| // SPDX-License-Identifier: GPL-2.0 OR MIT |
| /* |
| * Copyright 2014-2022 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <linux/mutex.h> |
| #include <linux/log2.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/task.h> |
| #include <linux/mmu_context.h> |
| #include <linux/slab.h> |
| #include <linux/notifier.h> |
| #include <linux/compat.h> |
| #include <linux/mman.h> |
| #include <linux/file.h> |
| #include <linux/pm_runtime.h> |
| #include "amdgpu_amdkfd.h" |
| #include "amdgpu.h" |
| |
| struct mm_struct; |
| |
| #include "kfd_priv.h" |
| #include "kfd_device_queue_manager.h" |
| #include "kfd_svm.h" |
| #include "kfd_smi_events.h" |
| #include "kfd_debug.h" |
| |
| /* |
| * List of struct kfd_process (field kfd_process). |
| * Unique/indexed by mm_struct* |
| */ |
| DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); |
| DEFINE_MUTEX(kfd_processes_mutex); |
| |
| DEFINE_SRCU(kfd_processes_srcu); |
| |
| /* For process termination handling */ |
| static struct workqueue_struct *kfd_process_wq; |
| |
| /* Ordered, single-threaded workqueue for restoring evicted |
| * processes. Restoring multiple processes concurrently under memory |
| * pressure can lead to processes blocking each other from validating |
| * their BOs and result in a live-lock situation where processes |
| * remain evicted indefinitely. |
| */ |
| static struct workqueue_struct *kfd_restore_wq; |
| |
| static struct kfd_process *find_process(const struct task_struct *thread, |
| bool ref); |
| static void kfd_process_ref_release(struct kref *ref); |
| static struct kfd_process *create_process(const struct task_struct *thread); |
| |
| static void evict_process_worker(struct work_struct *work); |
| static void restore_process_worker(struct work_struct *work); |
| |
| static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); |
| |
| struct kfd_procfs_tree { |
| struct kobject *kobj; |
| }; |
| |
| static struct kfd_procfs_tree procfs; |
| |
| /* |
| * Structure for SDMA activity tracking |
| */ |
| struct kfd_sdma_activity_handler_workarea { |
| struct work_struct sdma_activity_work; |
| struct kfd_process_device *pdd; |
| uint64_t sdma_activity_counter; |
| }; |
| |
| struct temp_sdma_queue_list { |
| uint64_t __user *rptr; |
| uint64_t sdma_val; |
| unsigned int queue_id; |
| struct list_head list; |
| }; |
| |
| static void kfd_sdma_activity_worker(struct work_struct *work) |
| { |
| struct kfd_sdma_activity_handler_workarea *workarea; |
| struct kfd_process_device *pdd; |
| uint64_t val; |
| struct mm_struct *mm; |
| struct queue *q; |
| struct qcm_process_device *qpd; |
| struct device_queue_manager *dqm; |
| int ret = 0; |
| struct temp_sdma_queue_list sdma_q_list; |
| struct temp_sdma_queue_list *sdma_q, *next; |
| |
| workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, |
| sdma_activity_work); |
| |
| pdd = workarea->pdd; |
| if (!pdd) |
| return; |
| dqm = pdd->dev->dqm; |
| qpd = &pdd->qpd; |
| if (!dqm || !qpd) |
| return; |
| /* |
| * Total SDMA activity is current SDMA activity + past SDMA activity |
| * Past SDMA count is stored in pdd. |
| * To get the current activity counters for all active SDMA queues, |
| * we loop over all SDMA queues and get their counts from user-space. |
| * |
| * We cannot call get_user() with dqm_lock held as it can cause |
| * a circular lock dependency situation. To read the SDMA stats, |
| * we need to do the following: |
| * |
| * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, |
| * with dqm_lock/dqm_unlock(). |
| * 2. Call get_user() for each node in temporary list without dqm_lock. |
| * Save the SDMA count for each node and also add the count to the total |
| * SDMA count counter. |
| * Its possible, during this step, a few SDMA queue nodes got deleted |
| * from the qpd->queues_list. |
| * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. |
| * If any node got deleted, its SDMA count would be captured in the sdma |
| * past activity counter. So subtract the SDMA counter stored in step 2 |
| * for this node from the total SDMA count. |
| */ |
| INIT_LIST_HEAD(&sdma_q_list.list); |
| |
| /* |
| * Create the temp list of all SDMA queues |
| */ |
| dqm_lock(dqm); |
| |
| list_for_each_entry(q, &qpd->queues_list, list) { |
| if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && |
| (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) |
| continue; |
| |
| sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); |
| if (!sdma_q) { |
| dqm_unlock(dqm); |
| goto cleanup; |
| } |
| |
| INIT_LIST_HEAD(&sdma_q->list); |
| sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; |
| sdma_q->queue_id = q->properties.queue_id; |
| list_add_tail(&sdma_q->list, &sdma_q_list.list); |
| } |
| |
| /* |
| * If the temp list is empty, then no SDMA queues nodes were found in |
| * qpd->queues_list. Return the past activity count as the total sdma |
| * count |
| */ |
| if (list_empty(&sdma_q_list.list)) { |
| workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; |
| dqm_unlock(dqm); |
| return; |
| } |
| |
| dqm_unlock(dqm); |
| |
| /* |
| * Get the usage count for each SDMA queue in temp_list. |
| */ |
| mm = get_task_mm(pdd->process->lead_thread); |
| if (!mm) |
| goto cleanup; |
| |
| kthread_use_mm(mm); |
| |
| list_for_each_entry(sdma_q, &sdma_q_list.list, list) { |
| val = 0; |
| ret = read_sdma_queue_counter(sdma_q->rptr, &val); |
| if (ret) { |
| pr_debug("Failed to read SDMA queue active counter for queue id: %d", |
| sdma_q->queue_id); |
| } else { |
| sdma_q->sdma_val = val; |
| workarea->sdma_activity_counter += val; |
| } |
| } |
| |
| kthread_unuse_mm(mm); |
| mmput(mm); |
| |
| /* |
| * Do a second iteration over qpd_queues_list to check if any SDMA |
| * nodes got deleted while fetching SDMA counter. |
| */ |
| dqm_lock(dqm); |
| |
| workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; |
| |
| list_for_each_entry(q, &qpd->queues_list, list) { |
| if (list_empty(&sdma_q_list.list)) |
| break; |
| |
| if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && |
| (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) |
| continue; |
| |
| list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
| if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && |
| (sdma_q->queue_id == q->properties.queue_id)) { |
| list_del(&sdma_q->list); |
| kfree(sdma_q); |
| break; |
| } |
| } |
| } |
| |
| dqm_unlock(dqm); |
| |
| /* |
| * If temp list is not empty, it implies some queues got deleted |
| * from qpd->queues_list during SDMA usage read. Subtract the SDMA |
| * count for each node from the total SDMA count. |
| */ |
| list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
| workarea->sdma_activity_counter -= sdma_q->sdma_val; |
| list_del(&sdma_q->list); |
| kfree(sdma_q); |
| } |
| |
| return; |
| |
| cleanup: |
| list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
| list_del(&sdma_q->list); |
| kfree(sdma_q); |
| } |
| } |
| |
| /** |
| * kfd_get_cu_occupancy - Collect number of waves in-flight on this device |
| * by current process. Translates acquired wave count into number of compute units |
| * that are occupied. |
| * |
| * @attr: Handle of attribute that allows reporting of wave count. The attribute |
| * handle encapsulates GPU device it is associated with, thereby allowing collection |
| * of waves in flight, etc |
| * @buffer: Handle of user provided buffer updated with wave count |
| * |
| * Return: Number of bytes written to user buffer or an error value |
| */ |
| static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) |
| { |
| int cu_cnt; |
| int wave_cnt; |
| int max_waves_per_cu; |
| struct kfd_node *dev = NULL; |
| struct kfd_process *proc = NULL; |
| struct kfd_process_device *pdd = NULL; |
| int i; |
| struct kfd_cu_occupancy cu_occupancy[AMDGPU_MAX_QUEUES]; |
| u32 queue_format; |
| |
| memset(cu_occupancy, 0x0, sizeof(cu_occupancy)); |
| |
| pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); |
| dev = pdd->dev; |
| if (dev->kfd2kgd->get_cu_occupancy == NULL) |
| return -EINVAL; |
| |
| cu_cnt = 0; |
| proc = pdd->process; |
| if (pdd->qpd.queue_count == 0) { |
| pr_debug("Gpu-Id: %d has no active queues for process %d\n", |
| dev->id, proc->pasid); |
| return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); |
| } |
| |
| /* Collect wave count from device if it supports */ |
| wave_cnt = 0; |
| max_waves_per_cu = 0; |
| |
| /* |
| * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. |
| * For AQL queues, because of cooperative dispatch we multiply the wave count |
| * by number of XCCs in the partition to get the total wave counts across all |
| * XCCs in the partition. |
| * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. |
| */ |
| dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, |
| &max_waves_per_cu, ffs(dev->xcc_mask) - 1); |
| |
| for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { |
| if (cu_occupancy[i].wave_cnt != 0 && |
| kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, |
| cu_occupancy[i].doorbell_off, |
| &queue_format)) { |
| if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) |
| wave_cnt += cu_occupancy[i].wave_cnt; |
| else |
| wave_cnt += (NUM_XCC(dev->xcc_mask) * |
| cu_occupancy[i].wave_cnt); |
| } |
| } |
| |
| /* Translate wave count to number of compute units */ |
| cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; |
| return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); |
| } |
| |
| static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, |
| char *buffer) |
| { |
| if (strcmp(attr->name, "pasid") == 0) { |
| struct kfd_process *p = container_of(attr, struct kfd_process, |
| attr_pasid); |
| |
| return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); |
| } else if (strncmp(attr->name, "vram_", 5) == 0) { |
| struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, |
| attr_vram); |
| return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); |
| } else if (strncmp(attr->name, "sdma_", 5) == 0) { |
| struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, |
| attr_sdma); |
| struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; |
| |
| INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, |
| kfd_sdma_activity_worker); |
| |
| sdma_activity_work_handler.pdd = pdd; |
| sdma_activity_work_handler.sdma_activity_counter = 0; |
| |
| schedule_work(&sdma_activity_work_handler.sdma_activity_work); |
| |
| flush_work(&sdma_activity_work_handler.sdma_activity_work); |
| |
| return snprintf(buffer, PAGE_SIZE, "%llu\n", |
| (sdma_activity_work_handler.sdma_activity_counter)/ |
| SDMA_ACTIVITY_DIVISOR); |
| } else { |
| pr_err("Invalid attribute"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void kfd_procfs_kobj_release(struct kobject *kobj) |
| { |
| kfree(kobj); |
| } |
| |
| static const struct sysfs_ops kfd_procfs_ops = { |
| .show = kfd_procfs_show, |
| }; |
| |
| static const struct kobj_type procfs_type = { |
| .release = kfd_procfs_kobj_release, |
| .sysfs_ops = &kfd_procfs_ops, |
| }; |
| |
| void kfd_procfs_init(void) |
| { |
| int ret = 0; |
| |
| procfs.kobj = kfd_alloc_struct(procfs.kobj); |
| if (!procfs.kobj) |
| return; |
| |
| ret = kobject_init_and_add(procfs.kobj, &procfs_type, |
| &kfd_device->kobj, "proc"); |
| if (ret) { |
| pr_warn("Could not create procfs proc folder"); |
| /* If we fail to create the procfs, clean up */ |
| kfd_procfs_shutdown(); |
| } |
| } |
| |
| void kfd_procfs_shutdown(void) |
| { |
| if (procfs.kobj) { |
| kobject_del(procfs.kobj); |
| kobject_put(procfs.kobj); |
| procfs.kobj = NULL; |
| } |
| } |
| |
| static ssize_t kfd_procfs_queue_show(struct kobject *kobj, |
| struct attribute *attr, char *buffer) |
| { |
| struct queue *q = container_of(kobj, struct queue, kobj); |
| |
| if (!strcmp(attr->name, "size")) |
| return snprintf(buffer, PAGE_SIZE, "%llu", |
| q->properties.queue_size); |
| else if (!strcmp(attr->name, "type")) |
| return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); |
| else if (!strcmp(attr->name, "gpuid")) |
| return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); |
| else |
| pr_err("Invalid attribute"); |
| |
| return 0; |
| } |
| |
| static ssize_t kfd_procfs_stats_show(struct kobject *kobj, |
| struct attribute *attr, char *buffer) |
| { |
| if (strcmp(attr->name, "evicted_ms") == 0) { |
| struct kfd_process_device *pdd = container_of(attr, |
| struct kfd_process_device, |
| attr_evict); |
| uint64_t evict_jiffies; |
| |
| evict_jiffies = atomic64_read(&pdd->evict_duration_counter); |
| |
| return snprintf(buffer, |
| PAGE_SIZE, |
| "%llu\n", |
| jiffies64_to_msecs(evict_jiffies)); |
| |
| /* Sysfs handle that gets CU occupancy is per device */ |
| } else if (strcmp(attr->name, "cu_occupancy") == 0) { |
| return kfd_get_cu_occupancy(attr, buffer); |
| } else { |
| pr_err("Invalid attribute"); |
| } |
| |
| return 0; |
| } |
| |
| static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, |
| struct attribute *attr, char *buf) |
| { |
| struct kfd_process_device *pdd; |
| |
| if (!strcmp(attr->name, "faults")) { |
| pdd = container_of(attr, struct kfd_process_device, |
| attr_faults); |
| return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); |
| } |
| if (!strcmp(attr->name, "page_in")) { |
| pdd = container_of(attr, struct kfd_process_device, |
| attr_page_in); |
| return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); |
| } |
| if (!strcmp(attr->name, "page_out")) { |
| pdd = container_of(attr, struct kfd_process_device, |
| attr_page_out); |
| return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); |
| } |
| return 0; |
| } |
| |
| static struct attribute attr_queue_size = { |
| .name = "size", |
| .mode = KFD_SYSFS_FILE_MODE |
| }; |
| |
| static struct attribute attr_queue_type = { |
| .name = "type", |
| .mode = KFD_SYSFS_FILE_MODE |
| }; |
| |
| static struct attribute attr_queue_gpuid = { |
| .name = "gpuid", |
| .mode = KFD_SYSFS_FILE_MODE |
| }; |
| |
| static struct attribute *procfs_queue_attrs[] = { |
| &attr_queue_size, |
| &attr_queue_type, |
| &attr_queue_gpuid, |
| NULL |
| }; |
| ATTRIBUTE_GROUPS(procfs_queue); |
| |
| static const struct sysfs_ops procfs_queue_ops = { |
| .show = kfd_procfs_queue_show, |
| }; |
| |
| static const struct kobj_type procfs_queue_type = { |
| .sysfs_ops = &procfs_queue_ops, |
| .default_groups = procfs_queue_groups, |
| }; |
| |
| static const struct sysfs_ops procfs_stats_ops = { |
| .show = kfd_procfs_stats_show, |
| }; |
| |
| static const struct kobj_type procfs_stats_type = { |
| .sysfs_ops = &procfs_stats_ops, |
| .release = kfd_procfs_kobj_release, |
| }; |
| |
| static const struct sysfs_ops sysfs_counters_ops = { |
| .show = kfd_sysfs_counters_show, |
| }; |
| |
| static const struct kobj_type sysfs_counters_type = { |
| .sysfs_ops = &sysfs_counters_ops, |
| .release = kfd_procfs_kobj_release, |
| }; |
| |
| int kfd_procfs_add_queue(struct queue *q) |
| { |
| struct kfd_process *proc; |
| int ret; |
| |
| if (!q || !q->process) |
| return -EINVAL; |
| proc = q->process; |
| |
| /* Create proc/<pid>/queues/<queue id> folder */ |
| if (!proc->kobj_queues) |
| return -EFAULT; |
| ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, |
| proc->kobj_queues, "%u", q->properties.queue_id); |
| if (ret < 0) { |
| pr_warn("Creating proc/<pid>/queues/%u failed", |
| q->properties.queue_id); |
| kobject_put(&q->kobj); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, |
| char *name) |
| { |
| int ret; |
| |
| if (!kobj || !attr || !name) |
| return; |
| |
| attr->name = name; |
| attr->mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(attr); |
| |
| ret = sysfs_create_file(kobj, attr); |
| if (ret) |
| pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); |
| } |
| |
| static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) |
