &qm->pdev->dev;
u32 vfs_num = qm->vfs_num;
struct qm_mailbox mailbox;
u64 val = 0;
int cnt = 0;
int ret;
u32 i;
qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
mutex_lock(&qm->mailbox_lock);
/* PF sends command to all VFs by mailbox */
ret = qm_mb_nolock(qm, &mailbox);
if (ret) {
dev_err(dev, "failed to send command to VFs!\n");
mutex_unlock(&qm->mailbox_lock);
return ret;
}
qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
while (true) {
msleep(QM_WAIT_DST_ACK);
val = readq(qm->io_base + QM_IFC_READY_STATUS);
/* If all VFs acked, PF notifies VFs successfully. */
if (!(val & GENMASK(vfs_num, 1))) {
mutex_unlock(&qm->mailbox_lock);
return 0;
}
if (++cnt > QM_MAX_PF_WAIT_COUNT)
break;
}
mutex_unlock(&qm->mailbox_lock);
/* Check which vf respond timeout. */
for (i = 1; i <= vfs_num; i++) {
if (val & BIT(i))
dev_err(dev, "failed to get response from VF(%u)!\n", i);
}
return -ETIMEDOUT;
}
static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
{
struct qm_mailbox mailbox;
int cnt = 0;
u32 val;
int ret;
qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
mutex_lock(&qm->mailbox_lock);
ret = qm_mb_nolock(qm, &mailbox);
if (ret) {
dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
goto unlock;
}
qm_trigger_pf_interrupt(qm);
/* Waiting for PF response */
while (true) {
msleep(QM_WAIT_DST_ACK);
val = readl(qm->io_base + QM_IFC_INT_SET_V);
if (!(val & QM_IFC_INT_STATUS_MASK))
break;
if (++cnt > QM_MAX_VF_WAIT_COUNT) {
ret = -ETIMEDOUT;
break;
}
}
unlock:
mutex_unlock(&qm->mailbox_lock);
return ret;
}
static int qm_drain_qm(struct hisi_qm *qm)
{
return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
}
static int qm_stop_qp(struct hisi_qp *qp)
{
return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
}
static int qm_set_msi(struct hisi_qm *qm, bool set)
{
struct pci_dev *pdev = qm->pdev;
if (set) {
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
0);
} else {
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
ACC_PEH_MSI_DISABLE);
if (qm->err_status.is_qm_ecc_mbit ||
qm->err_status.is_dev_ecc_mbit)
return 0;
mdelay(1);
if (readl(qm->io_base + QM_PEH_DFX_INFO0))
return -EFAULT;
}
return 0;
}
static void qm_wait_msi_finish(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 cmd = ~0;
int cnt = 0;
u32 val;
int ret;
while (true) {
pci_read_config_dword(pdev, pdev->msi_cap +
PCI_MSI_PENDING_64, &cmd);
if (!cmd)
break;
if (++cnt > MAX_WAIT_COUNTS) {
pci_warn(pdev, "failed to empty MSI PENDING!\n");
break;
}
udelay(1);
}
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
val, !(val & QM_PEH_DFX_MASK),
POLL_PERIOD, POLL_TIMEOUT);
if (ret)
pci_warn(pdev, "failed to empty PEH MSI!\n");
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
val, !(val & QM_PEH_MSI_FINISH_MASK),
POLL_PERIOD, POLL_TIMEOUT);
if (ret)
pci_warn(pdev, "failed to finish MSI operation!\n");
}
static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
{
struct pci_dev *pdev = qm->pdev;
int ret = -ETIMEDOUT;
u32 cmd, i;
pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
if (set)
cmd |= QM_MSI_CAP_ENABLE;
else
cmd &= ~QM_MSI_CAP_ENABLE;
pci_write_config_dword(pdev, pdev->msi_cap, cmd);
if (set) {
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
if (cmd & QM_MSI_CAP_ENABLE)
return 0;
udelay(1);
}
} else {
udelay(WAIT_PERIOD_US_MIN);
qm_wait_msi_finish(qm);
ret = 0;
}
return ret;
}
static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
.qm_db = qm_db_v1,
.hw_error_init = qm_hw_error_init_v1,
.set_msi = qm_set_msi,
};
static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
.get_vft = qm_get_vft_v2,
.qm_db = qm_db_v2,
.hw_error_init = qm_hw_error_init_v2,
.hw_error_uninit = qm_hw_error_uninit_v2,
.hw_error_handle = qm_hw_error_handle_v2,
.set_msi = qm_set_msi,
};
static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
.get_vft = qm_get_vft_v2,
.qm_db = qm_db_v2,
.hw_error_init = qm_hw_error_init_v3,
.hw_error_uninit = qm_hw_error_uninit_v3,
.hw_error_handle = qm_hw_error_handle_v2,
.set_msi = qm_set_msi_v3,
};
static void *qm_get_avail_sqe(struct hisi_qp *qp)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
u16 sq_tail = qp_status->sq_tail;
if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
return NULL;
return qp->sqe + sq_tail * qp->qm->sqe_size;
}
static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
{
u64 *addr;
/* Use last 64 bits of DUS to reset status. */
addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
*addr = 0;
}
static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
{
struct device *dev = &qm->pdev->dev;
struct hisi_qp *qp;
int qp_id;
if (atomic_read(&qm->status.flags) == QM_STOP) {
dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
return ERR_PTR(-EPERM);
}
if (qm->qp_in_used == qm->qp_num) {
dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
qm->qp_num);
atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
return ERR_PTR(-EBUSY);
}
qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
if (qp_id < 0) {
dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
qm->qp_num);
atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
return ERR_PTR(-EBUSY);
}
qp = &qm->qp_array[qp_id];
hisi_qm_unset_hw_reset(qp);
memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
qp->event_cb = NULL;
qp->req_cb = NULL;
qp->qp_id = qp_id;
qp->alg_type = alg_type;
qp->is_in_kernel = true;
qm->qp_in_used++;
return qp;
}
/**
* hisi_qm_create_qp() - Create a queue pair from qm.
* @qm: The qm we create a qp from.
* @alg_type: Accelerator specific algorithm type in sqc.
*
* Return created qp, negative error code if failed.
*/
static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
{
struct hisi_qp *qp;
int ret;
ret = qm_pm_get_sync(qm);
if (ret)
return ERR_PTR(ret);
down_write(&qm->qps_lock);
qp = qm_create_qp_nolock(qm, alg_type);
up_write(&qm->qps_lock);
if (IS_ERR(qp))
qm_pm_put_sync(qm);
return qp;
}
/**
* hisi_qm_release_qp() - Release a qp back to its qm.
* @qp: The qp we want to release.
*
* This function releases the resource of a qp.
*/
static void hisi_qm_release_qp(struct hisi_qp *qp)
{
struct hisi_qm *qm = qp->qm;
down_write(&qm->qps_lock);
qm->qp_in_used--;
idr_remove(&qm->qp_idr, qp->qp_id);
up_write(&qm->qps_lock);
qm_pm_put_sync(qm);
}
static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
{
struct hisi_qm *qm = qp->qm;
enum qm_hw_ver ver = qm->ver;
struct qm_sqc sqc = {0};
if (ver == QM_HW_V1) {
sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
} else {
sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
sqc.w8 = 0; /* rand_qc */
}
sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
sqc.cq_num = cpu_to_le16(qp_id);
sqc.pasid = cpu_to_le16(pasid);
if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
QM_QC_PASID_ENABLE_SHIFT);
return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
}
static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
{
struct hisi_qm *qm = qp->qm;
enum qm_hw_ver ver = qm->ver;
struct qm_cqc cqc = {0};
if (ver == QM_HW_V1) {
cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
} else {
cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
cqc.w8 = 0; /* rand_qc */
}
/*
* Enable request finishing interrupts defaultly.
* So, there will be some interrupts until disabling
* this.
*/
cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
cqc.pasid = cpu_to_le16(pasid);
if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
}
static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
{
int ret;
qm_init_qp_status(qp);
ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
if (ret)
return ret;
return qm_cq_ctx_cfg(qp, qp_id, pasid);
}
static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
{
struct hisi_qm *qm = qp->qm;
struct device *dev = &qm->pdev->dev;
int qp_id = qp->qp_id;
u32 pasid = arg;
int ret;
if (atomic_read(&qm->status.flags) == QM_STOP) {
dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
return -EPERM;
}
ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
if (ret)
return ret;
atomic_set(&qp->qp_status.flags, QP_START);
dev_dbg(dev, "queue %d started\n", qp_id);
return 0;
}
/**
* hisi_qm_start_qp() - Start a qp into running.
* @qp: The qp we want to start to run.
* @arg: Accelerator specific argument.
*
* After this function, qp can receive request from user. Return 0 if
* successful, negative error code if failed.
*/
int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
{
struct hisi_qm *qm = qp->qm;
int ret;
down_write(&qm->qps_lock);
ret = qm_start_qp_nolock(qp, arg);
up_write(&qm->qps_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
/**
* qp_stop_fail_cb() - call request cb.
* @qp: stopped failed qp.
*
* Callback function should be called whether task completed or not.
*/
static void qp_stop_fail_cb(struct hisi_qp *qp)
{
int qp_used = atomic_read(&qp->qp_status.used);
u16 cur_tail = qp->qp_status.sq_tail;
u16 sq_depth = qp->sq_depth;
u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
struct hisi_qm *qm = qp->qm;
u16 pos;
int i;
for (i = 0; i < qp_used; i++) {
pos = (i + cur_head) % sq_depth;
qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
atomic_dec(&qp->qp_status.used);
}
}
static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
{
struct device *dev = &qm->pdev->dev;
struct qm_sqc sqc;
struct qm_cqc cqc;
int ret, i = 0;
while (++i) {
ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
if (ret) {
dev_err_ratelimited(dev, "Failed to dump sqc!\n");
*state = QM_DUMP_SQC_FAIL;
return ret;
}
ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
if (ret) {
dev_err_ratelimited(dev, "Failed to dump cqc!\n");
*state = QM_DUMP_CQC_FAIL;
return ret;
}
if ((sqc.tail == cqc.tail) &&
(QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
break;
if (i == MAX_WAIT_COUNTS) {
dev_err(dev, "Fail to empty queue %u!\n", qp_id);
*state = QM_STOP_QUEUE_FAIL;
return -ETIMEDOUT;
}
usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
}
return 0;
}
/**
* qm_drain_qp() - Drain a qp.
* @qp: The qp we want to drain.
*
* If the device does not support stopping queue by sending mailbox,
* determine whether the queue is cleared by judging the tail pointers of
* sq and cq.
