blob: 63b8d7591253cdada79ea8e34153930011bd4b8f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR MIT
/**************************************************************************
*
* Copyright (c) 2009-2024 Broadcom. All Rights Reserved. The term
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "vmwgfx_kms.h"
#include "vmwgfx_bo.h"
#include "vmwgfx_vkms.h"
#include "vmw_surface_cache.h"
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_rect.h>
#include <drm/drm_sysfs.h>
#include <drm/drm_edid.h>
void vmw_du_init(struct vmw_display_unit *du)
{
vmw_vkms_crtc_init(&du->crtc);
}
void vmw_du_cleanup(struct vmw_display_unit *du)
{
struct vmw_private *dev_priv = vmw_priv(du->primary.dev);
vmw_vkms_crtc_cleanup(&du->crtc);
drm_plane_cleanup(&du->primary);
if (vmw_cmd_supported(dev_priv))
drm_plane_cleanup(&du->cursor.base);
drm_connector_unregister(&du->connector);
drm_crtc_cleanup(&du->crtc);
drm_encoder_cleanup(&du->encoder);
drm_connector_cleanup(&du->connector);
}
/*
* Display Unit Cursor functions
*/
static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps);
static void vmw_cursor_update_mob(struct vmw_private *dev_priv,
struct vmw_plane_state *vps,
u32 *image, u32 width, u32 height,
u32 hotspotX, u32 hotspotY);
struct vmw_svga_fifo_cmd_define_cursor {
u32 cmd;
SVGAFifoCmdDefineAlphaCursor cursor;
};
/**
* vmw_send_define_cursor_cmd - queue a define cursor command
* @dev_priv: the private driver struct
* @image: buffer which holds the cursor image
* @width: width of the mouse cursor image
* @height: height of the mouse cursor image
* @hotspotX: the horizontal position of mouse hotspot
* @hotspotY: the vertical position of mouse hotspot
*/
static void vmw_send_define_cursor_cmd(struct vmw_private *dev_priv,
u32 *image, u32 width, u32 height,
u32 hotspotX, u32 hotspotY)
{
struct vmw_svga_fifo_cmd_define_cursor *cmd;
const u32 image_size = width * height * sizeof(*image);
const u32 cmd_size = sizeof(*cmd) + image_size;
/* Try to reserve fifocmd space and swallow any failures;
such reservations cannot be left unconsumed for long
under the risk of clogging other fifocmd users, so
we treat reservations separtely from the way we treat
other fallible KMS-atomic resources at prepare_fb */
cmd = VMW_CMD_RESERVE(dev_priv, cmd_size);
if (unlikely(!cmd))
return;
memset(cmd, 0, sizeof(*cmd));
memcpy(&cmd[1], image, image_size);
cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
cmd->cursor.id = 0;
cmd->cursor.width = width;
cmd->cursor.height = height;
cmd->cursor.hotspotX = hotspotX;
cmd->cursor.hotspotY = hotspotY;
vmw_cmd_commit_flush(dev_priv, cmd_size);
}
/**
* vmw_cursor_update_image - update the cursor image on the provided plane
* @dev_priv: the private driver struct
* @vps: the plane state of the cursor plane
* @image: buffer which holds the cursor image
* @width: width of the mouse cursor image
* @height: height of the mouse cursor image
* @hotspotX: the horizontal position of mouse hotspot
* @hotspotY: the vertical position of mouse hotspot
*/
static void vmw_cursor_update_image(struct vmw_private *dev_priv,
struct vmw_plane_state *vps,
u32 *image, u32 width, u32 height,
u32 hotspotX, u32 hotspotY)
{
if (vps->cursor.bo)
vmw_cursor_update_mob(dev_priv, vps, image,
vps->base.crtc_w, vps->base.crtc_h,
hotspotX, hotspotY);
else
vmw_send_define_cursor_cmd(dev_priv, image, width, height,
hotspotX, hotspotY);
}
/**
* vmw_cursor_update_mob - Update cursor vis CursorMob mechanism
*
* Called from inside vmw_du_cursor_plane_atomic_update to actually
* make the cursor-image live.
*
* @dev_priv: device to work with
* @vps: the plane state of the cursor plane
* @image: cursor source data to fill the MOB with
* @width: source data width
* @height: source data height
* @hotspotX: cursor hotspot x
* @hotspotY: cursor hotspot Y
*/
static void vmw_cursor_update_mob(struct vmw_private *dev_priv,
struct vmw_plane_state *vps,
u32 *image, u32 width, u32 height,
u32 hotspotX, u32 hotspotY)
{
SVGAGBCursorHeader *header;
SVGAGBAlphaCursorHeader *alpha_header;
const u32 image_size = width * height * sizeof(*image);
header = vmw_bo_map_and_cache(vps->cursor.bo);
alpha_header = &header->header.alphaHeader;
memset(header, 0, sizeof(*header));
header->type = SVGA_ALPHA_CURSOR;
header->sizeInBytes = image_size;
alpha_header->hotspotX = hotspotX;
alpha_header->hotspotY = hotspotY;
alpha_header->width = width;
alpha_header->height = height;
memcpy(header + 1, image, image_size);
vmw_write(dev_priv, SVGA_REG_CURSOR_MOBID,
vps->cursor.bo->tbo.resource->start);
}
static u32 vmw_du_cursor_mob_size(u32 w, u32 h)
{
return w * h * sizeof(u32) + sizeof(SVGAGBCursorHeader);
}
/**
* vmw_du_cursor_plane_acquire_image -- Acquire the image data
* @vps: cursor plane state
*/
static u32 *vmw_du_cursor_plane_acquire_image(struct vmw_plane_state *vps)
{
struct vmw_surface *surf;
if (vmw_user_object_is_null(&vps->uo))
return NULL;
surf = vmw_user_object_surface(&vps->uo);
if (surf && !vmw_user_object_is_mapped(&vps->uo))
return surf->snooper.image;
return vmw_user_object_map(&vps->uo);
}
static bool vmw_du_cursor_plane_has_changed(struct vmw_plane_state *old_vps,
struct vmw_plane_state *new_vps)
{
void *old_image;
void *new_image;
u32 size;
bool changed;
if (old_vps->base.crtc_w != new_vps->base.crtc_w ||
old_vps->base.crtc_h != new_vps->base.crtc_h)
return true;
if (old_vps->cursor.hotspot_x != new_vps->cursor.hotspot_x ||
old_vps->cursor.hotspot_y != new_vps->cursor.hotspot_y)
return true;
size = new_vps->base.crtc_w * new_vps->base.crtc_h * sizeof(u32);
old_image = vmw_du_cursor_plane_acquire_image(old_vps);
new_image = vmw_du_cursor_plane_acquire_image(new_vps);
changed = false;
if (old_image && new_image && old_image != new_image)
changed = memcmp(old_image, new_image, size) != 0;
return changed;
}
static void vmw_du_destroy_cursor_mob(struct vmw_bo **vbo)
{
if (!(*vbo))
return;
ttm_bo_unpin(&(*vbo)->tbo);
vmw_bo_unreference(vbo);
}
static void vmw_du_put_cursor_mob(struct vmw_cursor_plane *vcp,
struct vmw_plane_state *vps)
{
u32 i;
if (!vps->cursor.bo)
return;
vmw_du_cursor_plane_unmap_cm(vps);
/* Look for a free slot to return this mob to the cache. */
for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
if (!vcp->cursor_mobs[i]) {
vcp->cursor_mobs[i] = vps->cursor.bo;
vps->cursor.bo = NULL;
return;
}
}
/* Cache is full: See if this mob is bigger than an existing mob. */
for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
if (vcp->cursor_mobs[i]->tbo.base.size <
vps->cursor.bo->tbo.base.size) {
vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]);
vcp->cursor_mobs[i] = vps->cursor.bo;
vps->cursor.bo = NULL;
return;
}
}
/* Destroy it if it's not worth caching. */
vmw_du_destroy_cursor_mob(&vps->cursor.bo);
}
static int vmw_du_get_cursor_mob(struct vmw_cursor_plane *vcp,
struct vmw_plane_state *vps)
{
struct vmw_private *dev_priv = vcp->base.dev->dev_private;
u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h);
u32 i;
u32 cursor_max_dim, mob_max_size;
struct vmw_fence_obj *fence = NULL;
int ret;
if (!dev_priv->has_mob ||
(dev_priv->capabilities2 & SVGA_CAP2_CURSOR_MOB) == 0)
return -EINVAL;
mob_max_size = vmw_read(dev_priv, SVGA_REG_MOB_MAX_SIZE);
cursor_max_dim = vmw_read(dev_priv, SVGA_REG_CURSOR_MAX_DIMENSION);
if (size > mob_max_size || vps->base.crtc_w > cursor_max_dim ||
vps->base.crtc_h > cursor_max_dim)
