blob: ca4bc0ac76adcfa8a883df8f4259ba755d3b6413 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* sd.c Copyright (C) 1992 Drew Eckhardt
* Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
*
* Linux scsi disk driver
* Initial versions: Drew Eckhardt
* Subsequent revisions: Eric Youngdale
* Modification history:
* - Drew Eckhardt <drew@colorado.edu> original
* - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
* outstanding request, and other enhancements.
* Support loadable low-level scsi drivers.
* - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
* eight major numbers.
* - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
* - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
* sd_init and cleanups.
* - Alex Davis <letmein@erols.com> Fix problem where partition info
* not being read in sd_open. Fix problem where removable media
* could be ejected after sd_open.
* - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
* - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
* <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
* Support 32k/1M disks.
*
* Logging policy (needs CONFIG_SCSI_LOGGING defined):
* - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
* - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
* - entering sd_ioctl: SCSI_LOG_IOCTL level 1
* - entering other commands: SCSI_LOG_HLQUEUE level 3
* Note: when the logging level is set by the user, it must be greater
* than the level indicated above to trigger output.
*/
#include <linux/bio-integrity.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/hdreg.h>
#include <linux/errno.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/blk-pm.h>
#include <linux/delay.h>
#include <linux/rw_hint.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/string_helpers.h>
#include <linux/slab.h>
#include <linux/sed-opal.h>
#include <linux/pm_runtime.h>
#include <linux/pr.h>
#include <linux/t10-pi.h>
#include <linux/uaccess.h>
#include <linux/unaligned.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_devinfo.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_ioctl.h>
#include <scsi/scsicam.h>
#include <scsi/scsi_common.h>
#include "sd.h"
#include "scsi_priv.h"
#include "scsi_logging.h"
MODULE_AUTHOR("Eric Youngdale");
MODULE_DESCRIPTION("SCSI disk (sd) driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
#define SD_MINORS 16
static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
unsigned int mode);
static void sd_config_write_same(struct scsi_disk *sdkp,
struct queue_limits *lim);
static int sd_revalidate_disk(struct gendisk *);
static void sd_unlock_native_capacity(struct gendisk *disk);
static void sd_shutdown(struct device *);
static void scsi_disk_release(struct device *cdev);
static DEFINE_IDA(sd_index_ida);
static mempool_t *sd_page_pool;
static struct lock_class_key sd_bio_compl_lkclass;
static const char *sd_cache_types[] = {
"write through", "none", "write back",
"write back, no read (daft)"
};
static void sd_set_flush_flag(struct scsi_disk *sdkp,
struct queue_limits *lim)
{
if (sdkp->WCE) {
lim->features |= BLK_FEAT_WRITE_CACHE;
if (sdkp->DPOFUA)
lim->features |= BLK_FEAT_FUA;
else
lim->features &= ~BLK_FEAT_FUA;
} else {
lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
}
}
static ssize_t
cache_type_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ct, rcd, wce, sp;
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
char buffer[64];
char *buffer_data;
struct scsi_mode_data data;
struct scsi_sense_hdr sshdr;
static const char temp[] = "temporary ";
int len, ret;
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
/* no cache control on RBC devices; theoretically they
* can do it, but there's probably so many exceptions
* it's not worth the risk */
return -EINVAL;
if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
buf += sizeof(temp) - 1;
sdkp->cache_override = 1;
} else {
sdkp->cache_override = 0;
}
ct = sysfs_match_string(sd_cache_types, buf);
if (ct < 0)
return -EINVAL;
rcd = ct & 0x01 ? 1 : 0;
wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
if (sdkp->cache_override) {
struct queue_limits lim;
sdkp->WCE = wce;
sdkp->RCD = rcd;
lim = queue_limits_start_update(sdkp->disk->queue);
sd_set_flush_flag(sdkp, &lim);
blk_mq_freeze_queue(sdkp->disk->queue);
ret = queue_limits_commit_update(sdkp->disk->queue, &lim);
blk_mq_unfreeze_queue(sdkp->disk->queue);
if (ret)
return ret;
return count;
}
if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
sdkp->max_retries, &data, NULL))
return -EINVAL;
len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
data.block_descriptor_length);
buffer_data = buffer + data.header_length +
data.block_descriptor_length;
buffer_data[2] &= ~0x05;
buffer_data[2] |= wce << 2 | rcd;
sp = buffer_data[0] & 0x80 ? 1 : 0;
buffer_data[0] &= ~0x80;
/*
* Ensure WP, DPOFUA, and RESERVED fields are cleared in
* received mode parameter buffer before doing MODE SELECT.
*/
data.device_specific = 0;
ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
sdkp->max_retries, &data, &sshdr);
if (ret) {
if (ret > 0 && scsi_sense_valid(&sshdr))
sd_print_sense_hdr(sdkp, &sshdr);
return -EINVAL;
}
sd_revalidate_disk(sdkp->disk);
return count;
}
static ssize_t
manage_start_stop_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
return sysfs_emit(buf, "%u\n",
sdp->manage_system_start_stop &&
sdp->manage_runtime_start_stop &&
sdp->manage_shutdown);
}
static DEVICE_ATTR_RO(manage_start_stop);
static ssize_t
manage_system_start_stop_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
}
static ssize_t
manage_system_start_stop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
bool v;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (kstrtobool(buf, &v))
return -EINVAL;
sdp->manage_system_start_stop = v;
return count;
}
static DEVICE_ATTR_RW(manage_system_start_stop);
static ssize_t
manage_runtime_start_stop_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
}
static ssize_t
manage_runtime_start_stop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
bool v;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (kstrtobool(buf, &v))
return -EINVAL;
sdp->manage_runtime_start_stop = v;
return count;
}
static DEVICE_ATTR_RW(manage_runtime_start_stop);
static ssize_t manage_shutdown_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
}
static ssize_t manage_shutdown_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
bool v;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (kstrtobool(buf, &v))
return -EINVAL;
sdp->manage_shutdown = v;
return count;
}
static DEVICE_ATTR_RW(manage_shutdown);
static ssize_t
allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%u\n", sdkp->device->allow_restart);
}
static ssize_t
allow_restart_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
bool v;
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
return -EINVAL;
if (kstrtobool(buf, &v))
return -EINVAL;
sdp->allow_restart = v;
return count;
}
static DEVICE_ATTR_RW(allow_restart);
static ssize_t
cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
int ct = sdkp->RCD + 2*sdkp->WCE;
return sprintf(buf, "%s\n", sd_cache_types[ct]);
}
static DEVICE_ATTR_RW(cache_type);
static ssize_t
FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%u\n", sdkp->DPOFUA);
}
static DEVICE_ATTR_RO(FUA);
static ssize_t
protection_type_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%u\n", sdkp->protection_type);
