| /* |
| * Copyright 2006 Dave Airlie <airlied@linux.ie> |
| * Copyright © 2006-2009 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * Jesse Barnes <jesse.barnes@intel.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/hdmi.h> |
| #include <linux/i2c.h> |
| #include <linux/slab.h> |
| #include <linux/string_helpers.h> |
| |
| #include <drm/display/drm_hdcp_helper.h> |
| #include <drm/display/drm_hdmi_helper.h> |
| #include <drm/display/drm_scdc_helper.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_edid.h> |
| #include <drm/intel/intel_lpe_audio.h> |
| |
| #include "g4x_hdmi.h" |
| #include "i915_drv.h" |
| #include "i915_reg.h" |
| #include "intel_atomic.h" |
| #include "intel_audio.h" |
| #include "intel_connector.h" |
| #include "intel_cx0_phy.h" |
| #include "intel_ddi.h" |
| #include "intel_de.h" |
| #include "intel_display_driver.h" |
| #include "intel_display_types.h" |
| #include "intel_dp.h" |
| #include "intel_gmbus.h" |
| #include "intel_hdcp.h" |
| #include "intel_hdcp_regs.h" |
| #include "intel_hdmi.h" |
| #include "intel_lspcon.h" |
| #include "intel_panel.h" |
| #include "intel_snps_phy.h" |
| |
| static void |
| assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) |
| { |
| struct intel_display *display = to_intel_display(intel_hdmi); |
| u32 enabled_bits; |
| |
| enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; |
| |
| drm_WARN(display->drm, |
| intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits, |
| "HDMI port enabled, expecting disabled\n"); |
| } |
| |
| static void |
| assert_hdmi_transcoder_func_disabled(struct intel_display *display, |
| enum transcoder cpu_transcoder) |
| { |
| drm_WARN(display->drm, |
| intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) & |
| TRANS_DDI_FUNC_ENABLE, |
| "HDMI transcoder function enabled, expecting disabled\n"); |
| } |
| |
| static u32 g4x_infoframe_index(unsigned int type) |
| { |
| switch (type) { |
| case HDMI_PACKET_TYPE_GAMUT_METADATA: |
| return VIDEO_DIP_SELECT_GAMUT; |
| case HDMI_INFOFRAME_TYPE_AVI: |
| return VIDEO_DIP_SELECT_AVI; |
| case HDMI_INFOFRAME_TYPE_SPD: |
| return VIDEO_DIP_SELECT_SPD; |
| case HDMI_INFOFRAME_TYPE_VENDOR: |
| return VIDEO_DIP_SELECT_VENDOR; |
| default: |
| MISSING_CASE(type); |
| return 0; |
| } |
| } |
| |
| static u32 g4x_infoframe_enable(unsigned int type) |
| { |
| switch (type) { |
| case HDMI_PACKET_TYPE_GENERAL_CONTROL: |
| return VIDEO_DIP_ENABLE_GCP; |
| case HDMI_PACKET_TYPE_GAMUT_METADATA: |
| return VIDEO_DIP_ENABLE_GAMUT; |
| case DP_SDP_VSC: |
| return 0; |
| case DP_SDP_ADAPTIVE_SYNC: |
| return 0; |
| case HDMI_INFOFRAME_TYPE_AVI: |
| return VIDEO_DIP_ENABLE_AVI; |
| case HDMI_INFOFRAME_TYPE_SPD: |
| return VIDEO_DIP_ENABLE_SPD; |
| case HDMI_INFOFRAME_TYPE_VENDOR: |
| return VIDEO_DIP_ENABLE_VENDOR; |
| case HDMI_INFOFRAME_TYPE_DRM: |
| return 0; |
| default: |
| MISSING_CASE(type); |
| return 0; |
| } |
| } |
| |
| static u32 hsw_infoframe_enable(unsigned int type) |
| { |
| switch (type) { |
| case HDMI_PACKET_TYPE_GENERAL_CONTROL: |
| return VIDEO_DIP_ENABLE_GCP_HSW; |
| case HDMI_PACKET_TYPE_GAMUT_METADATA: |
| return VIDEO_DIP_ENABLE_GMP_HSW; |
| case DP_SDP_VSC: |
| return VIDEO_DIP_ENABLE_VSC_HSW; |
| case DP_SDP_ADAPTIVE_SYNC: |
| return VIDEO_DIP_ENABLE_AS_ADL; |
| case DP_SDP_PPS: |
| return VDIP_ENABLE_PPS; |
| case HDMI_INFOFRAME_TYPE_AVI: |
| return VIDEO_DIP_ENABLE_AVI_HSW; |
| case HDMI_INFOFRAME_TYPE_SPD: |
| return VIDEO_DIP_ENABLE_SPD_HSW; |
| case HDMI_INFOFRAME_TYPE_VENDOR: |
| return VIDEO_DIP_ENABLE_VS_HSW; |
| case HDMI_INFOFRAME_TYPE_DRM: |
| return VIDEO_DIP_ENABLE_DRM_GLK; |
| default: |
| MISSING_CASE(type); |
| return 0; |
| } |
| } |
| |
| static i915_reg_t |
| hsw_dip_data_reg(struct intel_display *display, |
| enum transcoder cpu_transcoder, |
| unsigned int type, |
| int i) |
| { |
| switch (type) { |
| case HDMI_PACKET_TYPE_GAMUT_METADATA: |
| return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i); |
| case DP_SDP_VSC: |
| return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i); |
| case DP_SDP_ADAPTIVE_SYNC: |
| return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i); |
| case DP_SDP_PPS: |
| return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i); |
| case HDMI_INFOFRAME_TYPE_AVI: |
| return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i); |
| case HDMI_INFOFRAME_TYPE_SPD: |
| return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i); |
| case HDMI_INFOFRAME_TYPE_VENDOR: |
| return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i); |
| case HDMI_INFOFRAME_TYPE_DRM: |
| return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i); |
| default: |
| MISSING_CASE(type); |
| return INVALID_MMIO_REG; |
| } |
| } |
| |
| static int hsw_dip_data_size(struct intel_display *display, |
| unsigned int type) |
| { |
| switch (type) { |
| case DP_SDP_VSC: |
| return VIDEO_DIP_VSC_DATA_SIZE; |
| case DP_SDP_ADAPTIVE_SYNC: |
| return VIDEO_DIP_ASYNC_DATA_SIZE; |
| case DP_SDP_PPS: |
| return VIDEO_DIP_PPS_DATA_SIZE; |
| case HDMI_PACKET_TYPE_GAMUT_METADATA: |
| if (DISPLAY_VER(display) >= 11) |
| return VIDEO_DIP_GMP_DATA_SIZE; |
| else |
| return VIDEO_DIP_DATA_SIZE; |
| default: |
| return VIDEO_DIP_DATA_SIZE; |
| } |
| } |
| |
| static void g4x_write_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| const void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| const u32 *data = frame; |
| u32 val = intel_de_read(display, VIDEO_DIP_CTL); |
| int i; |
| |
| drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE), |
| "Writing DIP with CTL reg disabled\n"); |
| |
| val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ |
| val |= g4x_infoframe_index(type); |
| |
| val &= ~g4x_infoframe_enable(type); |
| |
| intel_de_write(display, VIDEO_DIP_CTL, val); |
| |
| for (i = 0; i < len; i += 4) { |
| intel_de_write(display, VIDEO_DIP_DATA, *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| intel_de_write(display, VIDEO_DIP_DATA, 0); |
| |
| val |= g4x_infoframe_enable(type); |
| val &= ~VIDEO_DIP_FREQ_MASK; |
| val |= VIDEO_DIP_FREQ_VSYNC; |
| |
| intel_de_write(display, VIDEO_DIP_CTL, val); |
| intel_de_posting_read(display, VIDEO_DIP_CTL); |
| } |
| |
| static void g4x_read_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| u32 *data = frame; |
| int i; |
| |
| intel_de_rmw(display, VIDEO_DIP_CTL, |
| VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); |
| |
| for (i = 0; i < len; i += 4) |
| *data++ = intel_de_read(display, VIDEO_DIP_DATA); |
| } |
| |
| static u32 g4x_infoframes_enabled(struct intel_encoder *encoder, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| u32 val = intel_de_read(display, VIDEO_DIP_CTL); |
| |
| if ((val & VIDEO_DIP_ENABLE) == 0) |
| return 0; |
| |
| if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) |
| return 0; |
| |
| return val & (VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); |
| } |
| |
| static void ibx_write_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| const void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| const u32 *data = frame; |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); |
| u32 val = intel_de_read(display, reg); |
| int i; |
| |
| drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE), |
| "Writing DIP with CTL reg disabled\n"); |
| |
| val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ |
| val |= g4x_infoframe_index(type); |
| |
| val &= ~g4x_infoframe_enable(type); |
| |
| intel_de_write(display, reg, val); |
| |
| for (i = 0; i < len; i += 4) { |
| intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), |
| *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0); |
| |
| val |= g4x_infoframe_enable(type); |
| val &= ~VIDEO_DIP_FREQ_MASK; |
| val |= VIDEO_DIP_FREQ_VSYNC; |
| |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| } |
| |
| static void ibx_read_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| u32 *data = frame; |
| int i; |
| |
| intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe), |
| VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); |
| |
| for (i = 0; i < len; i += 4) |
| *data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe)); |
| } |
| |
| static u32 ibx_infoframes_enabled(struct intel_encoder *encoder, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; |
| i915_reg_t reg = TVIDEO_DIP_CTL(pipe); |
| u32 val = intel_de_read(display, reg); |
| |
| if ((val & VIDEO_DIP_ENABLE) == 0) |
| return 0; |
| |
| if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) |
| return 0; |
| |
| return val & (VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| } |
| |
| static void cpt_write_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| const void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| const u32 *data = frame; |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); |
| u32 val = intel_de_read(display, reg); |
| int i; |
| |
| drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE), |
| "Writing DIP with CTL reg disabled\n"); |
| |
| val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ |
| val |= g4x_infoframe_index(type); |
| |
| /* The DIP control register spec says that we need to update the AVI |
| * infoframe without clearing its enable bit */ |
| if (type != HDMI_INFOFRAME_TYPE_AVI) |
| val &= ~g4x_infoframe_enable(type); |
| |
| intel_de_write(display, reg, val); |
| |
| for (i = 0; i < len; i += 4) { |
| intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), |
| *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0); |
| |
| val |= g4x_infoframe_enable(type); |
| val &= ~VIDEO_DIP_FREQ_MASK; |
| val |= VIDEO_DIP_FREQ_VSYNC; |
| |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| } |
| |
| static void cpt_read_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| u32 *data = frame; |
| int i; |
| |
| intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe), |
| VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); |
| |
| for (i = 0; i < len; i += 4) |
| *data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe)); |
| } |
| |
| static u32 cpt_infoframes_enabled(struct intel_encoder *encoder, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; |
| u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe)); |
| |
| if ((val & VIDEO_DIP_ENABLE) == 0) |
| return 0; |
| |
| return val & (VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| } |
| |
| static void vlv_write_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| const void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| const u32 *data = frame; |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); |
| u32 val = intel_de_read(display, reg); |
| int i; |
| |
| drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE), |
| "Writing DIP with CTL reg disabled\n"); |
| |
| val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ |
| val |= g4x_infoframe_index(type); |
| |
| val &= ~g4x_infoframe_enable(type); |
| |
| intel_de_write(display, reg, val); |
| |
| for (i = 0; i < len; i += 4) { |
| intel_de_write(display, |
| VLV_TVIDEO_DIP_DATA(crtc->pipe), *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < VIDEO_DIP_DATA_SIZE; i += 4) |
| intel_de_write(display, |
| VLV_TVIDEO_DIP_DATA(crtc->pipe), 0); |
| |
| val |= g4x_infoframe_enable(type); |
| val &= ~VIDEO_DIP_FREQ_MASK; |
| val |= VIDEO_DIP_FREQ_VSYNC; |
| |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| } |
| |
| static void vlv_read_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| u32 *data = frame; |
| int i; |
| |
| intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe), |
| VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); |
| |
| for (i = 0; i < len; i += 4) |
| *data++ = intel_de_read(display, |
| VLV_TVIDEO_DIP_DATA(crtc->pipe)); |
| } |
| |