*/
static int qm_drain_qp(struct hisi_qp *qp)
{
struct hisi_qm *qm = qp->qm;
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
u32 state = 0;
int ret;
/* No need to judge if master OOO is blocked. */
if (qm_check_dev_error(pf_qm))
return 0;
/* HW V3 supports drain qp by device */
if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
ret = qm_stop_qp(qp);
if (ret) {
dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
state = QM_STOP_QUEUE_FAIL;
goto set_dev_state;
}
return ret;
}
ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
if (ret)
goto set_dev_state;
return 0;
set_dev_state:
if (qm->debug.dev_dfx.dev_timeout)
qm->debug.dev_dfx.dev_state = state;
return ret;
}
static void qm_stop_qp_nolock(struct hisi_qp *qp)
{
struct hisi_qm *qm = qp->qm;
struct device *dev = &qm->pdev->dev;
int ret;
/*
* It is allowed to stop and release qp when reset, If the qp is
* stopped when reset but still want to be released then, the
* is_resetting flag should be set negative so that this qp will not
* be restarted after reset.
*/
if (atomic_read(&qp->qp_status.flags) != QP_START) {
qp->is_resetting = false;
return;
}
atomic_set(&qp->qp_status.flags, QP_STOP);
/* V3 supports direct stop function when FLR prepare */
if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
ret = qm_drain_qp(qp);
if (ret)
dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
}
flush_workqueue(qm->wq);
if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
qp_stop_fail_cb(qp);
dev_dbg(dev, "stop queue %u!", qp->qp_id);
}
/**
* hisi_qm_stop_qp() - Stop a qp in qm.
* @qp: The qp we want to stop.
*
* This function is reverse of hisi_qm_start_qp.
*/
void hisi_qm_stop_qp(struct hisi_qp *qp)
{
down_write(&qp->qm->qps_lock);
qm_stop_qp_nolock(qp);
up_write(&qp->qm->qps_lock);
}
EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
/**
* hisi_qp_send() - Queue up a task in the hardware queue.
* @qp: The qp in which to put the message.
* @msg: The message.
*
* This function will return -EBUSY if qp is currently full, and -EAGAIN
* if qp related qm is resetting.
*
* Note: This function may run with qm_irq_thread and ACC reset at same time.
* It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
* reset may happen, we have no lock here considering performance. This
* causes current qm_db sending fail or can not receive sended sqe. QM
* sync/async receive function should handle the error sqe. ACC reset
* done function should clear used sqe to 0.
*/
int hisi_qp_send(struct hisi_qp *qp, const void *msg)
{
struct hisi_qp_status *qp_status = &qp->qp_status;
u16 sq_tail = qp_status->sq_tail;
u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
void *sqe = qm_get_avail_sqe(qp);
if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
atomic_read(&qp->qm->status.flags) == QM_STOP ||
qp->is_resetting)) {
dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
return -EAGAIN;
}
if (!sqe)
return -EBUSY;
memcpy(sqe, msg, qp->qm->sqe_size);
qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
atomic_inc(&qp->qp_status.used);
qp_status->sq_tail = sq_tail_next;
return 0;
}
EXPORT_SYMBOL_GPL(hisi_qp_send);
static void hisi_qm_cache_wb(struct hisi_qm *qm)
{
unsigned int val;
if (qm->ver == QM_HW_V1)
return;
writel(0x1, qm->io_base + QM_CACHE_WB_START);
if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
val, val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT))
dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
}
static void qm_qp_event_notifier(struct hisi_qp *qp)
{
wake_up_interruptible(&qp->uacce_q->wait);
}
/* This function returns free number of qp in qm. */
static int hisi_qm_get_available_instances(struct uacce_device *uacce)
{
struct hisi_qm *qm = uacce->priv;
int ret;
down_read(&qm->qps_lock);
ret = qm->qp_num - qm->qp_in_used;
up_read(&qm->qps_lock);
return ret;
}
static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
{
int i;
for (i = 0; i < qm->qp_num; i++)
qm_set_qp_disable(&qm->qp_array[i], offset);
}
static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
unsigned long arg,
struct uacce_queue *q)
{
struct hisi_qm *qm = uacce->priv;
struct hisi_qp *qp;
u8 alg_type = 0;
qp = hisi_qm_create_qp(qm, alg_type);
if (IS_ERR(qp))
return PTR_ERR(qp);
q->priv = qp;
q->uacce = uacce;
qp->uacce_q = q;
qp->event_cb = qm_qp_event_notifier;
qp->pasid = arg;
qp->is_in_kernel = false;
return 0;
}
static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
{
struct hisi_qp *qp = q->priv;
hisi_qm_release_qp(qp);
}
/* map sq/cq/doorbell to user space */
static int hisi_qm_uacce_mmap(struct uacce_queue *q,
struct vm_area_struct *vma,
struct uacce_qfile_region *qfr)
{
struct hisi_qp *qp = q->priv;
struct hisi_qm *qm = qp->qm;
resource_size_t phys_base = qm->db_phys_base +
qp->qp_id * qm->db_interval;
size_t sz = vma->vm_end - vma->vm_start;
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
unsigned long vm_pgoff;
int ret;
switch (qfr->type) {
case UACCE_QFRT_MMIO:
if (qm->ver == QM_HW_V1) {
if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
return -EINVAL;
} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
return -EINVAL;
} else {
if (sz > qm->db_interval)
return -EINVAL;
}
vm_flags_set(vma, VM_IO);
return remap_pfn_range(vma, vma->vm_start,
phys_base >> PAGE_SHIFT,
sz, pgprot_noncached(vma->vm_page_prot));
case UACCE_QFRT_DUS:
if (sz != qp->qdma.size)
return -EINVAL;
/*
* dma_mmap_coherent() requires vm_pgoff as 0
* restore vm_pfoff to initial value for mmap()
*/
vm_pgoff = vma->vm_pgoff;
vma->vm_pgoff = 0;
ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
qp->qdma.dma, sz);
vma->vm_pgoff = vm_pgoff;
return ret;
default:
return -EINVAL;
}
}
static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
{
struct hisi_qp *qp = q->priv;
return hisi_qm_start_qp(qp, qp->pasid);
}
static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
{
struct hisi_qp *qp = q->priv;
struct hisi_qm *qm = qp->qm;
struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
u32 i = 0;
hisi_qm_stop_qp(qp);
if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
return;
/*
* After the queue fails to be stopped,
* wait for a period of time before releasing the queue.
*/
while (++i) {
msleep(WAIT_PERIOD);
/* Since dev_timeout maybe modified, check i >= dev_timeout */
if (i >= dev_dfx->dev_timeout) {
dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
qp->qp_id, dev_dfx->dev_state);
dev_dfx->dev_state = QM_FINISH_WAIT;
break;
}
}
}
static int hisi_qm_is_q_updated(struct uacce_queue *q)
{
struct hisi_qp *qp = q->priv;
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
int updated = 0;
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
/* make sure to read data from memory */
dma_rmb();
qm_cq_head_update(qp);
cqe = qp->cqe + qp->qp_status.cq_head;
updated = 1;
}
return updated;
}
static void qm_set_sqctype(struct uacce_queue *q, u16 type)
{
struct hisi_qm *qm = q->uacce->priv;
struct hisi_qp *qp = q->priv;
down_write(&qm->qps_lock);
qp->alg_type = type;
up_write(&qm->qps_lock);
}
static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
unsigned long arg)
{
struct hisi_qp *qp = q->priv;
struct hisi_qp_info qp_info;
struct hisi_qp_ctx qp_ctx;
if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
if (copy_from_user(&qp_ctx, (void __user *)arg,
sizeof(struct hisi_qp_ctx)))
return -EFAULT;
if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
return -EINVAL;
qm_set_sqctype(q, qp_ctx.qc_type);
qp_ctx.id = qp->qp_id;
if (copy_to_user((void __user *)arg, &qp_ctx,
sizeof(struct hisi_qp_ctx)))
return -EFAULT;
return 0;
} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
if (copy_from_user(&qp_info, (void __user *)arg,
sizeof(struct hisi_qp_info)))
return -EFAULT;
qp_info.sqe_size = qp->qm->sqe_size;
qp_info.sq_depth = qp->sq_depth;
qp_info.cq_depth = qp->cq_depth;
if (copy_to_user((void __user *)arg, &qp_info,
sizeof(struct hisi_qp_info)))
return -EFAULT;
return 0;
}
return -EINVAL;
}
/**
* qm_hw_err_isolate() - Try to set the isolation status of the uacce device
* according to user's configuration of error threshold.
* @qm: the uacce device
*/
static int qm_hw_err_isolate(struct hisi_qm *qm)
{
struct qm_hw_err *err, *tmp, *hw_err;
struct qm_err_isolate *isolate;
u32 count = 0;
isolate = &qm->isolate_data;
#define SECONDS_PER_HOUR 3600
/* All the hw errs are processed by PF driver */
if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
return 0;
hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
if (!hw_err)
return -ENOMEM;
/*
* Time-stamp every slot AER error. Then check the AER error log when the
* next device AER error occurred. if the device slot AER error count exceeds
* the setting error threshold in one hour, the isolated state will be set
* to true. And the AER error logs that exceed one hour will be cleared.
*/
mutex_lock(&isolate->isolate_lock);
hw_err->timestamp = jiffies;
list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
if ((hw_err->timestamp - err->timestamp) / HZ >
SECONDS_PER_HOUR) {
list_del(&err->list);
kfree(err);
} else {
count++;
}
}
list_add(&hw_err->list, &isolate->qm_hw_errs);
mutex_unlock(&isolate->isolate_lock);
if (count >= isolate->err_threshold)
isolate->is_isolate = true;
return 0;
}
static void qm_hw_err_destroy(struct hisi_qm *qm)
{
struct qm_hw_err *err, *tmp;
mutex_lock(&qm->isolate_data.isolate_lock);
list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
list_del(&err->list);
kfree(err);
}
mutex_unlock(&qm->isolate_data.isolate_lock);
}
static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
{
struct hisi_qm *qm = uacce->priv;
struct hisi_qm *pf_qm;
if (uacce->is_vf)
pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
else
pf_qm = qm;
return pf_qm->isolate_data.is_isolate ?
UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
}
static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
{
struct hisi_qm *qm = uacce->priv;
/* Must be set by PF */
if (uacce->is_vf)
return -EPERM;
if (qm->isolate_data.is_isolate)
return -EPERM;
qm->isolate_data.err_threshold = num;
/* After the policy is updated, need to reset the hardware err list */
qm_hw_err_destroy(qm);
return 0;
}
static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
{
struct hisi_qm *qm = uacce->priv;
struct hisi_qm *pf_qm;
if (uacce->is_vf) {
pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
return pf_qm->isolate_data.err_threshold;
}
return qm->isolate_data.err_threshold;
}
static const struct uacce_ops uacce_qm_ops = {
.get_available_instances = hisi_qm_get_available_instances,
.get_queue = hisi_qm_uacce_get_queue,
.put_queue = hisi_qm_uacce_put_queue,
.start_queue = hisi_qm_uacce_start_queue,
.stop_queue = hisi_qm_uacce_stop_queue,
.mmap = hisi_qm_uacce_mmap,
.ioctl = hisi_qm_uacce_ioctl,
.is_q_updated = hisi_qm_is_q_updated,
.get_isolate_state = hisi_qm_get_isolate_state,
.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
};
static void qm_remove_uacce(struct hisi_qm *qm)
{
struct uacce_device *uacce = qm->uacce;
if (qm->use_sva) {
qm_hw_err_destroy(qm);
uacce_remove(uacce);
qm->uacce = NULL;
}
}
static int qm_alloc_uacce(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct uacce_device *uacce;
unsigned long mmio_page_nr;
unsigned long dus_page_nr;
u16 sq_depth, cq_depth;
struct uacce_interface interface = {
.flags = UACCE_DEV_SVA,
.ops = &uacce_qm_ops,
};
int ret;
ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
sizeof(interface.name));
if (ret < 0)
return -ENAMETOOLONG;
uacce = uacce_alloc(&pdev->dev, &interface);
if (IS_ERR(uacce))
return PTR_ERR(uacce);
if (uacce->flags & UACCE_DEV_SVA) {
qm->use_sva = true;
} else {
/* only consider sva case */
qm_remove_uacce(qm);
return -EINVAL;
}
uacce->is_vf = pdev->is_virtfn;
uacce->priv = qm;
if (qm->ver == QM_HW_V1)
uacce->api_ver = HISI_QM_API_VER_BASE;
else if (qm->ver == QM_HW_V2)
uacce->api_ver = HISI_QM_API_VER2_BASE;
else
uacce->api_ver = HISI_QM_API_VER3_BASE;
if (qm->ver == QM_HW_V1)
mmio_page_nr = QM_DOORBELL_PAGE_NR;
else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
mmio_page_nr = QM_DOORBELL_PAGE_NR +
QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
else
mmio_page_nr = qm->db_interval / PAGE_SIZE;
qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
/* Add one more page for device or qp status */
dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >>
PAGE_SHIFT;
uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr;
qm->uacce = uacce;
INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
mutex_init(&qm->isolate_data.isolate_lock);
return 0;
}
/**
* qm_frozen() - Try to froze QM to cut continuous queue request. If
* there is user on the QM, return failure without doing anything.
* @qm: The qm needed to be fronzen.
*
* This function frozes QM, then we can do SRIOV disabling.
*/
static int qm_frozen(struct hisi_qm *qm)
{
if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
return 0;
down_write(&qm->qps_lock);
if (!qm->qp_in_used) {
qm->qp_in_used = qm->qp_num;
up_write(&qm->qps_lock);
set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
return 0;
}
up_write(&qm->qps_lock);
return -EBUSY;
}
static int qm_try_frozen_vfs(struct pci_dev *pdev,
struct hisi_qm_list *qm_list)
{
struct hisi_qm *qm, *vf_qm;
struct pci_dev *dev;
int ret = 0;
if (!qm_list || !pdev)
return -EINVAL;
/* Try to frozen all the VFs as disable SRIOV */
mutex_lock(&qm_list->lock);
list_for_each_entry(qm, &qm_list->list, list) {
dev = qm->pdev;
if (dev == pdev)
continue;
if (pci_physfn(dev) == pdev) {
vf_qm = pci_get_drvdata(dev);
ret = qm_frozen(vf_qm);
if (ret)
goto frozen_fail;
}
}
frozen_fail:
mutex_unlock(&qm_list->lock);
return ret;
}
/**
* hisi_qm_wait_task_finish() - Wait until the task is finished
* when removing the driver.
* @qm: The qm needed to wait for the task to finish.
* @qm_list: The list of all available devices.
*/
void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
{
while (qm_frozen(qm) ||
((qm->fun_type == QM_HW_PF) &&
qm_try_frozen_vfs(qm->pdev, qm_list))) {
msleep(WAIT_PERIOD);
}
while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
test_bit(QM_RESETTING, &qm->misc_ctl))
msleep(WAIT_PERIOD);
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
flush_work(&qm->cmd_process);
udelay(REMOVE_WAIT_DELAY);
}
EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
{
struct device *dev = &qm->pdev->dev;
struct qm_dma *qdma;
int i;
for (i = num - 1; i >= 0; i--) {
qdma = &qm->qp_array[i].qdma;
dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
kfree(qm->poll_data[i].qp_finish_id);
}
kfree(qm->poll_data);
kfree(qm->qp_array);
}
static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
u16 sq_depth, u16 cq_depth)
{
struct device *dev = &qm->pdev->dev;
size_t off = qm->sqe_size * sq_depth;
struct hisi_qp *qp;
int ret = -ENOMEM;
qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
GFP_KERNEL);
if (!qm->poll_data[id].qp_finish_id)
return -ENOMEM;
qp = &qm->qp_array[id];
qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
GFP_KERNEL);
if (!qp->qdma.va)
goto err_free_qp_finish_id;
qp->sqe = qp->qdma.va;
qp->sqe_dma = qp->qdma.dma;
qp->cqe = qp->qdma.va + off;
qp->cqe_dma = qp->qdma.dma + off;
qp->qdma.size = dma_size;
qp->sq_depth = sq_depth;
qp->cq_depth = cq_depth;
qp->qm = qm;
qp->qp_id = id;
return 0;
err_free_qp_finish_id:
kfree(qm->poll_data[id].qp_finish_id);
return ret;
}
static void hisi_qm_pre_init(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
if (qm->ver == QM_HW_V1)
qm->ops = &qm_hw_ops_v1;
else if (qm->ver == QM_HW_V2)
qm->ops = &qm_hw_ops_v2;
else
qm->ops = &qm_hw_ops_v3;
pci_set_drvdata(pdev, qm);
mutex_init(&qm->mailbox_lock);
init_rwsem(&qm->qps_lock);
qm->qp_in_used = 0;
if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
}
}
static void qm_cmd_uninit(struct hisi_qm *qm)
{
u32 val;
if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
return;
val = readl(qm->io_base + QM_IFC_INT_MASK);
val |= QM_IFC_INT_DISABLE;
writel(val, qm->io_base + QM_IFC_INT_MASK);
}
static void qm_cmd_init(struct hisi_qm *qm)
{
u32 val;
if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
return;
/* Clear communication interrupt source */
qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
/* Enable pf to vf communication reg. */
val = readl(qm->io_base + QM_IFC_INT_MASK);
val &= ~QM_IFC_INT_DISABLE;
writel(val, qm->io_base + QM_IFC_INT_MASK);
}
static void qm_put_pci_res(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
iounmap(qm->db_io_base);
iounmap(qm->io_base);
pci_release_mem_regions(pdev);
}
static void hisi_qm_pci_uninit(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
pci_free_irq_vectors(pdev);
qm_put_pci_res(qm);
pci_disable_device(pdev);
}
static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
{
if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
writel(state, qm->io_base + QM_VF_STATE);
}
static void hisi_qm_unint_work(struct hisi_qm *qm)
{
destroy_workqueue(qm->wq);
}
static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
{
struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
struct device *dev = &qm->pdev->dev;
dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
}
static void hisi_qm_memory_uninit(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
hisi_qp_memory_uninit(qm, qm->qp_num);
hisi_qm_free_rsv_buf(qm);
if (qm->qdma.va) {
hisi_qm_cache_wb(qm);
dma_free_coherent(dev, qm->qdma.size,
qm->qdma.va, qm->qdma.dma);
}
idr_destroy(&qm->qp_idr);
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
kfree(qm->factor);
}
/**
* hisi_qm_uninit() - Uninitialize qm.
* @qm: The qm needed uninit.
*
* This function uninits qm related device resources.
*/
void hisi_qm_uninit(struct hisi_qm *qm)
{
qm_cmd_uninit(qm);
hisi_qm_unint_work(qm);
down_write(&qm->qps_lock);
hisi_qm_memory_uninit(qm);
hisi_qm_set_state(qm, QM_NOT_READY);
up_write(&qm->qps_lock);
qm_remove_uacce(qm);
qm_irqs_unregister(qm);
hisi_qm_pci_uninit(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_uninit);
/**
* hisi_qm_get_vft() - Get vft from a qm.
* @qm: The qm we want to get its vft.
* @base: The base number of queue in vft.
* @number: The number of queues in vft.
*
* We can allocate multiple queues to a qm by configuring virtual function
* table. We get related configures by this function. Normally, we call this
* function in VF driver to get the queue information.
*
* qm hw v1 does not support this interface.
*/
static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
{
if (!base || !number)
return -EINVAL;
if (!qm->ops->get_vft) {
dev_err(&qm->pdev->dev, "Don't support vft read!\n");
return -EINVAL;
}
return qm->ops->get_vft(qm, base, number);
}
/**
* hisi_qm_set_vft() - Set vft to a qm.
* @qm: The qm we want to set its vft.
* @fun_num: The function number.
* @base: The base number of queue in vft.
* @number: The number of queues in vft.
*
* This function is alway called in PF driver, it is used to assign queues
* among PF and VFs.
*
* Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
* Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
* (VF function number 0x2)
*/
static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
u32 number)
{
u32 max_q_num = qm->ctrl_qp_num;
if (base >= max_q_num || number > max_q_num ||
(base + number) > max_q_num)
return -EINVAL;
return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
}
static void qm_init_eq_aeq_status(struct hisi_qm *qm)
{
struct hisi_qm_status *status = &qm->status;
status->eq_head = 0;
status->aeq_head = 0;
status->eqc_phase = true;
status->aeqc_phase = true;
}
static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
{
/* Clear eq/aeq interrupt source */
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
}
static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
{
writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
}
static int qm_eq_ctx_cfg(struct hisi_qm *qm)
{
struct qm_eqc eqc = {0};
eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
if (qm->ver == QM_HW_V1)
eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
}
static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
{
struct qm_aeqc aeqc = {0};
aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
}
static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret;
qm_init_eq_aeq_status(qm);
ret = qm_eq_ctx_cfg(qm);
if (ret) {
dev_err(dev, "Set eqc failed!\n");
return ret;
}
return qm_aeq_ctx_cfg(qm);
}
static int __hisi_qm_start(struct hisi_qm *qm)
{
int ret;
WARN_ON(!qm->qdma.va);
if (qm->fun_type == QM_HW_PF) {
ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
if (ret)
return ret;
}
ret = qm_eq_aeq_ctx_cfg(qm);
if (ret)
return ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
if (ret)
return ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
if (ret)
return ret;
qm_init_prefetch(qm);
qm_enable_eq_aeq_interrupts(qm);
return 0;
}
/**
* hisi_qm_start() - start qm
* @qm: The qm to be started.