| { |
| int ret; |
| int i; |
| char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; |
| |
| if (!p || !p->kobj) |
| return; |
| |
| /* |
| * Create sysfs files for each GPU: |
| * - proc/<pid>/stats_<gpuid>/ |
| * - proc/<pid>/stats_<gpuid>/evicted_ms |
| * - proc/<pid>/stats_<gpuid>/cu_occupancy |
| */ |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| |
| snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, |
| "stats_%u", pdd->dev->id); |
| pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); |
| if (!pdd->kobj_stats) |
| return; |
| |
| ret = kobject_init_and_add(pdd->kobj_stats, |
| &procfs_stats_type, |
| p->kobj, |
| stats_dir_filename); |
| |
| if (ret) { |
| pr_warn("Creating KFD proc/stats_%s folder failed", |
| stats_dir_filename); |
| kobject_put(pdd->kobj_stats); |
| pdd->kobj_stats = NULL; |
| return; |
| } |
| |
| kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, |
| "evicted_ms"); |
| /* Add sysfs file to report compute unit occupancy */ |
| if (pdd->dev->kfd2kgd->get_cu_occupancy) |
| kfd_sysfs_create_file(pdd->kobj_stats, |
| &pdd->attr_cu_occupancy, |
| "cu_occupancy"); |
| } |
| } |
| |
| static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) |
| { |
| int ret = 0; |
| int i; |
| char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; |
| |
| if (!p || !p->kobj) |
| return; |
| |
| /* |
| * Create sysfs files for each GPU which supports SVM |
| * - proc/<pid>/counters_<gpuid>/ |
| * - proc/<pid>/counters_<gpuid>/faults |
| * - proc/<pid>/counters_<gpuid>/page_in |
| * - proc/<pid>/counters_<gpuid>/page_out |
| */ |
| for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| struct kobject *kobj_counters; |
| |
| snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, |
| "counters_%u", pdd->dev->id); |
| kobj_counters = kfd_alloc_struct(kobj_counters); |
| if (!kobj_counters) |
| return; |
| |
| ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, |
| p->kobj, counters_dir_filename); |
| if (ret) { |
| pr_warn("Creating KFD proc/%s folder failed", |
| counters_dir_filename); |
| kobject_put(kobj_counters); |
| return; |
| } |
| |
| pdd->kobj_counters = kobj_counters; |
| kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, |
| "faults"); |
| kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, |
| "page_in"); |
| kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, |
| "page_out"); |
| } |
| } |
| |
| static void kfd_procfs_add_sysfs_files(struct kfd_process *p) |
| { |
| int i; |
| |
| if (!p || !p->kobj) |
| return; |
| |
| /* |
| * Create sysfs files for each GPU: |
| * - proc/<pid>/vram_<gpuid> |
| * - proc/<pid>/sdma_<gpuid> |
| */ |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| |
| snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", |
| pdd->dev->id); |
| kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, |
| pdd->vram_filename); |
| |
| snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", |
| pdd->dev->id); |
| kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, |
| pdd->sdma_filename); |
| } |
| } |
| |
| void kfd_procfs_del_queue(struct queue *q) |
| { |
| if (!q) |
| return; |
| |
| kobject_del(&q->kobj); |
| kobject_put(&q->kobj); |
| } |
| |
| int kfd_process_create_wq(void) |
| { |
| if (!kfd_process_wq) |
| kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); |
| if (!kfd_restore_wq) |
| kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", |
| WQ_FREEZABLE); |
| |
| if (!kfd_process_wq || !kfd_restore_wq) { |
| kfd_process_destroy_wq(); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| void kfd_process_destroy_wq(void) |
| { |
| if (kfd_process_wq) { |
| destroy_workqueue(kfd_process_wq); |
| kfd_process_wq = NULL; |
| } |
| if (kfd_restore_wq) { |
| destroy_workqueue(kfd_restore_wq); |
| kfd_restore_wq = NULL; |
| } |
| } |
| |
| static void kfd_process_free_gpuvm(struct kgd_mem *mem, |
| struct kfd_process_device *pdd, void **kptr) |
| { |
| struct kfd_node *dev = pdd->dev; |
| |
| if (kptr && *kptr) { |
| amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); |
| *kptr = NULL; |
| } |
| |
| amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); |
| amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, |
| NULL); |
| } |
| |
| /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process |
| * This function should be only called right after the process |
| * is created and when kfd_processes_mutex is still being held |
| * to avoid concurrency. Because of that exclusiveness, we do |
| * not need to take p->mutex. |
| */ |
| static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, |
| uint64_t gpu_va, uint32_t size, |
| uint32_t flags, struct kgd_mem **mem, void **kptr) |
| { |
| struct kfd_node *kdev = pdd->dev; |
| int err; |
| |
| err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, |
| pdd->drm_priv, mem, NULL, |
| flags, false); |
| if (err) |
| goto err_alloc_mem; |
| |
| err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, |
| pdd->drm_priv); |
| if (err) |
| goto err_map_mem; |
| |
| err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); |
| if (err) { |
| pr_debug("Sync memory failed, wait interrupted by user signal\n"); |
| goto sync_memory_failed; |
| } |
| |
| if (kptr) { |
| err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( |
| (struct kgd_mem *)*mem, kptr, NULL); |
| if (err) { |
| pr_debug("Map GTT BO to kernel failed\n"); |
| goto sync_memory_failed; |
| } |
| } |
| |
| return err; |
| |
| sync_memory_failed: |
| amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); |
| |
| err_map_mem: |
| amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, |
| NULL); |
| err_alloc_mem: |
| *mem = NULL; |
| *kptr = NULL; |
| return err; |
| } |
| |
| /* kfd_process_device_reserve_ib_mem - Reserve memory inside the |
| * process for IB usage The memory reserved is for KFD to submit |
| * IB to AMDGPU from kernel. If the memory is reserved |
| * successfully, ib_kaddr will have the CPU/kernel |
| * address. Check ib_kaddr before accessing the memory. |
| */ |
| static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) |
| { |
| struct qcm_process_device *qpd = &pdd->qpd; |
| uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | |
| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | |
| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | |
| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; |
| struct kgd_mem *mem; |
| void *kaddr; |
| int ret; |
| |
| if (qpd->ib_kaddr || !qpd->ib_base) |
| return 0; |
| |
| /* ib_base is only set for dGPU */ |
| ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, |
| &mem, &kaddr); |
| if (ret) |
| return ret; |
| |
| qpd->ib_mem = mem; |
| qpd->ib_kaddr = kaddr; |
| |
| return 0; |
| } |
| |
| static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) |
| { |
| struct qcm_process_device *qpd = &pdd->qpd; |
| |
| if (!qpd->ib_kaddr || !qpd->ib_base) |
| return; |
| |
| kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); |
| } |
| |
| struct kfd_process *kfd_create_process(struct task_struct *thread) |
| { |
| struct kfd_process *process; |
| int ret; |
| |
| if (!(thread->mm && mmget_not_zero(thread->mm))) |
| return ERR_PTR(-EINVAL); |
| |
| /* Only the pthreads threading model is supported. */ |
| if (thread->group_leader->mm != thread->mm) { |
| mmput(thread->mm); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* |
| * take kfd processes mutex before starting of process creation |
| * so there won't be a case where two threads of the same process |
| * create two kfd_process structures |
| */ |
| mutex_lock(&kfd_processes_mutex); |
| |
| if (kfd_is_locked()) { |
| pr_debug("KFD is locked! Cannot create process"); |
| process = ERR_PTR(-EINVAL); |
| goto out; |
| } |
| |
| /* A prior open of /dev/kfd could have already created the process. */ |
| process = find_process(thread, false); |
| if (process) { |