| static u32 vlv_infoframes_enabled(struct intel_encoder *encoder, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; |
| u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe)); |
| |
| if ((val & VIDEO_DIP_ENABLE) == 0) |
| return 0; |
| |
| if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) |
| return 0; |
| |
| return val & (VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| } |
| |
| void hsw_write_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, |
| const void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| const u32 *data = frame; |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder); |
| int data_size; |
| int i; |
| u32 val = intel_de_read(display, ctl_reg); |
| |
| data_size = hsw_dip_data_size(display, type); |
| |
| drm_WARN_ON(display->drm, len > data_size); |
| |
| val &= ~hsw_infoframe_enable(type); |
| intel_de_write(display, ctl_reg, val); |
| |
| for (i = 0; i < len; i += 4) { |
| intel_de_write(display, |
| hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2), |
| *data); |
| data++; |
| } |
| /* Write every possible data byte to force correct ECC calculation. */ |
| for (; i < data_size; i += 4) |
| intel_de_write(display, |
| hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2), |
| 0); |
| |
| /* Wa_14013475917 */ |
| if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr && |
| !crtc_state->has_panel_replay && type == DP_SDP_VSC)) |
| val |= hsw_infoframe_enable(type); |
| |
| if (type == DP_SDP_VSC) |
| val |= VSC_DIP_HW_DATA_SW_HEA; |
| |
| intel_de_write(display, ctl_reg, val); |
| intel_de_posting_read(display, ctl_reg); |
| } |
| |
| void hsw_read_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| unsigned int type, void *frame, ssize_t len) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 *data = frame; |
| int i; |
| |
| for (i = 0; i < len; i += 4) |
| *data++ = intel_de_read(display, |
| hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2)); |
| } |
| |
| static u32 hsw_infoframes_enabled(struct intel_encoder *encoder, |
| const struct intel_crtc_state *pipe_config) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| u32 val = intel_de_read(display, |
| HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder)); |
| u32 mask; |
| |
| mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | |
| VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | |
| VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); |
| |
| if (DISPLAY_VER(display) >= 10) |
| mask |= VIDEO_DIP_ENABLE_DRM_GLK; |
| |
| if (HAS_AS_SDP(display)) |
| mask |= VIDEO_DIP_ENABLE_AS_ADL; |
| |
| return val & mask; |
| } |
| |
| static const u8 infoframe_type_to_idx[] = { |
| HDMI_PACKET_TYPE_GENERAL_CONTROL, |
| HDMI_PACKET_TYPE_GAMUT_METADATA, |
| DP_SDP_VSC, |
| DP_SDP_ADAPTIVE_SYNC, |
| HDMI_INFOFRAME_TYPE_AVI, |
| HDMI_INFOFRAME_TYPE_SPD, |
| HDMI_INFOFRAME_TYPE_VENDOR, |
| HDMI_INFOFRAME_TYPE_DRM, |
| }; |
| |
| u32 intel_hdmi_infoframe_enable(unsigned int type) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { |
| if (infoframe_type_to_idx[i] == type) |
| return BIT(i); |
| } |
| |
| return 0; |
| } |
| |
| u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| u32 val, ret = 0; |
| int i; |
| |
| val = dig_port->infoframes_enabled(encoder, crtc_state); |
| |
| /* map from hardware bits to dip idx */ |
| for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { |
| unsigned int type = infoframe_type_to_idx[i]; |
| |
| if (HAS_DDI(display)) { |
| if (val & hsw_infoframe_enable(type)) |
| ret |= BIT(i); |
| } else { |
| if (val & g4x_infoframe_enable(type)) |
| ret |= BIT(i); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * The data we write to the DIP data buffer registers is 1 byte bigger than the |
| * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting |
| * at 0). It's also a byte used by DisplayPort so the same DIP registers can be |
| * used for both technologies. |
| * |
| * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 |
| * DW1: DB3 | DB2 | DB1 | DB0 |
| * DW2: DB7 | DB6 | DB5 | DB4 |
| * DW3: ... |
| * |
| * (HB is Header Byte, DB is Data Byte) |
| * |
| * The hdmi pack() functions don't know about that hardware specific hole so we |
| * trick them by giving an offset into the buffer and moving back the header |
| * bytes by one. |
| */ |
| static void intel_write_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| enum hdmi_infoframe_type type, |
| const union hdmi_infoframe *frame) |
| { |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| u8 buffer[VIDEO_DIP_DATA_SIZE]; |
| ssize_t len; |
| |
| if ((crtc_state->infoframes.enable & |
| intel_hdmi_infoframe_enable(type)) == 0) |
| return; |
| |
| if (drm_WARN_ON(encoder->base.dev, frame->any.type != type)) |
| return; |
| |
| /* see comment above for the reason for this offset */ |
| len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1); |
| if (drm_WARN_ON(encoder->base.dev, len < 0)) |
| return; |
| |
| /* Insert the 'hole' (see big comment above) at position 3 */ |
| memmove(&buffer[0], &buffer[1], 3); |
| buffer[3] = 0; |
| len++; |
| |
| dig_port->write_infoframe(encoder, crtc_state, type, buffer, len); |
| } |
| |
| void intel_read_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| enum hdmi_infoframe_type type, |
| union hdmi_infoframe *frame) |
| { |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| u8 buffer[VIDEO_DIP_DATA_SIZE]; |
| int ret; |
| |
| if ((crtc_state->infoframes.enable & |
| intel_hdmi_infoframe_enable(type)) == 0) |
| return; |
| |
| dig_port->read_infoframe(encoder, crtc_state, |
| type, buffer, sizeof(buffer)); |
| |
| /* Fill the 'hole' (see big comment above) at position 3 */ |
| memmove(&buffer[1], &buffer[0], 3); |
| |
| /* see comment above for the reason for this offset */ |
| ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1); |
| if (ret) { |
| drm_dbg_kms(encoder->base.dev, |
| "Failed to unpack infoframe type 0x%02x\n", type); |
| return; |
| } |
| |
| if (frame->any.type != type) |
| drm_dbg_kms(encoder->base.dev, |
| "Found the wrong infoframe type 0x%x (expected 0x%02x)\n", |
| frame->any.type, type); |
| } |
| |
| static bool |
| intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi; |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->hw.adjusted_mode; |
| struct drm_connector *connector = conn_state->connector; |
| int ret; |
| |
| if (!crtc_state->has_infoframe) |
| return true; |
| |
| crtc_state->infoframes.enable |= |
| intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); |
| |
| ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector, |
| adjusted_mode); |
| if (ret) |
| return false; |
| |
| if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) |
| frame->colorspace = HDMI_COLORSPACE_YUV420; |
| else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) |
| frame->colorspace = HDMI_COLORSPACE_YUV444; |
| else |
| frame->colorspace = HDMI_COLORSPACE_RGB; |
| |
| drm_hdmi_avi_infoframe_colorimetry(frame, conn_state); |
| |
| /* nonsense combination */ |
| drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range && |
| crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); |
| |
| if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) { |
| drm_hdmi_avi_infoframe_quant_range(frame, connector, |
| adjusted_mode, |
| crtc_state->limited_color_range ? |
| HDMI_QUANTIZATION_RANGE_LIMITED : |
| HDMI_QUANTIZATION_RANGE_FULL); |
| } else { |
| frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; |
| frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; |
| } |
| |
| drm_hdmi_avi_infoframe_content_type(frame, conn_state); |
| |
| /* TODO: handle pixel repetition for YCBCR420 outputs */ |
| |
| ret = hdmi_avi_infoframe_check(frame); |
| if (drm_WARN_ON(encoder->base.dev, ret)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool |
| intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct drm_i915_private *i915 = to_i915(encoder->base.dev); |
| struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd; |
| int ret; |
| |
| if (!crtc_state->has_infoframe) |
| return true; |
| |
| crtc_state->infoframes.enable |= |
| intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD); |
| |
| if (IS_DGFX(i915)) |
| ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx"); |
| else |
| ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx"); |
| |
| if (drm_WARN_ON(encoder->base.dev, ret)) |
| return false; |
| |
| frame->sdi = HDMI_SPD_SDI_PC; |
| |
| ret = hdmi_spd_infoframe_check(frame); |
| if (drm_WARN_ON(encoder->base.dev, ret)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool |
| intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct hdmi_vendor_infoframe *frame = |
| &crtc_state->infoframes.hdmi.vendor.hdmi; |
| const struct drm_display_info *info = |
| &conn_state->connector->display_info; |
| int ret; |
| |
| if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe) |
| return true; |
| |
| crtc_state->infoframes.enable |= |
| intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR); |
| |
| ret = drm_hdmi_vendor_infoframe_from_display_mode(frame, |
| conn_state->connector, |
| &crtc_state->hw.adjusted_mode); |
| if (drm_WARN_ON(encoder->base.dev, ret)) |
| return false; |
| |
| ret = hdmi_vendor_infoframe_check(frame); |
| if (drm_WARN_ON(encoder->base.dev, ret)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool |
| intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm; |
| int ret; |
| |
| if (DISPLAY_VER(display) < 10) |
| return true; |
| |
| if (!crtc_state->has_infoframe) |
| return true; |
| |
| if (!conn_state->hdr_output_metadata) |
| return true; |
| |
| crtc_state->infoframes.enable |= |
| intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM); |
| |
| ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state); |
| if (ret < 0) { |
| drm_dbg_kms(display->drm, |
| "couldn't set HDR metadata in infoframe\n"); |
| return false; |
| } |
| |
| ret = hdmi_drm_infoframe_check(frame); |
| if (drm_WARN_ON(display->drm, ret)) |
| return false; |
| |
| return true; |
| } |
| |
| static void g4x_set_infoframes(struct intel_encoder *encoder, |
| bool enable, |
| const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| struct intel_hdmi *intel_hdmi = &dig_port->hdmi; |
| i915_reg_t reg = VIDEO_DIP_CTL; |
| u32 val = intel_de_read(display, reg); |
| u32 port = VIDEO_DIP_PORT(encoder->port); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| /* If the registers were not initialized yet, they might be zeroes, |
| * which means we're selecting the AVI DIP and we're setting its |
| * frequency to once. This seems to really confuse the HW and make |
| * things stop working (the register spec says the AVI always needs to |
| * be sent every VSync). So here we avoid writing to the register more |
| * than we need and also explicitly select the AVI DIP and explicitly |
| * set its frequency to every VSync. Avoiding to write it twice seems to |
| * be enough to solve the problem, but being defensive shouldn't hurt us |
| * either. */ |
| val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; |
| |
| if (!enable) { |
| if (!(val & VIDEO_DIP_ENABLE)) |
| return; |
| if (port != (val & VIDEO_DIP_PORT_MASK)) { |
| drm_dbg_kms(display->drm, |
| "video DIP still enabled on port %c\n", |
| (val & VIDEO_DIP_PORT_MASK) >> 29); |
| return; |
| } |
| val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| return; |
| } |
| |
| if (port != (val & VIDEO_DIP_PORT_MASK)) { |
| if (val & VIDEO_DIP_ENABLE) { |
| drm_dbg_kms(display->drm, |
| "video DIP already enabled on port %c\n", |
| (val & VIDEO_DIP_PORT_MASK) >> 29); |
| return; |
| } |
| val &= ~VIDEO_DIP_PORT_MASK; |
| val |= port; |
| } |
| |
| val |= VIDEO_DIP_ENABLE; |
| val &= ~(VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); |
| |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_AVI, |