}
static ssize_t
protection_type_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
unsigned int val;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
err = kstrtouint(buf, 10, &val);
if (err)
return err;
if (val <= T10_PI_TYPE3_PROTECTION)
sdkp->protection_type = val;
return count;
}
static DEVICE_ATTR_RW(protection_type);
static ssize_t
protection_mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
unsigned int dif, dix;
dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
dif = 0;
dix = 1;
}
if (!dif && !dix)
return sprintf(buf, "none\n");
return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
}
static DEVICE_ATTR_RO(protection_mode);
static ssize_t
app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%u\n", sdkp->ATO);
}
static DEVICE_ATTR_RO(app_tag_own);
static ssize_t
thin_provisioning_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%u\n", sdkp->lbpme);
}
static DEVICE_ATTR_RO(thin_provisioning);
/* sysfs_match_string() requires dense arrays */
static const char *lbp_mode[] = {
[SD_LBP_FULL] = "full",
[SD_LBP_UNMAP] = "unmap",
[SD_LBP_WS16] = "writesame_16",
[SD_LBP_WS10] = "writesame_10",
[SD_LBP_ZERO] = "writesame_zero",
[SD_LBP_DISABLE] = "disabled",
};
static ssize_t
provisioning_mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
}
static ssize_t
provisioning_mode_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
struct queue_limits lim;
int mode, err;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (sdp->type != TYPE_DISK)
return -EINVAL;
mode = sysfs_match_string(lbp_mode, buf);
if (mode < 0)
return -EINVAL;
lim = queue_limits_start_update(sdkp->disk->queue);
sd_config_discard(sdkp, &lim, mode);
blk_mq_freeze_queue(sdkp->disk->queue);
err = queue_limits_commit_update(sdkp->disk->queue, &lim);
blk_mq_unfreeze_queue(sdkp->disk->queue);
if (err)
return err;
return count;
}
static DEVICE_ATTR_RW(provisioning_mode);
/* sysfs_match_string() requires dense arrays */
static const char *zeroing_mode[] = {
[SD_ZERO_WRITE] = "write",
[SD_ZERO_WS] = "writesame",
[SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
[SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
};
static ssize_t
zeroing_mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
}
static ssize_t
zeroing_mode_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
int mode;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
mode = sysfs_match_string(zeroing_mode, buf);
if (mode < 0)
return -EINVAL;
sdkp->zeroing_mode = mode;
return count;
}
static DEVICE_ATTR_RW(zeroing_mode);
static ssize_t
max_medium_access_timeouts_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
}
static ssize_t
max_medium_access_timeouts_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
int err;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
return err ? err : count;
}
static DEVICE_ATTR_RW(max_medium_access_timeouts);
static ssize_t
max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
}
static ssize_t
max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
struct queue_limits lim;
unsigned long max;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
return -EINVAL;
err = kstrtoul(buf, 10, &max);
if (err)
return err;
if (max == 0)
sdp->no_write_same = 1;
else if (max <= SD_MAX_WS16_BLOCKS) {
sdp->no_write_same = 0;
sdkp->max_ws_blocks = max;
}
lim = queue_limits_start_update(sdkp->disk->queue);
sd_config_write_same(sdkp, &lim);
blk_mq_freeze_queue(sdkp->disk->queue);
err = queue_limits_commit_update(sdkp->disk->queue, &lim);
blk_mq_unfreeze_queue(sdkp->disk->queue);
if (err)
return err;
return count;
}
static DEVICE_ATTR_RW(max_write_same_blocks);
static ssize_t
zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
if (sdkp->device->type == TYPE_ZBC)
return sprintf(buf, "host-managed\n");
if (sdkp->zoned == 1)
return sprintf(buf, "host-aware\n");
if (sdkp->zoned == 2)
return sprintf(buf, "drive-managed\n");
return sprintf(buf, "none\n");
}
static DEVICE_ATTR_RO(zoned_cap);
static ssize_t
max_retries_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdev = sdkp->device;
int retries, err;
err = kstrtoint(buf, 10, &retries);
if (err)
return err;
if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
sdkp->max_retries = retries;
return count;
}
sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
SD_MAX_RETRIES);
return -EINVAL;
}
static ssize_t
max_retries_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return sprintf(buf, "%d\n", sdkp->max_retries);
}
static DEVICE_ATTR_RW(max_retries);
static struct attribute *sd_disk_attrs[] = {
&dev_attr_cache_type.attr,
&dev_attr_FUA.attr,
&dev_attr_allow_restart.attr,
&dev_attr_manage_start_stop.attr,
&dev_attr_manage_system_start_stop.attr,
&dev_attr_manage_runtime_start_stop.attr,
&dev_attr_manage_shutdown.attr,
&dev_attr_protection_type.attr,
&dev_attr_protection_mode.attr,
&dev_attr_app_tag_own.attr,
&dev_attr_thin_provisioning.attr,
&dev_attr_provisioning_mode.attr,
&dev_attr_zeroing_mode.attr,
&dev_attr_max_write_same_blocks.attr,
&dev_attr_max_medium_access_timeouts.attr,
&dev_attr_zoned_cap.attr,
&dev_attr_max_retries.attr,
NULL,
};
ATTRIBUTE_GROUPS(sd_disk);
static struct class sd_disk_class = {
.name = "scsi_disk",
.dev_release = scsi_disk_release,
.dev_groups = sd_disk_groups,
};
/*
* Don't request a new module, as that could deadlock in multipath
* environment.
*/
static void sd_default_probe(dev_t devt)
{
}
/*
* Device no to disk mapping:
*
* major disc2 disc p1
* |............|.............|....|....| <- dev_t
* 31 20 19 8 7 4 3 0
*
* Inside a major, we have 16k disks, however mapped non-
* contiguously. The first 16 disks are for major0, the next
* ones with major1, ... Disk 256 is for major0 again, disk 272
* for major1, ...
* As we stay compatible with our numbering scheme, we can reuse
* the well-know SCSI majors 8, 65--71, 136--143.
*/
static int sd_major(int major_idx)
{
switch (major_idx) {
case 0:
return SCSI_DISK0_MAJOR;
case 1 ... 7:
return SCSI_DISK1_MAJOR + major_idx - 1;
case 8 ... 15:
return SCSI_DISK8_MAJOR + major_idx - 8;
default:
BUG();
return 0; /* shut up gcc */
}
}
#ifdef CONFIG_BLK_SED_OPAL
static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
size_t len, bool send)
{
struct scsi_disk *sdkp = data;
struct scsi_device *sdev = sdkp->device;
u8 cdb[12] = { 0, };
const struct scsi_exec_args exec_args = {
.req_flags = BLK_MQ_REQ_PM,
};
int ret;
cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
cdb[1] = secp;
put_unaligned_be16(spsp, &cdb[2]);
put_unaligned_be32(len, &cdb[6]);
ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
buffer, len, SD_TIMEOUT, sdkp->max_retries,
&exec_args);
return ret <= 0 ? ret : -EIO;
}
#endif /* CONFIG_BLK_SED_OPAL */
/*
* Look up the DIX operation based on whether the command is read or
* write and whether dix and dif are enabled.
*/
static unsigned int sd_prot_op(bool write, bool dix, bool dif)
{
/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
static const unsigned int ops[] = { /* wrt dix dif */
SCSI_PROT_NORMAL, /* 0 0 0 */
SCSI_PROT_READ_STRIP, /* 0 0 1 */
SCSI_PROT_READ_INSERT, /* 0 1 0 */
SCSI_PROT_READ_PASS, /* 0 1 1 */
SCSI_PROT_NORMAL, /* 1 0 0 */
SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
SCSI_PROT_WRITE_PASS, /* 1 1 1 */
};
return ops[write << 2 | dix << 1 | dif];
}
/*
* Returns a mask of the protection flags that are valid for a given DIX
* operation.