return -EINVAL;
if (vps->cursor.bo) {
if (vps->cursor.bo->tbo.base.size >= size)
return 0;
vmw_du_put_cursor_mob(vcp, vps);
}
/* Look for an unused mob in the cache. */
for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
if (vcp->cursor_mobs[i] &&
vcp->cursor_mobs[i]->tbo.base.size >= size) {
vps->cursor.bo = vcp->cursor_mobs[i];
vcp->cursor_mobs[i] = NULL;
return 0;
}
}
/* Create a new mob if we can't find an existing one. */
ret = vmw_bo_create_and_populate(dev_priv, size,
VMW_BO_DOMAIN_MOB,
&vps->cursor.bo);
if (ret != 0)
return ret;
/* Fence the mob creation so we are guarateed to have the mob */
ret = ttm_bo_reserve(&vps->cursor.bo->tbo, false, false, NULL);
if (ret != 0)
goto teardown;
ret = vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
if (ret != 0) {
ttm_bo_unreserve(&vps->cursor.bo->tbo);
goto teardown;
}
dma_fence_wait(&fence->base, false);
dma_fence_put(&fence->base);
ttm_bo_unreserve(&vps->cursor.bo->tbo);
return 0;
teardown:
vmw_du_destroy_cursor_mob(&vps->cursor.bo);
return ret;
}
static void vmw_cursor_update_position(struct vmw_private *dev_priv,
bool show, int x, int y)
{
const uint32_t svga_cursor_on = show ? SVGA_CURSOR_ON_SHOW
: SVGA_CURSOR_ON_HIDE;
uint32_t count;
spin_lock(&dev_priv->cursor_lock);
if (dev_priv->capabilities2 & SVGA_CAP2_EXTRA_REGS) {
vmw_write(dev_priv, SVGA_REG_CURSOR4_X, x);
vmw_write(dev_priv, SVGA_REG_CURSOR4_Y, y);
vmw_write(dev_priv, SVGA_REG_CURSOR4_SCREEN_ID, SVGA3D_INVALID_ID);
vmw_write(dev_priv, SVGA_REG_CURSOR4_ON, svga_cursor_on);
vmw_write(dev_priv, SVGA_REG_CURSOR4_SUBMIT, 1);
} else if (vmw_is_cursor_bypass3_enabled(dev_priv)) {
vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, svga_cursor_on);
vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x);
vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y);
count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT);
vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count);
} else {
vmw_write(dev_priv, SVGA_REG_CURSOR_X, x);
vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y);
vmw_write(dev_priv, SVGA_REG_CURSOR_ON, svga_cursor_on);
}
spin_unlock(&dev_priv->cursor_lock);
}
void vmw_kms_cursor_snoop(struct vmw_surface *srf,
struct ttm_object_file *tfile,
struct ttm_buffer_object *bo,
SVGA3dCmdHeader *header)
{
struct ttm_bo_kmap_obj map;
unsigned long kmap_offset;
unsigned long kmap_num;
SVGA3dCopyBox *box;
unsigned box_count;
void *virtual;
bool is_iomem;
struct vmw_dma_cmd {
SVGA3dCmdHeader header;
SVGA3dCmdSurfaceDMA dma;
} *cmd;
int i, ret;
const struct SVGA3dSurfaceDesc *desc =
vmw_surface_get_desc(VMW_CURSOR_SNOOP_FORMAT);
const u32 image_pitch = VMW_CURSOR_SNOOP_WIDTH * desc->pitchBytesPerBlock;
cmd = container_of(header, struct vmw_dma_cmd, header);
/* No snooper installed, nothing to copy */
if (!srf->snooper.image)
return;
if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
DRM_ERROR("face and mipmap for cursors should never != 0\n");
return;
}
if (cmd->header.size < 64) {
DRM_ERROR("at least one full copy box must be given\n");
return;
}
box = (SVGA3dCopyBox *)&cmd[1];
box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
sizeof(SVGA3dCopyBox);
if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
box->x != 0 || box->y != 0 || box->z != 0 ||
box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
box->d != 1 || box_count != 1 ||
box->w > VMW_CURSOR_SNOOP_WIDTH || box->h > VMW_CURSOR_SNOOP_HEIGHT) {
/* TODO handle none page aligned offsets */
/* TODO handle more dst & src != 0 */
/* TODO handle more then one copy */
DRM_ERROR("Can't snoop dma request for cursor!\n");
DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
box->srcx, box->srcy, box->srcz,
box->x, box->y, box->z,
box->w, box->h, box->d, box_count,
cmd->dma.guest.ptr.offset);
return;
}
kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
kmap_num = (VMW_CURSOR_SNOOP_HEIGHT*image_pitch) >> PAGE_SHIFT;
ret = ttm_bo_reserve(bo, true, false, NULL);
if (unlikely(ret != 0)) {
DRM_ERROR("reserve failed\n");
return;
}
ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
if (unlikely(ret != 0))
goto err_unreserve;
virtual = ttm_kmap_obj_virtual(&map, &is_iomem);
if (box->w == VMW_CURSOR_SNOOP_WIDTH && cmd->dma.guest.pitch == image_pitch) {
memcpy(srf->snooper.image, virtual,
VMW_CURSOR_SNOOP_HEIGHT*image_pitch);
} else {
/* Image is unsigned pointer. */
for (i = 0; i < box->h; i++)
memcpy(srf->snooper.image + i * image_pitch,
virtual + i * cmd->dma.guest.pitch,
box->w * desc->pitchBytesPerBlock);
}
srf->snooper.age++;
ttm_bo_kunmap(&map);
err_unreserve:
ttm_bo_unreserve(bo);
}
/**
* vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
*
* @dev_priv: Pointer to the device private struct.
*
* Clears all legacy hotspots.
*/
void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct vmw_display_unit *du;
struct drm_crtc *crtc;
drm_modeset_lock_all(dev);
drm_for_each_crtc(crtc, dev) {
du = vmw_crtc_to_du(crtc);
du->hotspot_x = 0;
du->hotspot_y = 0;
}
drm_modeset_unlock_all(dev);
}
void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct vmw_display_unit *du;
struct drm_crtc *crtc;
mutex_lock(&dev->mode_config.mutex);
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
du = vmw_crtc_to_du(crtc);
if (!du->cursor_surface ||
du->cursor_age == du->cursor_surface->snooper.age ||
!du->cursor_surface->snooper.image)
continue;
du->cursor_age = du->cursor_surface->snooper.age;
vmw_send_define_cursor_cmd(dev_priv,
du->cursor_surface->snooper.image,
VMW_CURSOR_SNOOP_WIDTH,
VMW_CURSOR_SNOOP_HEIGHT,
du->hotspot_x + du->core_hotspot_x,
du->hotspot_y + du->core_hotspot_y);
}
mutex_unlock(&dev->mode_config.mutex);
}
void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
{
struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
u32 i;
vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++)
vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]);
drm_plane_cleanup(plane);
}
void vmw_du_primary_plane_destroy(struct drm_plane *plane)
{
drm_plane_cleanup(plane);
/* Planes are static in our case so we don't free it */
}
/**
* vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface
*
* @vps: plane state associated with the display surface
*/
void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps)
{
struct vmw_surface *surf = vmw_user_object_surface(&vps->uo);
if (surf) {
if (vps->pinned) {
vmw_resource_unpin(&surf->res);
vps->pinned--;
}
}
}
/**
* vmw_du_plane_cleanup_fb - Unpins the plane surface
*
* @plane: display plane
* @old_state: Contains the FB to clean up
*
* Unpins the framebuffer surface
*
* Returns 0 on success
*/
void
vmw_du_plane_cleanup_fb(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
vmw_du_plane_unpin_surf(vps);
}
/**
* vmw_du_cursor_plane_map_cm - Maps the cursor mobs.
*
* @vps: plane_state
*
* Returns 0 on success
*/
static int
vmw_du_cursor_plane_map_cm(struct vmw_plane_state *vps)
{
int ret;
u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h);
struct ttm_buffer_object *bo;
if (!vps->cursor.bo)
return -EINVAL;
bo = &vps->cursor.bo->tbo;
if (bo->base.size < size)
return -EINVAL;
if (vps->cursor.bo->map.virtual)
return 0;
ret = ttm_bo_reserve(bo, false, false, NULL);
if (unlikely(ret != 0))
return -ENOMEM;
vmw_bo_map_and_cache(vps->cursor.bo);
ttm_bo_unreserve(bo);
if (unlikely(ret != 0))
return -ENOMEM;
return 0;
}
/**
* vmw_du_cursor_plane_unmap_cm - Unmaps the cursor mobs.