| &crtc_state->infoframes.avi); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_SPD, |
| &crtc_state->infoframes.spd); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_VENDOR, |
| &crtc_state->infoframes.hdmi); |
| } |
| |
| /* |
| * Determine if default_phase=1 can be indicated in the GCP infoframe. |
| * |
| * From HDMI specification 1.4a: |
| * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0 |
| * - The first pixel following each Video Data Period shall have a pixel packing phase of 0 |
| * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase |
| * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing |
| * phase of 0 |
| */ |
| static bool gcp_default_phase_possible(int pipe_bpp, |
| const struct drm_display_mode *mode) |
| { |
| unsigned int pixels_per_group; |
| |
| switch (pipe_bpp) { |
| case 30: |
| /* 4 pixels in 5 clocks */ |
| pixels_per_group = 4; |
| break; |
| case 36: |
| /* 2 pixels in 3 clocks */ |
| pixels_per_group = 2; |
| break; |
| case 48: |
| /* 1 pixel in 2 clocks */ |
| pixels_per_group = 1; |
| break; |
| default: |
| /* phase information not relevant for 8bpc */ |
| return false; |
| } |
| |
| return mode->crtc_hdisplay % pixels_per_group == 0 && |
| mode->crtc_htotal % pixels_per_group == 0 && |
| mode->crtc_hblank_start % pixels_per_group == 0 && |
| mode->crtc_hblank_end % pixels_per_group == 0 && |
| mode->crtc_hsync_start % pixels_per_group == 0 && |
| mode->crtc_hsync_end % pixels_per_group == 0 && |
| ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 || |
| mode->crtc_htotal/2 % pixels_per_group == 0); |
| } |
| |
| static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| i915_reg_t reg; |
| |
| if ((crtc_state->infoframes.enable & |
| intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) |
| return false; |
| |
| if (HAS_DDI(display)) |
| reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder); |
| else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); |
| else if (HAS_PCH_SPLIT(dev_priv)) |
| reg = TVIDEO_DIP_GCP(crtc->pipe); |
| else |
| return false; |
| |
| intel_de_write(display, reg, crtc_state->infoframes.gcp); |
| |
| return true; |
| } |
| |
| void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| i915_reg_t reg; |
| |
| if ((crtc_state->infoframes.enable & |
| intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) |
| return; |
| |
| if (HAS_DDI(display)) |
| reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder); |
| else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); |
| else if (HAS_PCH_SPLIT(dev_priv)) |
| reg = TVIDEO_DIP_GCP(crtc->pipe); |
| else |
| return; |
| |
| crtc_state->infoframes.gcp = intel_de_read(display, reg); |
| } |
| |
| static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| |
| if (IS_G4X(dev_priv) || !crtc_state->has_infoframe) |
| return; |
| |
| crtc_state->infoframes.enable |= |
| intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL); |
| |
| /* Indicate color indication for deep color mode */ |
| if (crtc_state->pipe_bpp > 24) |
| crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION; |
| |
| /* Enable default_phase whenever the display mode is suitably aligned */ |
| if (gcp_default_phase_possible(crtc_state->pipe_bpp, |
| &crtc_state->hw.adjusted_mode)) |
| crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE; |
| } |
| |
| static void ibx_set_infoframes(struct intel_encoder *encoder, |
| bool enable, |
| const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| struct intel_hdmi *intel_hdmi = &dig_port->hdmi; |
| i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); |
| u32 val = intel_de_read(display, reg); |
| u32 port = VIDEO_DIP_PORT(encoder->port); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| /* See the big comment in g4x_set_infoframes() */ |
| val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; |
| |
| if (!enable) { |
| if (!(val & VIDEO_DIP_ENABLE)) |
| return; |
| val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| return; |
| } |
| |
| if (port != (val & VIDEO_DIP_PORT_MASK)) { |
| drm_WARN(display->drm, val & VIDEO_DIP_ENABLE, |
| "DIP already enabled on port %c\n", |
| (val & VIDEO_DIP_PORT_MASK) >> 29); |
| val &= ~VIDEO_DIP_PORT_MASK; |
| val |= port; |
| } |
| |
| val |= VIDEO_DIP_ENABLE; |
| val &= ~(VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| |
| if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) |
| val |= VIDEO_DIP_ENABLE_GCP; |
| |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_AVI, |
| &crtc_state->infoframes.avi); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_SPD, |
| &crtc_state->infoframes.spd); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_VENDOR, |
| &crtc_state->infoframes.hdmi); |
| } |
| |
| static void cpt_set_infoframes(struct intel_encoder *encoder, |
| bool enable, |
| const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); |
| u32 val = intel_de_read(display, reg); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| /* See the big comment in g4x_set_infoframes() */ |
| val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; |
| |
| if (!enable) { |
| if (!(val & VIDEO_DIP_ENABLE)) |
| return; |
| val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| return; |
| } |
| |
| /* Set both together, unset both together: see the spec. */ |
| val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; |
| val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| |
| if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) |
| val |= VIDEO_DIP_ENABLE_GCP; |
| |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_AVI, |
| &crtc_state->infoframes.avi); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_SPD, |
| &crtc_state->infoframes.spd); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_VENDOR, |
| &crtc_state->infoframes.hdmi); |
| } |
| |
| static void vlv_set_infoframes(struct intel_encoder *encoder, |
| bool enable, |
| const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); |
| u32 val = intel_de_read(display, reg); |
| u32 port = VIDEO_DIP_PORT(encoder->port); |
| |
| assert_hdmi_port_disabled(intel_hdmi); |
| |
| /* See the big comment in g4x_set_infoframes() */ |
| val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; |
| |
| if (!enable) { |
| if (!(val & VIDEO_DIP_ENABLE)) |
| return; |
| val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| return; |
| } |
| |
| if (port != (val & VIDEO_DIP_PORT_MASK)) { |
| drm_WARN(display->drm, val & VIDEO_DIP_ENABLE, |
| "DIP already enabled on port %c\n", |
| (val & VIDEO_DIP_PORT_MASK) >> 29); |
| val &= ~VIDEO_DIP_PORT_MASK; |
| val |= port; |
| } |
| |
| val |= VIDEO_DIP_ENABLE; |
| val &= ~(VIDEO_DIP_ENABLE_AVI | |
| VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | |
| VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); |
| |
| if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) |
| val |= VIDEO_DIP_ENABLE_GCP; |
| |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_AVI, |
| &crtc_state->infoframes.avi); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_SPD, |
| &crtc_state->infoframes.spd); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_VENDOR, |
| &crtc_state->infoframes.hdmi); |
| } |
| |
| static void hsw_set_infoframes(struct intel_encoder *encoder, |
| bool enable, |
| const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display, |
| crtc_state->cpu_transcoder); |
| u32 val = intel_de_read(display, reg); |
| |
| assert_hdmi_transcoder_func_disabled(display, |
| crtc_state->cpu_transcoder); |
| |
| val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | |
| VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | |
| VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | |
| VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL); |
| |
| if (!enable) { |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| return; |
| } |
| |
| if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) |
| val |= VIDEO_DIP_ENABLE_GCP_HSW; |
| |
| intel_de_write(display, reg, val); |
| intel_de_posting_read(display, reg); |
| |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_AVI, |
| &crtc_state->infoframes.avi); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_SPD, |
| &crtc_state->infoframes.spd); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_VENDOR, |
| &crtc_state->infoframes.hdmi); |
| intel_write_infoframe(encoder, crtc_state, |
| HDMI_INFOFRAME_TYPE_DRM, |
| &crtc_state->infoframes.drm); |
| } |
| |
| void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable) |
| { |
| struct intel_display *display = to_intel_display(hdmi); |
| struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc; |
| |
| if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI) |
| return; |
| |
| drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n", |
| enable ? "Enabling" : "Disabling"); |
| |
| drm_dp_dual_mode_set_tmds_output(display->drm, |
| hdmi->dp_dual_mode.type, ddc, enable); |
| } |
| |
| static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port, |
| unsigned int offset, void *buffer, size_t size) |
| { |
| struct intel_hdmi *hdmi = &dig_port->hdmi; |
| struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc; |
| int ret; |
| u8 start = offset & 0xff; |
| struct i2c_msg msgs[] = { |
| { |
| .addr = DRM_HDCP_DDC_ADDR, |
| .flags = 0, |
| .len = 1, |
| .buf = &start, |
| }, |
| { |
| .addr = DRM_HDCP_DDC_ADDR, |
| .flags = I2C_M_RD, |
| .len = size, |
| .buf = buffer |
| } |
| }; |
| ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs)); |
| if (ret == ARRAY_SIZE(msgs)) |
| return 0; |
| return ret >= 0 ? -EIO : ret; |
| } |
| |
| static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port, |
| unsigned int offset, void *buffer, size_t size) |
| { |
| struct intel_hdmi *hdmi = &dig_port->hdmi; |
| struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc; |
| int ret; |
| u8 *write_buf; |
| struct i2c_msg msg; |
| |
| write_buf = kzalloc(size + 1, GFP_KERNEL); |
| if (!write_buf) |
| return -ENOMEM; |
| |
| write_buf[0] = offset & 0xff; |
| memcpy(&write_buf[1], buffer, size); |
| |
| msg.addr = DRM_HDCP_DDC_ADDR; |
| msg.flags = 0, |
| msg.len = size + 1, |
| msg.buf = write_buf; |
| |
| ret = i2c_transfer(ddc, &msg, 1); |
| if (ret == 1) |
| ret = 0; |
| else if (ret >= 0) |
| ret = -EIO; |
| |
| kfree(write_buf); |
| return ret; |
| } |
| |
| static |
| int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port, |
| u8 *an) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| struct intel_hdmi *hdmi = &dig_port->hdmi; |
| struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc; |
| int ret; |
| |
| ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an, |
| DRM_HDCP_AN_LEN); |
| if (ret) { |
| drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n", |
| ret); |
| return ret; |
| } |
| |
| ret = intel_gmbus_output_aksv(ddc); |
| if (ret < 0) { |
| drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port, |
| u8 *bksv) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| |
| int ret; |
| ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv, |
| DRM_HDCP_KSV_LEN); |
| if (ret) |
| drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n", |
| ret); |
| return ret; |
| } |
| |
| static |
| int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port, |
| u8 *bstatus) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| |
| int ret; |
| ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS, |
| bstatus, DRM_HDCP_BSTATUS_LEN); |
| if (ret) |
| drm_dbg_kms(display->drm, |
| "Read bstatus over DDC failed (%d)\n", |
| ret); |
| return ret; |
| } |
| |
| static |
| int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port, |
| bool *repeater_present) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| int ret; |
| u8 val; |
| |
| ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); |