*
* This function starts a qm, then we can allocate qp from this qm.
*/
int hisi_qm_start(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret = 0;
down_write(&qm->qps_lock);
dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
if (!qm->qp_num) {
dev_err(dev, "qp_num should not be 0\n");
ret = -EINVAL;
goto err_unlock;
}
ret = __hisi_qm_start(qm);
if (ret)
goto err_unlock;
atomic_set(&qm->status.flags, QM_WORK);
hisi_qm_set_state(qm, QM_READY);
err_unlock:
up_write(&qm->qps_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_start);
static int qm_restart(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
struct hisi_qp *qp;
int ret, i;
ret = hisi_qm_start(qm);
if (ret < 0)
return ret;
down_write(&qm->qps_lock);
for (i = 0; i < qm->qp_num; i++) {
qp = &qm->qp_array[i];
if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
qp->is_resetting == true) {
ret = qm_start_qp_nolock(qp, 0);
if (ret < 0) {
dev_err(dev, "Failed to start qp%d!\n", i);
up_write(&qm->qps_lock);
return ret;
}
qp->is_resetting = false;
}
}
up_write(&qm->qps_lock);
return 0;
}
/* Stop started qps in reset flow */
static void qm_stop_started_qp(struct hisi_qm *qm)
{
struct hisi_qp *qp;
int i;
for (i = 0; i < qm->qp_num; i++) {
qp = &qm->qp_array[i];
if (atomic_read(&qp->qp_status.flags) == QP_START) {
qp->is_resetting = true;
qm_stop_qp_nolock(qp);
}
}
}
/**
* qm_clear_queues() - Clear all queues memory in a qm.
* @qm: The qm in which the queues will be cleared.
*
* This function clears all queues memory in a qm. Reset of accelerator can
* use this to clear queues.
*/
static void qm_clear_queues(struct hisi_qm *qm)
{
struct hisi_qp *qp;
int i;
for (i = 0; i < qm->qp_num; i++) {
qp = &qm->qp_array[i];
if (qp->is_in_kernel && qp->is_resetting)
memset(qp->qdma.va, 0, qp->qdma.size);
}
memset(qm->qdma.va, 0, qm->qdma.size);
}
/**
* hisi_qm_stop() - Stop a qm.
* @qm: The qm which will be stopped.
* @r: The reason to stop qm.
*
* This function stops qm and its qps, then qm can not accept request.
* Related resources are not released at this state, we can use hisi_qm_start
* to let qm start again.
*/
int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
{
struct device *dev = &qm->pdev->dev;
int ret = 0;
down_write(&qm->qps_lock);
if (atomic_read(&qm->status.flags) == QM_STOP)
goto err_unlock;
/* Stop all the request sending at first. */
atomic_set(&qm->status.flags, QM_STOP);
qm->status.stop_reason = r;
if (qm->status.stop_reason != QM_NORMAL) {
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
/*
* When performing soft reset, the hardware will no longer
* do tasks, and the tasks in the device will be flushed
* out directly since the master ooo is closed.
*/
if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
r != QM_SOFT_RESET) {
ret = qm_drain_qm(qm);
if (ret) {
dev_err(dev, "failed to drain qm!\n");
goto err_unlock;
}
}
qm_stop_started_qp(qm);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
}
qm_disable_eq_aeq_interrupts(qm);
if (qm->fun_type == QM_HW_PF) {
ret = hisi_qm_set_vft(qm, 0, 0, 0);
if (ret < 0) {
dev_err(dev, "Failed to set vft!\n");
ret = -EBUSY;
goto err_unlock;
}
}
qm_clear_queues(qm);
qm->status.stop_reason = QM_NORMAL;
err_unlock:
up_write(&qm->qps_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_stop);
static void qm_hw_error_init(struct hisi_qm *qm)
{
if (!qm->ops->hw_error_init) {
dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
return;
}
qm->ops->hw_error_init(qm);
}
static void qm_hw_error_uninit(struct hisi_qm *qm)
{
if (!qm->ops->hw_error_uninit) {
dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
return;
}
qm->ops->hw_error_uninit(qm);
}
static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
{
if (!qm->ops->hw_error_handle) {
dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
return ACC_ERR_NONE;
}
return qm->ops->hw_error_handle(qm);
}
/**
* hisi_qm_dev_err_init() - Initialize device error configuration.
* @qm: The qm for which we want to do error initialization.
*
* Initialize QM and device error related configuration.
*/
void hisi_qm_dev_err_init(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_VF)
return;
qm_hw_error_init(qm);
if (!qm->err_ini->hw_err_enable) {
dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
return;
}
qm->err_ini->hw_err_enable(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
/**
* hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
* @qm: The qm for which we want to do error uninitialization.
*
* Uninitialize QM and device error related configuration.
*/
void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_VF)
return;
qm_hw_error_uninit(qm);
if (!qm->err_ini->hw_err_disable) {
dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
return;
}
qm->err_ini->hw_err_disable(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
/**
* hisi_qm_free_qps() - free multiple queue pairs.
* @qps: The queue pairs need to be freed.
* @qp_num: The num of queue pairs.
*/
void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
{
int i;
if (!qps || qp_num <= 0)
return;
for (i = qp_num - 1; i >= 0; i--)
hisi_qm_release_qp(qps[i]);
}
EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
static void free_list(struct list_head *head)
{
struct hisi_qm_resource *res, *tmp;
list_for_each_entry_safe(res, tmp, head, list) {
list_del(&res->list);
kfree(res);
}
}
static int hisi_qm_sort_devices(int node, struct list_head *head,
struct hisi_qm_list *qm_list)
{
struct hisi_qm_resource *res, *tmp;
struct hisi_qm *qm;
struct list_head *n;
struct device *dev;
int dev_node;
list_for_each_entry(qm, &qm_list->list, list) {
dev = &qm->pdev->dev;
dev_node = dev_to_node(dev);
if (dev_node < 0)
dev_node = 0;
res = kzalloc(sizeof(*res), GFP_KERNEL);
if (!res)
return -ENOMEM;
res->qm = qm;
res->distance = node_distance(dev_node, node);
n = head;
list_for_each_entry(tmp, head, list) {
if (res->distance < tmp->distance) {
n = &tmp->list;
break;
}
}
list_add_tail(&res->list, n);
}
return 0;
}
/**
* hisi_qm_alloc_qps_node() - Create multiple queue pairs.
* @qm_list: The list of all available devices.
* @qp_num: The number of queue pairs need created.
* @alg_type: The algorithm type.
* @node: The numa node.
* @qps: The queue pairs need created.
*
* This function will sort all available device according to numa distance.
* Then try to create all queue pairs from one device, if all devices do
* not meet the requirements will return error.
*/
int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
u8 alg_type, int node, struct hisi_qp **qps)
{
struct hisi_qm_resource *tmp;
int ret = -ENODEV;
LIST_HEAD(head);
int i;
if (!qps || !qm_list || qp_num <= 0)
return -EINVAL;
mutex_lock(&qm_list->lock);
if (hisi_qm_sort_devices(node, &head, qm_list)) {
mutex_unlock(&qm_list->lock);
goto err;
}
list_for_each_entry(tmp, &head, list) {
for (i = 0; i < qp_num; i++) {
qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
if (IS_ERR(qps[i])) {
hisi_qm_free_qps(qps, i);
break;
}
}
if (i == qp_num) {
ret = 0;
break;
}
}
mutex_unlock(&qm_list->lock);
if (ret)
pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
node, alg_type, qp_num);
err:
free_list(&head);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
{
u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
u32 max_qp_num = qm->max_qp_num;
u32 q_base = qm->qp_num;
int ret;
if (!num_vfs)
return -EINVAL;
vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
/* If vfs_q_num is less than num_vfs, return error. */
if (vfs_q_num < num_vfs)
return -EINVAL;
q_num = vfs_q_num / num_vfs;
remain_q_num = vfs_q_num % num_vfs;
for (i = num_vfs; i > 0; i--) {
/*
* if q_num + remain_q_num > max_qp_num in last vf, divide the
* remaining queues equally.