*
* @vps: state of the cursor plane
*
* Returns 0 on success
*/
static int
vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps)
{
int ret = 0;
struct vmw_bo *vbo = vps->cursor.bo;
if (!vbo || !vbo->map.virtual)
return 0;
ret = ttm_bo_reserve(&vbo->tbo, true, false, NULL);
if (likely(ret == 0)) {
vmw_bo_unmap(vbo);
ttm_bo_unreserve(&vbo->tbo);
}
return ret;
}
/**
* vmw_du_cursor_plane_cleanup_fb - Unpins the plane surface
*
* @plane: cursor plane
* @old_state: contains the state to clean up
*
* Unmaps all cursor bo mappings and unpins the cursor surface
*
* Returns 0 on success
*/
void
vmw_du_cursor_plane_cleanup_fb(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
if (!vmw_user_object_is_null(&vps->uo))
vmw_user_object_unmap(&vps->uo);
vmw_du_cursor_plane_unmap_cm(vps);
vmw_du_put_cursor_mob(vcp, vps);
vmw_du_plane_unpin_surf(vps);
vmw_user_object_unref(&vps->uo);
}
/**
* vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
*
* @plane: display plane
* @new_state: info on the new plane state, including the FB
*
* Returns 0 on success
*/
int
vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
struct drm_plane_state *new_state)
{
struct drm_framebuffer *fb = new_state->fb;
struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
struct vmw_bo *bo = NULL;
int ret = 0;
if (!vmw_user_object_is_null(&vps->uo)) {
vmw_user_object_unmap(&vps->uo);
vmw_user_object_unref(&vps->uo);
}
if (fb) {
if (vmw_framebuffer_to_vfb(fb)->bo) {
vps->uo.buffer = vmw_framebuffer_to_vfbd(fb)->buffer;
vps->uo.surface = NULL;
} else {
memcpy(&vps->uo, &vmw_framebuffer_to_vfbs(fb)->uo, sizeof(vps->uo));
}
vmw_user_object_ref(&vps->uo);
}
bo = vmw_user_object_buffer(&vps->uo);
if (bo) {
struct ttm_operation_ctx ctx = {false, false};
ret = ttm_bo_reserve(&bo->tbo, true, false, NULL);
if (ret != 0)
return -ENOMEM;
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (ret != 0)
return -ENOMEM;
vmw_bo_pin_reserved(bo, true);
if (vmw_framebuffer_to_vfb(fb)->bo) {
const u32 size = new_state->crtc_w * new_state->crtc_h * sizeof(u32);
(void)vmw_bo_map_and_cache_size(bo, size);
} else {
vmw_bo_map_and_cache(bo);
}
ttm_bo_unreserve(&bo->tbo);
}
if (!vmw_user_object_is_null(&vps->uo)) {
vmw_du_get_cursor_mob(vcp, vps);
vmw_du_cursor_plane_map_cm(vps);
}
return 0;
}
void
vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
plane);
struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc;
struct vmw_private *dev_priv = vmw_priv(crtc->dev);
struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
struct vmw_plane_state *old_vps = vmw_plane_state_to_vps(old_state);
struct vmw_bo *old_bo = NULL;
struct vmw_bo *new_bo = NULL;
s32 hotspot_x, hotspot_y;
int ret;
hotspot_x = du->hotspot_x + new_state->hotspot_x;
hotspot_y = du->hotspot_y + new_state->hotspot_y;
du->cursor_surface = vmw_user_object_surface(&vps->uo);
if (vmw_user_object_is_null(&vps->uo)) {
vmw_cursor_update_position(dev_priv, false, 0, 0);
return;
}
vps->cursor.hotspot_x = hotspot_x;
vps->cursor.hotspot_y = hotspot_y;
if (du->cursor_surface)
du->cursor_age = du->cursor_surface->snooper.age;
if (!vmw_user_object_is_null(&old_vps->uo)) {
old_bo = vmw_user_object_buffer(&old_vps->uo);
ret = ttm_bo_reserve(&old_bo->tbo, false, false, NULL);
if (ret != 0)
return;
}
if (!vmw_user_object_is_null(&vps->uo)) {
new_bo = vmw_user_object_buffer(&vps->uo);
if (old_bo != new_bo) {
ret = ttm_bo_reserve(&new_bo->tbo, false, false, NULL);
if (ret != 0)
return;
} else {
new_bo = NULL;
}
}
if (!vmw_du_cursor_plane_has_changed(old_vps, vps)) {
/*
* If it hasn't changed, avoid making the device do extra
* work by keeping the old cursor active.
*/
struct vmw_cursor_plane_state tmp = old_vps->cursor;
old_vps->cursor = vps->cursor;
vps->cursor = tmp;
} else {
void *image = vmw_du_cursor_plane_acquire_image(vps);
if (image)
vmw_cursor_update_image(dev_priv, vps, image,
new_state->crtc_w,
new_state->crtc_h,
hotspot_x, hotspot_y);
}
if (old_bo)
ttm_bo_unreserve(&old_bo->tbo);
if (new_bo)
ttm_bo_unreserve(&new_bo->tbo);
du->cursor_x = new_state->crtc_x + du->set_gui_x;
du->cursor_y = new_state->crtc_y + du->set_gui_y;
vmw_cursor_update_position(dev_priv, true,
du->cursor_x + hotspot_x,
du->cursor_y + hotspot_y);
du->core_hotspot_x = hotspot_x - du->hotspot_x;
du->core_hotspot_y = hotspot_y - du->hotspot_y;
}
/**
* vmw_du_primary_plane_atomic_check - check if the new state is okay
*
* @plane: display plane
* @state: info on the new plane state, including the FB
*
* Check if the new state is settable given the current state. Other
* than what the atomic helper checks, we care about crtc fitting
* the FB and maintaining one active framebuffer.
*
* Returns 0 on success
*/
int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
plane);
struct drm_crtc_state *crtc_state = NULL;
struct drm_framebuffer *new_fb = new_state->fb;
struct drm_framebuffer *old_fb = old_state->fb;
int ret;
/*
* Ignore damage clips if the framebuffer attached to the plane's state
* has changed since the last plane update (page-flip). In this case, a
* full plane update should happen because uploads are done per-buffer.
*/
if (old_fb != new_fb)
new_state->ignore_damage_clips = true;
if (new_state->crtc)
crtc_state = drm_atomic_get_new_crtc_state(state,
new_state->crtc);
ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
false, true);
return ret;
}
/**
* vmw_du_cursor_plane_atomic_check - check if the new state is okay
*
* @plane: cursor plane
* @state: info on the new plane state
*
* This is a chance to fail if the new cursor state does not fit
* our requirements.
*
* Returns 0 on success
*/
int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
int ret = 0;
struct drm_crtc_state *crtc_state = NULL;
struct vmw_surface *surface = NULL;
struct drm_framebuffer *fb = new_state->fb;
if (new_state->crtc)
crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
new_state->crtc);
ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
true, true);
if (ret)
return ret;
/* Turning off */
if (!fb)
return 0;
/* A lot of the code assumes this */
if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
new_state->crtc_w, new_state->crtc_h);
return -EINVAL;
}
if (!vmw_framebuffer_to_vfb(fb)->bo) {
surface = vmw_user_object_surface(&vmw_framebuffer_to_vfbs(fb)->uo);
WARN_ON(!surface);
if (!surface ||
(!surface->snooper.image && !surface->res.guest_memory_bo)) {
DRM_ERROR("surface not suitable for cursor\n");
return -EINVAL;
}
}
return 0;
}
int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vmw_private *vmw = vmw_priv(crtc->dev);
struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
int connector_mask = drm_connector_mask(&du->connector);
bool has_primary = new_state->plane_mask &
drm_plane_mask(crtc->primary);
/*
* This is fine in general, but broken userspace might expect
* some actual rendering so give a clue as why it's blank.
*/
if (new_state->enable && !has_primary)
drm_dbg_driver(&vmw->drm,
"CRTC without a primary plane will be blank.\n");
if (new_state->connector_mask != connector_mask &&
new_state->connector_mask != 0) {
DRM_ERROR("Invalid connectors configuration\n");
return -EINVAL;
}
/*
* Our virtual device does not have a dot clock, so use the logical
* clock value as the dot clock.
*/
if (new_state->mode.crtc_clock == 0)
new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
return 0;
}
void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
vmw_vkms_crtc_atomic_begin(crtc, state);
}
/**
* vmw_du_crtc_duplicate_state - duplicate crtc state
* @crtc: DRM crtc
*
* Allocates and returns a copy of the crtc state (both common and
* vmw-specific) for the specified crtc.
*
* Returns: The newly allocated crtc state, or NULL on failure.
*/
struct drm_crtc_state *
vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct drm_crtc_state *state;
struct vmw_crtc_state *vcs;
if (WARN_ON(!crtc->state))
return NULL;
vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
if (!vcs)
return NULL;
state = &vcs->base;
__drm_atomic_helper_crtc_duplicate_state(crtc, state);
return state;
}
/**
* vmw_du_crtc_reset - creates a blank vmw crtc state
* @crtc: DRM crtc
*
* Resets the atomic state for @crtc by freeing the state pointer (which
* might be NULL, e.g. at driver load time) and allocating a new empty state
* object.
*/
void vmw_du_crtc_reset(struct drm_crtc *crtc)
{
struct vmw_crtc_state *vcs;
if (crtc->state) {
__drm_atomic_helper_crtc_destroy_state(crtc->state);
kfree(vmw_crtc_state_to_vcs(crtc->state));
}
vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
if (!vcs) {
DRM_ERROR("Cannot allocate vmw_crtc_state\n");
return;
}
__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
}
/**
* vmw_du_crtc_destroy_state - destroy crtc state
* @crtc: DRM crtc
* @state: state object to destroy
*
* Destroys the crtc state (both common and vmw-specific) for the
* specified plane.