| if (ret) { |
| drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n", |
| ret); |
| return ret; |
| } |
| *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT; |
| return 0; |
| } |
| |
| static |
| int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port, |
| u8 *ri_prime) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| |
| int ret; |
| ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME, |
| ri_prime, DRM_HDCP_RI_LEN); |
| if (ret) |
| drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n", |
| ret); |
| return ret; |
| } |
| |
| static |
| int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port, |
| bool *ksv_ready) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| int ret; |
| u8 val; |
| |
| ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); |
| if (ret) { |
| drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n", |
| ret); |
| return ret; |
| } |
| *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY; |
| return 0; |
| } |
| |
| static |
| int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port, |
| int num_downstream, u8 *ksv_fifo) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| int ret; |
| ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO, |
| ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN); |
| if (ret) { |
| drm_dbg_kms(display->drm, |
| "Read ksv fifo over DDC failed (%d)\n", ret); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static |
| int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port, |
| int i, u32 *part) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| int ret; |
| |
| if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) |
| return -EINVAL; |
| |
| ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i), |
| part, DRM_HDCP_V_PRIME_PART_LEN); |
| if (ret) |
| drm_dbg_kms(display->drm, |
| "Read V'[%d] over DDC failed (%d)\n", |
| i, ret); |
| return ret; |
| } |
| |
| static int kbl_repositioning_enc_en_signal(struct intel_connector *connector, |
| enum transcoder cpu_transcoder) |
| { |
| struct intel_display *display = to_intel_display(connector); |
| struct intel_digital_port *dig_port = intel_attached_dig_port(connector); |
| struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc); |
| u32 scanline; |
| int ret; |
| |
| for (;;) { |
| scanline = intel_de_read(display, |
| PIPEDSL(display, crtc->pipe)); |
| if (scanline > 100 && scanline < 200) |
| break; |
| usleep_range(25, 50); |
| } |
| |
| ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, |
| false, TRANS_DDI_HDCP_SIGNALLING); |
| if (ret) { |
| drm_err(display->drm, |
| "Disable HDCP signalling failed (%d)\n", ret); |
| return ret; |
| } |
| |
| ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, |
| true, TRANS_DDI_HDCP_SIGNALLING); |
| if (ret) { |
| drm_err(display->drm, |
| "Enable HDCP signalling failed (%d)\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static |
| int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port, |
| enum transcoder cpu_transcoder, |
| bool enable) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| struct intel_hdmi *hdmi = &dig_port->hdmi; |
| struct intel_connector *connector = hdmi->attached_connector; |
| struct drm_i915_private *dev_priv = to_i915(connector->base.dev); |
| int ret; |
| |
| if (!enable) |
| usleep_range(6, 60); /* Bspec says >= 6us */ |
| |
| ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, |
| cpu_transcoder, enable, |
| TRANS_DDI_HDCP_SIGNALLING); |
| if (ret) { |
| drm_err(display->drm, "%s HDCP signalling failed (%d)\n", |
| enable ? "Enable" : "Disable", ret); |
| return ret; |
| } |
| |
| /* |
| * WA: To fix incorrect positioning of the window of |
| * opportunity and enc_en signalling in KABYLAKE. |
| */ |
| if (IS_KABYLAKE(dev_priv) && enable) |
| return kbl_repositioning_enc_en_signal(connector, |
| cpu_transcoder); |
| |
| return 0; |
| } |
| |
| static |
| bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port, |
| struct intel_connector *connector) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); |
| enum port port = dig_port->base.port; |
| enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; |
| int ret; |
| union { |
| u32 reg; |
| u8 shim[DRM_HDCP_RI_LEN]; |
| } ri; |
| |
| ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim); |
| if (ret) |
| return false; |
| |
| intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg); |
| |
| /* Wait for Ri prime match */ |
| if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & |
| (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) == |
| (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { |
| drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n", |
| intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, |
| port))); |
| return false; |
| } |
| return true; |
| } |
| |
| static |
| bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port, |
| struct intel_connector *connector) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| int retry; |
| |
| for (retry = 0; retry < 3; retry++) |
| if (intel_hdmi_hdcp_check_link_once(dig_port, connector)) |
| return true; |
| |
| drm_err(display->drm, "Link check failed\n"); |
| return false; |
| } |
| |
| struct hdcp2_hdmi_msg_timeout { |
| u8 msg_id; |
| u16 timeout; |
| }; |
| |
| static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = { |
| { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, }, |
| { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, }, |
| { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, }, |
| { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, }, |
| { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, }, |
| }; |
| |
| static |
| int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port, |
| u8 *rx_status) |
| { |
| return intel_hdmi_hdcp_read(dig_port, |
| HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET, |
| rx_status, |
| HDCP_2_2_HDMI_RXSTATUS_LEN); |
| } |
| |
| static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired) |
| { |
| int i; |
| |
| if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) { |
| if (is_paired) |
| return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS; |
| else |
| return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) { |
| if (hdcp2_msg_timeout[i].msg_id == msg_id) |
| return hdcp2_msg_timeout[i].timeout; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int |
| hdcp2_detect_msg_availability(struct intel_digital_port *dig_port, |
| u8 msg_id, bool *msg_ready, |
| ssize_t *msg_sz) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; |
| int ret; |
| |
| ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); |
| if (ret < 0) { |
| drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n", |
| ret); |
| return ret; |
| } |
| |
| *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) | |
| rx_status[0]); |
| |
| if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) |
| *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) && |
| *msg_sz); |
| else |
| *msg_ready = *msg_sz; |
| |
| return 0; |
| } |
| |
| static ssize_t |
| intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port, |
| u8 msg_id, bool paired) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| bool msg_ready = false; |
| int timeout, ret; |
| ssize_t msg_sz = 0; |
| |
| timeout = get_hdcp2_msg_timeout(msg_id, paired); |
| if (timeout < 0) |
| return timeout; |
| |
| ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port, |
| msg_id, &msg_ready, |
| &msg_sz), |
| !ret && msg_ready && msg_sz, timeout * 1000, |
| 1000, 5 * 1000); |
| if (ret) |
| drm_dbg_kms(display->drm, |
| "msg_id: %d, ret: %d, timeout: %d\n", |
| msg_id, ret, timeout); |
| |
| return ret ? ret : msg_sz; |
| } |
| |
| static |
| int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector, |
| void *buf, size_t size) |
| { |
| struct intel_digital_port *dig_port = intel_attached_dig_port(connector); |
| unsigned int offset; |
| |
| offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET; |
| return intel_hdmi_hdcp_write(dig_port, offset, buf, size); |
| } |
| |
| static |
| int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector, |
| u8 msg_id, void *buf, size_t size) |
| { |
| struct intel_display *display = to_intel_display(connector); |
| struct intel_digital_port *dig_port = intel_attached_dig_port(connector); |
| struct intel_hdmi *hdmi = &dig_port->hdmi; |
| struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp; |
| unsigned int offset; |
| ssize_t ret; |
| |
| ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id, |
| hdcp->is_paired); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Available msg size should be equal to or lesser than the |
| * available buffer. |
| */ |
| if (ret > size) { |
| drm_dbg_kms(display->drm, |
| "msg_sz(%zd) is more than exp size(%zu)\n", |
| ret, size); |
| return -EINVAL; |
| } |
| |
| offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET; |
| ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret); |
| if (ret) |
| drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n", |
| msg_id, ret); |
| |
| return ret; |
| } |
| |
| static |
| int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port, |
| struct intel_connector *connector) |
| { |
| u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; |
| int ret; |
| |
| ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); |
| if (ret) |
| return ret; |
| |
| /* |
| * Re-auth request and Link Integrity Failures are represented by |
| * same bit. i.e reauth_req. |
| */ |
| if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1])) |
| ret = HDCP_REAUTH_REQUEST; |
| else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1])) |
| ret = HDCP_TOPOLOGY_CHANGE; |
| |
| return ret; |
| } |
| |
| static |
| int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector, |
| bool *capable) |
| { |
| struct intel_digital_port *dig_port = intel_attached_dig_port(connector); |
| u8 hdcp2_version; |
| int ret; |
| |
| *capable = false; |
| ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET, |
| &hdcp2_version, sizeof(hdcp2_version)); |
| if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK) |
| *capable = true; |
| |
| return ret; |
| } |
| |
| static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = { |
| .write_an_aksv = intel_hdmi_hdcp_write_an_aksv, |
| .read_bksv = intel_hdmi_hdcp_read_bksv, |
| .read_bstatus = intel_hdmi_hdcp_read_bstatus, |
| .repeater_present = intel_hdmi_hdcp_repeater_present, |
| .read_ri_prime = intel_hdmi_hdcp_read_ri_prime, |
| .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready, |
| .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo, |
| .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part, |
| .toggle_signalling = intel_hdmi_hdcp_toggle_signalling, |
| .check_link = intel_hdmi_hdcp_check_link, |
| .write_2_2_msg = intel_hdmi_hdcp2_write_msg, |
| .read_2_2_msg = intel_hdmi_hdcp2_read_msg, |
| .check_2_2_link = intel_hdmi_hdcp2_check_link, |
| .hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability, |
| .protocol = HDCP_PROTOCOL_HDMI, |
| }; |
| |
| static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| int max_tmds_clock, vbt_max_tmds_clock; |
| |
| if (DISPLAY_VER(display) >= 13 || IS_ALDERLAKE_S(dev_priv)) |
| max_tmds_clock = 600000; |
| else if (DISPLAY_VER(display) >= 10) |
| max_tmds_clock = 594000; |
| else if (DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) |
| max_tmds_clock = 300000; |
| else if (DISPLAY_VER(display) >= 5) |
| max_tmds_clock = 225000; |
| else |
| max_tmds_clock = 165000; |
| |
| vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata); |
| if (vbt_max_tmds_clock) |
| max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock); |
| |
| return max_tmds_clock; |
| } |
| |
| static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi, |