*/
if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
act_q_num = q_num + remain_q_num;
remain_q_num = 0;
} else if (remain_q_num > 0) {
act_q_num = q_num + 1;
remain_q_num--;
} else {
act_q_num = q_num;
}
act_q_num = min(act_q_num, max_qp_num);
ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
if (ret) {
for (j = num_vfs; j > i; j--)
hisi_qm_set_vft(qm, j, 0, 0);
return ret;
}
q_base += act_q_num;
}
return 0;
}
static int qm_clear_vft_config(struct hisi_qm *qm)
{
int ret;
u32 i;
for (i = 1; i <= qm->vfs_num; i++) {
ret = hisi_qm_set_vft(qm, i, 0, 0);
if (ret)
return ret;
}
qm->vfs_num = 0;
return 0;
}
static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
{
struct device *dev = &qm->pdev->dev;
u32 ir = qos * QM_QOS_RATE;
int ret, total_vfs, i;
total_vfs = pci_sriov_get_totalvfs(qm->pdev);
if (fun_index > total_vfs)
return -EINVAL;
qm->factor[fun_index].func_qos = qos;
ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
if (ret) {
dev_err(dev, "failed to calculate shaper parameter!\n");
return -EINVAL;
}
for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
/* The base number of queue reuse for different alg type */
ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
if (ret) {
dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
return -EINVAL;
}
}
return 0;
}
static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
{
u64 cir_u = 0, cir_b = 0, cir_s = 0;
u64 shaper_vft, ir_calc, ir;
unsigned int val;
u32 error_rate;
int ret;
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
if (ret)
return 0;
writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
writel(fun_index, qm->io_base + QM_VFT_CFG);
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), POLL_PERIOD,
POLL_TIMEOUT);
if (ret)
return 0;
shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
if (error_rate > QM_QOS_MIN_ERROR_RATE) {
pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
return 0;
}
return ir;
}
static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
{
struct device *dev = &qm->pdev->dev;
u64 mb_cmd;
u32 qos;
int ret;
qos = qm_get_shaper_vft_qos(qm, fun_num);
if (!qos) {
dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
return;
}
mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
if (ret)
dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
}
static int qm_vf_read_qos(struct hisi_qm *qm)
{
int cnt = 0;
int ret = -EINVAL;
/* reset mailbox qos val */
qm->mb_qos = 0;
/* vf ping pf to get function qos */
ret = qm_ping_pf(qm, QM_VF_GET_QOS);
if (ret) {
pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
return ret;
}
while (true) {
msleep(QM_WAIT_DST_ACK);
if (qm->mb_qos)
break;
if (++cnt > QM_MAX_VF_WAIT_COUNT) {
pci_err(qm->pdev, "PF ping VF timeout!\n");
return -ETIMEDOUT;
}
}
return ret;
}
static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
size_t count, loff_t *pos)
{
struct hisi_qm *qm = filp->private_data;
char tbuf[QM_DBG_READ_LEN];
u32 qos_val, ir;
int ret;
ret = hisi_qm_get_dfx_access(qm);
if (ret)
return ret;
/* Mailbox and reset cannot be operated at the same time */
if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
ret = -EAGAIN;
goto err_put_dfx_access;
}
if (qm->fun_type == QM_HW_PF) {
ir = qm_get_shaper_vft_qos(qm, 0);
} else {
ret = qm_vf_read_qos(qm);
if (ret)
goto err_get_status;
ir = qm->mb_qos;
}
qos_val = ir / QM_QOS_RATE;
ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
err_get_status:
clear_bit(QM_RESETTING, &qm->misc_ctl);
err_put_dfx_access:
hisi_qm_put_dfx_access(qm);
return ret;
}
static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
unsigned long *val,
unsigned int *fun_index)
{
const struct bus_type *bus_type = qm->pdev->dev.bus;
char tbuf_bdf[QM_DBG_READ_LEN] = {0};
char val_buf[QM_DBG_READ_LEN] = {0};
struct pci_dev *pdev;
struct device *dev;
int ret;
ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
if (ret != QM_QOS_PARAM_NUM)
return -EINVAL;
ret = kstrtoul(val_buf, 10, val);
if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
return -EINVAL;
}
dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
if (!dev) {
pci_err(qm->pdev, "input pci bdf number is error!\n");
return -ENODEV;
}
pdev = container_of(dev, struct pci_dev, dev);
*fun_index = pdev->devfn;
return 0;
}
static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct hisi_qm *qm = filp->private_data;
char tbuf[QM_DBG_READ_LEN];
unsigned int fun_index;
unsigned long val;
int len, ret;
if (*pos != 0)
return 0;
if (count >= QM_DBG_READ_LEN)
return -ENOSPC;
len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
if (len < 0)
return len;
tbuf[len] = '\0';
ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
if (ret)
return ret;
/* Mailbox and reset cannot be operated at the same time */
if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
return -EAGAIN;
}
ret = qm_pm_get_sync(qm);
if (ret) {
ret = -EINVAL;
goto err_get_status;
}
ret = qm_func_shaper_enable(qm, fun_index, val);
if (ret) {
pci_err(qm->pdev, "failed to enable function shaper!\n");
ret = -EINVAL;
goto err_put_sync;
}
pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
fun_index, val);
ret = count;
err_put_sync:
qm_pm_put_sync(qm);
err_get_status:
clear_bit(QM_RESETTING, &qm->misc_ctl);
return ret;
}
static const struct file_operations qm_algqos_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = qm_algqos_read,
.write = qm_algqos_write,
};
/**
* hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
* @qm: The qm for which we want to add debugfs files.
*
* Create function qos debugfs files, VF ping PF to get function qos.
*/
void hisi_qm_set_algqos_init(struct hisi_qm *qm)
{
if (qm->fun_type == QM_HW_PF)
debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
qm, &qm_algqos_fops);
else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
qm, &qm_algqos_fops);
}
static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
{
int i;
for (i = 1; i <= total_func; i++)
qm->factor[i].func_qos = QM_QOS_MAX_VAL;
}
/**
* hisi_qm_sriov_enable() - enable virtual functions
* @pdev: the PCIe device
* @max_vfs: the number of virtual functions to enable
*
* Returns the number of enabled VFs. If there are VFs enabled already or
* max_vfs is more than the total number of device can be enabled, returns
* failure.
*/
int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
int pre_existing_vfs, num_vfs, total_vfs, ret;
ret = qm_pm_get_sync(qm);
if (ret)
return ret;
total_vfs = pci_sriov_get_totalvfs(pdev);
pre_existing_vfs = pci_num_vf(pdev);
if (pre_existing_vfs) {
pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
pre_existing_vfs);
goto err_put_sync;
}
if (max_vfs > total_vfs) {
pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
ret = -ERANGE;
goto err_put_sync;
}
num_vfs = max_vfs;
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
hisi_qm_init_vf_qos(qm, num_vfs);
ret = qm_vf_q_assign(qm, num_vfs);
if (ret) {
pci_err(pdev, "Can't assign queues for VF!\n");
goto err_put_sync;
}
ret = pci_enable_sriov(pdev, num_vfs);
if (ret) {
pci_err(pdev, "Can't enable VF!\n");
qm_clear_vft_config(qm);
goto err_put_sync;
}
qm->vfs_num = num_vfs;
pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
return num_vfs;
err_put_sync:
qm_pm_put_sync(qm);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
/**
* hisi_qm_sriov_disable - disable virtual functions
* @pdev: the PCI device.
* @is_frozen: true when all the VFs are frozen.
*
* Return failure if there are VFs assigned already or VF is in used.
*/
int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
if (pci_vfs_assigned(pdev)) {
pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
return -EPERM;
}
/* While VF is in used, SRIOV cannot be disabled. */
if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
pci_err(pdev, "Task is using its VF!\n");
return -EBUSY;
}
pci_disable_sriov(pdev);
qm->vfs_num = 0;
qm_pm_put_sync(qm);
return qm_clear_vft_config(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
/**
* hisi_qm_sriov_configure - configure the number of VFs
* @pdev: The PCI device
* @num_vfs: The number of VFs need enabled
*
* Enable SR-IOV according to num_vfs, 0 means disable.
*/
int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
if (num_vfs == 0)
return hisi_qm_sriov_disable(pdev, false);
else
return hisi_qm_sriov_enable(pdev, num_vfs);
}
EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
{
u32 err_sts;
if (!qm->err_ini->get_dev_hw_err_status) {
dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
return ACC_ERR_NONE;
}
/* get device hardware error status */
err_sts = qm->err_ini->get_dev_hw_err_status(qm);
if (err_sts) {
if (err_sts & qm->err_info.ecc_2bits_mask)
qm->err_status.is_dev_ecc_mbit = true;
if (qm->err_ini->log_dev_hw_err)
qm->err_ini->log_dev_hw_err(qm, err_sts);
if (err_sts & qm->err_info.dev_reset_mask)
return ACC_ERR_NEED_RESET;
if (qm->err_ini->clear_dev_hw_err_status)
qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
}
return ACC_ERR_RECOVERED;
}
static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
{
enum acc_err_result qm_ret, dev_ret;
/* log qm error */
qm_ret = qm_hw_error_handle(qm);
/* log device error */
dev_ret = qm_dev_err_handle(qm);
return (qm_ret == ACC_ERR_NEED_RESET ||
dev_ret == ACC_ERR_NEED_RESET) ?
ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
}
/**
* hisi_qm_dev_err_detected() - Get device and qm error status then log it.
* @pdev: The PCI device which need report error.
* @state: The connectivity between CPU and device.
*
* We register this function into PCIe AER handlers, It will report device or
* qm hardware error status when error occur.
*/
pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
enum acc_err_result ret;
if (pdev->is_virtfn)
return PCI_ERS_RESULT_NONE;
pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
ret = qm_process_dev_error(qm);
if (ret == ACC_ERR_NEED_RESET)
return PCI_ERS_RESULT_NEED_RESET;
return PCI_ERS_RESULT_RECOVERED;
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
static int qm_check_req_recv(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
u32 val;
if (qm->ver >= QM_HW_V3)
return 0;
writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
(val == ACC_VENDOR_ID_VALUE),
POLL_PERIOD, POLL_TIMEOUT);
if (ret) {
dev_err(&pdev->dev, "Fails to read QM reg!\n");
return ret;
}
writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
(val == PCI_VENDOR_ID_HUAWEI),
POLL_PERIOD, POLL_TIMEOUT);
if (ret)
dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
return ret;
}
static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
{
struct pci_dev *pdev = qm->pdev;
u16 cmd;
int i;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (set)
cmd |= PCI_COMMAND_MEMORY;
else
cmd &= ~PCI_COMMAND_MEMORY;
pci_write_config_word(pdev, PCI_COMMAND, cmd);
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
{
struct pci_dev *pdev = qm->pdev;
u16 sriov_ctrl;
int pos;
int i;
/*
* Since function qm_set_vf_mse is called only after SRIOV is enabled,
* pci_find_ext_capability cannot return 0, pos does not need to be
* checked.