| pr_debug("Process already found\n"); |
| } else { |
| /* If the process just called exec(3), it is possible that the |
| * cleanup of the kfd_process (following the release of the mm |
| * of the old process image) is still in the cleanup work queue. |
| * Make sure to drain any job before trying to recreate any |
| * resource for this process. |
| */ |
| flush_workqueue(kfd_process_wq); |
| |
| process = create_process(thread); |
| if (IS_ERR(process)) |
| goto out; |
| |
| if (!procfs.kobj) |
| goto out; |
| |
| process->kobj = kfd_alloc_struct(process->kobj); |
| if (!process->kobj) { |
| pr_warn("Creating procfs kobject failed"); |
| goto out; |
| } |
| ret = kobject_init_and_add(process->kobj, &procfs_type, |
| procfs.kobj, "%d", |
| (int)process->lead_thread->pid); |
| if (ret) { |
| pr_warn("Creating procfs pid directory failed"); |
| kobject_put(process->kobj); |
| goto out; |
| } |
| |
| kfd_sysfs_create_file(process->kobj, &process->attr_pasid, |
| "pasid"); |
| |
| process->kobj_queues = kobject_create_and_add("queues", |
| process->kobj); |
| if (!process->kobj_queues) |
| pr_warn("Creating KFD proc/queues folder failed"); |
| |
| kfd_procfs_add_sysfs_stats(process); |
| kfd_procfs_add_sysfs_files(process); |
| kfd_procfs_add_sysfs_counters(process); |
| |
| init_waitqueue_head(&process->wait_irq_drain); |
| } |
| out: |
| if (!IS_ERR(process)) |
| kref_get(&process->ref); |
| mutex_unlock(&kfd_processes_mutex); |
| mmput(thread->mm); |
| |
| return process; |
| } |
| |
| struct kfd_process *kfd_get_process(const struct task_struct *thread) |
| { |
| struct kfd_process *process; |
| |
| if (!thread->mm) |
| return ERR_PTR(-EINVAL); |
| |
| /* Only the pthreads threading model is supported. */ |
| if (thread->group_leader->mm != thread->mm) |
| return ERR_PTR(-EINVAL); |
| |
| process = find_process(thread, false); |
| if (!process) |
| return ERR_PTR(-EINVAL); |
| |
| return process; |
| } |
| |
| static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) |
| { |
| struct kfd_process *process; |
| |
| hash_for_each_possible_rcu(kfd_processes_table, process, |
| kfd_processes, (uintptr_t)mm) |
| if (process->mm == mm) |
| return process; |
| |
| return NULL; |
| } |
| |
| static struct kfd_process *find_process(const struct task_struct *thread, |
| bool ref) |
| { |
| struct kfd_process *p; |
| int idx; |
| |
| idx = srcu_read_lock(&kfd_processes_srcu); |
| p = find_process_by_mm(thread->mm); |
| if (p && ref) |
| kref_get(&p->ref); |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| |
| return p; |
| } |
| |
| void kfd_unref_process(struct kfd_process *p) |
| { |
| kref_put(&p->ref, kfd_process_ref_release); |
| } |
| |
| /* This increments the process->ref counter. */ |
| struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) |
| { |
| struct task_struct *task = NULL; |
| struct kfd_process *p = NULL; |
| |
| if (!pid) { |
| task = current; |
| get_task_struct(task); |
| } else { |
| task = get_pid_task(pid, PIDTYPE_PID); |
| } |
| |
| if (task) { |
| p = find_process(task, true); |
| put_task_struct(task); |
| } |
| |
| return p; |
| } |
| |
| static void kfd_process_device_free_bos(struct kfd_process_device *pdd) |
| { |
| struct kfd_process *p = pdd->process; |
| void *mem; |
| int id; |
| int i; |
| |
| /* |
| * Remove all handles from idr and release appropriate |
| * local memory object |
| */ |
| idr_for_each_entry(&pdd->alloc_idr, mem, id) { |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *peer_pdd = p->pdds[i]; |
| |
| if (!peer_pdd->drm_priv) |
| continue; |
| amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( |
| peer_pdd->dev->adev, mem, peer_pdd->drm_priv); |
| } |
| |
| amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, |
| pdd->drm_priv, NULL); |
| kfd_process_device_remove_obj_handle(pdd, id); |
| } |
| } |
| |
| /* |
| * Just kunmap and unpin signal BO here. It will be freed in |
| * kfd_process_free_outstanding_kfd_bos() |
| */ |
| static void kfd_process_kunmap_signal_bo(struct kfd_process *p) |
| { |
| struct kfd_process_device *pdd; |
| struct kfd_node *kdev; |
| void *mem; |
| |
| kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); |
| if (!kdev) |
| return; |
| |
| mutex_lock(&p->mutex); |
| |
| pdd = kfd_get_process_device_data(kdev, p); |
| if (!pdd) |
| goto out; |
| |
| mem = kfd_process_device_translate_handle( |
| pdd, GET_IDR_HANDLE(p->signal_handle)); |
| if (!mem) |
| goto out; |
| |
| amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); |
| |
| out: |
| mutex_unlock(&p->mutex); |
| } |
| |
| static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) |
| { |
| int i; |
| |
| for (i = 0; i < p->n_pdds; i++) |
| kfd_process_device_free_bos(p->pdds[i]); |
| } |
| |
| static void kfd_process_destroy_pdds(struct kfd_process *p) |
| { |
| int i; |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| |
| pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", |
| pdd->dev->id, p->pasid); |
| |
| kfd_process_device_destroy_cwsr_dgpu(pdd); |
| kfd_process_device_destroy_ib_mem(pdd); |
| |
| if (pdd->drm_file) { |
| amdgpu_amdkfd_gpuvm_release_process_vm( |
| pdd->dev->adev, pdd->drm_priv); |
| fput(pdd->drm_file); |
| } |
| |
| if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) |
| free_pages((unsigned long)pdd->qpd.cwsr_kaddr, |
| get_order(KFD_CWSR_TBA_TMA_SIZE)); |
| |
| idr_destroy(&pdd->alloc_idr); |
| |
| kfd_free_process_doorbells(pdd->dev->kfd, pdd); |
| |
| if (pdd->dev->kfd->shared_resources.enable_mes) |
| amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, |
| &pdd->proc_ctx_bo); |
| /* |
| * before destroying pdd, make sure to report availability |
| * for auto suspend |
| */ |
| if (pdd->runtime_inuse) { |
| pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); |
| pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); |
| pdd->runtime_inuse = false; |
| } |
| |
| kfree(pdd); |
| p->pdds[i] = NULL; |
| } |
| p->n_pdds = 0; |
| } |
| |
| static void kfd_process_remove_sysfs(struct kfd_process *p) |
| { |
| struct kfd_process_device *pdd; |
| int i; |
| |
| if (!p->kobj) |
| return; |
| |
| sysfs_remove_file(p->kobj, &p->attr_pasid); |
| kobject_del(p->kobj_queues); |
| kobject_put(p->kobj_queues); |
| p->kobj_queues = NULL; |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| pdd = p->pdds[i]; |
| |
| sysfs_remove_file(p->kobj, &pdd->attr_vram); |
| sysfs_remove_file(p->kobj, &pdd->attr_sdma); |
| |
| sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); |
| if (pdd->dev->kfd2kgd->get_cu_occupancy) |
| sysfs_remove_file(pdd->kobj_stats, |
| &pdd->attr_cu_occupancy); |
| kobject_del(pdd->kobj_stats); |
| kobject_put(pdd->kobj_stats); |
| pdd->kobj_stats = NULL; |
| } |
| |
| for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { |
| pdd = p->pdds[i]; |
| |
| sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); |
| sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); |
| sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); |
| kobject_del(pdd->kobj_counters); |
| kobject_put(pdd->kobj_counters); |
| pdd->kobj_counters = NULL; |
| } |
| |
| kobject_del(p->kobj); |
| kobject_put(p->kobj); |
| p->kobj = NULL; |
| } |
| |
| /* No process locking is needed in this function, because the process |
| * is not findable any more. We must assume that no other thread is |
| * using it any more, otherwise we couldn't safely free the process |
| * structure in the end. |
| */ |
| static void kfd_process_wq_release(struct work_struct *work) |
| { |
| struct kfd_process *p = container_of(work, struct kfd_process, |
| release_work); |
| struct dma_fence *ef; |
| |
| kfd_process_dequeue_from_all_devices(p); |
| pqm_uninit(&p->pqm); |
| |
| /* Signal the eviction fence after user mode queues are |
| * destroyed. This allows any BOs to be freed without |
| * triggering pointless evictions or waiting for fences. |
| */ |
| synchronize_rcu(); |
| ef = rcu_access_pointer(p->ef); |