*/
void
vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
drm_atomic_helper_crtc_destroy_state(crtc, state);
}
/**
* vmw_du_plane_duplicate_state - duplicate plane state
* @plane: drm plane
*
* Allocates and returns a copy of the plane state (both common and
* vmw-specific) for the specified plane.
*
* Returns: The newly allocated plane state, or NULL on failure.
*/
struct drm_plane_state *
vmw_du_plane_duplicate_state(struct drm_plane *plane)
{
struct drm_plane_state *state;
struct vmw_plane_state *vps;
vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
if (!vps)
return NULL;
vps->pinned = 0;
vps->cpp = 0;
memset(&vps->cursor, 0, sizeof(vps->cursor));
/* Each ref counted resource needs to be acquired again */
vmw_user_object_ref(&vps->uo);
state = &vps->base;
__drm_atomic_helper_plane_duplicate_state(plane, state);
return state;
}
/**
* vmw_du_plane_reset - creates a blank vmw plane state
* @plane: drm plane
*
* Resets the atomic state for @plane by freeing the state pointer (which might
* be NULL, e.g. at driver load time) and allocating a new empty state object.
*/
void vmw_du_plane_reset(struct drm_plane *plane)
{
struct vmw_plane_state *vps;
if (plane->state)
vmw_du_plane_destroy_state(plane, plane->state);
vps = kzalloc(sizeof(*vps), GFP_KERNEL);
if (!vps) {
DRM_ERROR("Cannot allocate vmw_plane_state\n");
return;
}
__drm_atomic_helper_plane_reset(plane, &vps->base);
}
/**
* vmw_du_plane_destroy_state - destroy plane state
* @plane: DRM plane
* @state: state object to destroy
*
* Destroys the plane state (both common and vmw-specific) for the
* specified plane.
*/
void
vmw_du_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
/* Should have been freed by cleanup_fb */
vmw_user_object_unref(&vps->uo);
drm_atomic_helper_plane_destroy_state(plane, state);
}
/**
* vmw_du_connector_duplicate_state - duplicate connector state
* @connector: DRM connector
*
* Allocates and returns a copy of the connector state (both common and
* vmw-specific) for the specified connector.
*
* Returns: The newly allocated connector state, or NULL on failure.
*/
struct drm_connector_state *
vmw_du_connector_duplicate_state(struct drm_connector *connector)
{
struct drm_connector_state *state;
struct vmw_connector_state *vcs;
if (WARN_ON(!connector->state))
return NULL;
vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
if (!vcs)
return NULL;
state = &vcs->base;
__drm_atomic_helper_connector_duplicate_state(connector, state);
return state;
}
/**
* vmw_du_connector_reset - creates a blank vmw connector state
* @connector: DRM connector
*
* Resets the atomic state for @connector by freeing the state pointer (which
* might be NULL, e.g. at driver load time) and allocating a new empty state
* object.
*/
void vmw_du_connector_reset(struct drm_connector *connector)
{
struct vmw_connector_state *vcs;
if (connector->state) {
__drm_atomic_helper_connector_destroy_state(connector->state);
kfree(vmw_connector_state_to_vcs(connector->state));
}
vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
if (!vcs) {
DRM_ERROR("Cannot allocate vmw_connector_state\n");
return;
}
__drm_atomic_helper_connector_reset(connector, &vcs->base);
}
/**
* vmw_du_connector_destroy_state - destroy connector state
* @connector: DRM connector
* @state: state object to destroy
*
* Destroys the connector state (both common and vmw-specific) for the
* specified plane.
*/
void
vmw_du_connector_destroy_state(struct drm_connector *connector,
struct drm_connector_state *state)
{
drm_atomic_helper_connector_destroy_state(connector, state);
}
/*
* Generic framebuffer code
*/
/*
* Surface framebuffer code
*/
static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
{
struct vmw_framebuffer_surface *vfbs =
vmw_framebuffer_to_vfbs(framebuffer);
drm_framebuffer_cleanup(framebuffer);
vmw_user_object_unref(&vfbs->uo);
kfree(vfbs);
}
/**
* vmw_kms_readback - Perform a readback from the screen system to
* a buffer-object backed framebuffer.
*
* @dev_priv: Pointer to the device private structure.
* @file_priv: Pointer to a struct drm_file identifying the caller.
* Must be set to NULL if @user_fence_rep is NULL.
* @vfb: Pointer to the buffer-object backed framebuffer.
* @user_fence_rep: User-space provided structure for fence information.
* Must be set to non-NULL if @file_priv is non-NULL.
* @vclips: Array of clip rects.
* @num_clips: Number of clip rects in @vclips.
*
* Returns 0 on success, negative error code on failure. -ERESTARTSYS if
* interrupted.
*/
int vmw_kms_readback(struct vmw_private *dev_priv,
struct drm_file *file_priv,
struct vmw_framebuffer *vfb,
struct drm_vmw_fence_rep __user *user_fence_rep,
struct drm_vmw_rect *vclips,
uint32_t num_clips)
{
switch (dev_priv->active_display_unit) {
case vmw_du_screen_object:
return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
user_fence_rep, vclips, num_clips,
NULL);
case vmw_du_screen_target:
return vmw_kms_stdu_readback(dev_priv, file_priv, vfb,
user_fence_rep, NULL, vclips, num_clips,
1, NULL);
default:
WARN_ONCE(true,
"Readback called with invalid display system.\n");
}
return -ENOSYS;
}
static int vmw_framebuffer_surface_create_handle(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct vmw_framebuffer_surface *vfbs = vmw_framebuffer_to_vfbs(fb);
struct vmw_bo *bo = vmw_user_object_buffer(&vfbs->uo);
return drm_gem_handle_create(file_priv, &bo->tbo.base, handle);
}
static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
.create_handle = vmw_framebuffer_surface_create_handle,
.destroy = vmw_framebuffer_surface_destroy,
.dirty = drm_atomic_helper_dirtyfb,
};
static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
struct vmw_user_object *uo,
struct vmw_framebuffer **out,
const struct drm_mode_fb_cmd2
*mode_cmd)
{
struct drm_device *dev = &dev_priv->drm;
struct vmw_framebuffer_surface *vfbs;
struct vmw_surface *surface;
int ret;
/* 3D is only supported on HWv8 and newer hosts */
if (dev_priv->active_display_unit == vmw_du_legacy)
return -ENOSYS;
surface = vmw_user_object_surface(uo);
/*
* Sanity checks.
*/
if (!drm_any_plane_has_format(&dev_priv->drm,
mode_cmd->pixel_format,
mode_cmd->modifier[0])) {
drm_dbg(&dev_priv->drm,
"unsupported pixel format %p4cc / modifier 0x%llx\n",
&mode_cmd->pixel_format, mode_cmd->modifier[0]);
return -EINVAL;
}
/* Surface must be marked as a scanout. */
if (unlikely(!surface->metadata.scanout))
return -EINVAL;
if (unlikely(surface->metadata.mip_levels[0] != 1 ||
surface->metadata.num_sizes != 1 ||
surface->metadata.base_size.width < mode_cmd->width ||
surface->metadata.base_size.height < mode_cmd->height ||
surface->metadata.base_size.depth != 1)) {
DRM_ERROR("Incompatible surface dimensions "
"for requested mode.\n");
return -EINVAL;
}
vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
if (!vfbs) {
ret = -ENOMEM;
goto out_err1;
}
drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
memcpy(&vfbs->uo, uo, sizeof(vfbs->uo));
vmw_user_object_ref(&vfbs->uo);
*out = &vfbs->base;
ret = drm_framebuffer_init(dev, &vfbs->base.base,
&vmw_framebuffer_surface_funcs);
if (ret)
goto out_err2;
return 0;
out_err2:
vmw_user_object_unref(&vfbs->uo);
kfree(vfbs);
out_err1:
return ret;
}
/*
* Buffer-object framebuffer code
*/
static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct vmw_framebuffer_bo *vfbd =
vmw_framebuffer_to_vfbd(fb);
return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle);
}
static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
{
struct vmw_framebuffer_bo *vfbd =
vmw_framebuffer_to_vfbd(framebuffer);
drm_framebuffer_cleanup(framebuffer);
vmw_bo_unreference(&vfbd->buffer);
kfree(vfbd);
}
static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
.create_handle = vmw_framebuffer_bo_create_handle,
.destroy = vmw_framebuffer_bo_destroy,
.dirty = drm_atomic_helper_dirtyfb,
};
static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
struct vmw_bo *bo,
struct vmw_framebuffer **out,
const struct drm_mode_fb_cmd2
*mode_cmd)
{
struct drm_device *dev = &dev_priv->drm;
struct vmw_framebuffer_bo *vfbd;
unsigned int requested_size;
int ret;
requested_size = mode_cmd->height * mode_cmd->pitches[0];
if (unlikely(requested_size > bo->tbo.base.size)) {
DRM_ERROR("Screen buffer object size is too small "
"for requested mode.\n");
return -EINVAL;
}
if (!drm_any_plane_has_format(&dev_priv->drm,
mode_cmd->pixel_format,
mode_cmd->modifier[0])) {
drm_dbg(&dev_priv->drm,
"unsupported pixel format %p4cc / modifier 0x%llx\n",
&mode_cmd->pixel_format, mode_cmd->modifier[0]);
return -EINVAL;
}
vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
if (!vfbd) {
ret = -ENOMEM;
goto out_err1;
}
vfbd->base.base.obj[0] = &bo->tbo.base;
drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
vfbd->base.bo = true;
vfbd->buffer = vmw_bo_reference(bo);
*out = &vfbd->base;
ret = drm_framebuffer_init(dev, &vfbd->base.base,
&vmw_framebuffer_bo_funcs);
if (ret)
goto out_err2;
return 0;
out_err2:
vmw_bo_unreference(&bo);
kfree(vfbd);
out_err1:
return ret;
}
/**
* vmw_kms_srf_ok - check if a surface can be created
*
* @dev_priv: Pointer to device private struct.