*/
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
if (set)
sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
else
sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
{
u32 nfe_enb = 0;
/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
if (qm->ver >= QM_HW_V3)
return;
if (!qm->err_status.is_dev_ecc_mbit &&
qm->err_status.is_qm_ecc_mbit &&
qm->err_ini->close_axi_master_ooo) {
qm->err_ini->close_axi_master_ooo(qm);
} else if (qm->err_status.is_dev_ecc_mbit &&
!qm->err_status.is_qm_ecc_mbit &&
!qm->err_ini->close_axi_master_ooo) {
nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
qm->io_base + QM_RAS_NFE_ENABLE);
writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
}
}
static int qm_vf_reset_prepare(struct hisi_qm *qm,
enum qm_stop_reason stop_reason)
{
struct hisi_qm_list *qm_list = qm->qm_list;
struct pci_dev *pdev = qm->pdev;
struct pci_dev *virtfn;
struct hisi_qm *vf_qm;
int ret = 0;
mutex_lock(&qm_list->lock);
list_for_each_entry(vf_qm, &qm_list->list, list) {
virtfn = vf_qm->pdev;
if (virtfn == pdev)
continue;
if (pci_physfn(virtfn) == pdev) {
/* save VFs PCIE BAR configuration */
pci_save_state(virtfn);
ret = hisi_qm_stop(vf_qm, stop_reason);
if (ret)
goto stop_fail;
}
}
stop_fail:
mutex_unlock(&qm_list->lock);
return ret;
}
static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
enum qm_stop_reason stop_reason)
{
struct pci_dev *pdev = qm->pdev;
int ret;
if (!qm->vfs_num)
return 0;
/* Kunpeng930 supports to notify VFs to stop before PF reset */
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
ret = qm_ping_all_vfs(qm, cmd);
if (ret)
pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
} else {
ret = qm_vf_reset_prepare(qm, stop_reason);
if (ret)
pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
}
return ret;
}
static int qm_controller_reset_prepare(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm_reset_prepare_ready(qm);
if (ret) {
pci_err(pdev, "Controller reset not ready!\n");
return ret;
}
qm_dev_ecc_mbit_handle(qm);
/* PF obtains the information of VF by querying the register. */
qm_cmd_uninit(qm);
/* Whether VFs stop successfully, soft reset will continue. */
ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
if (ret)
pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
ret = hisi_qm_stop(qm, QM_SOFT_RESET);
if (ret) {
pci_err(pdev, "Fails to stop QM!\n");
qm_reset_bit_clear(qm);
return ret;
}
if (qm->use_sva) {
ret = qm_hw_err_isolate(qm);
if (ret)
pci_err(pdev, "failed to isolate hw err!\n");
}
ret = qm_wait_vf_prepare_finish(qm);
if (ret)
pci_err(pdev, "failed to stop by vfs in soft reset!\n");
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
return 0;
}
static int qm_master_ooo_check(struct hisi_qm *qm)
{
u32 val;
int ret;
/* Check the ooo register of the device before resetting the device. */
writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
val, (val == ACC_MASTER_TRANS_RETURN_RW),
POLL_PERIOD, POLL_TIMEOUT);
if (ret)
pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
return ret;
}
static int qm_soft_reset_prepare(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
/* Ensure all doorbells and mailboxes received by QM */
ret = qm_check_req_recv(qm);
if (ret)
return ret;
if (qm->vfs_num) {
ret = qm_set_vf_mse(qm, false);
if (ret) {
pci_err(pdev, "Fails to disable vf MSE bit.\n");
return ret;
}
}
ret = qm->ops->set_msi(qm, false);
if (ret) {
pci_err(pdev, "Fails to disable PEH MSI bit.\n");
return ret;
}
ret = qm_master_ooo_check(qm);
if (ret)
return ret;
if (qm->err_ini->close_sva_prefetch)
qm->err_ini->close_sva_prefetch(qm);
ret = qm_set_pf_mse(qm, false);
if (ret)
pci_err(pdev, "Fails to disable pf MSE bit.\n");
return ret;
}
static int qm_reset_device(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
/* The reset related sub-control registers are not in PCI BAR */
if (ACPI_HANDLE(&pdev->dev)) {
unsigned long long value = 0;
acpi_status s;
s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
qm->err_info.acpi_rst,
NULL, &value);
if (ACPI_FAILURE(s)) {
pci_err(pdev, "NO controller reset method!\n");
return -EIO;
}
if (value) {
pci_err(pdev, "Reset step %llu failed!\n", value);
return -EIO;
}
return 0;
}
pci_err(pdev, "No reset method!\n");
return -EINVAL;
}
static int qm_soft_reset(struct hisi_qm *qm)
{
int ret;
ret = qm_soft_reset_prepare(qm);
if (ret)
return ret;
return qm_reset_device(qm);
}
static int qm_vf_reset_done(struct hisi_qm *qm)
{
struct hisi_qm_list *qm_list = qm->qm_list;
struct pci_dev *pdev = qm->pdev;
struct pci_dev *virtfn;
struct hisi_qm *vf_qm;
int ret = 0;
mutex_lock(&qm_list->lock);
list_for_each_entry(vf_qm, &qm_list->list, list) {
virtfn = vf_qm->pdev;
if (virtfn == pdev)
continue;
if (pci_physfn(virtfn) == pdev) {
/* enable VFs PCIE BAR configuration */
pci_restore_state(virtfn);
ret = qm_restart(vf_qm);
if (ret)
goto restart_fail;
}
}
restart_fail:
mutex_unlock(&qm_list->lock);
return ret;
}
static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
{
struct pci_dev *pdev = qm->pdev;
int ret;
if (!qm->vfs_num)
return 0;
ret = qm_vf_q_assign(qm, qm->vfs_num);
if (ret) {
pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
return ret;
}
/* Kunpeng930 supports to notify VFs to start after PF reset. */
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
ret = qm_ping_all_vfs(qm, cmd);
if (ret)
pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
} else {
ret = qm_vf_reset_done(qm);
if (ret)
pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
}
return ret;
}
static int qm_dev_hw_init(struct hisi_qm *qm)
{
return qm->err_ini->hw_init(qm);
}
static void qm_restart_prepare(struct hisi_qm *qm)
{
u32 value;
if (qm->err_ini->open_sva_prefetch)
qm->err_ini->open_sva_prefetch(qm);
if (qm->ver >= QM_HW_V3)
return;
if (!qm->err_status.is_qm_ecc_mbit &&
!qm->err_status.is_dev_ecc_mbit)
return;
/* temporarily close the OOO port used for PEH to write out MSI */
value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
writel(value & ~qm->err_info.msi_wr_port,
qm->io_base + ACC_AM_CFG_PORT_WR_EN);
/* clear dev ecc 2bit error source if having */
value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
if (value && qm->err_ini->clear_dev_hw_err_status)
qm->err_ini->clear_dev_hw_err_status(qm, value);
/* clear QM ecc mbit error source */
writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
/* clear AM Reorder Buffer ecc mbit source */
writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
}
static void qm_restart_done(struct hisi_qm *qm)
{
u32 value;
if (qm->ver >= QM_HW_V3)
goto clear_flags;
if (!qm->err_status.is_qm_ecc_mbit &&
!qm->err_status.is_dev_ecc_mbit)
return;
/* open the OOO port for PEH to write out MSI */
value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
value |= qm->err_info.msi_wr_port;
writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
clear_flags:
qm->err_status.is_qm_ecc_mbit = false;
qm->err_status.is_dev_ecc_mbit = false;
}
static int qm_controller_reset_done(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm->ops->set_msi(qm, true);
if (ret) {
pci_err(pdev, "Fails to enable PEH MSI bit!\n");
return ret;
}
ret = qm_set_pf_mse(qm, true);
if (ret) {
pci_err(pdev, "Fails to enable pf MSE bit!\n");
return ret;
}
if (qm->vfs_num) {
ret = qm_set_vf_mse(qm, true);
if (ret) {
pci_err(pdev, "Fails to enable vf MSE bit!\n");
return ret;
}
}
ret = qm_dev_hw_init(qm);
if (ret) {
pci_err(pdev, "Failed to init device\n");
return ret;
}
qm_restart_prepare(qm);
hisi_qm_dev_err_init(qm);
if (qm->err_ini->open_axi_master_ooo)
qm->err_ini->open_axi_master_ooo(qm);
ret = qm_dev_mem_reset(qm);
if (ret) {
pci_err(pdev, "failed to reset device memory\n");
return ret;
}
ret = qm_restart(qm);
if (ret) {
pci_err(pdev, "Failed to start QM!\n");
return ret;
}
ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
if (ret)
pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
ret = qm_wait_vf_prepare_finish(qm);
if (ret)
pci_err(pdev, "failed to start by vfs in soft reset!\n");
qm_cmd_init(qm);
qm_restart_done(qm);
qm_reset_bit_clear(qm);
return 0;
}
static int qm_controller_reset(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
pci_info(pdev, "Controller resetting...\n");
ret = qm_controller_reset_prepare(qm);
if (ret) {
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
return ret;
}
hisi_qm_show_last_dfx_regs(qm);
if (qm->err_ini->show_last_dfx_regs)
qm->err_ini->show_last_dfx_regs(qm);
ret = qm_soft_reset(qm);
if (ret)
goto err_reset;
ret = qm_controller_reset_done(qm);
if (ret)
goto err_reset;
pci_info(pdev, "Controller reset complete\n");
return 0;
err_reset:
pci_err(pdev, "Controller reset failed (%d)\n", ret);
qm_reset_bit_clear(qm);
/* if resetting fails, isolate the device */
if (qm->use_sva)
qm->isolate_data.is_isolate = true;
return ret;
}
/**
* hisi_qm_dev_slot_reset() - slot reset
* @pdev: the PCIe device
*
* This function offers QM relate PCIe device reset interface. Drivers which
* use QM can use this function as slot_reset in its struct pci_error_handlers.
*/
pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
if (pdev->is_virtfn)
return PCI_ERS_RESULT_RECOVERED;
/* reset pcie device controller */
ret = qm_controller_reset(qm);
if (ret) {
pci_err(pdev, "Controller reset failed (%d)\n", ret);
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
void hisi_qm_reset_prepare(struct pci_dev *pdev)
{
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
struct hisi_qm *qm = pci_get_drvdata(pdev);
u32 delay = 0;
int ret;
hisi_qm_dev_err_uninit(pf_qm);
/*
* Check whether there is an ECC mbit error, If it occurs, need to
* wait for soft reset to fix it.
*/
while (qm_check_dev_error(pf_qm)) {
msleep(++delay);
if (delay > QM_RESET_WAIT_TIMEOUT)
return;
}
ret = qm_reset_prepare_ready(qm);
if (ret) {
pci_err(pdev, "FLR not ready!\n");
return;
}
/* PF obtains the information of VF by querying the register. */
if (qm->fun_type == QM_HW_PF)
qm_cmd_uninit(qm);
ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
if (ret)
pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
ret = hisi_qm_stop(qm, QM_DOWN);
if (ret) {
pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
return;
}
ret = qm_wait_vf_prepare_finish(qm);
if (ret)
pci_err(pdev, "failed to stop by vfs in FLR!\n");
pci_info(pdev, "FLR resetting...\n");
}
EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
static bool qm_flr_reset_complete(struct pci_dev *pdev)
{
struct pci_dev *pf_pdev = pci_physfn(pdev);
struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
u32 id;
pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
if (id == QM_PCI_COMMAND_INVALID) {
pci_err(pdev, "Device can not be used!\n");
return false;
}
return true;
}
void hisi_qm_reset_done(struct pci_dev *pdev)
{
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
if (qm->fun_type == QM_HW_PF) {
ret = qm_dev_hw_init(qm);
if (ret) {
pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
goto flr_done;
}
}
hisi_qm_dev_err_init(pf_qm);
ret = qm_restart(qm);
if (ret) {
pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
goto flr_done;
}
ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
if (ret)
pci_err(pdev, "failed to start vfs by pf in FLR.\n");
ret = qm_wait_vf_prepare_finish(qm);
if (ret)
pci_err(pdev, "failed to start by vfs in FLR!\n");
flr_done:
if (qm->fun_type == QM_HW_PF)
qm_cmd_init(qm);
if (qm_flr_reset_complete(pdev))
pci_info(pdev, "FLR reset complete\n");
qm_reset_bit_clear(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
static irqreturn_t qm_abnormal_irq(int irq, void *data)
{
struct hisi_qm *qm = data;
enum acc_err_result ret;
atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
ret = qm_process_dev_error(qm);
if (ret == ACC_ERR_NEED_RESET &&
!test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
!test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
schedule_work(&qm->rst_work);
return IRQ_HANDLED;
}
/**
* hisi_qm_dev_shutdown() - Shutdown device.