*/
static unsigned int sd_prot_flag_mask(unsigned int prot_op)
{
static const unsigned int flag_mask[] = {
[SCSI_PROT_NORMAL] = 0,
[SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
SCSI_PROT_GUARD_CHECK |
SCSI_PROT_REF_CHECK |
SCSI_PROT_REF_INCREMENT,
[SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
SCSI_PROT_IP_CHECKSUM,
[SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
SCSI_PROT_GUARD_CHECK |
SCSI_PROT_REF_CHECK |
SCSI_PROT_REF_INCREMENT |
SCSI_PROT_IP_CHECKSUM,
[SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
SCSI_PROT_REF_INCREMENT,
[SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
SCSI_PROT_REF_CHECK |
SCSI_PROT_REF_INCREMENT |
SCSI_PROT_IP_CHECKSUM,
[SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
SCSI_PROT_GUARD_CHECK |
SCSI_PROT_REF_CHECK |
SCSI_PROT_REF_INCREMENT |
SCSI_PROT_IP_CHECKSUM,
};
return flag_mask[prot_op];
}
static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
unsigned int dix, unsigned int dif)
{
struct request *rq = scsi_cmd_to_rq(scmd);
struct bio *bio = rq->bio;
unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
unsigned int protect = 0;
if (dix) { /* DIX Type 0, 1, 2, 3 */
if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
}
if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
scmd->prot_flags |= SCSI_PROT_REF_CHECK;
}
if (dif) { /* DIX/DIF Type 1, 2, 3 */
scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
protect = 3 << 5; /* Disable target PI checking */
else
protect = 1 << 5; /* Enable target PI checking */
}
scsi_set_prot_op(scmd, prot_op);
scsi_set_prot_type(scmd, dif);
scmd->prot_flags &= sd_prot_flag_mask(prot_op);
return protect;
}
static void sd_disable_discard(struct scsi_disk *sdkp)
{
sdkp->provisioning_mode = SD_LBP_DISABLE;
blk_queue_disable_discard(sdkp->disk->queue);
}
static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
unsigned int mode)
{
unsigned int logical_block_size = sdkp->device->sector_size;
unsigned int max_blocks = 0;
lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
lim->discard_granularity = max(sdkp->physical_block_size,
sdkp->unmap_granularity * logical_block_size);
sdkp->provisioning_mode = mode;
switch (mode) {
case SD_LBP_FULL:
case SD_LBP_DISABLE:
break;
case SD_LBP_UNMAP:
max_blocks = min_not_zero(sdkp->max_unmap_blocks,
(u32)SD_MAX_WS16_BLOCKS);
break;
case SD_LBP_WS16:
if (sdkp->device->unmap_limit_for_ws)
max_blocks = sdkp->max_unmap_blocks;
else
max_blocks = sdkp->max_ws_blocks;
max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
break;
case SD_LBP_WS10:
if (sdkp->device->unmap_limit_for_ws)
max_blocks = sdkp->max_unmap_blocks;
else
max_blocks = sdkp->max_ws_blocks;
max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
break;
case SD_LBP_ZERO:
max_blocks = min_not_zero(sdkp->max_ws_blocks,
(u32)SD_MAX_WS10_BLOCKS);
break;
}
lim->max_hw_discard_sectors = max_blocks *
(logical_block_size >> SECTOR_SHIFT);
}
static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
{
struct page *page;
page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
if (!page)
return NULL;
clear_highpage(page);
bvec_set_page(&rq->special_vec, page, data_len, 0);
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
return bvec_virt(&rq->special_vec);
}
static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
{
struct scsi_device *sdp = cmd->device;
struct request *rq = scsi_cmd_to_rq(cmd);
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
unsigned int data_len = 24;
char *buf;
buf = sd_set_special_bvec(rq, data_len);
if (!buf)
return BLK_STS_RESOURCE;
cmd->cmd_len = 10;
cmd->cmnd[0] = UNMAP;
cmd->cmnd[8] = 24;
put_unaligned_be16(6 + 16, &buf[0]);
put_unaligned_be16(16, &buf[2]);
put_unaligned_be64(lba, &buf[8]);
put_unaligned_be32(nr_blocks, &buf[16]);
cmd->allowed = sdkp->max_retries;
cmd->transfersize = data_len;
rq->timeout = SD_TIMEOUT;
return scsi_alloc_sgtables(cmd);
}
static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
{
unsigned int logical_block_size = sdkp->device->sector_size,
physical_block_size_sectors, max_atomic, unit_min, unit_max;
if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
return;
physical_block_size_sectors = sdkp->physical_block_size /
sdkp->device->sector_size;
unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
sdkp->atomic_granularity :
physical_block_size_sectors);
/*
* Only use atomic boundary when we have the odd scenario of
* sdkp->max_atomic == 0, which the spec does permit.
*/
if (sdkp->max_atomic) {
max_atomic = sdkp->max_atomic;
unit_max = rounddown_pow_of_two(sdkp->max_atomic);
sdkp->use_atomic_write_boundary = 0;
} else {
max_atomic = sdkp->max_atomic_with_boundary;
unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
sdkp->use_atomic_write_boundary = 1;
}
/*
* Ensure compliance with granularity and alignment. For now, keep it
* simple and just don't support atomic writes for values mismatched
* with max_{boundary}atomic, physical block size, and
* atomic_granularity itself.
*
* We're really being distrustful by checking unit_max also...
*/
if (sdkp->atomic_granularity > 1) {
if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
return;
if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
return;
}
if (sdkp->atomic_alignment > 1) {
if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
return;
if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
return;
}
lim->atomic_write_hw_max = max_atomic * logical_block_size;
lim->atomic_write_hw_boundary = 0;
lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
}
static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
bool unmap)
{
struct scsi_device *sdp = cmd->device;
struct request *rq = scsi_cmd_to_rq(cmd);
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
u32 data_len = sdp->sector_size;
if (!sd_set_special_bvec(rq, data_len))
return BLK_STS_RESOURCE;
cmd->cmd_len = 16;
cmd->cmnd[0] = WRITE_SAME_16;
if (unmap)
cmd->cmnd[1] = 0x8; /* UNMAP */
put_unaligned_be64(lba, &cmd->cmnd[2]);
put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
cmd->allowed = sdkp->max_retries;
cmd->transfersize = data_len;
rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
return scsi_alloc_sgtables(cmd);
}
static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
bool unmap)
{
struct scsi_device *sdp = cmd->device;
struct request *rq = scsi_cmd_to_rq(cmd);
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
u32 data_len = sdp->sector_size;
if (!sd_set_special_bvec(rq, data_len))
return BLK_STS_RESOURCE;
cmd->cmd_len = 10;
cmd->cmnd[0] = WRITE_SAME;
if (unmap)
cmd->cmnd[1] = 0x8; /* UNMAP */
put_unaligned_be32(lba, &cmd->cmnd[2]);
put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
cmd->allowed = sdkp->max_retries;
cmd->transfersize = data_len;
rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
return scsi_alloc_sgtables(cmd);
}
static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
{
struct request *rq = scsi_cmd_to_rq(cmd);
struct scsi_device *sdp = cmd->device;
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
if (!(rq->cmd_flags & REQ_NOUNMAP)) {
switch (sdkp->zeroing_mode) {
case SD_ZERO_WS16_UNMAP:
return sd_setup_write_same16_cmnd(cmd, true);
case SD_ZERO_WS10_UNMAP:
return sd_setup_write_same10_cmnd(cmd, true);
}
}
if (sdp->no_write_same) {
rq->rq_flags |= RQF_QUIET;
return BLK_STS_TARGET;
}
if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
return sd_setup_write_same16_cmnd(cmd, false);
return sd_setup_write_same10_cmnd(cmd, false);
}
static void sd_disable_write_same(struct scsi_disk *sdkp)
{
sdkp->device->no_write_same = 1;
sdkp->max_ws_blocks = 0;
blk_queue_disable_write_zeroes(sdkp->disk->queue);
}
static void sd_config_write_same(struct scsi_disk *sdkp,
struct queue_limits *lim)
{
unsigned int logical_block_size = sdkp->device->sector_size;
if (sdkp->device->no_write_same) {
sdkp->max_ws_blocks = 0;
goto out;
}
/* Some devices can not handle block counts above 0xffff despite
* supporting WRITE SAME(16). Consequently we default to 64k
* blocks per I/O unless the device explicitly advertises a
* bigger limit.