| dma_fence_signal(ef); |
| |
| kfd_process_remove_sysfs(p); |
| |
| kfd_process_kunmap_signal_bo(p); |
| kfd_process_free_outstanding_kfd_bos(p); |
| svm_range_list_fini(p); |
| |
| kfd_process_destroy_pdds(p); |
| dma_fence_put(ef); |
| |
| kfd_event_free_process(p); |
| |
| kfd_pasid_free(p->pasid); |
| mutex_destroy(&p->mutex); |
| |
| put_task_struct(p->lead_thread); |
| |
| kfree(p); |
| } |
| |
| static void kfd_process_ref_release(struct kref *ref) |
| { |
| struct kfd_process *p = container_of(ref, struct kfd_process, ref); |
| |
| INIT_WORK(&p->release_work, kfd_process_wq_release); |
| queue_work(kfd_process_wq, &p->release_work); |
| } |
| |
| static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) |
| { |
| int idx = srcu_read_lock(&kfd_processes_srcu); |
| struct kfd_process *p = find_process_by_mm(mm); |
| |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| |
| return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); |
| } |
| |
| static void kfd_process_free_notifier(struct mmu_notifier *mn) |
| { |
| kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); |
| } |
| |
| static void kfd_process_notifier_release_internal(struct kfd_process *p) |
| { |
| int i; |
| |
| cancel_delayed_work_sync(&p->eviction_work); |
| cancel_delayed_work_sync(&p->restore_work); |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| |
| /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ |
| if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) |
| amdgpu_gfx_off_ctrl(pdd->dev->adev, true); |
| } |
| |
| /* Indicate to other users that MM is no longer valid */ |
| p->mm = NULL; |
| kfd_dbg_trap_disable(p); |
| |
| if (atomic_read(&p->debugged_process_count) > 0) { |
| struct kfd_process *target; |
| unsigned int temp; |
| int idx = srcu_read_lock(&kfd_processes_srcu); |
| |
| hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { |
| if (target->debugger_process && target->debugger_process == p) { |
| mutex_lock_nested(&target->mutex, 1); |
| kfd_dbg_trap_disable(target); |
| mutex_unlock(&target->mutex); |
| if (atomic_read(&p->debugged_process_count) == 0) |
| break; |
| } |
| } |
| |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| } |
| |
| mmu_notifier_put(&p->mmu_notifier); |
| } |
| |
| static void kfd_process_notifier_release(struct mmu_notifier *mn, |
| struct mm_struct *mm) |
| { |
| struct kfd_process *p; |
| |
| /* |
| * The kfd_process structure can not be free because the |
| * mmu_notifier srcu is read locked |
| */ |
| p = container_of(mn, struct kfd_process, mmu_notifier); |
| if (WARN_ON(p->mm != mm)) |
| return; |
| |
| mutex_lock(&kfd_processes_mutex); |
| /* |
| * Do early return if table is empty. |
| * |
| * This could potentially happen if this function is called concurrently |
| * by mmu_notifier and by kfd_cleanup_pocesses. |
| * |
| */ |
| if (hash_empty(kfd_processes_table)) { |
| mutex_unlock(&kfd_processes_mutex); |
| return; |
| } |
| hash_del_rcu(&p->kfd_processes); |
| mutex_unlock(&kfd_processes_mutex); |
| synchronize_srcu(&kfd_processes_srcu); |
| |
| kfd_process_notifier_release_internal(p); |
| } |
| |
| static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { |
| .release = kfd_process_notifier_release, |
| .alloc_notifier = kfd_process_alloc_notifier, |
| .free_notifier = kfd_process_free_notifier, |
| }; |
| |
| /* |
| * This code handles the case when driver is being unloaded before all |
| * mm_struct are released. We need to safely free the kfd_process and |
| * avoid race conditions with mmu_notifier that might try to free them. |
| * |
| */ |
| void kfd_cleanup_processes(void) |
| { |
| struct kfd_process *p; |
| struct hlist_node *p_temp; |
| unsigned int temp; |
| HLIST_HEAD(cleanup_list); |
| |
| /* |
| * Move all remaining kfd_process from the process table to a |
| * temp list for processing. Once done, callback from mmu_notifier |
| * release will not see the kfd_process in the table and do early return, |
| * avoiding double free issues. |
| */ |
| mutex_lock(&kfd_processes_mutex); |
| hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { |
| hash_del_rcu(&p->kfd_processes); |
| synchronize_srcu(&kfd_processes_srcu); |
| hlist_add_head(&p->kfd_processes, &cleanup_list); |
| } |
| mutex_unlock(&kfd_processes_mutex); |
| |
| hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) |
| kfd_process_notifier_release_internal(p); |
| |
| /* |
| * Ensures that all outstanding free_notifier get called, triggering |
| * the release of the kfd_process struct. |
| */ |
| mmu_notifier_synchronize(); |
| } |
| |
| int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) |
| { |
| unsigned long offset; |
| int i; |
| |
| if (p->has_cwsr) |
| return 0; |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_node *dev = p->pdds[i]->dev; |
| struct qcm_process_device *qpd = &p->pdds[i]->qpd; |
| |
| if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) |
| continue; |
| |
| offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); |
| qpd->tba_addr = (int64_t)vm_mmap(filep, 0, |
| KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, |
| MAP_SHARED, offset); |
| |
| if (IS_ERR_VALUE(qpd->tba_addr)) { |
| int err = qpd->tba_addr; |
| |
| dev_err(dev->adev->dev, |
| "Failure to set tba address. error %d.\n", err); |
| qpd->tba_addr = 0; |
| qpd->cwsr_kaddr = NULL; |
| return err; |
| } |
| |
| memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); |
| |
| kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); |
| |
| qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; |
| pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", |
| qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); |
| } |
| |
| p->has_cwsr = true; |
| |
| return 0; |
| } |
| |
| static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) |
| { |
| struct kfd_node *dev = pdd->dev; |
| struct qcm_process_device *qpd = &pdd->qpd; |
| uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
| | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
| | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; |
| struct kgd_mem *mem; |
| void *kaddr; |
| int ret; |
| |
| if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) |
| return 0; |
| |
| /* cwsr_base is only set for dGPU */ |
| ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, |
| KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); |
| if (ret) |
| return ret; |
| |
| qpd->cwsr_mem = mem; |
| qpd->cwsr_kaddr = kaddr; |
| qpd->tba_addr = qpd->cwsr_base; |
| |
| memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); |
| |
| kfd_process_set_trap_debug_flag(&pdd->qpd, |
| pdd->process->debug_trap_enabled); |
| |
| qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; |
| pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", |
| qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); |
| |
| return 0; |
| } |
| |
| static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) |
| { |
| struct kfd_node *dev = pdd->dev; |
| struct qcm_process_device *qpd = &pdd->qpd; |
| |
| if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) |
| return; |
| |
| kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); |
| } |
| |
| void kfd_process_set_trap_handler(struct qcm_process_device *qpd, |
| uint64_t tba_addr, |
| uint64_t tma_addr) |
| { |
| if (qpd->cwsr_kaddr) { |
| /* KFD trap handler is bound, record as second-level TBA/TMA |
| * in first-level TMA. First-level trap will jump to second. |
| */ |
| uint64_t *tma = |
| (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); |
| tma[0] = tba_addr; |
| tma[1] = tma_addr; |
| } else { |
| /* No trap handler bound, bind as first-level TBA/TMA. */ |
| qpd->tba_addr = tba_addr; |
| qpd->tma_addr = tma_addr; |
| } |
| } |
| |
| bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) |
| { |
| int i; |
| |
| /* On most GFXv9 GPUs, the retry mode in the SQ must match the |