| const struct drm_connector_state *conn_state) |
| { |
| struct intel_connector *connector = hdmi->attached_connector; |
| |
| return connector->base.display_info.is_hdmi && |
| READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI; |
| } |
| |
| static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state) |
| { |
| return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420; |
| } |
| |
| static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, |
| bool respect_downstream_limits, |
| bool has_hdmi_sink) |
| { |
| struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; |
| int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder); |
| |
| if (respect_downstream_limits) { |
| struct intel_connector *connector = hdmi->attached_connector; |
| const struct drm_display_info *info = &connector->base.display_info; |
| |
| if (hdmi->dp_dual_mode.max_tmds_clock) |
| max_tmds_clock = min(max_tmds_clock, |
| hdmi->dp_dual_mode.max_tmds_clock); |
| |
| if (info->max_tmds_clock) |
| max_tmds_clock = min(max_tmds_clock, |
| info->max_tmds_clock); |
| else if (!has_hdmi_sink) |
| max_tmds_clock = min(max_tmds_clock, 165000); |
| } |
| |
| return max_tmds_clock; |
| } |
| |
| static enum drm_mode_status |
| hdmi_port_clock_valid(struct intel_hdmi *hdmi, |
| int clock, bool respect_downstream_limits, |
| bool has_hdmi_sink) |
| { |
| struct intel_display *display = to_intel_display(hdmi); |
| struct drm_i915_private *dev_priv = to_i915(display->drm); |
| struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; |
| |
| if (clock < 25000) |
| return MODE_CLOCK_LOW; |
| if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, |
| has_hdmi_sink)) |
| return MODE_CLOCK_HIGH; |
| |
| /* GLK DPLL can't generate 446-480 MHz */ |
| if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000) |
| return MODE_CLOCK_RANGE; |
| |
| /* BXT/GLK DPLL can't generate 223-240 MHz */ |
| if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && |
| clock > 223333 && clock < 240000) |
| return MODE_CLOCK_RANGE; |
| |
| /* CHV DPLL can't generate 216-240 MHz */ |
| if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000) |
| return MODE_CLOCK_RANGE; |
| |
| /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */ |
| if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200) |
| return MODE_CLOCK_RANGE; |
| |
| /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */ |
| if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800) |
| return MODE_CLOCK_RANGE; |
| |
| /* |
| * SNPS PHYs' MPLLB table-based programming can only handle a fixed |
| * set of link rates. |
| * |
| * FIXME: We will hopefully get an algorithmic way of programming |
| * the MPLLB for HDMI in the future. |
| */ |
| if (DISPLAY_VER(display) >= 14) |
| return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock); |
| else if (IS_DG2(dev_priv)) |
| return intel_snps_phy_check_hdmi_link_rate(clock); |
| |
| return MODE_OK; |
| } |
| |
| int intel_hdmi_tmds_clock(int clock, int bpc, |
| enum intel_output_format sink_format) |
| { |
| /* YCBCR420 TMDS rate requirement is half the pixel clock */ |
| if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) |
| clock /= 2; |
| |
| /* |
| * Need to adjust the port link by: |
| * 1.5x for 12bpc |
| * 1.25x for 10bpc |
| */ |
| return DIV_ROUND_CLOSEST(clock * bpc, 8); |
| } |
| |
| static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc) |
| { |
| switch (bpc) { |
| case 12: |
| return !HAS_GMCH(display); |
| case 10: |
| return DISPLAY_VER(display) >= 11; |
| case 8: |
| return true; |
| default: |
| MISSING_CASE(bpc); |
| return false; |
| } |
| } |
| |
| static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector, |
| int bpc, bool has_hdmi_sink, |
| enum intel_output_format sink_format) |
| { |
| const struct drm_display_info *info = &connector->display_info; |
| const struct drm_hdmi_info *hdmi = &info->hdmi; |
| |
| switch (bpc) { |
| case 12: |
| if (!has_hdmi_sink) |
| return false; |
| |
| if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) |
| return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36; |
| else |
| return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36; |
| case 10: |
| if (!has_hdmi_sink) |
| return false; |
| |
| if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) |
| return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30; |
| else |
| return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30; |
| case 8: |
| return true; |
| default: |
| MISSING_CASE(bpc); |
| return false; |
| } |
| } |
| |
| static enum drm_mode_status |
| intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock, |
| bool has_hdmi_sink, |
| enum intel_output_format sink_format) |
| { |
| struct intel_display *display = to_intel_display(connector->dev); |
| struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); |
| enum drm_mode_status status = MODE_OK; |
| int bpc; |
| |
| /* |
| * Try all color depths since valid port clock range |
| * can have holes. Any mode that can be used with at |
| * least one color depth is accepted. |
| */ |
| for (bpc = 12; bpc >= 8; bpc -= 2) { |
| int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format); |
| |
| if (!intel_hdmi_source_bpc_possible(display, bpc)) |
| continue; |
| |
| if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format)) |
| continue; |
| |
| status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink); |
| if (status == MODE_OK) |
| return MODE_OK; |
| } |
| |
| /* can never happen */ |
| drm_WARN_ON(display->drm, status == MODE_OK); |
| |
| return status; |
| } |
| |
| static enum drm_mode_status |
| intel_hdmi_mode_valid(struct drm_connector *connector, |
| struct drm_display_mode *mode) |
| { |
| struct intel_display *display = to_intel_display(connector->dev); |
| struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); |
| struct drm_i915_private *dev_priv = to_i915(display->drm); |
| enum drm_mode_status status; |
| int clock = mode->clock; |
| int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq; |
| bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state); |
| bool ycbcr_420_only; |
| enum intel_output_format sink_format; |
| |
| status = intel_cpu_transcoder_mode_valid(dev_priv, mode); |
| if (status != MODE_OK) |
| return status; |
| |
| if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) |
| clock *= 2; |
| |
| if (clock > max_dotclk) |
| return MODE_CLOCK_HIGH; |
| |
| if (mode->flags & DRM_MODE_FLAG_DBLCLK) { |
| if (!has_hdmi_sink) |
| return MODE_CLOCK_LOW; |
| clock *= 2; |
| } |
| |
| /* |
| * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be |
| * enumerated only if FRL is supported. Current platforms do not support |
| * FRL so prune the higher resolution modes that require doctclock more |
| * than 600MHz. |
| */ |
| if (clock > 600000) |
| return MODE_CLOCK_HIGH; |
| |
| ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode); |
| |
| if (ycbcr_420_only) |
| sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; |
| else |
| sink_format = INTEL_OUTPUT_FORMAT_RGB; |
| |
| status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format); |
| if (status != MODE_OK) { |
| if (ycbcr_420_only || |
| !connector->ycbcr_420_allowed || |
| !drm_mode_is_420_also(&connector->display_info, mode)) |
| return status; |
| |
| sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; |
| status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format); |
| if (status != MODE_OK) |
| return status; |
| } |
| |
| return intel_mode_valid_max_plane_size(dev_priv, mode, false); |
| } |
| |
| bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, |
| int bpc, bool has_hdmi_sink) |
| { |
| struct drm_atomic_state *state = crtc_state->uapi.state; |
| struct drm_connector_state *connector_state; |
| struct drm_connector *connector; |
| int i; |
| |
| for_each_new_connector_in_state(state, connector, connector_state, i) { |
| if (connector_state->crtc != crtc_state->uapi.crtc) |
| continue; |
| |
| if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, |
| crtc_state->sink_format)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->hw.adjusted_mode; |
| |
| if (!intel_hdmi_source_bpc_possible(display, bpc)) |
| return false; |
| |
| /* Display Wa_1405510057:icl,ehl */ |
| if (intel_hdmi_is_ycbcr420(crtc_state) && |
| bpc == 10 && DISPLAY_VER(display) == 11 && |
| (adjusted_mode->crtc_hblank_end - |
| adjusted_mode->crtc_hblank_start) % 8 == 2) |
| return false; |
| |
| return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink); |
| } |
| |
| static int intel_hdmi_compute_bpc(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state, |
| int clock, bool respect_downstream_limits) |
| { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| int bpc; |
| |
| /* |
| * pipe_bpp could already be below 8bpc due to FDI |
| * bandwidth constraints. HDMI minimum is 8bpc however. |
| */ |
| bpc = max(crtc_state->pipe_bpp / 3, 8); |
| |
| /* |
| * We will never exceed downstream TMDS clock limits while |
| * attempting deep color. If the user insists on forcing an |
| * out of spec mode they will have to be satisfied with 8bpc. |
| */ |
| if (!respect_downstream_limits) |
| bpc = 8; |
| |
| for (; bpc >= 8; bpc -= 2) { |
| int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, |
| crtc_state->sink_format); |
| |
| if (hdmi_bpc_possible(crtc_state, bpc) && |
| hdmi_port_clock_valid(intel_hdmi, tmds_clock, |
| respect_downstream_limits, |
| crtc_state->has_hdmi_sink) == MODE_OK) |
| return bpc; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int intel_hdmi_compute_clock(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state, |
| bool respect_downstream_limits) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->hw.adjusted_mode; |
| int bpc, clock = adjusted_mode->crtc_clock; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) |
| clock *= 2; |
| |
| bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock, |
| respect_downstream_limits); |
| if (bpc < 0) |
| return bpc; |
| |
| crtc_state->port_clock = |
| intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format); |
| |
| /* |
| * pipe_bpp could already be below 8bpc due to |
| * FDI bandwidth constraints. We shouldn't bump it |
| * back up to the HDMI minimum 8bpc in that case. |
| */ |
| crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3); |
| |
| drm_dbg_kms(display->drm, |
| "picking %d bpc for HDMI output (pipe bpp: %d)\n", |
| bpc, crtc_state->pipe_bpp); |
| |
| return 0; |
| } |
| |
| bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| const struct intel_digital_connector_state *intel_conn_state = |
| to_intel_digital_connector_state(conn_state); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->hw.adjusted_mode; |
| |
| /* |
| * Our YCbCr output is always limited range. |
| * crtc_state->limited_color_range only applies to RGB, |
| * and it must never be set for YCbCr or we risk setting |
| * some conflicting bits in TRANSCONF which will mess up |
| * the colors on the monitor. |
| */ |
| if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) |
| return false; |
| |
| if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { |
| /* See CEA-861-E - 5.1 Default Encoding Parameters */ |
| return crtc_state->has_hdmi_sink && |
| drm_default_rgb_quant_range(adjusted_mode) == |
| HDMI_QUANTIZATION_RANGE_LIMITED; |
| } else { |
| return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; |
| } |
| } |
| |
| static bool intel_hdmi_has_audio(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| struct drm_connector *connector = conn_state->connector; |
| const struct intel_digital_connector_state *intel_conn_state = |
| to_intel_digital_connector_state(conn_state); |
| |
| if (!crtc_state->has_hdmi_sink) |
| return false; |
| |