* @width: requested width
* @height: requested height
*
* Surfaces need to be less than texture size
*/
static bool
vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
{
if (width > dev_priv->texture_max_width ||
height > dev_priv->texture_max_height)
return false;
return true;
}
/**
* vmw_kms_new_framebuffer - Create a new framebuffer.
*
* @dev_priv: Pointer to device private struct.
* @uo: Pointer to user object to wrap the kms framebuffer around.
* Either the buffer or surface inside the user object must be NULL.
* @mode_cmd: Frame-buffer metadata.
*/
struct vmw_framebuffer *
vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
struct vmw_user_object *uo,
const struct drm_mode_fb_cmd2 *mode_cmd)
{
struct vmw_framebuffer *vfb = NULL;
int ret;
/* Create the new framebuffer depending one what we have */
if (vmw_user_object_surface(uo)) {
ret = vmw_kms_new_framebuffer_surface(dev_priv, uo, &vfb,
mode_cmd);
} else if (uo->buffer) {
ret = vmw_kms_new_framebuffer_bo(dev_priv, uo->buffer, &vfb,
mode_cmd);
} else {
BUG();
}
if (ret)
return ERR_PTR(ret);
return vfb;
}
/*
* Generic Kernel modesetting functions
*/
static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
struct drm_file *file_priv,
const struct drm_mode_fb_cmd2 *mode_cmd)
{
struct vmw_private *dev_priv = vmw_priv(dev);
struct vmw_framebuffer *vfb = NULL;
struct vmw_user_object uo = {0};
int ret;
/* returns either a bo or surface */
ret = vmw_user_object_lookup(dev_priv, file_priv, mode_cmd->handles[0],
&uo);
if (ret) {
DRM_ERROR("Invalid buffer object handle %u (0x%x).\n",
mode_cmd->handles[0], mode_cmd->handles[0]);
goto err_out;
}
if (vmw_user_object_surface(&uo) &&
!vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
DRM_ERROR("Surface size cannot exceed %dx%d\n",
dev_priv->texture_max_width,
dev_priv->texture_max_height);
ret = -EINVAL;
goto err_out;
}
vfb = vmw_kms_new_framebuffer(dev_priv, &uo, mode_cmd);
if (IS_ERR(vfb)) {
ret = PTR_ERR(vfb);
goto err_out;
}
err_out:
/* vmw_user_object_lookup takes one ref so does new_fb */
vmw_user_object_unref(&uo);
if (ret) {
DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
return ERR_PTR(ret);
}
return &vfb->base;
}
/**
* vmw_kms_check_display_memory - Validates display memory required for a
* topology
* @dev: DRM device
* @num_rects: number of drm_rect in rects
* @rects: array of drm_rect representing the topology to validate indexed by
* crtc index.
*
* Returns:
* 0 on success otherwise negative error code
*/
static int vmw_kms_check_display_memory(struct drm_device *dev,
uint32_t num_rects,
struct drm_rect *rects)
{
struct vmw_private *dev_priv = vmw_priv(dev);
struct drm_rect bounding_box = {0};
u64 total_pixels = 0, pixel_mem, bb_mem;
int i;
for (i = 0; i < num_rects; i++) {
/*
* For STDU only individual screen (screen target) is limited by
* SCREENTARGET_MAX_WIDTH/HEIGHT registers.
*/
if (dev_priv->active_display_unit == vmw_du_screen_target &&
(drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
VMW_DEBUG_KMS("Screen size not supported.\n");
return -EINVAL;
}
/* Bounding box upper left is at (0,0). */
if (rects[i].x2 > bounding_box.x2)
bounding_box.x2 = rects[i].x2;
if (rects[i].y2 > bounding_box.y2)
bounding_box.y2 = rects[i].y2;
total_pixels += (u64) drm_rect_width(&rects[i]) *
(u64) drm_rect_height(&rects[i]);
}
/* Virtual svga device primary limits are always in 32-bpp. */
pixel_mem = total_pixels * 4;
/*
* For HV10 and below prim_bb_mem is vram size. When
* SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
* limit on primary bounding box
*/
if (pixel_mem > dev_priv->max_primary_mem) {
VMW_DEBUG_KMS("Combined output size too large.\n");
return -EINVAL;
}
/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
if (dev_priv->active_display_unit != vmw_du_screen_target ||
!(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
if (bb_mem > dev_priv->max_primary_mem) {
VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
return -EINVAL;
}
}
return 0;
}
/**
* vmw_crtc_state_and_lock - Return new or current crtc state with locked
* crtc mutex
* @state: The atomic state pointer containing the new atomic state
* @crtc: The crtc
*
* This function returns the new crtc state if it's part of the state update.
* Otherwise returns the current crtc state. It also makes sure that the
* crtc mutex is locked.
*
* Returns: A valid crtc state pointer or NULL. It may also return a
* pointer error, in particular -EDEADLK if locking needs to be rerun.
*/
static struct drm_crtc_state *
vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
{
struct drm_crtc_state *crtc_state;
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
if (crtc_state) {
lockdep_assert_held(&crtc->mutex.mutex.base);
} else {
int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
if (ret != 0 && ret != -EALREADY)
return ERR_PTR(ret);
crtc_state = crtc->state;
}
return crtc_state;
}
/**
* vmw_kms_check_implicit - Verify that all implicit display units scan out
* from the same fb after the new state is committed.
* @dev: The drm_device.
* @state: The new state to be checked.
*
* Returns:
* Zero on success,
* -EINVAL on invalid state,
* -EDEADLK if modeset locking needs to be rerun.
*/
static int vmw_kms_check_implicit(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct drm_framebuffer *implicit_fb = NULL;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
struct drm_plane_state *plane_state;
drm_for_each_crtc(crtc, dev) {
struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
if (!du->is_implicit)
continue;
crtc_state = vmw_crtc_state_and_lock(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (!crtc_state || !crtc_state->enable)
continue;
/*
* Can't move primary planes across crtcs, so this is OK.
* It also means we don't need to take the plane mutex.
*/
plane_state = du->primary.state;
if (plane_state->crtc != crtc)
continue;
if (!implicit_fb)
implicit_fb = plane_state->fb;
else if (implicit_fb != plane_state->fb)
return -EINVAL;
}
return 0;
}
/**
* vmw_kms_check_topology - Validates topology in drm_atomic_state
* @dev: DRM device
* @state: the driver state object
*
* Returns:
* 0 on success otherwise negative error code
*/
static int vmw_kms_check_topology(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct drm_rect *rects;
struct drm_crtc *crtc;
uint32_t i;
int ret = 0;
rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
GFP_KERNEL);
if (!rects)
return -ENOMEM;
drm_for_each_crtc(crtc, dev) {
struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
struct drm_crtc_state *crtc_state;
i = drm_crtc_index(crtc);
crtc_state = vmw_crtc_state_and_lock(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto clean;
}
if (!crtc_state)
continue;
if (crtc_state->enable) {
rects[i].x1 = du->gui_x;
rects[i].y1 = du->gui_y;
rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
} else {
rects[i].x1 = 0;
rects[i].y1 = 0;
rects[i].x2 = 0;
rects[i].y2 = 0;
}
}
/* Determine change to topology due to new atomic state */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
struct drm_connector *connector;
struct drm_connector_state *conn_state;
struct vmw_connector_state *vmw_conn_state;
if (!du->pref_active && new_crtc_state->enable) {
VMW_DEBUG_KMS("Enabling a disabled display unit\n");
ret = -EINVAL;
goto clean;
}
/*
* For vmwgfx each crtc has only one connector attached and it
* is not changed so don't really need to check the
* crtc->connector_mask and iterate over it.