| * boot time retry setting. Mixing processes with different |
| * XNACK/retry settings can hang the GPU. |
| * |
| * Different GPUs can have different noretry settings depending |
| * on HW bugs or limitations. We need to find at least one |
| * XNACK mode for this process that's compatible with all GPUs. |
| * Fortunately GPUs with retry enabled (noretry=0) can run code |
| * built for XNACK-off. On GFXv9 it may perform slower. |
| * |
| * Therefore applications built for XNACK-off can always be |
| * supported and will be our fallback if any GPU does not |
| * support retry. |
| */ |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_node *dev = p->pdds[i]->dev; |
| |
| /* Only consider GFXv9 and higher GPUs. Older GPUs don't |
| * support the SVM APIs and don't need to be considered |
| * for the XNACK mode selection. |
| */ |
| if (!KFD_IS_SOC15(dev)) |
| continue; |
| /* Aldebaran can always support XNACK because it can support |
| * per-process XNACK mode selection. But let the dev->noretry |
| * setting still influence the default XNACK mode. |
| */ |
| if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { |
| if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { |
| pr_debug("SRIOV platform xnack not supported\n"); |
| return false; |
| } |
| continue; |
| } |
| |
| /* GFXv10 and later GPUs do not support shader preemption |
| * during page faults. This can lead to poor QoS for queue |
| * management and memory-manager-related preemptions or |
| * even deadlocks. |
| */ |
| if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) |
| return false; |
| |
| if (dev->kfd->noretry) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, |
| bool enabled) |
| { |
| if (qpd->cwsr_kaddr) { |
| uint64_t *tma = |
| (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); |
| tma[2] = enabled; |
| } |
| } |
| |
| /* |
| * On return the kfd_process is fully operational and will be freed when the |
| * mm is released |
| */ |
| static struct kfd_process *create_process(const struct task_struct *thread) |
| { |
| struct kfd_process *process; |
| struct mmu_notifier *mn; |
| int err = -ENOMEM; |
| |
| process = kzalloc(sizeof(*process), GFP_KERNEL); |
| if (!process) |
| goto err_alloc_process; |
| |
| kref_init(&process->ref); |
| mutex_init(&process->mutex); |
| process->mm = thread->mm; |
| process->lead_thread = thread->group_leader; |
| process->n_pdds = 0; |
| process->queues_paused = false; |
| INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); |
| INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); |
| process->last_restore_timestamp = get_jiffies_64(); |
| err = kfd_event_init_process(process); |
| if (err) |
| goto err_event_init; |
| process->is_32bit_user_mode = in_compat_syscall(); |
| process->debug_trap_enabled = false; |
| process->debugger_process = NULL; |
| process->exception_enable_mask = 0; |
| atomic_set(&process->debugged_process_count, 0); |
| sema_init(&process->runtime_enable_sema, 0); |
| |
| process->pasid = kfd_pasid_alloc(); |
| if (process->pasid == 0) { |
| err = -ENOSPC; |
| goto err_alloc_pasid; |
| } |
| |
| err = pqm_init(&process->pqm, process); |
| if (err != 0) |
| goto err_process_pqm_init; |
| |
| /* init process apertures*/ |
| err = kfd_init_apertures(process); |
| if (err != 0) |
| goto err_init_apertures; |
| |
| /* Check XNACK support after PDDs are created in kfd_init_apertures */ |
| process->xnack_enabled = kfd_process_xnack_mode(process, false); |
| |
| err = svm_range_list_init(process); |
| if (err) |
| goto err_init_svm_range_list; |
| |
| /* alloc_notifier needs to find the process in the hash table */ |
| hash_add_rcu(kfd_processes_table, &process->kfd_processes, |
| (uintptr_t)process->mm); |
| |
| /* Avoid free_notifier to start kfd_process_wq_release if |
| * mmu_notifier_get failed because of pending signal. |
| */ |
| kref_get(&process->ref); |
| |
| /* MMU notifier registration must be the last call that can fail |
| * because after this point we cannot unwind the process creation. |
| * After this point, mmu_notifier_put will trigger the cleanup by |
| * dropping the last process reference in the free_notifier. |
| */ |
| mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); |
| if (IS_ERR(mn)) { |
| err = PTR_ERR(mn); |
| goto err_register_notifier; |
| } |
| BUG_ON(mn != &process->mmu_notifier); |
| |
| kfd_unref_process(process); |
| get_task_struct(process->lead_thread); |
| |
| INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); |
| |
| return process; |
| |
| err_register_notifier: |
| hash_del_rcu(&process->kfd_processes); |
| svm_range_list_fini(process); |
| err_init_svm_range_list: |
| kfd_process_free_outstanding_kfd_bos(process); |
| kfd_process_destroy_pdds(process); |
| err_init_apertures: |
| pqm_uninit(&process->pqm); |
| err_process_pqm_init: |
| kfd_pasid_free(process->pasid); |
| err_alloc_pasid: |
| kfd_event_free_process(process); |
| err_event_init: |
| mutex_destroy(&process->mutex); |
| kfree(process); |
| err_alloc_process: |
| return ERR_PTR(err); |
| } |
| |
| struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, |
| struct kfd_process *p) |
| { |
| int i; |
| |
| for (i = 0; i < p->n_pdds; i++) |
| if (p->pdds[i]->dev == dev) |
| return p->pdds[i]; |
| |
| return NULL; |
| } |
| |
| struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, |
| struct kfd_process *p) |
| { |
| struct kfd_process_device *pdd = NULL; |
| int retval = 0; |
| |
| if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) |
| return NULL; |
| pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); |
| if (!pdd) |
| return NULL; |
| |
| pdd->dev = dev; |
| INIT_LIST_HEAD(&pdd->qpd.queues_list); |
| INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); |
| pdd->qpd.dqm = dev->dqm; |
| pdd->qpd.pqm = &p->pqm; |
| pdd->qpd.evicted = 0; |
| pdd->qpd.mapped_gws_queue = false; |
| pdd->process = p; |
| pdd->bound = PDD_UNBOUND; |
| pdd->already_dequeued = false; |
| pdd->runtime_inuse = false; |
| atomic64_set(&pdd->vram_usage, 0); |
| pdd->sdma_past_activity_counter = 0; |
| pdd->user_gpu_id = dev->id; |
| atomic64_set(&pdd->evict_duration_counter, 0); |
| |
| if (dev->kfd->shared_resources.enable_mes) { |
| retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, |
| AMDGPU_MES_PROC_CTX_SIZE, |
| &pdd->proc_ctx_bo, |
| &pdd->proc_ctx_gpu_addr, |
| &pdd->proc_ctx_cpu_ptr, |
| false); |
| if (retval) { |
| dev_err(dev->adev->dev, |
| "failed to allocate process context bo\n"); |
| goto err_free_pdd; |
| } |
| memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); |
| } |
| |
| p->pdds[p->n_pdds++] = pdd; |
| if (kfd_dbg_is_per_vmid_supported(pdd->dev)) |
| pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( |
| pdd->dev->adev, |
| false, |
| 0); |
| |
| /* Init idr used for memory handle translation */ |
| idr_init(&pdd->alloc_idr); |
| |
| return pdd; |
| |
| err_free_pdd: |
| kfree(pdd); |
| return NULL; |
| } |
| |
| /** |
| * kfd_process_device_init_vm - Initialize a VM for a process-device |
| * |
| * @pdd: The process-device |
| * @drm_file: Optional pointer to a DRM file descriptor |
| * |
| * If @drm_file is specified, it will be used to acquire the VM from |
| * that file descriptor. If successful, the @pdd takes ownership of |
| * the file descriptor. |
| * |
| * If @drm_file is NULL, a new VM is created. |
| * |
| * Returns 0 on success, -errno on failure. |
| */ |
| int kfd_process_device_init_vm(struct kfd_process_device *pdd, |
| struct file *drm_file) |
| { |
| struct amdgpu_fpriv *drv_priv; |
| struct amdgpu_vm *avm; |
| struct kfd_process *p; |
| struct dma_fence *ef; |
| struct kfd_node *dev; |
| int ret; |
| |
| if (!drm_file) |
| return -EINVAL; |
| |
| if (pdd->drm_priv) |
| return -EBUSY; |
| |
| ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); |
| if (ret) |
| return ret; |
| avm = &drv_priv->vm; |
| |
| p = pdd->process; |