*/
if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
(u32)SD_MAX_WS16_BLOCKS);
else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
(u32)SD_MAX_WS10_BLOCKS);
else {
sdkp->device->no_write_same = 1;
sdkp->max_ws_blocks = 0;
}
if (sdkp->lbprz && sdkp->lbpws)
sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
else if (sdkp->lbprz && sdkp->lbpws10)
sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
else if (sdkp->max_ws_blocks)
sdkp->zeroing_mode = SD_ZERO_WS;
else
sdkp->zeroing_mode = SD_ZERO_WRITE;
if (sdkp->max_ws_blocks &&
sdkp->physical_block_size > logical_block_size) {
/*
* Reporting a maximum number of blocks that is not aligned
* on the device physical size would cause a large write same
* request to be split into physically unaligned chunks by
* __blkdev_issue_write_zeroes() even if the caller of this
* functions took care to align the large request. So make sure
* the maximum reported is aligned to the device physical block
* size. This is only an optional optimization for regular
* disks, but this is mandatory to avoid failure of large write
* same requests directed at sequential write required zones of
* host-managed ZBC disks.
*/
sdkp->max_ws_blocks =
round_down(sdkp->max_ws_blocks,
bytes_to_logical(sdkp->device,
sdkp->physical_block_size));
}
out:
lim->max_write_zeroes_sectors =
sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
}
static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
{
struct request *rq = scsi_cmd_to_rq(cmd);
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
/* flush requests don't perform I/O, zero the S/G table */
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
if (cmd->device->use_16_for_sync) {
cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
cmd->cmd_len = 16;
} else {
cmd->cmnd[0] = SYNCHRONIZE_CACHE;
cmd->cmd_len = 10;
}
cmd->transfersize = 0;
cmd->allowed = sdkp->max_retries;
rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
return BLK_STS_OK;
}
/**
* sd_group_number() - Compute the GROUP NUMBER field
* @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
* field.
*
* From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
* 0: no relative lifetime.
* 1: shortest relative lifetime.
* 2: second shortest relative lifetime.
* 3 - 0x3d: intermediate relative lifetimes.
* 0x3e: second longest relative lifetime.
* 0x3f: longest relative lifetime.
*/
static u8 sd_group_number(struct scsi_cmnd *cmd)
{
const struct request *rq = scsi_cmd_to_rq(cmd);
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
if (!sdkp->rscs)
return 0;
return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
0x3fu);
}
static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
sector_t lba, unsigned int nr_blocks,
unsigned char flags, unsigned int dld)
{
cmd->cmd_len = SD_EXT_CDB_SIZE;
cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
cmd->cmnd[6] = sd_group_number(cmd);
cmd->cmnd[7] = 0x18; /* Additional CDB len */
cmd->cmnd[9] = write ? WRITE_32 : READ_32;
cmd->cmnd[10] = flags;
cmd->cmnd[11] = dld & 0x07;
put_unaligned_be64(lba, &cmd->cmnd[12]);
put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
return BLK_STS_OK;
}
static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
sector_t lba, unsigned int nr_blocks,
unsigned char flags, unsigned int dld)
{
cmd->cmd_len = 16;
cmd->cmnd[0] = write ? WRITE_16 : READ_16;
cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
cmd->cmnd[15] = 0;
put_unaligned_be64(lba, &cmd->cmnd[2]);
put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
return BLK_STS_OK;
}
static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
sector_t lba, unsigned int nr_blocks,
unsigned char flags)
{
cmd->cmd_len = 10;
cmd->cmnd[0] = write ? WRITE_10 : READ_10;
cmd->cmnd[1] = flags;
cmd->cmnd[6] = sd_group_number(cmd);
cmd->cmnd[9] = 0;
put_unaligned_be32(lba, &cmd->cmnd[2]);
put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
return BLK_STS_OK;
}
static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
sector_t lba, unsigned int nr_blocks,
unsigned char flags)
{
/* Avoid that 0 blocks gets translated into 256 blocks. */
if (WARN_ON_ONCE(nr_blocks == 0))
return BLK_STS_IOERR;
if (unlikely(flags & 0x8)) {
/*
* This happens only if this drive failed 10byte rw
* command with ILLEGAL_REQUEST during operation and
* thus turned off use_10_for_rw.
*/
scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
return BLK_STS_IOERR;
}
cmd->cmd_len = 6;
cmd->cmnd[0] = write ? WRITE_6 : READ_6;
cmd->cmnd[1] = (lba >> 16) & 0x1f;
cmd->cmnd[2] = (lba >> 8) & 0xff;
cmd->cmnd[3] = lba & 0xff;
cmd->cmnd[4] = nr_blocks;
cmd->cmnd[5] = 0;
return BLK_STS_OK;
}
/*
* Check if a command has a duration limit set. If it does, and the target
* device supports CDL and the feature is enabled, return the limit
* descriptor index to use. Return 0 (no limit) otherwise.
*/
static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
{
struct scsi_device *sdp = sdkp->device;
int hint;
if (!sdp->cdl_supported || !sdp->cdl_enable)
return 0;
/*
* Use "no limit" if the request ioprio does not specify a duration
* limit hint.