| if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) |
| return connector->display_info.has_audio; |
| else |
| return intel_conn_state->force_audio == HDMI_AUDIO_ON; |
| } |
| |
| static enum intel_output_format |
| intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state, |
| struct intel_connector *connector, |
| bool ycbcr_420_output) |
| { |
| if (!crtc_state->has_hdmi_sink) |
| return INTEL_OUTPUT_FORMAT_RGB; |
| |
| if (connector->base.ycbcr_420_allowed && ycbcr_420_output) |
| return INTEL_OUTPUT_FORMAT_YCBCR420; |
| else |
| return INTEL_OUTPUT_FORMAT_RGB; |
| } |
| |
| static enum intel_output_format |
| intel_hdmi_output_format(const struct intel_crtc_state *crtc_state) |
| { |
| return crtc_state->sink_format; |
| } |
| |
| static int intel_hdmi_compute_output_format(struct intel_encoder *encoder, |
| struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state, |
| bool respect_downstream_limits) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct intel_connector *connector = to_intel_connector(conn_state->connector); |
| const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; |
| const struct drm_display_info *info = &connector->base.display_info; |
| bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); |
| int ret; |
| |
| crtc_state->sink_format = |
| intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only); |
| |
| if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) { |
| drm_dbg_kms(display->drm, |
| "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); |
| crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB; |
| } |
| |
| crtc_state->output_format = intel_hdmi_output_format(crtc_state); |
| ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); |
| if (ret) { |
| if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 || |
| !crtc_state->has_hdmi_sink || |
| !connector->base.ycbcr_420_allowed || |
| !drm_mode_is_420_also(info, adjusted_mode)) |
| return ret; |
| |
| crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; |
| crtc_state->output_format = intel_hdmi_output_format(crtc_state); |
| ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); |
| } |
| |
| return ret; |
| } |
| |
| static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state) |
| { |
| return crtc_state->uapi.encoder_mask && |
| !is_power_of_2(crtc_state->uapi.encoder_mask); |
| } |
| |
| static bool source_supports_scrambling(struct intel_encoder *encoder) |
| { |
| /* |
| * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and |
| * scrambling is supported. |
| * But there seem to be cases where certain platforms that support |
| * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is |
| * capped by VBT to less than 340MHz. |
| * |
| * In such cases when an HDMI2.0 sink is connected, it creates a |
| * problem : the platform and the sink both support scrambling but the |
| * HDMI 1.4 retimer chip doesn't. |
| * |
| * So go for scrambling, based on the max tmds clock taking into account, |
| * restrictions coming from VBT. |
| */ |
| return intel_hdmi_source_max_tmds_clock(encoder) > 340000; |
| } |
| |
| bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| const struct drm_connector_state *conn_state) |
| { |
| struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder); |
| |
| return intel_has_hdmi_sink(hdmi, conn_state) && |
| !intel_hdmi_is_cloned(crtc_state); |
| } |
| |
| int intel_hdmi_compute_config(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config, |
| struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; |
| struct drm_connector *connector = conn_state->connector; |
| struct drm_scdc *scdc = &connector->display_info.hdmi.scdc; |
| int ret; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) |
| return -EINVAL; |
| |
| if (!connector->interlace_allowed && |
| adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) |
| return -EINVAL; |
| |
| pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; |
| |
| if (pipe_config->has_hdmi_sink) |
| pipe_config->has_infoframe = true; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) |
| pipe_config->pixel_multiplier = 2; |
| |
| pipe_config->has_audio = |
| intel_hdmi_has_audio(encoder, pipe_config, conn_state) && |
| intel_audio_compute_config(encoder, pipe_config, conn_state); |
| |
| /* |
| * Try to respect downstream TMDS clock limits first, if |
| * that fails assume the user might know something we don't. |
| */ |
| ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true); |
| if (ret) |
| ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false); |
| if (ret) { |
| drm_dbg_kms(display->drm, |
| "unsupported HDMI clock (%d kHz), rejecting mode\n", |
| pipe_config->hw.adjusted_mode.crtc_clock); |
| return ret; |
| } |
| |
| if (intel_hdmi_is_ycbcr420(pipe_config)) { |
| ret = intel_panel_fitting(pipe_config, conn_state); |
| if (ret) |
| return ret; |
| } |
| |
| pipe_config->limited_color_range = |
| intel_hdmi_limited_color_range(pipe_config, conn_state); |
| |
| if (conn_state->picture_aspect_ratio) |
| adjusted_mode->picture_aspect_ratio = |
| conn_state->picture_aspect_ratio; |
| |
| pipe_config->lane_count = 4; |
| |
| if (scdc->scrambling.supported && source_supports_scrambling(encoder)) { |
| if (scdc->scrambling.low_rates) |
| pipe_config->hdmi_scrambling = true; |
| |
| if (pipe_config->port_clock > 340000) { |
| pipe_config->hdmi_scrambling = true; |
| pipe_config->hdmi_high_tmds_clock_ratio = true; |
| } |
| } |
| |
| intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, |
| conn_state); |
| |
| if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) { |
| drm_dbg_kms(display->drm, "bad AVI infoframe\n"); |
| return -EINVAL; |
| } |
| |
| if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) { |
| drm_dbg_kms(display->drm, "bad SPD infoframe\n"); |
| return -EINVAL; |
| } |
| |
| if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) { |
| drm_dbg_kms(display->drm, "bad HDMI infoframe\n"); |
| return -EINVAL; |
| } |
| |
| if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) { |
| drm_dbg_kms(display->drm, "bad DRM infoframe\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder) |
| { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| |
| /* |
| * Give a hand to buggy BIOSen which forget to turn |
| * the TMDS output buffers back on after a reboot. |
| */ |
| intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); |
| } |
| |
| static void |
| intel_hdmi_unset_edid(struct drm_connector *connector) |
| { |
| struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); |
| |
| intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE; |
| intel_hdmi->dp_dual_mode.max_tmds_clock = 0; |
| |
| drm_edid_free(to_intel_connector(connector)->detect_edid); |
| to_intel_connector(connector)->detect_edid = NULL; |
| } |
| |
| static void |
| intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector) |
| { |
| struct intel_display *display = to_intel_display(connector->dev); |
| struct drm_i915_private *dev_priv = to_i915(connector->dev); |
| struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); |
| struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; |
| struct i2c_adapter *ddc = connector->ddc; |
| enum drm_dp_dual_mode_type type; |
| |
| type = drm_dp_dual_mode_detect(display->drm, ddc); |
| |
| /* |
| * Type 1 DVI adaptors are not required to implement any |
| * registers, so we can't always detect their presence. |
| * Ideally we should be able to check the state of the |
| * CONFIG1 pin, but no such luck on our hardware. |
| * |
| * The only method left to us is to check the VBT to see |
| * if the port is a dual mode capable DP port. |
| */ |
| if (type == DRM_DP_DUAL_MODE_UNKNOWN) { |
| if (!connector->force && |
| intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) { |
| drm_dbg_kms(display->drm, |
| "Assuming DP dual mode adaptor presence based on VBT\n"); |
| type = DRM_DP_DUAL_MODE_TYPE1_DVI; |
| } else { |
| type = DRM_DP_DUAL_MODE_NONE; |
| } |
| } |
| |
| if (type == DRM_DP_DUAL_MODE_NONE) |
| return; |
| |
| hdmi->dp_dual_mode.type = type; |
| hdmi->dp_dual_mode.max_tmds_clock = |
| drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc); |
| |
| drm_dbg_kms(display->drm, |
| "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n", |
| drm_dp_get_dual_mode_type_name(type), |
| hdmi->dp_dual_mode.max_tmds_clock); |
| |
| /* Older VBTs are often buggy and can't be trusted :( Play it safe. */ |
| if ((DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) && |
| !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) { |
| drm_dbg_kms(display->drm, |
| "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n"); |
| hdmi->dp_dual_mode.max_tmds_clock = 0; |
| } |
| } |
| |
| static bool |
| intel_hdmi_set_edid(struct drm_connector *connector) |
| { |
| struct intel_display *display = to_intel_display(connector->dev); |
| struct drm_i915_private *dev_priv = to_i915(connector->dev); |
| struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); |
| struct i2c_adapter *ddc = connector->ddc; |
| intel_wakeref_t wakeref; |
| const struct drm_edid *drm_edid; |
| bool connected = false; |
| |
| wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); |
| |
| drm_edid = drm_edid_read_ddc(connector, ddc); |
| |
| if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) { |
| drm_dbg_kms(display->drm, |
| "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n"); |
| intel_gmbus_force_bit(ddc, true); |
| drm_edid = drm_edid_read_ddc(connector, ddc); |
| intel_gmbus_force_bit(ddc, false); |
| } |
| |
| /* Below we depend on display info having been updated */ |
| drm_edid_connector_update(connector, drm_edid); |
| |
| to_intel_connector(connector)->detect_edid = drm_edid; |
| |
| if (drm_edid_is_digital(drm_edid)) { |
| intel_hdmi_dp_dual_mode_detect(connector); |
| |
| connected = true; |
| } |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); |
| |
| cec_notifier_set_phys_addr(intel_hdmi->cec_notifier, |
| connector->display_info.source_physical_address); |
| |
| return connected; |
| } |
| |
| static enum drm_connector_status |
| intel_hdmi_detect(struct drm_connector *connector, bool force) |
| { |
| struct intel_display *display = to_intel_display(connector->dev); |
| enum drm_connector_status status = connector_status_disconnected; |
| struct drm_i915_private *dev_priv = to_i915(connector->dev); |
| struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); |
| struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base; |
| intel_wakeref_t wakeref; |
| |
| drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n", |
| connector->base.id, connector->name); |
| |
| if (!intel_display_device_enabled(dev_priv)) |
| return connector_status_disconnected; |
| |
| if (!intel_display_driver_check_access(dev_priv)) |
| return connector->status; |
| |
| wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); |
| |
| if (DISPLAY_VER(display) >= 11 && |
| !intel_digital_port_connected(encoder)) |
| goto out; |
| |
| intel_hdmi_unset_edid(connector); |
| |
| if (intel_hdmi_set_edid(connector)) |
| status = connector_status_connected; |
| |
| out: |
| intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); |
| |
| if (status != connector_status_connected) |
| cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier); |
| |
| return status; |
| } |
| |
| static void |
| intel_hdmi_force(struct drm_connector *connector) |
| { |
| struct intel_display *display = to_intel_display(connector->dev); |
| struct drm_i915_private *i915 = to_i915(connector->dev); |
| |
| drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n", |
| connector->base.id, connector->name); |
| |
| if (!intel_display_driver_check_access(i915)) |
| return; |
| |
| intel_hdmi_unset_edid(connector); |
| |