*/
connector = &du->connector;
conn_state = drm_atomic_get_connector_state(state, connector);
if (IS_ERR(conn_state)) {
ret = PTR_ERR(conn_state);
goto clean;
}
vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
vmw_conn_state->gui_x = du->gui_x;
vmw_conn_state->gui_y = du->gui_y;
}
ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
rects);
clean:
kfree(rects);
return ret;
}
/**
* vmw_kms_atomic_check_modeset- validate state object for modeset changes
*
* @dev: DRM device
* @state: the driver state object
*
* This is a simple wrapper around drm_atomic_helper_check_modeset() for
* us to assign a value to mode->crtc_clock so that
* drm_calc_timestamping_constants() won't throw an error message
*
* Returns:
* Zero for success or -errno
*/
static int
vmw_kms_atomic_check_modeset(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
bool need_modeset = false;
int i, ret;
ret = drm_atomic_helper_check(dev, state);
if (ret)
return ret;
ret = vmw_kms_check_implicit(dev, state);
if (ret) {
VMW_DEBUG_KMS("Invalid implicit state\n");
return ret;
}
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
if (drm_atomic_crtc_needs_modeset(crtc_state))
need_modeset = true;
}
if (need_modeset)
return vmw_kms_check_topology(dev, state);
return ret;
}
static const struct drm_mode_config_funcs vmw_kms_funcs = {
.fb_create = vmw_kms_fb_create,
.atomic_check = vmw_kms_atomic_check_modeset,
.atomic_commit = drm_atomic_helper_commit,
};
static int vmw_kms_generic_present(struct vmw_private *dev_priv,
struct drm_file *file_priv,
struct vmw_framebuffer *vfb,
struct vmw_surface *surface,
uint32_t sid,
int32_t destX, int32_t destY,
struct drm_vmw_rect *clips,
uint32_t num_clips)
{
return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
&surface->res, destX, destY,
num_clips, 1, NULL, NULL);
}
int vmw_kms_present(struct vmw_private *dev_priv,
struct drm_file *file_priv,
struct vmw_framebuffer *vfb,
struct vmw_surface *surface,
uint32_t sid,
int32_t destX, int32_t destY,
struct drm_vmw_rect *clips,
uint32_t num_clips)
{
int ret;
switch (dev_priv->active_display_unit) {
case vmw_du_screen_target:
ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
&surface->res, destX, destY,
num_clips, 1, NULL, NULL);
break;
case vmw_du_screen_object:
ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
sid, destX, destY, clips,
num_clips);
break;
default:
WARN_ONCE(true,
"Present called with invalid display system.\n");
ret = -ENOSYS;
break;
}
if (ret)
return ret;
vmw_cmd_flush(dev_priv, false);
return 0;
}
static void
vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
{
if (dev_priv->hotplug_mode_update_property)
return;
dev_priv->hotplug_mode_update_property =
drm_property_create_range(&dev_priv->drm,
DRM_MODE_PROP_IMMUTABLE,
"hotplug_mode_update", 0, 1);
}
static void
vmw_atomic_commit_tail(struct drm_atomic_state *old_state)
{
struct vmw_private *vmw = vmw_priv(old_state->dev);
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
int i;
drm_atomic_helper_commit_tail(old_state);
if (vmw->vkms_enabled) {
for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) {
struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
(void)old_crtc_state;
flush_work(&du->vkms.crc_generator_work);
}
}
}
static const struct drm_mode_config_helper_funcs vmw_mode_config_helpers = {
.atomic_commit_tail = vmw_atomic_commit_tail,
};
int vmw_kms_init(struct vmw_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
int ret;
static const char *display_unit_names[] = {
"Invalid",
"Legacy",
"Screen Object",
"Screen Target",
"Invalid (max)"
};
drm_mode_config_init(dev);
dev->mode_config.funcs = &vmw_kms_funcs;
dev->mode_config.min_width = 1;
dev->mode_config.min_height = 1;
dev->mode_config.max_width = dev_priv->texture_max_width;
dev->mode_config.max_height = dev_priv->texture_max_height;
dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32;
dev->mode_config.helper_private = &vmw_mode_config_helpers;
drm_mode_create_suggested_offset_properties(dev);
vmw_kms_create_hotplug_mode_update_property(dev_priv);
ret = vmw_kms_stdu_init_display(dev_priv);
if (ret) {
ret = vmw_kms_sou_init_display(dev_priv);
if (ret) /* Fallback */
ret = vmw_kms_ldu_init_display(dev_priv);
}
BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1));
drm_info(&dev_priv->drm, "%s display unit initialized\n",
display_unit_names[dev_priv->active_display_unit]);
return ret;
}
int vmw_kms_close(struct vmw_private *dev_priv)
{
int ret = 0;
/*
* Docs says we should take the lock before calling this function
* but since it destroys encoders and our destructor calls
* drm_encoder_cleanup which takes the lock we deadlock.
*/
drm_mode_config_cleanup(&dev_priv->drm);
if (dev_priv->active_display_unit == vmw_du_legacy)
ret = vmw_kms_ldu_close_display(dev_priv);
return ret;
}
int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_cursor_bypass_arg *arg = data;
struct vmw_display_unit *du;
struct drm_crtc *crtc;
int ret = 0;
mutex_lock(&dev->mode_config.mutex);
if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
du = vmw_crtc_to_du(crtc);
du->hotspot_x = arg->xhot;
du->hotspot_y = arg->yhot;
}
mutex_unlock(&dev->mode_config.mutex);
return 0;
}
crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
if (!crtc) {
ret = -ENOENT;
goto out;
}
du = vmw_crtc_to_du(crtc);
du->hotspot_x = arg->xhot;
du->hotspot_y = arg->yhot;
out:
mutex_unlock(&dev->mode_config.mutex);
return ret;
}
int vmw_kms_write_svga(struct vmw_private *vmw_priv,
unsigned width, unsigned height, unsigned pitch,
unsigned bpp, unsigned depth)
{
if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
else if (vmw_fifo_have_pitchlock(vmw_priv))
vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch);
vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0)
vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
return -EINVAL;
}
return 0;
}
static
bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
u64 pitch,
u64 height)
{
return (pitch * height) < (u64)dev_priv->vram_size;
}
/**
* vmw_du_update_layout - Update the display unit with topology from resolution
* plugin and generate DRM uevent
* @dev_priv: device private
* @num_rects: number of drm_rect in rects
* @rects: toplogy to update
*/
static int vmw_du_update_layout(struct vmw_private *dev_priv,
unsigned int num_rects, struct drm_rect *rects)
{
struct drm_device *dev = &dev_priv->drm;
struct vmw_display_unit *du;
struct drm_connector *con;
struct drm_connector_list_iter conn_iter;
struct drm_modeset_acquire_ctx ctx;
struct drm_crtc *crtc;
int ret;
/* Currently gui_x/y is protected with the crtc mutex */
mutex_lock(&dev->mode_config.mutex);
drm_modeset_acquire_init(&ctx, 0);
retry:
drm_for_each_crtc(crtc, dev) {
ret = drm_modeset_lock(&crtc->mutex, &ctx);
if (ret < 0) {
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
goto retry;
}
goto out_fini;
}
}
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(con, &conn_iter) {
du = vmw_connector_to_du(con);
if (num_rects > du->unit) {
du->pref_width = drm_rect_width(&rects[du->unit]);
du->pref_height = drm_rect_height(&rects[du->unit]);
du->pref_active = true;
du->gui_x = rects[du->unit].x1;
du->gui_y = rects[du->unit].y1;
} else {
du->pref_width = VMWGFX_MIN_INITIAL_WIDTH;
du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT;
du->pref_active = false;
du->gui_x = 0;
du->gui_y = 0;
}
}
drm_connector_list_iter_end(&conn_iter);
list_for_each_entry(con, &dev->mode_config.connector_list, head) {
du = vmw_connector_to_du(con);
if (num_rects > du->unit) {
drm_object_property_set_value
(&con->base, dev->mode_config.suggested_x_property,
du->gui_x);
drm_object_property_set_value
(&con->base, dev->mode_config.suggested_y_property,
du->gui_y);
} else {
drm_object_property_set_value
(&con->base, dev->mode_config.suggested_x_property,
0);
drm_object_property_set_value
(&con->base, dev->mode_config.suggested_y_property,
0);
}
con->status = vmw_du_connector_detect(con, true);
}
out_fini:
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
mutex_unlock(&dev->mode_config.mutex);
drm_sysfs_hotplug_event(dev);
return 0;
}
int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
u16 *r, u16 *g, u16 *b,
uint32_t size,
struct drm_modeset_acquire_ctx *ctx)
{
struct vmw_private *dev_priv = vmw_priv(crtc->dev);
int i;
for (i = 0; i < size; i++) {
DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
r[i], g[i], b[i]);
vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
}
return 0;
}
int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
{
return 0;
}
enum drm_connector_status
vmw_du_connector_detect(struct drm_connector *connector, bool force)
{
uint32_t num_displays;
struct drm_device *dev = connector->dev;
struct vmw_private *dev_priv = vmw_priv(dev);
struct vmw_display_unit *du = vmw_connector_to_du(connector);
num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
return ((vmw_connector_to_du(connector)->unit < num_displays &&
du->pref_active) ?
connector_status_connected : connector_status_disconnected);
}
/**
* vmw_guess_mode_timing - Provide fake timings for a
* 60Hz vrefresh mode.
*
* @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay
* members filled in.