*/
hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
return 0;
return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
}
static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
sector_t lba, unsigned int nr_blocks,
bool boundary, unsigned char flags)
{
cmd->cmd_len = 16;
cmd->cmnd[0] = WRITE_ATOMIC_16;
cmd->cmnd[1] = flags;
put_unaligned_be64(lba, &cmd->cmnd[2]);
put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
if (boundary)
put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
else
put_unaligned_be16(0, &cmd->cmnd[10]);
put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
cmd->cmnd[14] = 0;
cmd->cmnd[15] = 0;
return BLK_STS_OK;
}
static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
{
struct request *rq = scsi_cmd_to_rq(cmd);
struct scsi_device *sdp = cmd->device;
struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
sector_t threshold;
unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
unsigned int mask = logical_to_sectors(sdp, 1) - 1;
bool write = rq_data_dir(rq) == WRITE;
unsigned char protect, fua;
unsigned int dld;
blk_status_t ret;
unsigned int dif;
bool dix;
ret = scsi_alloc_sgtables(cmd);
if (ret != BLK_STS_OK)
return ret;
ret = BLK_STS_IOERR;
if (!scsi_device_online(sdp) || sdp->changed) {
scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
goto fail;
}
if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
goto fail;
}
if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
goto fail;
}
/*
* Some SD card readers can't handle accesses which touch the
* last one or two logical blocks. Split accesses as needed.
*/
threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
if (lba < threshold) {
/* Access up to the threshold but not beyond */
nr_blocks = threshold - lba;
} else {
/* Access only a single logical block */
nr_blocks = 1;
}
}
fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
dix = scsi_prot_sg_count(cmd);
dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
dld = sd_cdl_dld(sdkp, cmd);
if (dif || dix)
protect = sd_setup_protect_cmnd(cmd, dix, dif);
else
protect = 0;
if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
protect | fua, dld);
} else if (rq->cmd_flags & REQ_ATOMIC) {
ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
sdkp->use_atomic_write_boundary,
protect | fua);
} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
protect | fua, dld);
} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
sdp->use_10_for_rw || protect || rq->write_hint) {
ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
protect | fua);
} else {
ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
protect | fua);
}
if (unlikely(ret != BLK_STS_OK))
goto fail;
/*
* We shouldn't disconnect in the middle of a sector, so with a dumb
* host adapter, it's safe to assume that we can at least transfer
* this many bytes between each connect / disconnect.
*/
cmd->transfersize = sdp->sector_size;
cmd->underflow = nr_blocks << 9;
cmd->allowed = sdkp->max_retries;
cmd->sdb.length = nr_blocks * sdp->sector_size;
SCSI_LOG_HLQUEUE(1,
scmd_printk(KERN_INFO, cmd,
"%s: block=%llu, count=%d\n", __func__,
(unsigned long long)blk_rq_pos(rq),
blk_rq_sectors(rq)));
SCSI_LOG_HLQUEUE(2,
scmd_printk(KERN_INFO, cmd,
"%s %d/%u 512 byte blocks.\n",
write ? "writing" : "reading", nr_blocks,
blk_rq_sectors(rq)));
/*
* This indicates that the command is ready from our end to be queued.
*/
return BLK_STS_OK;
fail:
scsi_free_sgtables(cmd);
return ret;
}
static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
{
struct request *rq = scsi_cmd_to_rq(cmd);
switch (req_op(rq)) {
case REQ_OP_DISCARD:
switch (scsi_disk(rq->q->disk)->provisioning_mode) {
case SD_LBP_UNMAP:
return sd_setup_unmap_cmnd(cmd);
case SD_LBP_WS16:
return sd_setup_write_same16_cmnd(cmd, true);
case SD_LBP_WS10:
return sd_setup_write_same10_cmnd(cmd, true);
case SD_LBP_ZERO:
return sd_setup_write_same10_cmnd(cmd, false);
default:
return BLK_STS_TARGET;
}
case REQ_OP_WRITE_ZEROES:
return sd_setup_write_zeroes_cmnd(cmd);
case REQ_OP_FLUSH:
return sd_setup_flush_cmnd(cmd);
case REQ_OP_READ:
case REQ_OP_WRITE:
return sd_setup_read_write_cmnd(cmd);
case REQ_OP_ZONE_RESET:
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
false);
case REQ_OP_ZONE_RESET_ALL:
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
true);
case REQ_OP_ZONE_OPEN:
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
case REQ_OP_ZONE_CLOSE:
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
case REQ_OP_ZONE_FINISH:
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
default:
WARN_ON_ONCE(1);
return BLK_STS_NOTSUPP;
}
}
static void sd_uninit_command(struct scsi_cmnd *SCpnt)
{
struct request *rq = scsi_cmd_to_rq(SCpnt);
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
mempool_free(rq->special_vec.bv_page, sd_page_pool);
}
static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
{
if (sdkp->device->removable || sdkp->write_prot) {
if (disk_check_media_change(disk))
return true;
}
/*
* Force a full rescan after ioctl(BLKRRPART). While the disk state has
* nothing to do with partitions, BLKRRPART is used to force a full
* revalidate after things like a format for historical reasons.
*/
return test_bit(GD_NEED_PART_SCAN, &disk->state);
}
/**
* sd_open - open a scsi disk device
* @disk: disk to open
* @mode: open mode
*
* Returns 0 if successful. Returns a negated errno value in case
* of error.
*
* Note: This can be called from a user context (e.g. fsck(1) )
* or from within the kernel (e.g. as a result of a mount(1) ).
* In the latter case @inode and @filp carry an abridged amount
* of information as noted above.
*
* Locking: called with disk->open_mutex held.
**/
static int sd_open(struct gendisk *disk, blk_mode_t mode)
{
struct scsi_disk *sdkp = scsi_disk(disk);
struct scsi_device *sdev = sdkp->device;
int retval;
if (scsi_device_get(sdev))
return -ENXIO;
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
/*
* If the device is in error recovery, wait until it is done.
* If the device is offline, then disallow any access to it.
*/
retval = -ENXIO;
if (!scsi_block_when_processing_errors(sdev))
goto error_out;
if (sd_need_revalidate(disk, sdkp))
sd_revalidate_disk(disk);
/*
* If the drive is empty, just let the open fail.
*/
retval = -ENOMEDIUM;
if (sdev->removable && !sdkp->media_present &&
!(mode & BLK_OPEN_NDELAY))
goto error_out;
/*
* If the device has the write protect tab set, have the open fail
* if the user expects to be able to write to the thing.
*/
retval = -EROFS;
if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
goto error_out;
/*
* It is possible that the disk changing stuff resulted in
* the device being taken offline. If this is the case,
* report this to the user, and don't pretend that the
* open actually succeeded.
*/
retval = -ENXIO;
if (!scsi_device_online(sdev))
goto error_out;
if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
if (scsi_block_when_processing_errors(sdev))
scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
}
return 0;
error_out:
scsi_device_put(sdev);
return retval;
}
/**
* sd_release - invoked when the (last) close(2) is called on this
* scsi disk.
* @disk: disk to release
*
* Returns 0.
*
* Note: may block (uninterruptible) if error recovery is underway
* on this disk.
*
* Locking: called with disk->open_mutex held.