| if (connector->status != connector_status_connected) |
| return; |
| |
| intel_hdmi_set_edid(connector); |
| } |
| |
| static int intel_hdmi_get_modes(struct drm_connector *connector) |
| { |
| /* drm_edid_connector_update() done in ->detect() or ->force() */ |
| return drm_edid_connector_add_modes(connector); |
| } |
| |
| static int |
| intel_hdmi_connector_register(struct drm_connector *connector) |
| { |
| int ret; |
| |
| ret = intel_connector_register(connector); |
| if (ret) |
| return ret; |
| |
| return ret; |
| } |
| |
| static void intel_hdmi_connector_unregister(struct drm_connector *connector) |
| { |
| struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier; |
| |
| cec_notifier_conn_unregister(n); |
| |
| intel_connector_unregister(connector); |
| } |
| |
| static const struct drm_connector_funcs intel_hdmi_connector_funcs = { |
| .detect = intel_hdmi_detect, |
| .force = intel_hdmi_force, |
| .fill_modes = drm_helper_probe_single_connector_modes, |
| .atomic_get_property = intel_digital_connector_atomic_get_property, |
| .atomic_set_property = intel_digital_connector_atomic_set_property, |
| .late_register = intel_hdmi_connector_register, |
| .early_unregister = intel_hdmi_connector_unregister, |
| .destroy = intel_connector_destroy, |
| .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, |
| .atomic_duplicate_state = intel_digital_connector_duplicate_state, |
| }; |
| |
| static int intel_hdmi_connector_atomic_check(struct drm_connector *connector, |
| struct drm_atomic_state *state) |
| { |
| struct intel_display *display = to_intel_display(connector->dev); |
| |
| if (HAS_DDI(display)) |
| return intel_digital_connector_atomic_check(connector, state); |
| else |
| return g4x_hdmi_connector_atomic_check(connector, state); |
| } |
| |
| static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { |
| .get_modes = intel_hdmi_get_modes, |
| .mode_valid = intel_hdmi_mode_valid, |
| .atomic_check = intel_hdmi_connector_atomic_check, |
| }; |
| |
| static void |
| intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) |
| { |
| struct intel_display *display = to_intel_display(intel_hdmi); |
| |
| intel_attach_force_audio_property(connector); |
| intel_attach_broadcast_rgb_property(connector); |
| intel_attach_aspect_ratio_property(connector); |
| |
| intel_attach_hdmi_colorspace_property(connector); |
| drm_connector_attach_content_type_property(connector); |
| |
| if (DISPLAY_VER(display) >= 10) |
| drm_connector_attach_hdr_output_metadata_property(connector); |
| |
| if (!HAS_GMCH(display)) |
| drm_connector_attach_max_bpc_property(connector, 8, 12); |
| } |
| |
| /* |
| * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup |
| * @encoder: intel_encoder |
| * @connector: drm_connector |
| * @high_tmds_clock_ratio = bool to indicate if the function needs to set |
| * or reset the high tmds clock ratio for scrambling |
| * @scrambling: bool to Indicate if the function needs to set or reset |
| * sink scrambling |
| * |
| * This function handles scrambling on HDMI 2.0 capable sinks. |
| * If required clock rate is > 340 Mhz && scrambling is supported by sink |
| * it enables scrambling. This should be called before enabling the HDMI |
| * 2.0 port, as the sink can choose to disable the scrambling if it doesn't |
| * detect a scrambled clock within 100 ms. |
| * |
| * Returns: |
| * True on success, false on failure. |
| */ |
| bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder, |
| struct drm_connector *connector, |
| bool high_tmds_clock_ratio, |
| bool scrambling) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_scrambling *sink_scrambling = |
| &connector->display_info.hdmi.scdc.scrambling; |
| |
| if (!sink_scrambling->supported) |
| return true; |
| |
| drm_dbg_kms(display->drm, |
| "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n", |
| connector->base.id, connector->name, |
| str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10); |
| |
| /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */ |
| return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) && |
| drm_scdc_set_scrambling(connector, scrambling); |
| } |
| |
| static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| enum port port = encoder->port; |
| u8 ddc_pin; |
| |
| switch (port) { |
| case PORT_B: |
| ddc_pin = GMBUS_PIN_DPB; |
| break; |
| case PORT_C: |
| ddc_pin = GMBUS_PIN_DPC; |
| break; |
| case PORT_D: |
| ddc_pin = GMBUS_PIN_DPD_CHV; |
| break; |
| default: |
| MISSING_CASE(port); |
| ddc_pin = GMBUS_PIN_DPB; |
| break; |
| } |
| return ddc_pin; |
| } |
| |
| static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| enum port port = encoder->port; |
| u8 ddc_pin; |
| |
| switch (port) { |
| case PORT_B: |
| ddc_pin = GMBUS_PIN_1_BXT; |
| break; |
| case PORT_C: |
| ddc_pin = GMBUS_PIN_2_BXT; |
| break; |
| default: |
| MISSING_CASE(port); |
| ddc_pin = GMBUS_PIN_1_BXT; |
| break; |
| } |
| return ddc_pin; |
| } |
| |
| static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| enum port port = encoder->port; |
| u8 ddc_pin; |
| |
| switch (port) { |
| case PORT_B: |
| ddc_pin = GMBUS_PIN_1_BXT; |
| break; |
| case PORT_C: |
| ddc_pin = GMBUS_PIN_2_BXT; |
| break; |
| case PORT_D: |
| ddc_pin = GMBUS_PIN_4_CNP; |
| break; |
| case PORT_F: |
| ddc_pin = GMBUS_PIN_3_BXT; |
| break; |
| default: |
| MISSING_CASE(port); |
| ddc_pin = GMBUS_PIN_1_BXT; |
| break; |
| } |
| return ddc_pin; |
| } |
| |
| static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| enum port port = encoder->port; |
| |
| if (intel_encoder_is_combo(encoder)) |
| return GMBUS_PIN_1_BXT + port; |
| else if (intel_encoder_is_tc(encoder)) |
| return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder); |
| |
| drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port)); |
| return GMBUS_PIN_2_BXT; |
| } |
| |
| static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| enum phy phy = intel_encoder_to_phy(encoder); |
| u8 ddc_pin; |
| |
| switch (phy) { |
| case PHY_A: |
| ddc_pin = GMBUS_PIN_1_BXT; |
| break; |
| case PHY_B: |
| ddc_pin = GMBUS_PIN_2_BXT; |
| break; |
| case PHY_C: |
| ddc_pin = GMBUS_PIN_9_TC1_ICP; |
| break; |
| default: |
| MISSING_CASE(phy); |
| ddc_pin = GMBUS_PIN_1_BXT; |
| break; |
| } |
| return ddc_pin; |
| } |
| |
| static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| enum phy phy = intel_encoder_to_phy(encoder); |
| |
| WARN_ON(encoder->port == PORT_C); |
| |
| /* |
| * Pin mapping for RKL depends on which PCH is present. With TGP, the |
| * final two outputs use type-c pins, even though they're actually |
| * combo outputs. With CMP, the traditional DDI A-D pins are used for |
| * all outputs. |
| */ |
| if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C) |
| return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; |
| |
| return GMBUS_PIN_1_BXT + phy; |
| } |
| |
| static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_i915_private *i915 = to_i915(encoder->base.dev); |
| enum phy phy = intel_encoder_to_phy(encoder); |
| |
| drm_WARN_ON(display->drm, encoder->port == PORT_A); |
| |
| /* |
| * Pin mapping for GEN9 BC depends on which PCH is present. With TGP, |
| * final two outputs use type-c pins, even though they're actually |
| * combo outputs. With CMP, the traditional DDI A-D pins are used for |
| * all outputs. |
| */ |
| if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C) |
| return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; |
| |
| return GMBUS_PIN_1_BXT + phy; |
| } |
| |
| static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| return intel_encoder_to_phy(encoder) + 1; |
| } |
| |
| static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| enum phy phy = intel_encoder_to_phy(encoder); |
| |
| WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C); |
| |
| /* |
| * Pin mapping for ADL-S requires TC pins for all combo phy outputs |
| * except first combo output. |
| */ |
| if (phy == PHY_A) |
| return GMBUS_PIN_1_BXT; |
| |
| return GMBUS_PIN_9_TC1_ICP + phy - PHY_B; |
| } |
| |
| static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder) |
| { |
| enum port port = encoder->port; |
| u8 ddc_pin; |
| |
| switch (port) { |
| case PORT_B: |
| ddc_pin = GMBUS_PIN_DPB; |
| break; |
| case PORT_C: |
| ddc_pin = GMBUS_PIN_DPC; |
| break; |
| case PORT_D: |
| ddc_pin = GMBUS_PIN_DPD; |
| break; |
| default: |
| MISSING_CASE(port); |
| ddc_pin = GMBUS_PIN_DPB; |
| break; |
| } |
| return ddc_pin; |
| } |
| |
| static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| u8 ddc_pin; |
| |
| if (IS_ALDERLAKE_S(dev_priv)) |
| ddc_pin = adls_encoder_to_ddc_pin(encoder); |
| else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) |
| ddc_pin = dg1_encoder_to_ddc_pin(encoder); |
| else if (IS_ROCKETLAKE(dev_priv)) |
| ddc_pin = rkl_encoder_to_ddc_pin(encoder); |
| else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(dev_priv)) |
| ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder); |
| else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) && |
| HAS_PCH_TGP(dev_priv)) |
| ddc_pin = mcc_encoder_to_ddc_pin(encoder); |
| else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) |
| ddc_pin = icl_encoder_to_ddc_pin(encoder); |
| else if (HAS_PCH_CNP(dev_priv)) |
| ddc_pin = cnp_encoder_to_ddc_pin(encoder); |
| else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) |
| ddc_pin = bxt_encoder_to_ddc_pin(encoder); |
| else if (IS_CHERRYVIEW(dev_priv)) |
| ddc_pin = chv_encoder_to_ddc_pin(encoder); |
| else |
| ddc_pin = g4x_encoder_to_ddc_pin(encoder); |
| |
| return ddc_pin; |
| } |
| |
| static struct intel_encoder * |
| get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_i915_private *i915 = to_i915(encoder->base.dev); |
| struct intel_encoder *other; |
| |
| for_each_intel_encoder(display->drm, other) { |
| struct intel_connector *connector; |
| |
| if (other == encoder) |
| continue; |
| |
| if (!intel_encoder_is_dig_port(other)) |
| continue; |
| |
| connector = enc_to_dig_port(other)->hdmi.attached_connector; |
| |
| if (connector && connector->base.ddc == intel_gmbus_get_adapter(i915, ddc_pin)) |
| return other; |
| } |
| |
| return NULL; |
| } |
| |
| static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder) |
| { |
| struct intel_display *display = to_intel_display(encoder); |
| struct drm_i915_private *i915 = to_i915(encoder->base.dev); |
| struct intel_encoder *other; |
| const char *source; |
| u8 ddc_pin; |
| |
| ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata); |
| source = "VBT"; |
| |
| if (!ddc_pin) { |
| ddc_pin = intel_hdmi_default_ddc_pin(encoder); |
| source = "platform default"; |
| } |
| |
| if (!intel_gmbus_is_valid_pin(i915, ddc_pin)) { |
| drm_dbg_kms(display->drm, |
| "[ENCODER:%d:%s] Invalid DDC pin %d\n", |
| encoder->base.base.id, encoder->base.name, ddc_pin); |
| return 0; |
| } |
| |
| other = get_encoder_by_ddc_pin(encoder, ddc_pin); |
| if (other) { |
| drm_dbg_kms(display->drm, |
| "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n", |
| encoder->base.base.id, encoder->base.name, ddc_pin, |
| other->base.base.id, other->base.name); |
| return 0; |
| } |
| |
| drm_dbg_kms(display->drm, |
| "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n", |
| encoder->base.base.id, encoder->base.name, |
| ddc_pin, source); |
| |
| return ddc_pin; |
| } |
| |
| void intel_infoframe_init(struct intel_digital_port *dig_port) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| struct drm_i915_private *dev_priv = |
| to_i915(dig_port->base.base.dev); |
| |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| dig_port->write_infoframe = vlv_write_infoframe; |
| dig_port->read_infoframe = vlv_read_infoframe; |
| dig_port->set_infoframes = vlv_set_infoframes; |
| dig_port->infoframes_enabled = vlv_infoframes_enabled; |
| } else if (IS_G4X(dev_priv)) { |
