| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| */ |
| |
| #include "i915_drv.h" |
| #include "i915_reg.h" |
| #include "intel_gt.h" |
| #include "intel_gt_clock_utils.h" |
| #include "intel_gt_print.h" |
| #include "intel_gt_regs.h" |
| #include "soc/intel_dram.h" |
| |
| static u32 read_reference_ts_freq(struct intel_uncore *uncore) |
| { |
| u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE); |
| u32 base_freq, frac_freq; |
| |
| base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> |
| GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; |
| base_freq *= 1000000; |
| |
| frac_freq = ((ts_override & |
| GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> |
| GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); |
| frac_freq = 1000000 / (frac_freq + 1); |
| |
| return base_freq + frac_freq; |
| } |
| |
| static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore, |
| u32 rpm_config_reg) |
| { |
| u32 f19_2_mhz = 19200000; |
| u32 f24_mhz = 24000000; |
| u32 f25_mhz = 25000000; |
| u32 f38_4_mhz = 38400000; |
| u32 crystal_clock = |
| (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> |
| GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; |
| |
| switch (crystal_clock) { |
| case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: |
| return f24_mhz; |
| case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: |
| return f19_2_mhz; |
| case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: |
| return f38_4_mhz; |
| case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: |
| return f25_mhz; |
| default: |
| MISSING_CASE(crystal_clock); |
| return 0; |
| } |
| } |
| |
| static u32 gen11_read_clock_frequency(struct intel_uncore *uncore) |
| { |
| u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE); |
| u32 freq = 0; |
| |
| /* |
| * Note that on gen11+, the clock frequency may be reconfigured. |
| * We do not, and we assume nobody else does. |
| * |
| * First figure out the reference frequency. There are 2 ways |
| * we can compute the frequency, either through the |
| * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE |
| * tells us which one we should use. |
| */ |
| if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { |
| freq = read_reference_ts_freq(uncore); |
| } else { |
| u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0); |
| |
| freq = gen11_get_crystal_clock_freq(uncore, c0); |
| |
| /* |
| * Now figure out how the command stream's timestamp |
| * register increments from this frequency (it might |
| * increment only every few clock cycle). |
| */ |
| freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> |
| GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); |
| } |
| |
| return freq; |
| } |
| |
| static u32 gen9_read_clock_frequency(struct intel_uncore *uncore) |
| { |
| u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE); |
| u32 freq = 0; |
| |
| if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { |
| freq = read_reference_ts_freq(uncore); |
| } else { |
| freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000; |
| |
| /* |
| * Now figure out how the command stream's timestamp |
| * register increments from this frequency (it might |
| * increment only every few clock cycle). |
| */ |
| freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> |
| CTC_SHIFT_PARAMETER_SHIFT); |
| } |
| |
| return freq; |
| } |
| |
| static u32 gen6_read_clock_frequency(struct intel_uncore *uncore) |
| { |
| /* |
| * PRMs say: |
| * |
| * "The PCU TSC counts 10ns increments; this timestamp |
| * reflects bits 38:3 of the TSC (i.e. 80ns granularity, |
| * rolling over every 1.5 hours). |
| */ |
| return 12500000; |
| } |
| |
| static u32 gen5_read_clock_frequency(struct intel_uncore *uncore) |
| { |
| /* |
| * 63:32 increments every 1000 ns |
| * 31:0 mbz |
| */ |
| return 1000000000 / 1000; |
| } |
| |
| static u32 g4x_read_clock_frequency(struct intel_uncore *uncore) |
| { |
| /* |
| * 63:20 increments every 1/4 ns |
| * 19:0 mbz |
| * |
| * -> 63:32 increments every 1024 ns |
| */ |
| return 1000000000 / 1024; |
| } |
| |
| static u32 gen4_read_clock_frequency(struct intel_uncore *uncore) |
| { |
| /* |
| * PRMs say: |
| * |
| * "The value in this register increments once every 16 |
| * hclks." (through the “Clocking Configuration” |
| * (“CLKCFG”) MCHBAR register) |
| * |
| * Testing on actual hardware has shown there is no /16. |
| */ |
| return DIV_ROUND_CLOSEST(i9xx_fsb_freq(uncore->i915), 4) * 1000; |
| } |
| |
| static u32 read_clock_frequency(struct intel_uncore *uncore) |
| { |
| if (GRAPHICS_VER(uncore->i915) >= 11) |
| return gen11_read_clock_frequency(uncore); |
| else if (GRAPHICS_VER(uncore->i915) >= 9) |
| return gen9_read_clock_frequency(uncore); |
| else if (GRAPHICS_VER(uncore->i915) >= 6) |
| return gen6_read_clock_frequency(uncore); |
| else if (GRAPHICS_VER(uncore->i915) == 5) |
| return gen5_read_clock_frequency(uncore); |
| else if (IS_G4X(uncore->i915)) |
| return g4x_read_clock_frequency(uncore); |
| else if (GRAPHICS_VER(uncore->i915) == 4) |
| return gen4_read_clock_frequency(uncore); |
| else |
| return 0; |
| } |
| |
| void intel_gt_init_clock_frequency(struct intel_gt *gt) |
| { |
| gt->clock_frequency = read_clock_frequency(gt->uncore); |
| |
| /* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */ |
| if (GRAPHICS_VER(gt->i915) == 11) |
| gt->clock_period_ns = NSEC_PER_SEC / 13750000; |
| else if (gt->clock_frequency) |
| gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1); |
| |
| GT_TRACE(gt, |
| "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n", |
| gt->clock_frequency / 1000, |
| gt->clock_period_ns, |
| div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX), |
| USEC_PER_SEC)); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) |
| void intel_gt_check_clock_frequency(const struct intel_gt *gt) |
| { |
| if (gt->clock_frequency != read_clock_frequency(gt->uncore)) { |
| gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n", |
| gt->clock_frequency, |
| read_clock_frequency(gt->uncore)); |
| } |
| } |
| #endif |
| |
| static u64 div_u64_roundup(u64 nom, u32 den) |
| { |
| return div_u64(nom + den - 1, den); |
| } |
| |
| u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count) |
| { |
| return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency); |
| } |
| |
| u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count) |
| { |
| return intel_gt_clock_interval_to_ns(gt, 16 * count); |
| } |
| |
| u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns) |
| { |
| return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC); |
| } |
| |
| u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns) |
| { |
| u64 val; |
| |
| /* |
| * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS |
| * 8300) freezing up around GPU hangs. Looks as if even |
| * scheduling/timer interrupts start misbehaving if the RPS |
| * EI/thresholds are "bad", leading to a very sluggish or even |
| * frozen machine. |
| */ |
| val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16); |
| if (GRAPHICS_VER(gt->i915) == 6) |
| val = div_u64_roundup(val, 25) * 25; |
| |
| return val; |
| } |