**/
static void sd_release(struct gendisk *disk)
{
struct scsi_disk *sdkp = scsi_disk(disk);
struct scsi_device *sdev = sdkp->device;
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
if (scsi_block_when_processing_errors(sdev))
scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
}
scsi_device_put(sdev);
}
static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
struct scsi_device *sdp = sdkp->device;
struct Scsi_Host *host = sdp->host;
sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
int diskinfo[4];
/* default to most commonly used values */
diskinfo[0] = 0x40; /* 1 << 6 */
diskinfo[1] = 0x20; /* 1 << 5 */
diskinfo[2] = capacity >> 11;
/* override with calculated, extended default, or driver values */
if (host->hostt->bios_param)
host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
else
scsicam_bios_param(bdev, capacity, diskinfo);
geo->heads = diskinfo[0];
geo->sectors = diskinfo[1];
geo->cylinders = diskinfo[2];
return 0;
}
/**
* sd_ioctl - process an ioctl
* @bdev: target block device
* @mode: open mode
* @cmd: ioctl command number
* @arg: this is third argument given to ioctl(2) system call.
* Often contains a pointer.
*
* Returns 0 if successful (some ioctls return positive numbers on
* success as well). Returns a negated errno value in case of error.
*
* Note: most ioctls are forward onto the block subsystem or further
* down in the scsi subsystem.
**/
static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long arg)
{
struct gendisk *disk = bdev->bd_disk;
struct scsi_disk *sdkp = scsi_disk(disk);
struct scsi_device *sdp = sdkp->device;
void __user *p = (void __user *)arg;
int error;
SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
"cmd=0x%x\n", disk->disk_name, cmd));
if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
return -ENOIOCTLCMD;
/*
* If we are in the middle of error recovery, don't let anyone
* else try and use this device. Also, if error recovery fails, it
* may try and take the device offline, in which case all further
* access to the device is prohibited.
*/
error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
(mode & BLK_OPEN_NDELAY));
if (error)
return error;
if (is_sed_ioctl(cmd))
return sed_ioctl(sdkp->opal_dev, cmd, p);
return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
}
static void set_media_not_present(struct scsi_disk *sdkp)
{
if (sdkp->media_present)
sdkp->device->changed = 1;
if (sdkp->device->removable) {
sdkp->media_present = 0;
sdkp->capacity = 0;
}
}
static int media_not_present(struct scsi_disk *sdkp,
struct scsi_sense_hdr *sshdr)
{
if (!scsi_sense_valid(sshdr))
return 0;
/* not invoked for commands that could return deferred errors */
switch (sshdr->sense_key) {
case UNIT_ATTENTION:
case NOT_READY:
/* medium not present */
if (sshdr->asc == 0x3A) {
set_media_not_present(sdkp);
return 1;
}
}
return 0;
}
/**
* sd_check_events - check media events
* @disk: kernel device descriptor
* @clearing: disk events currently being cleared
*
* Returns mask of DISK_EVENT_*.
*
* Note: this function is invoked from the block subsystem.
**/
static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
{
struct scsi_disk *sdkp = disk->private_data;
struct scsi_device *sdp;
int retval;
bool disk_changed;
if (!sdkp)
return 0;
sdp = sdkp->device;
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
/*
* If the device is offline, don't send any commands - just pretend as
* if the command failed. If the device ever comes back online, we
* can deal with it then. It is only because of unrecoverable errors
* that we would ever take a device offline in the first place.
*/
if (!scsi_device_online(sdp)) {
set_media_not_present(sdkp);
goto out;
}
/*
* Using TEST_UNIT_READY enables differentiation between drive with
* no cartridge loaded - NOT READY, drive with changed cartridge -
* UNIT ATTENTION, or with same cartridge - GOOD STATUS.
*
* Drives that auto spin down. eg iomega jaz 1G, will be started
* by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
* sd_revalidate() is called.
*/
if (scsi_block_when_processing_errors(sdp)) {
struct scsi_sense_hdr sshdr = { 0, };
retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
&sshdr);
/* failed to execute TUR, assume media not present */
if (retval < 0 || host_byte(retval)) {
set_media_not_present(sdkp);
goto out;
}
if (media_not_present(sdkp, &sshdr))
goto out;
}
/*
* For removable scsi disk we have to recognise the presence
* of a disk in the drive.
*/
if (!sdkp->media_present)
sdp->changed = 1;
sdkp->media_present = 1;
out:
/*
* sdp->changed is set under the following conditions:
*
* Medium present state has changed in either direction.
* Device has indicated UNIT_ATTENTION.
*/
disk_changed = sdp->changed;
sdp->changed = 0;
return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
}
static int sd_sync_cache(struct scsi_disk *sdkp)
{
int res;
struct scsi_device *sdp = sdkp->device;
const int timeout = sdp->request_queue->rq_timeout
* SD_FLUSH_TIMEOUT_MULTIPLIER;
/* Leave the rest of the command zero to indicate flush everything. */
const unsigned char cmd[16] = { sdp->use_16_for_sync ?
SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
struct scsi_sense_hdr sshdr;
struct scsi_failure failure_defs[] = {
{
.allowed = 3,
.result = SCMD_FAILURE_RESULT_ANY,
},
{}
};
struct scsi_failures failures = {
.failure_definitions = failure_defs,
};
const struct scsi_exec_args exec_args = {
.req_flags = BLK_MQ_REQ_PM,
.sshdr = &sshdr,
.failures = &failures,
};
if (!scsi_device_online(sdp))
return -ENODEV;
res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
sdkp->max_retries, &exec_args);
if (res) {
sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
if (res < 0)
return res;
if (scsi_status_is_check_condition(res) &&
scsi_sense_valid(&sshdr)) {
sd_print_sense_hdr(sdkp, &sshdr);
/* we need to evaluate the error return */
if (sshdr.asc == 0x3a || /* medium not present */
sshdr.asc == 0x20 || /* invalid command */
(sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */
/* this is no error here */
return 0;
/*
* If a format is in progress or if the drive does not
* support sync, there is not much we can do because
* this is called during shutdown or suspend so just
* return success so those operations can proceed.
*/
if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
sshdr.sense_key == ILLEGAL_REQUEST)
return 0;
}
switch (host_byte(res)) {
/* ignore errors due to racing a disconnection */
case DID_BAD_TARGET:
case DID_NO_CONNECT:
return 0;
/* signal the upper layer it might try again */
case DID_BUS_BUSY:
case DID_IMM_RETRY:
case DID_REQUEUE:
case DID_SOFT_ERROR:
return -EBUSY;
default:
return -EIO;
}
}
return 0;
}
static void sd_rescan(struct device *dev)
{
struct scsi_disk *sdkp = dev_get_drvdata(dev);
sd_revalidate_disk(sdkp->disk);
}
static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
enum blk_unique_id type)
{
struct scsi_device *sdev = scsi_disk(disk)->device;
const struct scsi_vpd *vpd;
const unsigned char *d;
int ret = -ENXIO, len;
rcu_read_lock();
vpd = rcu_dereference(sdev->vpd_pg83);
if (!vpd)
goto out_unlock;
ret = -EINVAL;
for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
/* we only care about designators with LU association */
if (((d[1] >> 4) & 0x3) != 0x00)
continue;
if ((d[1] & 0xf) != type)
continue;
/*
* Only exit early if a 16-byte descriptor was found. Otherwise
* keep looking as one with more entropy might still show up.