* @pdev: The device will be shutdown.
*
* This function will stop qm when OS shutdown or rebooting.
*/
void hisi_qm_dev_shutdown(struct pci_dev *pdev)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
ret = hisi_qm_stop(qm, QM_DOWN);
if (ret)
dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
hisi_qm_cache_wb(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
static void hisi_qm_controller_reset(struct work_struct *rst_work)
{
struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
int ret;
ret = qm_pm_get_sync(qm);
if (ret) {
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
return;
}
/* reset pcie device controller */
ret = qm_controller_reset(qm);
if (ret)
dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
qm_pm_put_sync(qm);
}
static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
enum qm_stop_reason stop_reason)
{
enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm_reset_prepare_ready(qm);
if (ret) {
dev_err(&pdev->dev, "reset prepare not ready!\n");
atomic_set(&qm->status.flags, QM_STOP);
cmd = QM_VF_PREPARE_FAIL;
goto err_prepare;
}
ret = hisi_qm_stop(qm, stop_reason);
if (ret) {
dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
atomic_set(&qm->status.flags, QM_STOP);
cmd = QM_VF_PREPARE_FAIL;
goto err_prepare;
} else {
goto out;
}
err_prepare:
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
out:
pci_save_state(pdev);
ret = qm_ping_pf(qm, cmd);
if (ret)
dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
}
static void qm_pf_reset_vf_done(struct hisi_qm *qm)
{
enum qm_mb_cmd cmd = QM_VF_START_DONE;
struct pci_dev *pdev = qm->pdev;
int ret;
pci_restore_state(pdev);
ret = hisi_qm_start(qm);
if (ret) {
dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
cmd = QM_VF_START_FAIL;
}
qm_cmd_init(qm);
ret = qm_ping_pf(qm, cmd);
if (ret)
dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
qm_reset_bit_clear(qm);
}
static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u32 val, cmd;
u64 msg;
int ret;
/* Wait for reset to finish */
ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
val == BIT(0), QM_VF_RESET_WAIT_US,
QM_VF_RESET_WAIT_TIMEOUT_US);
/* hardware completion status should be available by this time */
if (ret) {
dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
return -ETIMEDOUT;
}
/*
* Whether message is got successfully,
* VF needs to ack PF by clearing the interrupt.
*/
ret = qm_get_mb_cmd(qm, &msg, 0);
qm_clear_cmd_interrupt(qm, 0);
if (ret) {
dev_err(dev, "failed to get msg from PF in reset done!\n");
return ret;
}
cmd = msg & QM_MB_CMD_DATA_MASK;
if (cmd != QM_PF_RESET_DONE) {
dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
ret = -EINVAL;
}
return ret;
}
static void qm_pf_reset_vf_process(struct hisi_qm *qm,
enum qm_stop_reason stop_reason)
{
struct device *dev = &qm->pdev->dev;
int ret;
dev_info(dev, "device reset start...\n");
/* The message is obtained by querying the register during resetting */
qm_cmd_uninit(qm);
qm_pf_reset_vf_prepare(qm, stop_reason);
ret = qm_wait_pf_reset_finish(qm);
if (ret)
goto err_get_status;
qm_pf_reset_vf_done(qm);
dev_info(dev, "device reset done.\n");
return;
err_get_status:
qm_cmd_init(qm);
qm_reset_bit_clear(qm);
}
static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
{
struct device *dev = &qm->pdev->dev;
u64 msg;
u32 cmd;
int ret;
/*
* Get the msg from source by sending mailbox. Whether message is got
* successfully, destination needs to ack source by clearing the interrupt.
*/
ret = qm_get_mb_cmd(qm, &msg, fun_num);
qm_clear_cmd_interrupt(qm, BIT(fun_num));
if (ret) {
dev_err(dev, "failed to get msg from source!\n");
return;
}
cmd = msg & QM_MB_CMD_DATA_MASK;
switch (cmd) {
case QM_PF_FLR_PREPARE:
qm_pf_reset_vf_process(qm, QM_DOWN);
break;
case QM_PF_SRST_PREPARE:
qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
break;
case QM_VF_GET_QOS:
qm_vf_get_qos(qm, fun_num);
break;
case QM_PF_SET_QOS:
qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
break;
default:
dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
break;
}
}
static void qm_cmd_process(struct work_struct *cmd_process)
{
struct hisi_qm *qm = container_of(cmd_process,
struct hisi_qm, cmd_process);
u32 vfs_num = qm->vfs_num;
u64 val;
u32 i;
if (qm->fun_type == QM_HW_PF) {
val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
if (!val)
return;
for (i = 1; i <= vfs_num; i++) {
if (val & BIT(i))
qm_handle_cmd_msg(qm, i);
}
return;
}
qm_handle_cmd_msg(qm, 0);
}
/**
* hisi_qm_alg_register() - Register alg to crypto.
* @qm: The qm needs add.
* @qm_list: The qm list.
* @guard: Guard of qp_num.
*
* Register algorithm to crypto when the function is satisfy guard.
*/
int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
{
struct device *dev = &qm->pdev->dev;
if (qm->ver <= QM_HW_V2 && qm->use_sva) {
dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
return 0;
}
if (qm->qp_num < guard) {
dev_info(dev, "qp_num is less than task need.\n");
return 0;
}
return qm_list->register_to_crypto(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
/**
* hisi_qm_alg_unregister() - Unregister alg from crypto.
* @qm: The qm needs delete.
* @qm_list: The qm list.
* @guard: Guard of qp_num.
*
* Unregister algorithm from crypto when the last function is satisfy guard.
*/
void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
{
if (qm->ver <= QM_HW_V2 && qm->use_sva)
return;
if (qm->qp_num < guard)
return;
qm_list->unregister_from_crypto(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
if (qm->fun_type == QM_HW_VF)
return;
val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
return;
irq_vector = val & QM_IRQ_VECTOR_MASK;
free_irq(pci_irq_vector(pdev, irq_vector), qm);
}
static int qm_register_abnormal_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
int ret;
if (qm->fun_type == QM_HW_VF)
return 0;
val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
return 0;
irq_vector = val & QM_IRQ_VECTOR_MASK;
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
if (ret)
dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
return ret;
}
static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return;
irq_vector = val & QM_IRQ_VECTOR_MASK;
free_irq(pci_irq_vector(pdev, irq_vector), qm);
}
static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
int ret;
val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return 0;
irq_vector = val & QM_IRQ_VECTOR_MASK;
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
if (ret)
dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
return ret;
}
static void qm_unregister_aeq_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return;
irq_vector = val & QM_IRQ_VECTOR_MASK;
free_irq(pci_irq_vector(pdev, irq_vector), qm);
}
static int qm_register_aeq_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
int ret;
val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return 0;
irq_vector = val & QM_IRQ_VECTOR_MASK;
ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
if (ret)
dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
return ret;
}
static void qm_unregister_eq_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return;
irq_vector = val & QM_IRQ_VECTOR_MASK;
free_irq(pci_irq_vector(pdev, irq_vector), qm);
}
static int qm_register_eq_irq(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
u32 irq_vector, val;
int ret;
val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
return 0;
irq_vector = val & QM_IRQ_VECTOR_MASK;
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
if (ret)
dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
return ret;
}
static void qm_irqs_unregister(struct hisi_qm *qm)
{
qm_unregister_mb_cmd_irq(qm);
qm_unregister_abnormal_irq(qm);
qm_unregister_aeq_irq(qm);
qm_unregister_eq_irq(qm);
}
static int qm_irqs_register(struct hisi_qm *qm)
{
int ret;
ret = qm_register_eq_irq(qm);
if (ret)
return ret;
ret = qm_register_aeq_irq(qm);
if (ret)
goto free_eq_irq;
ret = qm_register_abnormal_irq(qm);
if (ret)
goto free_aeq_irq;
ret = qm_register_mb_cmd_irq(qm);
if (ret)
goto free_abnormal_irq;
return 0;
free_abnormal_irq:
qm_unregister_abnormal_irq(qm);
free_aeq_irq:
qm_unregister_aeq_irq(qm);
free_eq_irq:
qm_unregister_eq_irq(qm);
return ret;
}
static int qm_get_qp_num(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
bool is_db_isolation;
/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
if (qm->fun_type == QM_HW_VF) {
if (qm->ver != QM_HW_V1)
/* v2 starts to support get vft by mailbox */
return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
return 0;
}
is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
QM_FUNC_MAX_QP_CAP, is_db_isolation);
if (qm->qp_num <= qm->max_qp_num)
return 0;
if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
/* Check whether the set qp number is valid */
dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
qm->qp_num, qm->max_qp_num);
return -EINVAL;
}
dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
qm->qp_num, qm->max_qp_num);
qm->qp_num = qm->max_qp_num;
qm->debug.curr_qm_qp_num = qm->qp_num;
return 0;
}
static int qm_pre_store_irq_type_caps(struct hisi_qm *qm)
{
struct hisi_qm_cap_record *qm_cap;
struct pci_dev *pdev = qm->pdev;
size_t i, size;
size = ARRAY_SIZE(qm_pre_store_caps);
qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL);
if (!qm_cap)
return -ENOMEM;
for (i = 0; i < size; i++) {
qm_cap[i].type = qm_pre_store_caps[i];
qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info,
qm_pre_store_caps[i], qm->cap_ver);
}
qm->cap_tables.qm_cap_table = qm_cap;
return 0;
}
static int qm_get_hw_caps(struct hisi_qm *qm)
{
const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
qm_cap_info_pf : qm_cap_info_vf;
u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
ARRAY_SIZE(qm_cap_info_vf);
u32 val, i;
/* Doorbell isolate register is a independent register. */
val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
if (val)
set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
if (qm->ver >= QM_HW_V3) {
val = readl(qm->io_base + QM_FUNC_CAPS_REG);
qm->cap_ver = val & QM_CAPBILITY_VERSION;
}
/* Get PF/VF common capbility */
for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
if (val)
set_bit(qm_cap_info_comm[i].type, &qm->caps);
}
/* Get PF/VF different capbility */
for (i = 0; i < size; i++) {
val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
if (val)
set_bit(cap_info[i].type, &qm->caps);
}
/* Fetch and save the value of irq type related capability registers */
return qm_pre_store_irq_type_caps(qm);
}