*/
void vmw_guess_mode_timing(struct drm_display_mode *mode)
{
mode->hsync_start = mode->hdisplay + 50;
mode->hsync_end = mode->hsync_start + 50;
mode->htotal = mode->hsync_end + 50;
mode->vsync_start = mode->vdisplay + 50;
mode->vsync_end = mode->vsync_start + 50;
mode->vtotal = mode->vsync_end + 50;
mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
}
/**
* vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Update preferred topology of display unit as per ioctl request. The topology
* is expressed as array of drm_vmw_rect.
* e.g.
* [0 0 640 480] [640 0 800 600] [0 480 640 480]
*
* NOTE:
* The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
* device limit on topology, x + w and y + h (lower right) cannot be greater
* than INT_MAX. So topology beyond these limits will return with error.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct vmw_private *dev_priv = vmw_priv(dev);
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_vmw_update_layout_arg *arg =
(struct drm_vmw_update_layout_arg *)data;
const void __user *user_rects;
struct drm_vmw_rect *rects;
struct drm_rect *drm_rects;
unsigned rects_size;
int ret, i;
if (!arg->num_outputs) {
struct drm_rect def_rect = {0, 0,
VMWGFX_MIN_INITIAL_WIDTH,
VMWGFX_MIN_INITIAL_HEIGHT};
vmw_du_update_layout(dev_priv, 1, &def_rect);
return 0;
} else if (arg->num_outputs > VMWGFX_NUM_DISPLAY_UNITS) {
return -E2BIG;
}
rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
GFP_KERNEL);
if (unlikely(!rects))
return -ENOMEM;
user_rects = (void __user *)(unsigned long)arg->rects;
ret = copy_from_user(rects, user_rects, rects_size);
if (unlikely(ret != 0)) {
DRM_ERROR("Failed to get rects.\n");
ret = -EFAULT;
goto out_free;
}
drm_rects = (struct drm_rect *)rects;
VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
for (i = 0; i < arg->num_outputs; i++) {
struct drm_vmw_rect curr_rect;
/* Verify user-space for overflow as kernel use drm_rect */
if ((rects[i].x + rects[i].w > INT_MAX) ||
(rects[i].y + rects[i].h > INT_MAX)) {
ret = -ERANGE;
goto out_free;
}
curr_rect = rects[i];
drm_rects[i].x1 = curr_rect.x;
drm_rects[i].y1 = curr_rect.y;
drm_rects[i].x2 = curr_rect.x + curr_rect.w;
drm_rects[i].y2 = curr_rect.y + curr_rect.h;
VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n",
drm_rects[i].x1, drm_rects[i].y1,
drm_rects[i].x2, drm_rects[i].y2);
/*
* Currently this check is limiting the topology within
* mode_config->max (which actually is max texture size
* supported by virtual device). This limit is here to address
* window managers that create a big framebuffer for whole
* topology.
*/
if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 ||
drm_rects[i].x2 > mode_config->max_width ||
drm_rects[i].y2 > mode_config->max_height) {
VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
drm_rects[i].x1, drm_rects[i].y1,
drm_rects[i].x2, drm_rects[i].y2);
ret = -EINVAL;
goto out_free;
}
}
ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
if (ret == 0)
vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
out_free:
kfree(rects);
return ret;
}
/**
* vmw_kms_helper_dirty - Helper to build commands and perform actions based
* on a set of cliprects and a set of display units.
*
* @dev_priv: Pointer to a device private structure.
* @framebuffer: Pointer to the framebuffer on which to perform the actions.
* @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
* Cliprects are given in framebuffer coordinates.
* @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
* be NULL. Cliprects are given in source coordinates.
* @dest_x: X coordinate offset for the crtc / destination clip rects.
* @dest_y: Y coordinate offset for the crtc / destination clip rects.
* @num_clips: Number of cliprects in the @clips or @vclips array.
* @increment: Integer with which to increment the clip counter when looping.
* Used to skip a predetermined number of clip rects.
* @dirty: Closure structure. See the description of struct vmw_kms_dirty.
*/
int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
struct vmw_framebuffer *framebuffer,
const struct drm_clip_rect *clips,
const struct drm_vmw_rect *vclips,
s32 dest_x, s32 dest_y,
int num_clips,
int increment,
struct vmw_kms_dirty *dirty)
{
struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
struct drm_crtc *crtc;
u32 num_units = 0;
u32 i, k;
dirty->dev_priv = dev_priv;
/* If crtc is passed, no need to iterate over other display units */
if (dirty->crtc) {
units[num_units++] = vmw_crtc_to_du(dirty->crtc);
} else {
list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list,
head) {
struct drm_plane *plane = crtc->primary;
if (plane->state->fb == &framebuffer->base)
units[num_units++] = vmw_crtc_to_du(crtc);
}
}
for (k = 0; k < num_units; k++) {
struct vmw_display_unit *unit = units[k];
s32 crtc_x = unit->crtc.x;
s32 crtc_y = unit->crtc.y;
s32 crtc_width = unit->crtc.mode.hdisplay;
s32 crtc_height = unit->crtc.mode.vdisplay;
const struct drm_clip_rect *clips_ptr = clips;
const struct drm_vmw_rect *vclips_ptr = vclips;
dirty->unit = unit;
if (dirty->fifo_reserve_size > 0) {
dirty->cmd = VMW_CMD_RESERVE(dev_priv,
dirty->fifo_reserve_size);
if (!dirty->cmd)
return -ENOMEM;
memset(dirty->cmd, 0, dirty->fifo_reserve_size);
}
dirty->num_hits = 0;
for (i = 0; i < num_clips; i++, clips_ptr += increment,
vclips_ptr += increment) {
s32 clip_left;
s32 clip_top;
/*
* Select clip array type. Note that integer type
* in @clips is unsigned short, whereas in @vclips
* it's 32-bit.
*/
if (clips) {
dirty->fb_x = (s32) clips_ptr->x1;
dirty->fb_y = (s32) clips_ptr->y1;
dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
crtc_x;
dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
crtc_y;
} else {
dirty->fb_x = vclips_ptr->x;
dirty->fb_y = vclips_ptr->y;
dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
dest_x - crtc_x;
dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
dest_y - crtc_y;
}
dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
/* Skip this clip if it's outside the crtc region */
if (dirty->unit_x1 >= crtc_width ||
dirty->unit_y1 >= crtc_height ||
dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
continue;
/* Clip right and bottom to crtc limits */
dirty->unit_x2 = min_t(s32, dirty->unit_x2,
crtc_width);
dirty->unit_y2 = min_t(s32, dirty->unit_y2,
crtc_height);
/* Clip left and top to crtc limits */
clip_left = min_t(s32, dirty->unit_x1, 0);
clip_top = min_t(s32, dirty->unit_y1, 0);
dirty->unit_x1 -= clip_left;
dirty->unit_y1 -= clip_top;
dirty->fb_x -= clip_left;
dirty->fb_y -= clip_top;
dirty->clip(dirty);
}
dirty->fifo_commit(dirty);
}
return 0;
}
/**
* vmw_kms_helper_validation_finish - Helper for post KMS command submission
* cleanup and fencing
* @dev_priv: Pointer to the device-private struct
* @file_priv: Pointer identifying the client when user-space fencing is used
* @ctx: Pointer to the validation context
* @out_fence: If non-NULL, returned refcounted fence-pointer
* @user_fence_rep: If non-NULL, pointer to user-space address area
* in which to copy user-space fence info
*/
void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
struct drm_file *file_priv,
struct vmw_validation_context *ctx,
struct vmw_fence_obj **out_fence,
struct drm_vmw_fence_rep __user *
user_fence_rep)
{
struct vmw_fence_obj *fence = NULL;
uint32_t handle = 0;
int ret = 0;
if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
out_fence)
ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
file_priv ? &handle : NULL);
vmw_validation_done(ctx, fence);
if (file_priv)
vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
ret, user_fence_rep, fence,
handle, -1);
if (out_fence)
*out_fence = fence;
else
vmw_fence_obj_unreference(&fence);
}
/**
* vmw_kms_create_implicit_placement_property - Set up the implicit placement
* property.
*
* @dev_priv: Pointer to a device private struct.
*
* Sets up the implicit placement property unless it's already set up.
*/
void
vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
{
if (dev_priv->implicit_placement_property)
return;
dev_priv->implicit_placement_property =
drm_property_create_range(&dev_priv->drm,
DRM_MODE_PROP_IMMUTABLE,
"implicit_placement", 0, 1);
}
/**
* vmw_kms_suspend - Save modesetting state and turn modesetting off.
*
* @dev: Pointer to the drm device
* Return: 0 on success. Negative error code on failure.
*/
int vmw_kms_suspend(struct drm_device *dev)
{
struct vmw_private *dev_priv = vmw_priv(dev);
dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
if (IS_ERR(dev_priv->suspend_state)) {
int ret = PTR_ERR(dev_priv->suspend_state);
DRM_ERROR("Failed kms suspend: %d\n", ret);
dev_priv->suspend_state = NULL;
return ret;
}
return 0;
}
/**
* vmw_kms_resume - Re-enable modesetting and restore state
*
* @dev: Pointer to the drm device
* Return: 0 on success. Negative error code on failure.