*/
len = d[3];
if (len != 8 && len != 12 && len != 16)
continue;
ret = len;
memcpy(id, d + 4, len);
if (len == 16)
break;
}
out_unlock:
rcu_read_unlock();
return ret;
}
static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
{
switch (host_byte(result)) {
case DID_TRANSPORT_MARGINAL:
case DID_TRANSPORT_DISRUPTED:
case DID_BUS_BUSY:
return PR_STS_RETRY_PATH_FAILURE;
case DID_NO_CONNECT:
return PR_STS_PATH_FAILED;
case DID_TRANSPORT_FAILFAST:
return PR_STS_PATH_FAST_FAILED;
}
switch (status_byte(result)) {
case SAM_STAT_RESERVATION_CONFLICT:
return PR_STS_RESERVATION_CONFLICT;
case SAM_STAT_CHECK_CONDITION:
if (!scsi_sense_valid(sshdr))
return PR_STS_IOERR;
if (sshdr->sense_key == ILLEGAL_REQUEST &&
(sshdr->asc == 0x26 || sshdr->asc == 0x24))
return -EINVAL;
fallthrough;
default:
return PR_STS_IOERR;
}
}
static int sd_pr_in_command(struct block_device *bdev, u8 sa,
unsigned char *data, int data_len)
{
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
struct scsi_device *sdev = sdkp->device;
struct scsi_sense_hdr sshdr;
u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
struct scsi_failure failure_defs[] = {
{
.sense = UNIT_ATTENTION,
.asc = SCMD_FAILURE_ASC_ANY,
.ascq = SCMD_FAILURE_ASCQ_ANY,
.allowed = 5,
.result = SAM_STAT_CHECK_CONDITION,
},
{}
};
struct scsi_failures failures = {
.failure_definitions = failure_defs,
};
const struct scsi_exec_args exec_args = {
.sshdr = &sshdr,
.failures = &failures,
};
int result;
put_unaligned_be16(data_len, &cmd[7]);
result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
SD_TIMEOUT, sdkp->max_retries, &exec_args);
if (scsi_status_is_check_condition(result) &&
scsi_sense_valid(&sshdr)) {
sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
scsi_print_sense_hdr(sdev, NULL, &sshdr);
}
if (result <= 0)
return result;
return sd_scsi_to_pr_err(&sshdr, result);
}
static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
{
int result, i, data_offset, num_copy_keys;
u32 num_keys = keys_info->num_keys;
int data_len = num_keys * 8 + 8;
u8 *data;
data = kzalloc(data_len, GFP_KERNEL);
if (!data)
return -ENOMEM;
result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
if (result)
goto free_data;
keys_info->generation = get_unaligned_be32(&data[0]);
keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
data_offset = 8;
num_copy_keys = min(num_keys, keys_info->num_keys);
for (i = 0; i < num_copy_keys; i++) {
keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
data_offset += 8;
}
free_data:
kfree(data);
return result;
}
static int sd_pr_read_reservation(struct block_device *bdev,
struct pr_held_reservation *rsv)
{
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
struct scsi_device *sdev = sdkp->device;
u8 data[24] = { };
int result, len;
result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
if (result)
return result;
len = get_unaligned_be32(&data[4]);
if (!len)
return 0;
/* Make sure we have at least the key and type */
if (len < 14) {
sdev_printk(KERN_INFO, sdev,
"READ RESERVATION failed due to short return buffer of %d bytes\n",
len);
return -EINVAL;
}
rsv->generation = get_unaligned_be32(&data[0]);
rsv->key = get_unaligned_be64(&data[8]);
rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
return 0;
}
static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
u64 sa_key, enum scsi_pr_type type, u8 flags)
{
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
struct scsi_device *sdev = sdkp->device;
struct scsi_sense_hdr sshdr;
struct scsi_failure failure_defs[] = {
{
.sense = UNIT_ATTENTION,
.asc = SCMD_FAILURE_ASC_ANY,
.ascq = SCMD_FAILURE_ASCQ_ANY,
.allowed = 5,
.result = SAM_STAT_CHECK_CONDITION,
},
{}
};
struct scsi_failures failures = {
.failure_definitions = failure_defs,
};
const struct scsi_exec_args exec_args = {
.sshdr = &sshdr,
.failures = &failures,
};
int result;
u8 cmd[16] = { 0, };
u8 data[24] = { 0, };
cmd[0] = PERSISTENT_RESERVE_OUT;
cmd[1] = sa;
cmd[2] = type;
put_unaligned_be32(sizeof(data), &cmd[5]);
put_unaligned_be64(key, &data[0]);
put_unaligned_be64(sa_key, &data[8]);
data[20] = flags;
result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
sizeof(data), SD_TIMEOUT, sdkp->max_retries,
&exec_args);
if (scsi_status_is_check_condition(result) &&
scsi_sense_valid(&sshdr)) {
sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
scsi_print_sense_hdr(sdev, NULL, &sshdr);
}
if (result <= 0)
return result;
return sd_scsi_to_pr_err(&sshdr, result);
}
static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
u32 flags)
{
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
old_key, new_key, 0,
(1 << 0) /* APTPL */);
}
static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
u32 flags)
{
if (flags)
return -EOPNOTSUPP;
return sd_pr_out_command(bdev, 0x01, key, 0,
block_pr_type_to_scsi(type), 0);
}
static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
return sd_pr_out_command(bdev, 0x02, key, 0,
block_pr_type_to_scsi(type), 0);
}
static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
enum pr_type type, bool abort)
{
return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
block_pr_type_to_scsi(type), 0);
}
static int sd_pr_clear(struct block_device *bdev, u64 key)
{
return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
}
static const struct pr_ops sd_pr_ops = {
.pr_register = sd_pr_register,
.pr_reserve = sd_pr_reserve,
.pr_release = sd_pr_release,
.pr_preempt = sd_pr_preempt,
.pr_clear = sd_pr_clear,
.pr_read_keys = sd_pr_read_keys,
.pr_read_reservation = sd_pr_read_reservation,
};
static void scsi_disk_free_disk(struct gendisk *disk)
{
struct scsi_disk *sdkp = scsi_disk(disk);
put_device(&sdkp->disk_dev);
}
static const struct block_device_operations sd_fops = {
.owner = THIS_MODULE,
.open = sd_open,
.release = sd_release,
.ioctl = sd_ioctl,
.getgeo = sd_getgeo,
.compat_ioctl = blkdev_compat_ptr_ioctl,
.check_events = sd_check_events,
.unlock_native_capacity = sd_unlock_native_capacity,
.report_zones = sd_zbc_report_zones,
.get_unique_id = sd_get_unique_id,
.free_disk = scsi_disk_free_disk,
.pr_ops = &sd_pr_ops,
};
/**
* sd_eh_reset - reset error handling callback
* @scmd: sd-issued command that has failed
*
* This function is called by the SCSI midlayer before starting
* SCSI EH. When counting medium access failures we have to be
* careful to register it only only once per device and SCSI EH run;
* there might be several timed out commands which will cause the
* 'max_medium_access_timeouts' counter to trigger after the first
* SCSI EH run already and set the device to offline.
* So this function resets the internal counter before starting SCSI EH.