| dev = pdd->dev; |
| |
| ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, |
| &p->kgd_process_info, |
| p->ef ? NULL : &ef); |
| if (ret) { |
| dev_err(dev->adev->dev, "Failed to create process VM object\n"); |
| return ret; |
| } |
| |
| if (!p->ef) |
| RCU_INIT_POINTER(p->ef, ef); |
| |
| pdd->drm_priv = drm_file->private_data; |
| |
| ret = kfd_process_device_reserve_ib_mem(pdd); |
| if (ret) |
| goto err_reserve_ib_mem; |
| ret = kfd_process_device_init_cwsr_dgpu(pdd); |
| if (ret) |
| goto err_init_cwsr; |
| |
| ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid); |
| if (ret) |
| goto err_set_pasid; |
| |
| pdd->drm_file = drm_file; |
| |
| return 0; |
| |
| err_set_pasid: |
| kfd_process_device_destroy_cwsr_dgpu(pdd); |
| err_init_cwsr: |
| kfd_process_device_destroy_ib_mem(pdd); |
| err_reserve_ib_mem: |
| pdd->drm_priv = NULL; |
| amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); |
| |
| return ret; |
| } |
| |
| /* |
| * Direct the IOMMU to bind the process (specifically the pasid->mm) |
| * to the device. |
| * Unbinding occurs when the process dies or the device is removed. |
| * |
| * Assumes that the process lock is held. |
| */ |
| struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, |
| struct kfd_process *p) |
| { |
| struct kfd_process_device *pdd; |
| int err; |
| |
| pdd = kfd_get_process_device_data(dev, p); |
| if (!pdd) { |
| dev_err(dev->adev->dev, "Process device data doesn't exist\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| if (!pdd->drm_priv) |
| return ERR_PTR(-ENODEV); |
| |
| /* |
| * signal runtime-pm system to auto resume and prevent |
| * further runtime suspend once device pdd is created until |
| * pdd is destroyed. |
| */ |
| if (!pdd->runtime_inuse) { |
| err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); |
| if (err < 0) { |
| pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); |
| return ERR_PTR(err); |
| } |
| } |
| |
| /* |
| * make sure that runtime_usage counter is incremented just once |
| * per pdd |
| */ |
| pdd->runtime_inuse = true; |
| |
| return pdd; |
| } |
| |
| /* Create specific handle mapped to mem from process local memory idr |
| * Assumes that the process lock is held. |
| */ |
| int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, |
| void *mem) |
| { |
| return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); |
| } |
| |
| /* Translate specific handle from process local memory idr |
| * Assumes that the process lock is held. |
| */ |
| void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, |
| int handle) |
| { |
| if (handle < 0) |
| return NULL; |
| |
| return idr_find(&pdd->alloc_idr, handle); |
| } |
| |
| /* Remove specific handle from process local memory idr |
| * Assumes that the process lock is held. |
| */ |
| void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, |
| int handle) |
| { |
| if (handle >= 0) |
| idr_remove(&pdd->alloc_idr, handle); |
| } |
| |
| /* This increments the process->ref counter. */ |
| struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) |
| { |
| struct kfd_process *p, *ret_p = NULL; |
| unsigned int temp; |
| |
| int idx = srcu_read_lock(&kfd_processes_srcu); |
| |
| hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
| if (p->pasid == pasid) { |
| kref_get(&p->ref); |
| ret_p = p; |
| break; |
| } |
| } |
| |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| |
| return ret_p; |
| } |
| |
| /* This increments the process->ref counter. */ |
| struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) |
| { |
| struct kfd_process *p; |
| |
| int idx = srcu_read_lock(&kfd_processes_srcu); |
| |
| p = find_process_by_mm(mm); |
| if (p) |
| kref_get(&p->ref); |
| |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| |
| return p; |
| } |
| |
| /* kfd_process_evict_queues - Evict all user queues of a process |
| * |
| * Eviction is reference-counted per process-device. This means multiple |
| * evictions from different sources can be nested safely. |
| */ |
| int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) |
| { |
| int r = 0; |
| int i; |
| unsigned int n_evicted = 0; |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| struct device *dev = pdd->dev->adev->dev; |
| |
| kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, |
| trigger); |
| |
| r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, |
| &pdd->qpd); |
| /* evict return -EIO if HWS is hang or asic is resetting, in this case |
| * we would like to set all the queues to be in evicted state to prevent |
| * them been add back since they actually not be saved right now. |
| */ |
| if (r && r != -EIO) { |
| dev_err(dev, "Failed to evict process queues\n"); |
| goto fail; |
| } |
| n_evicted++; |
| |
| pdd->dev->dqm->is_hws_hang = false; |
| } |
| |
| return r; |
| |
| fail: |
| /* To keep state consistent, roll back partial eviction by |
| * restoring queues |
| */ |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| |
| if (n_evicted == 0) |
| break; |
| |
| kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); |
| |
| if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, |
| &pdd->qpd)) |
| dev_err(pdd->dev->adev->dev, |
| "Failed to restore queues\n"); |
| |
| n_evicted--; |
| } |
| |
| return r; |
| } |
| |
| /* kfd_process_restore_queues - Restore all user queues of a process */ |
| int kfd_process_restore_queues(struct kfd_process *p) |
| { |
| int r, ret = 0; |
| int i; |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| struct device *dev = pdd->dev->adev->dev; |
| |
| kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); |
| |
| r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, |
| &pdd->qpd); |
| if (r) { |
| dev_err(dev, "Failed to restore process queues\n"); |
| if (!ret) |
| ret = r; |
| } |
| } |
| |
| return ret; |
| } |
| |
| int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) |
| { |
| int i; |
| |
| for (i = 0; i < p->n_pdds; i++) |
| if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) |
| return i; |
| return -EINVAL; |
| } |
| |
| int |
| kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, |
| uint32_t *gpuid, uint32_t *gpuidx) |
| { |
| int i; |
| |
| for (i = 0; i < p->n_pdds; i++) |
| if (p->pdds[i] && p->pdds[i]->dev == node) { |
| *gpuid = p->pdds[i]->user_gpu_id; |
| *gpuidx = i; |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| static int signal_eviction_fence(struct kfd_process *p) |
| { |
| struct dma_fence *ef; |
| int ret; |
| |
| rcu_read_lock(); |
| ef = dma_fence_get_rcu_safe(&p->ef); |
| rcu_read_unlock(); |
| if (!ef) |
| return -EINVAL; |
| |
| ret = dma_fence_signal(ef); |
| dma_fence_put(ef); |
| |
| return ret; |
| } |
| |
| static void evict_process_worker(struct work_struct *work) |
| { |
| int ret; |
| struct kfd_process *p; |
| struct delayed_work *dwork; |
| |
| dwork = to_delayed_work(work); |
| |
| /* Process termination destroys this worker thread. So during the |
| * lifetime of this thread, kfd_process p will be valid |
| */ |
| p = container_of(dwork, struct kfd_process, eviction_work); |
| |
| pr_debug("Started evicting pasid 0x%x\n", p->pasid); |
| ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); |
| if (!ret) { |
| /* If another thread already signaled the eviction fence, |
| * they are responsible stopping the queues and scheduling |
| * the restore work. |
| */ |
| if (signal_eviction_fence(p) || |
| mod_delayed_work(kfd_restore_wq, &p->restore_work, |
| msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) |
| kfd_process_restore_queues(p); |
| |
| pr_debug("Finished evicting pasid 0x%x\n", p->pasid); |
| } else |
| pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); |
| } |
| |
| static int restore_process_helper(struct kfd_process *p) |
| { |
| int ret = 0; |
| |
| /* VMs may not have been acquired yet during debugging. */ |
| if (p->kgd_process_info) { |
| ret = amdgpu_amdkfd_gpuvm_restore_process_bos( |