static int qm_get_pci_res(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
int ret;
ret = pci_request_mem_regions(pdev, qm->dev_name);
if (ret < 0) {
dev_err(dev, "Failed to request mem regions!\n");
return ret;
}
qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
if (!qm->io_base) {
ret = -EIO;
goto err_request_mem_regions;
}
ret = qm_get_hw_caps(qm);
if (ret)
goto err_ioremap;
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
qm->db_interval = QM_QP_DB_INTERVAL;
qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
qm->db_io_base = ioremap(qm->db_phys_base,
pci_resource_len(pdev, PCI_BAR_4));
if (!qm->db_io_base) {
ret = -EIO;
goto err_ioremap;
}
} else {
qm->db_phys_base = qm->phys_base;
qm->db_io_base = qm->io_base;
qm->db_interval = 0;
}
ret = qm_get_qp_num(qm);
if (ret)
goto err_db_ioremap;
return 0;
err_db_ioremap:
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
iounmap(qm->db_io_base);
err_ioremap:
iounmap(qm->io_base);
err_request_mem_regions:
pci_release_mem_regions(pdev);
return ret;
}
static int qm_clear_device(struct hisi_qm *qm)
{
acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
int ret;
if (qm->fun_type == QM_HW_VF)
return 0;
/* Device does not support reset, return */
if (!qm->err_ini->err_info_init)
return 0;
qm->err_ini->err_info_init(qm);
if (!handle)
return 0;
/* No reset method, return */
if (!acpi_has_method(handle, qm->err_info.acpi_rst))
return 0;
ret = qm_master_ooo_check(qm);
if (ret) {
writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
return ret;
}
return qm_reset_device(qm);
}
static int hisi_qm_pci_init(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
unsigned int num_vec;
int ret;
ret = pci_enable_device_mem(pdev);
if (ret < 0) {
dev_err(dev, "Failed to enable device mem!\n");
return ret;
}
ret = qm_get_pci_res(qm);
if (ret)
goto err_disable_pcidev;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret < 0)
goto err_get_pci_res;
pci_set_master(pdev);
num_vec = qm_get_irq_num(qm);
ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
if (ret < 0) {
dev_err(dev, "Failed to enable MSI vectors!\n");
goto err_get_pci_res;
}
ret = qm_clear_device(qm);
if (ret)
goto err_free_vectors;
return 0;
err_free_vectors:
pci_free_irq_vectors(pdev);
err_get_pci_res:
qm_put_pci_res(qm);
err_disable_pcidev:
pci_disable_device(pdev);
return ret;
}
static int hisi_qm_init_work(struct hisi_qm *qm)
{
int i;
for (i = 0; i < qm->qp_num; i++)
INIT_WORK(&qm->poll_data[i].work, qm_work_process);
if (qm->fun_type == QM_HW_PF)
INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
if (qm->ver > QM_HW_V2)
INIT_WORK(&qm->cmd_process, qm_cmd_process);
qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
WQ_UNBOUND, num_online_cpus(),
pci_name(qm->pdev));
if (!qm->wq) {
pci_err(qm->pdev, "failed to alloc workqueue!\n");
return -ENOMEM;
}
return 0;
}
static int hisi_qp_alloc_memory(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
u16 sq_depth, cq_depth;
size_t qp_dma_size;
int i, ret;
qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
if (!qm->qp_array)
return -ENOMEM;
qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
if (!qm->poll_data) {
kfree(qm->qp_array);
return -ENOMEM;
}
qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
/* one more page for device or qp statuses */
qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
for (i = 0; i < qm->qp_num; i++) {
qm->poll_data[i].qm = qm;
ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
if (ret)
goto err_init_qp_mem;
dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
}
return 0;
err_init_qp_mem:
hisi_qp_memory_uninit(qm, i);
return ret;
}
static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
{
struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
struct qm_dma *xqc_dma = &xqc_buf->qcdma;
struct device *dev = &qm->pdev->dev;
size_t off = 0;
#define QM_XQC_BUF_INIT(xqc_buf, type) do { \
(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
off += QMC_ALIGN(sizeof(struct qm_##type)); \
} while (0)
xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
QMC_ALIGN(sizeof(struct qm_aeqc)) +
QMC_ALIGN(sizeof(struct qm_sqc)) +
QMC_ALIGN(sizeof(struct qm_cqc));
xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
&xqc_dma->dma, GFP_KERNEL);
if (!xqc_dma->va)
return -ENOMEM;
QM_XQC_BUF_INIT(xqc_buf, eqc);
QM_XQC_BUF_INIT(xqc_buf, aeqc);
QM_XQC_BUF_INIT(xqc_buf, sqc);
QM_XQC_BUF_INIT(xqc_buf, cqc);
return 0;
}
static int hisi_qm_memory_init(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret, total_func;
size_t off = 0;
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
if (!qm->factor)
return -ENOMEM;
/* Only the PF value needs to be initialized */
qm->factor[0].func_qos = QM_QOS_MAX_VAL;
}
#define QM_INIT_BUF(qm, type, num) do { \
(qm)->type = ((qm)->qdma.va + (off)); \
(qm)->type##_dma = (qm)->qdma.dma + (off); \
off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
} while (0)
idr_init(&qm->qp_idr);
qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
GFP_ATOMIC);
dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
if (!qm->qdma.va) {
ret = -ENOMEM;
goto err_destroy_idr;
}
QM_INIT_BUF(qm, eqe, qm->eq_depth);
QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
QM_INIT_BUF(qm, sqc, qm->qp_num);
QM_INIT_BUF(qm, cqc, qm->qp_num);
ret = hisi_qm_alloc_rsv_buf(qm);
if (ret)
goto err_free_qdma;
ret = hisi_qp_alloc_memory(qm);
if (ret)
goto err_free_reserve_buf;
return 0;
err_free_reserve_buf:
hisi_qm_free_rsv_buf(qm);
err_free_qdma:
dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
err_destroy_idr:
idr_destroy(&qm->qp_idr);
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
kfree(qm->factor);
return ret;
}
/**
* hisi_qm_init() - Initialize configures about qm.
* @qm: The qm needing init.
*
* This function init qm, then we can call hisi_qm_start to put qm into work.
*/
int hisi_qm_init(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
struct device *dev = &pdev->dev;
int ret;
hisi_qm_pre_init(qm);
ret = hisi_qm_pci_init(qm);
if (ret)
return ret;
ret = qm_irqs_register(qm);
if (ret)
goto err_pci_init;
if (qm->fun_type == QM_HW_PF) {
/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
qm_disable_clock_gate(qm);
ret = qm_dev_mem_reset(qm);
if (ret) {
dev_err(dev, "failed to reset device memory\n");
goto err_irq_register;
}
}
if (qm->mode == UACCE_MODE_SVA) {
ret = qm_alloc_uacce(qm);
if (ret < 0)
dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
}
ret = hisi_qm_memory_init(qm);
if (ret)
goto err_alloc_uacce;
ret = hisi_qm_init_work(qm);
if (ret)
goto err_free_qm_memory;
qm_cmd_init(qm);
return 0;
err_free_qm_memory:
hisi_qm_memory_uninit(qm);
err_alloc_uacce:
qm_remove_uacce(qm);
err_irq_register:
qm_irqs_unregister(qm);
err_pci_init:
hisi_qm_pci_uninit(qm);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_init);
/**
* hisi_qm_get_dfx_access() - Try to get dfx access.
* @qm: pointer to accelerator device.
*
* Try to get dfx access, then user can get message.
*
* If device is in suspended, return failure, otherwise
* bump up the runtime PM usage counter.
*/
int hisi_qm_get_dfx_access(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
if (pm_runtime_suspended(dev)) {
dev_info(dev, "can not read/write - device in suspended.\n");
return -EAGAIN;
}
return qm_pm_get_sync(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
/**
* hisi_qm_put_dfx_access() - Put dfx access.
* @qm: pointer to accelerator device.
*
* Put dfx access, drop runtime PM usage counter.
*/
void hisi_qm_put_dfx_access(struct hisi_qm *qm)
{
qm_pm_put_sync(qm);
}
EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
/**
* hisi_qm_pm_init() - Initialize qm runtime PM.
* @qm: pointer to accelerator device.
*
* Function that initialize qm runtime PM.
*/
void hisi_qm_pm_init(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
return;
pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_put_noidle(dev);
}
EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
/**
* hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
* @qm: pointer to accelerator device.
*
* Function that uninitialize qm runtime PM.
*/
void hisi_qm_pm_uninit(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
return;
pm_runtime_get_noresume(dev);
pm_runtime_dont_use_autosuspend(dev);
}
EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
static int qm_prepare_for_suspend(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm->ops->set_msi(qm, false);
if (ret) {
pci_err(pdev, "failed to disable MSI before suspending!\n");
return ret;
}
ret = qm_master_ooo_check(qm);
if (ret)
return ret;
ret = qm_set_pf_mse(qm, false);
if (ret)
pci_err(pdev, "failed to disable MSE before suspending!\n");
return ret;
}
static int qm_rebuild_for_resume(struct hisi_qm *qm)
{
struct pci_dev *pdev = qm->pdev;
int ret;
ret = qm_set_pf_mse(qm, true);
if (ret) {
pci_err(pdev, "failed to enable MSE after resuming!\n");
return ret;
}
ret = qm->ops->set_msi(qm, true);
if (ret) {
pci_err(pdev, "failed to enable MSI after resuming!\n");
return ret;
}
ret = qm_dev_hw_init(qm);
if (ret) {
pci_err(pdev, "failed to init device after resuming\n");
return ret;
}
qm_cmd_init(qm);
hisi_qm_dev_err_init(qm);
/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
qm_disable_clock_gate(qm);
ret = qm_dev_mem_reset(qm);
if (ret)
pci_err(pdev, "failed to reset device memory\n");
return ret;
}
/**
* hisi_qm_suspend() - Runtime suspend of given device.
* @dev: device to suspend.
*
* Function that suspend the device.
*/
int hisi_qm_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
pci_info(pdev, "entering suspended state\n");
ret = hisi_qm_stop(qm, QM_NORMAL);
if (ret) {
pci_err(pdev, "failed to stop qm(%d)\n", ret);
return ret;
}
ret = qm_prepare_for_suspend(qm);
if (ret)
pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_suspend);
/**
* hisi_qm_resume() - Runtime resume of given device.
* @dev: device to resume.
*
* Function that resume the device.
*/
int hisi_qm_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct hisi_qm *qm = pci_get_drvdata(pdev);
int ret;
pci_info(pdev, "resuming from suspend state\n");
ret = qm_rebuild_for_resume(qm);
if (ret) {
pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
return ret;
}
ret = hisi_qm_start(qm);
if (ret) {
if (qm_check_dev_error(qm)) {
pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
return 0;
}
pci_err(pdev, "failed to start qm(%d)!\n", ret);
}
return ret;
}
EXPORT_SYMBOL_GPL(hisi_qm_resume);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");