*
* State is resumed from a previous vmw_kms_suspend(). It's illegal
* to call this function without a previous vmw_kms_suspend().
*/
int vmw_kms_resume(struct drm_device *dev)
{
struct vmw_private *dev_priv = vmw_priv(dev);
int ret;
if (WARN_ON(!dev_priv->suspend_state))
return 0;
ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
dev_priv->suspend_state = NULL;
return ret;
}
/**
* vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
*
* @dev: Pointer to the drm device
*/
void vmw_kms_lost_device(struct drm_device *dev)
{
drm_atomic_helper_shutdown(dev);
}
/**
* vmw_du_helper_plane_update - Helper to do plane update on a display unit.
* @update: The closure structure.
*
* Call this helper after setting callbacks in &vmw_du_update_plane to do plane
* update on display unit.
*
* Return: 0 on success or a negative error code on failure.
*/
int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
{
struct drm_plane_state *state = update->plane->state;
struct drm_plane_state *old_state = update->old_state;
struct drm_atomic_helper_damage_iter iter;
struct drm_rect clip;
struct drm_rect bb;
DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
uint32_t reserved_size = 0;
uint32_t submit_size = 0;
uint32_t curr_size = 0;
uint32_t num_hits = 0;
void *cmd_start;
char *cmd_next;
int ret;
/*
* Iterate in advance to check if really need plane update and find the
* number of clips that actually are in plane src for fifo allocation.
*/
drm_atomic_helper_damage_iter_init(&iter, old_state, state);
drm_atomic_for_each_plane_damage(&iter, &clip)
num_hits++;
if (num_hits == 0)
return 0;
if (update->vfb->bo) {
struct vmw_framebuffer_bo *vfbbo =
container_of(update->vfb, typeof(*vfbbo), base);
/*
* For screen targets we want a mappable bo, for everything else we want
* accelerated i.e. host backed (vram or gmr) bo. If the display unit
* is not screen target then mob's shouldn't be available.
*/
if (update->dev_priv->active_display_unit == vmw_du_screen_target) {
vmw_bo_placement_set(vfbbo->buffer,
VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR,
VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR);
} else {
WARN_ON(update->dev_priv->has_mob);
vmw_bo_placement_set_default_accelerated(vfbbo->buffer);
}
ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer);
} else {
struct vmw_framebuffer_surface *vfbs =
container_of(update->vfb, typeof(*vfbs), base);
struct vmw_surface *surf = vmw_user_object_surface(&vfbs->uo);
ret = vmw_validation_add_resource(&val_ctx, &surf->res,
0, VMW_RES_DIRTY_NONE, NULL,
NULL);
}
if (ret)
return ret;
ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
if (ret)
goto out_unref;
reserved_size = update->calc_fifo_size(update, num_hits);
cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size);
if (!cmd_start) {
ret = -ENOMEM;
goto out_revert;
}
cmd_next = cmd_start;
if (update->post_prepare) {
curr_size = update->post_prepare(update, cmd_next);
cmd_next += curr_size;
submit_size += curr_size;
}
if (update->pre_clip) {
curr_size = update->pre_clip(update, cmd_next, num_hits);
cmd_next += curr_size;
submit_size += curr_size;
}
bb.x1 = INT_MAX;
bb.y1 = INT_MAX;
bb.x2 = INT_MIN;
bb.y2 = INT_MIN;
drm_atomic_helper_damage_iter_init(&iter, old_state, state);
drm_atomic_for_each_plane_damage(&iter, &clip) {
uint32_t fb_x = clip.x1;
uint32_t fb_y = clip.y1;
vmw_du_translate_to_crtc(state, &clip);
if (update->clip) {
curr_size = update->clip(update, cmd_next, &clip, fb_x,
fb_y);
cmd_next += curr_size;
submit_size += curr_size;
}
bb.x1 = min_t(int, bb.x1, clip.x1);
bb.y1 = min_t(int, bb.y1, clip.y1);
bb.x2 = max_t(int, bb.x2, clip.x2);
bb.y2 = max_t(int, bb.y2, clip.y2);
}
curr_size = update->post_clip(update, cmd_next, &bb);
submit_size += curr_size;
if (reserved_size < submit_size)
submit_size = 0;
vmw_cmd_commit(update->dev_priv, submit_size);
vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
update->out_fence, NULL);
return ret;
out_revert:
vmw_validation_revert(&val_ctx);
out_unref:
vmw_validation_unref_lists(&val_ctx);
return ret;
}
/**
* vmw_connector_mode_valid - implements drm_connector_helper_funcs.mode_valid callback
*
* @connector: the drm connector, part of a DU container
* @mode: drm mode to check
*
* Returns MODE_OK on success, or a drm_mode_status error code.
*/
enum drm_mode_status vmw_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
enum drm_mode_status ret;
struct drm_device *dev = connector->dev;
struct vmw_private *dev_priv = vmw_priv(dev);
u32 assumed_cpp = 4;
if (dev_priv->assume_16bpp)
assumed_cpp = 2;
ret = drm_mode_validate_size(mode, dev_priv->texture_max_width,
dev_priv->texture_max_height);
if (ret != MODE_OK)
return ret;
if (!vmw_kms_validate_mode_vram(dev_priv,
mode->hdisplay * assumed_cpp,
mode->vdisplay))
return MODE_MEM;
return MODE_OK;
}
/**
* vmw_connector_get_modes - implements drm_connector_helper_funcs.get_modes callback
*
* @connector: the drm connector, part of a DU container
*
* Returns the number of added modes.
*/
int vmw_connector_get_modes(struct drm_connector *connector)
{
struct vmw_display_unit *du = vmw_connector_to_du(connector);
struct drm_device *dev = connector->dev;
struct vmw_private *dev_priv = vmw_priv(dev);
struct drm_display_mode *mode = NULL;
struct drm_display_mode prefmode = { DRM_MODE("preferred",
DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
};
u32 max_width;
u32 max_height;
u32 num_modes;
/* Add preferred mode */
mode = drm_mode_duplicate(dev, &prefmode);
if (!mode)
return 0;
mode->hdisplay = du->pref_width;
mode->vdisplay = du->pref_height;
vmw_guess_mode_timing(mode);
drm_mode_set_name(mode);
drm_mode_probed_add(connector, mode);
drm_dbg_kms(dev, "preferred mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode));
/* Probe connector for all modes not exceeding our geom limits */
max_width = dev_priv->texture_max_width;
max_height = dev_priv->texture_max_height;
if (dev_priv->active_display_unit == vmw_du_screen_target) {
max_width = min(dev_priv->stdu_max_width, max_width);
max_height = min(dev_priv->stdu_max_height, max_height);
}
num_modes = 1 + drm_add_modes_noedid(connector, max_width, max_height);
return num_modes;
}
struct vmw_user_object *vmw_user_object_ref(struct vmw_user_object *uo)
{
if (uo->buffer)
vmw_user_bo_ref(uo->buffer);
else if (uo->surface)
vmw_surface_reference(uo->surface);
return uo;
}
void vmw_user_object_unref(struct vmw_user_object *uo)
{
if (uo->buffer)
vmw_user_bo_unref(&uo->buffer);
else if (uo->surface)
vmw_surface_unreference(&uo->surface);
}
struct vmw_bo *
vmw_user_object_buffer(struct vmw_user_object *uo)
{
if (uo->buffer)
return uo->buffer;
else if (uo->surface)
return uo->surface->res.guest_memory_bo;
return NULL;
}
struct vmw_surface *
vmw_user_object_surface(struct vmw_user_object *uo)
{
if (uo->buffer)
return uo->buffer->dumb_surface;
return uo->surface;
}
void *vmw_user_object_map(struct vmw_user_object *uo)
{
struct vmw_bo *bo = vmw_user_object_buffer(uo);
WARN_ON(!bo);
return vmw_bo_map_and_cache(bo);
}
void *vmw_user_object_map_size(struct vmw_user_object *uo, size_t size)
{
struct vmw_bo *bo = vmw_user_object_buffer(uo);
WARN_ON(!bo);
return vmw_bo_map_and_cache_size(bo, size);
}
void vmw_user_object_unmap(struct vmw_user_object *uo)
{
struct vmw_bo *bo = vmw_user_object_buffer(uo);
int ret;
WARN_ON(!bo);
/* Fence the mob creation so we are guarateed to have the mob */
ret = ttm_bo_reserve(&bo->tbo, false, false, NULL);
if (ret != 0)
return;
vmw_bo_unmap(bo);
vmw_bo_pin_reserved(bo, false);
ttm_bo_unreserve(&bo->tbo);
}
bool vmw_user_object_is_mapped(struct vmw_user_object *uo)
{
struct vmw_bo *bo;
if (!uo || vmw_user_object_is_null(uo))
return false;
bo = vmw_user_object_buffer(uo);
if (WARN_ON(!bo))
return false;
WARN_ON(bo->map.bo && !bo->map.virtual);
return bo->map.virtual;
}
bool vmw_user_object_is_null(struct vmw_user_object *uo)
{
return !uo->buffer && !uo->surface;
}