| p->kgd_process_info, &p->ef); |
| if (ret) |
| return ret; |
| } |
| |
| ret = kfd_process_restore_queues(p); |
| if (!ret) |
| pr_debug("Finished restoring pasid 0x%x\n", p->pasid); |
| else |
| pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); |
| |
| return ret; |
| } |
| |
| static void restore_process_worker(struct work_struct *work) |
| { |
| struct delayed_work *dwork; |
| struct kfd_process *p; |
| int ret = 0; |
| |
| dwork = to_delayed_work(work); |
| |
| /* Process termination destroys this worker thread. So during the |
| * lifetime of this thread, kfd_process p will be valid |
| */ |
| p = container_of(dwork, struct kfd_process, restore_work); |
| pr_debug("Started restoring pasid 0x%x\n", p->pasid); |
| |
| /* Setting last_restore_timestamp before successful restoration. |
| * Otherwise this would have to be set by KGD (restore_process_bos) |
| * before KFD BOs are unreserved. If not, the process can be evicted |
| * again before the timestamp is set. |
| * If restore fails, the timestamp will be set again in the next |
| * attempt. This would mean that the minimum GPU quanta would be |
| * PROCESS_ACTIVE_TIME_MS - (time to execute the following two |
| * functions) |
| */ |
| |
| p->last_restore_timestamp = get_jiffies_64(); |
| |
| ret = restore_process_helper(p); |
| if (ret) { |
| pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", |
| p->pasid, PROCESS_BACK_OFF_TIME_MS); |
| if (mod_delayed_work(kfd_restore_wq, &p->restore_work, |
| msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) |
| kfd_process_restore_queues(p); |
| } |
| } |
| |
| void kfd_suspend_all_processes(void) |
| { |
| struct kfd_process *p; |
| unsigned int temp; |
| int idx = srcu_read_lock(&kfd_processes_srcu); |
| |
| WARN(debug_evictions, "Evicting all processes"); |
| hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
| if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) |
| pr_err("Failed to suspend process 0x%x\n", p->pasid); |
| signal_eviction_fence(p); |
| } |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| } |
| |
| int kfd_resume_all_processes(void) |
| { |
| struct kfd_process *p; |
| unsigned int temp; |
| int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); |
| |
| hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
| if (restore_process_helper(p)) { |
| pr_err("Restore process %d failed during resume\n", |
| p->pasid); |
| ret = -EFAULT; |
| } |
| } |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| return ret; |
| } |
| |
| int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, |
| struct vm_area_struct *vma) |
| { |
| struct kfd_process_device *pdd; |
| struct qcm_process_device *qpd; |
| |
| if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { |
| dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); |
| return -EINVAL; |
| } |
| |
| pdd = kfd_get_process_device_data(dev, process); |
| if (!pdd) |
| return -EINVAL; |
| qpd = &pdd->qpd; |
| |
| qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(KFD_CWSR_TBA_TMA_SIZE)); |
| if (!qpd->cwsr_kaddr) { |
| dev_err(dev->adev->dev, |
| "Error allocating per process CWSR buffer.\n"); |
| return -ENOMEM; |
| } |
| |
| vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND |
| | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); |
| /* Mapping pages to user process */ |
| return remap_pfn_range(vma, vma->vm_start, |
| PFN_DOWN(__pa(qpd->cwsr_kaddr)), |
| KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); |
| } |
| |
| /* assumes caller holds process lock. */ |
| int kfd_process_drain_interrupts(struct kfd_process_device *pdd) |
| { |
| uint32_t irq_drain_fence[8]; |
| uint8_t node_id = 0; |
| int r = 0; |
| |
| if (!KFD_IS_SOC15(pdd->dev)) |
| return 0; |
| |
| pdd->process->irq_drain_is_open = true; |
| |
| memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); |
| irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | |
| KFD_IRQ_FENCE_CLIENTID; |
| irq_drain_fence[3] = pdd->process->pasid; |
| |
| /* |
| * For GFX 9.4.3, send the NodeId also in IH cookie DW[3] |
| */ |
| if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || |
| KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) { |
| node_id = ffs(pdd->dev->interrupt_bitmap) - 1; |
| irq_drain_fence[3] |= node_id << 16; |
| } |
| |
| /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ |
| if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, |
| irq_drain_fence)) { |
| pdd->process->irq_drain_is_open = false; |
| return 0; |
| } |
| |
| r = wait_event_interruptible(pdd->process->wait_irq_drain, |
| !READ_ONCE(pdd->process->irq_drain_is_open)); |
| if (r) |
| pdd->process->irq_drain_is_open = false; |
| |
| return r; |
| } |
| |
| void kfd_process_close_interrupt_drain(unsigned int pasid) |
| { |
| struct kfd_process *p; |
| |
| p = kfd_lookup_process_by_pasid(pasid); |
| |
| if (!p) |
| return; |
| |
| WRITE_ONCE(p->irq_drain_is_open, false); |
| wake_up_all(&p->wait_irq_drain); |
| kfd_unref_process(p); |
| } |
| |
| struct send_exception_work_handler_workarea { |
| struct work_struct work; |
| struct kfd_process *p; |
| unsigned int queue_id; |
| uint64_t error_reason; |
| }; |
| |
| static void send_exception_work_handler(struct work_struct *work) |
| { |
| struct send_exception_work_handler_workarea *workarea; |
| struct kfd_process *p; |
| struct queue *q; |
| struct mm_struct *mm; |
| struct kfd_context_save_area_header __user *csa_header; |
| uint64_t __user *err_payload_ptr; |
| uint64_t cur_err; |
| uint32_t ev_id; |
| |
| workarea = container_of(work, |
| struct send_exception_work_handler_workarea, |
| work); |
| p = workarea->p; |
| |
| mm = get_task_mm(p->lead_thread); |
| |
| if (!mm) |
| return; |
| |
| kthread_use_mm(mm); |
| |
| q = pqm_get_user_queue(&p->pqm, workarea->queue_id); |
| |
| if (!q) |
| goto out; |
| |
| csa_header = (void __user *)q->properties.ctx_save_restore_area_address; |
| |
| get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); |
| get_user(cur_err, err_payload_ptr); |
| cur_err |= workarea->error_reason; |
| put_user(cur_err, err_payload_ptr); |
| get_user(ev_id, &csa_header->err_event_id); |
| |
| kfd_set_event(p, ev_id); |
| |
| out: |
| kthread_unuse_mm(mm); |
| mmput(mm); |
| } |
| |
| int kfd_send_exception_to_runtime(struct kfd_process *p, |
| unsigned int queue_id, |
| uint64_t error_reason) |
| { |
| struct send_exception_work_handler_workarea worker; |
| |
| INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); |
| |
| worker.p = p; |
| worker.queue_id = queue_id; |
| worker.error_reason = error_reason; |
| |
| schedule_work(&worker.work); |
| flush_work(&worker.work); |
| destroy_work_on_stack(&worker.work); |
| |
| return 0; |
| } |
| |
| struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) |
| { |
| int i; |
| |
| if (gpu_id) { |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| |
| if (pdd->user_gpu_id == gpu_id) |
| return pdd; |
| } |
| } |
| return NULL; |
| } |
| |
| int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) |
| { |
| int i; |
| |
| if (!actual_gpu_id) |
| return 0; |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct kfd_process_device *pdd = p->pdds[i]; |
| |
| if (pdd->dev->id == actual_gpu_id) |
| return pdd->user_gpu_id; |
| } |
| return -EINVAL; |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) |
| |
| int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) |
| { |
| struct kfd_process *p; |
| unsigned int temp; |
| int r = 0; |
| |
| int idx = srcu_read_lock(&kfd_processes_srcu); |
| |
| hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
| seq_printf(m, "Process %d PASID 0x%x:\n", |
| p->lead_thread->tgid, p->pasid); |
| |
| mutex_lock(&p->mutex); |
| r = pqm_debugfs_mqds(m, &p->pqm); |
| mutex_unlock(&p->mutex); |
| |
| if (r) |
| break; |
| } |
| |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| |
| return r; |
| } |
| |
| #endif |