| dig_port->write_infoframe = g4x_write_infoframe; |
| dig_port->read_infoframe = g4x_read_infoframe; |
| dig_port->set_infoframes = g4x_set_infoframes; |
| dig_port->infoframes_enabled = g4x_infoframes_enabled; |
| } else if (HAS_DDI(display)) { |
| if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) { |
| dig_port->write_infoframe = lspcon_write_infoframe; |
| dig_port->read_infoframe = lspcon_read_infoframe; |
| dig_port->set_infoframes = lspcon_set_infoframes; |
| dig_port->infoframes_enabled = lspcon_infoframes_enabled; |
| } else { |
| dig_port->write_infoframe = hsw_write_infoframe; |
| dig_port->read_infoframe = hsw_read_infoframe; |
| dig_port->set_infoframes = hsw_set_infoframes; |
| dig_port->infoframes_enabled = hsw_infoframes_enabled; |
| } |
| } else if (HAS_PCH_IBX(dev_priv)) { |
| dig_port->write_infoframe = ibx_write_infoframe; |
| dig_port->read_infoframe = ibx_read_infoframe; |
| dig_port->set_infoframes = ibx_set_infoframes; |
| dig_port->infoframes_enabled = ibx_infoframes_enabled; |
| } else { |
| dig_port->write_infoframe = cpt_write_infoframe; |
| dig_port->read_infoframe = cpt_read_infoframe; |
| dig_port->set_infoframes = cpt_set_infoframes; |
| dig_port->infoframes_enabled = cpt_infoframes_enabled; |
| } |
| } |
| |
| void intel_hdmi_init_connector(struct intel_digital_port *dig_port, |
| struct intel_connector *intel_connector) |
| { |
| struct intel_display *display = to_intel_display(dig_port); |
| struct drm_connector *connector = &intel_connector->base; |
| struct intel_hdmi *intel_hdmi = &dig_port->hdmi; |
| struct intel_encoder *intel_encoder = &dig_port->base; |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum port port = intel_encoder->port; |
| struct cec_connector_info conn_info; |
| u8 ddc_pin; |
| |
| drm_dbg_kms(display->drm, |
| "Adding HDMI connector on [ENCODER:%d:%s]\n", |
| intel_encoder->base.base.id, intel_encoder->base.name); |
| |
| if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A)) |
| return; |
| |
| if (drm_WARN(dev, dig_port->max_lanes < 4, |
| "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n", |
| dig_port->max_lanes, intel_encoder->base.base.id, |
| intel_encoder->base.name)) |
| return; |
| |
| ddc_pin = intel_hdmi_ddc_pin(intel_encoder); |
| if (!ddc_pin) |
| return; |
| |
| drm_connector_init_with_ddc(dev, connector, |
| &intel_hdmi_connector_funcs, |
| DRM_MODE_CONNECTOR_HDMIA, |
| intel_gmbus_get_adapter(dev_priv, ddc_pin)); |
| |
| drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); |
| |
| if (DISPLAY_VER(display) < 12) |
| connector->interlace_allowed = true; |
| |
| connector->stereo_allowed = true; |
| |
| if (DISPLAY_VER(display) >= 10) |
| connector->ycbcr_420_allowed = true; |
| |
| intel_connector->polled = DRM_CONNECTOR_POLL_HPD; |
| intel_connector->base.polled = intel_connector->polled; |
| |
| if (HAS_DDI(display)) |
| intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; |
| else |
| intel_connector->get_hw_state = intel_connector_get_hw_state; |
| |
| intel_hdmi_add_properties(intel_hdmi, connector); |
| |
| intel_connector_attach_encoder(intel_connector, intel_encoder); |
| intel_hdmi->attached_connector = intel_connector; |
| |
| if (is_hdcp_supported(dev_priv, port)) { |
| int ret = intel_hdcp_init(intel_connector, dig_port, |
| &intel_hdmi_hdcp_shim); |
| if (ret) |
| drm_dbg_kms(display->drm, |
| "HDCP init failed, skipping.\n"); |
| } |
| |
| cec_fill_conn_info_from_drm(&conn_info, connector); |
| |
| intel_hdmi->cec_notifier = |
| cec_notifier_conn_register(dev->dev, port_identifier(port), |
| &conn_info); |
| if (!intel_hdmi->cec_notifier) |
| drm_dbg_kms(display->drm, "CEC notifier get failed\n"); |
| } |
| |
| /* |
| * intel_hdmi_dsc_get_slice_height - get the dsc slice_height |
| * @vactive: Vactive of a display mode |
| * |
| * @return: appropriate dsc slice height for a given mode. |
| */ |
| int intel_hdmi_dsc_get_slice_height(int vactive) |
| { |
| int slice_height; |
| |
| /* |
| * Slice Height determination : HDMI2.1 Section 7.7.5.2 |
| * Select smallest slice height >=96, that results in a valid PPS and |
| * requires minimum padding lines required for final slice. |
| * |
| * Assumption : Vactive is even. |
| */ |
| for (slice_height = 96; slice_height <= vactive; slice_height += 2) |
| if (vactive % slice_height == 0) |
| return slice_height; |
| |
| return 0; |
| } |
| |
| /* |
| * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder |
| * and dsc decoder capabilities |
| * |
| * @crtc_state: intel crtc_state |
| * @src_max_slices: maximum slices supported by the DSC encoder |
| * @src_max_slice_width: maximum slice width supported by DSC encoder |
| * @hdmi_max_slices: maximum slices supported by sink DSC decoder |
| * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink |
| * |
| * @return: num of dsc slices that can be supported by the dsc encoder |
| * and decoder. |
| */ |
| int |
| intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state, |
| int src_max_slices, int src_max_slice_width, |
| int hdmi_max_slices, int hdmi_throughput) |
| { |
| /* Pixel rates in KPixels/sec */ |
| #define HDMI_DSC_PEAK_PIXEL_RATE 2720000 |
| /* |
| * Rates at which the source and sink are required to process pixels in each |
| * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz. |
| */ |
| #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000 |
| #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000 |
| |
| /* Spec limits the slice width to 2720 pixels */ |
| #define MAX_HDMI_SLICE_WIDTH 2720 |
| int kslice_adjust; |
| int adjusted_clk_khz; |
| int min_slices; |
| int target_slices; |
| int max_throughput; /* max clock freq. in khz per slice */ |
| int max_slice_width; |
| int slice_width; |
| int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock; |
| |
| if (!hdmi_throughput) |
| return 0; |
| |
| /* |
| * Slice Width determination : HDMI2.1 Section 7.7.5.1 |
| * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as |
| * for 4:4:4 is 1.0. Multiplying these factors by 10 and later |
| * dividing adjusted clock value by 10. |
| */ |
| if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || |
| crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) |
| kslice_adjust = 10; |
| else |
| kslice_adjust = 5; |
| |
| /* |
| * As per spec, the rate at which the source and the sink process |
| * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz. |
| * This depends upon the pixel clock rate and output formats |
| * (kslice adjust). |
| * If pixel clock * kslice adjust >= 2720MHz slices can be processed |
| * at max 340MHz, otherwise they can be processed at max 400MHz. |
| */ |
| |
| adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10); |
| |
| if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE) |
| max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0; |
| else |
| max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1; |
| |
| /* |
| * Taking into account the sink's capability for maximum |
| * clock per slice (in MHz) as read from HF-VSDB. |
| */ |
| max_throughput = min(max_throughput, hdmi_throughput * 1000); |
| |
| min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput); |
| max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width); |
| |
| /* |
| * Keep on increasing the num of slices/line, starting from min_slices |
| * per line till we get such a number, for which the slice_width is |
| * just less than max_slice_width. The slices/line selected should be |
| * less than or equal to the max horizontal slices that the combination |
| * of PCON encoder and HDMI decoder can support. |
| */ |
| slice_width = max_slice_width; |
| |
| do { |
| if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1) |
| target_slices = 1; |
| else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2) |
| target_slices = 2; |
| else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4) |
| target_slices = 4; |
| else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8) |
| target_slices = 8; |
| else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12) |
| target_slices = 12; |
| else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16) |
| target_slices = 16; |
| else |
| return 0; |
| |
| slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices); |
| if (slice_width >= max_slice_width) |
| min_slices = target_slices + 1; |
| } while (slice_width >= max_slice_width); |
| |
| return target_slices; |
| } |
| |
| /* |
| * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on |
| * source and sink capabilities. |
| * |
| * @src_fraction_bpp: fractional bpp supported by the source |
| * @slice_width: dsc slice width supported by the source and sink |
| * @num_slices: num of slices supported by the source and sink |
| * @output_format: video output format |
| * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting |
| * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink |
| * |
| * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel |
| */ |
| int |
| intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices, |
| int output_format, bool hdmi_all_bpp, |
| int hdmi_max_chunk_bytes) |
| { |
| int max_dsc_bpp, min_dsc_bpp; |
| int target_bytes; |
| bool bpp_found = false; |
| int bpp_decrement_x16; |
| int bpp_target; |
| int bpp_target_x16; |
| |
| /* |
| * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec |
| * Start with the max bpp and keep on decrementing with |
| * fractional bpp, if supported by PCON DSC encoder |
| * |
| * for each bpp we check if no of bytes can be supported by HDMI sink |
| */ |
| |
| /* Assuming: bpc as 8*/ |
| if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { |
| min_dsc_bpp = 6; |
| max_dsc_bpp = 3 * 4; /* 3*bpc/2 */ |
| } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || |
| output_format == INTEL_OUTPUT_FORMAT_RGB) { |
| min_dsc_bpp = 8; |
| max_dsc_bpp = 3 * 8; /* 3*bpc */ |
| } else { |
| /* Assuming 4:2:2 encoding */ |
| min_dsc_bpp = 7; |
| max_dsc_bpp = 2 * 8; /* 2*bpc */ |
| } |
| |
| /* |
| * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink |
| * Section 7.7.34 : Source shall not enable compressed Video |
| * Transport with bpp_target settings above 12 bpp unless |
| * DSC_all_bpp is set to 1. |
| */ |
| if (!hdmi_all_bpp) |
| max_dsc_bpp = min(max_dsc_bpp, 12); |
| |
| /* |
| * The Sink has a limit of compressed data in bytes for a scanline, |
| * as described in max_chunk_bytes field in HFVSDB block of edid. |
| * The no. of bytes depend on the target bits per pixel that the |
| * source configures. So we start with the max_bpp and calculate |
| * the target_chunk_bytes. We keep on decrementing the target_bpp, |
| * till we get the target_chunk_bytes just less than what the sink's |
| * max_chunk_bytes, or else till we reach the min_dsc_bpp. |
| * |
| * The decrement is according to the fractional support from PCON DSC |
| * encoder. For fractional BPP we use bpp_target as a multiple of 16. |
| * |
| * bpp_target_x16 = bpp_target * 16 |
| * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps |
| * {1/16, 1/8, 1/4, 1/2, 1} respectively. |
| */ |
| |
| bpp_target = max_dsc_bpp; |
| |
| /* src does not support fractional bpp implies decrement by 16 for bppx16 */ |
| if (!src_fractional_bpp) |
| src_fractional_bpp = 1; |
| bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp); |
| bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16; |
| |
| while (bpp_target_x16 > (min_dsc_bpp * 16)) { |
| int bpp; |
| |
| bpp = DIV_ROUND_UP(bpp_target_x16, 16); |
| target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8); |
| if (target_bytes <= hdmi_max_chunk_bytes) { |
| bpp_found = true; |
| break; |
| } |
| bpp_target_x16 -= bpp_decrement_x16; |
| } |
| if (bpp_found) |
| return bpp_target_x16; |
| |
| return 0; |
| } |