**/
static void sd_eh_reset(struct scsi_cmnd *scmd)
{
struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
/* New SCSI EH run, reset gate variable */
sdkp->ignore_medium_access_errors = false;
}
/**
* sd_eh_action - error handling callback
* @scmd: sd-issued command that has failed
* @eh_disp: The recovery disposition suggested by the midlayer
*
* This function is called by the SCSI midlayer upon completion of an
* error test command (currently TEST UNIT READY). The result of sending
* the eh command is passed in eh_disp. We're looking for devices that
* fail medium access commands but are OK with non access commands like
* test unit ready (so wrongly see the device as having a successful
* recovery)
**/
static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
{
struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
struct scsi_device *sdev = scmd->device;
if (!scsi_device_online(sdev) ||
!scsi_medium_access_command(scmd) ||
host_byte(scmd->result) != DID_TIME_OUT ||
eh_disp != SUCCESS)
return eh_disp;
/*
* The device has timed out executing a medium access command.
* However, the TEST UNIT READY command sent during error
* handling completed successfully. Either the device is in the
* process of recovering or has it suffered an internal failure
* that prevents access to the storage medium.
*/
if (!sdkp->ignore_medium_access_errors) {
sdkp->medium_access_timed_out++;
sdkp->ignore_medium_access_errors = true;
}
/*
* If the device keeps failing read/write commands but TEST UNIT
* READY always completes successfully we assume that medium
* access is no longer possible and take the device offline.
*/
if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
scmd_printk(KERN_ERR, scmd,
"Medium access timeout failure. Offlining disk!\n");
mutex_lock(&sdev->state_mutex);
scsi_device_set_state(sdev, SDEV_OFFLINE);
mutex_unlock(&sdev->state_mutex);
return SUCCESS;
}
return eh_disp;
}
static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
{
struct request *req = scsi_cmd_to_rq(scmd);
struct scsi_device *sdev = scmd->device;
unsigned int transferred, good_bytes;
u64 start_lba, end_lba, bad_lba;
/*
* Some commands have a payload smaller than the device logical
* block size (e.g. INQUIRY on a 4K disk).
*/
if (scsi_bufflen(scmd) <= sdev->sector_size)
return 0;
/* Check if we have a 'bad_lba' information */
if (!scsi_get_sense_info_fld(scmd->sense_buffer,
SCSI_SENSE_BUFFERSIZE,
&bad_lba))
return 0;
/*
* If the bad lba was reported incorrectly, we have no idea where
* the error is.
*/
start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
if (bad_lba < start_lba || bad_lba >= end_lba)
return 0;
/*
* resid is optional but mostly filled in. When it's unused,
* its value is zero, so we assume the whole buffer transferred
*/
transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
/* This computation should always be done in terms of the
* resolution of the device's medium.
*/
good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
return min(good_bytes, transferred);
}
/**
* sd_done - bottom half handler: called when the lower level
* driver has completed (successfully or otherwise) a scsi command.
* @SCpnt: mid-level's per command structure.
*
* Note: potentially run from within an ISR. Must not block.
**/
static int sd_done(struct scsi_cmnd *SCpnt)
{
int result = SCpnt->result;
unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
unsigned int sector_size = SCpnt->device->sector_size;
unsigned int resid;
struct scsi_sense_hdr sshdr;
struct request *req = scsi_cmd_to_rq(SCpnt);
struct scsi_disk *sdkp = scsi_disk(req->q->disk);
int sense_valid = 0;
int sense_deferred = 0;
switch (req_op(req)) {
case REQ_OP_DISCARD:
case REQ_OP_WRITE_ZEROES:
case REQ_OP_ZONE_RESET:
case REQ_OP_ZONE_RESET_ALL:
case REQ_OP_ZONE_OPEN:
case REQ_OP_ZONE_CLOSE:
case REQ_OP_ZONE_FINISH:
if (!result) {
good_bytes = blk_rq_bytes(req);
scsi_set_resid(SCpnt, 0);
} else {
good_bytes = 0;
scsi_set_resid(SCpnt, blk_rq_bytes(req));
}
break;
default:
/*
* In case of bogus fw or device, we could end up having
* an unaligned partial completion. Check this here and force
* alignment.
*/
resid = scsi_get_resid(SCpnt);
if (resid & (sector_size - 1)) {
sd_printk(KERN_INFO, sdkp,
"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
resid, sector_size);
scsi_print_command(SCpnt);
resid = min(scsi_bufflen(SCpnt),
round_up(resid, sector_size));
scsi_set_resid(SCpnt, resid);
}
}
if (result) {
sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
if (sense_valid)
sense_deferred = scsi_sense_is_deferred(&sshdr);
}
sdkp->medium_access_timed_out = 0;
if (!scsi_status_is_check_condition(result) &&
(!sense_valid || sense_deferred))
goto out;
switch (sshdr.sense_key) {
case HARDWARE_ERROR:
case MEDIUM_ERROR:
good_bytes = sd_completed_bytes(SCpnt);
break;
case RECOVERED_ERROR:
good_bytes = scsi_bufflen(SCpnt);
break;
case NO_SENSE:
/* This indicates a false check condition, so ignore it. An
* unknown amount of data was transferred so treat it as an
* error.
*/
SCpnt->result = 0;
memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
break;
case ABORTED_COMMAND:
if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
good_bytes = sd_completed_bytes(SCpnt);
break;
case ILLEGAL_REQUEST:
switch (sshdr.asc) {
case 0x10: /* DIX: Host detected corruption */
good_bytes = sd_completed_bytes(SCpnt);
break;
case 0x20: /* INVALID COMMAND OPCODE */
case 0x24: /* INVALID FIELD IN CDB */
switch (SCpnt->cmnd[0]) {
case UNMAP:
sd_disable_discard(sdkp);
break;
case WRITE_SAME_16:
case WRITE_SAME:
if (SCpnt->cmnd[1] & 8) { /* UNMAP */
sd_disable_discard(sdkp);
} else {
sd_disable_write_same(sdkp);
req->rq_flags |= RQF_QUIET;
}
break;
}
}
break;
default:
break;
}
out:
if (sdkp->device->type == TYPE_ZBC)
good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
"sd_done: completed %d of %d bytes\n",
good_bytes, scsi_bufflen(SCpnt)));
return good_bytes;
}
/*
* spinup disk - called only in sd_revalidate_disk()
*/
static void
sd_spinup_disk(struct scsi_disk *sdkp)
{
static const u8 cmd[10] = { TEST_UNIT_READY };
unsigned long spintime_expire = 0;
int spintime, sense_valid = 0;
unsigned int the_result;
struct scsi_sense_hdr sshdr;
struct scsi_failure failure_defs[] = {
/* Do not retry Medium Not Present */
{
.sense = UNIT_ATTENTION,
.asc = 0x3A,
.ascq = SCMD_FAILURE_ASCQ_ANY,
.result = SAM_STAT_CHECK_CONDITION,
},
{
.sense = NOT_READY,
.asc = 0x3A,
.ascq = SCMD_FAILURE_ASCQ_ANY,
.result = SAM_STAT_CHECK_CONDITION,
},
/* Retry when scsi_status_is_good would return false 3 times */
{
.result = SCMD_FAILURE_STAT_ANY,
.allowed = 3,
},
{}
};
struct scsi_failures failures = {
.failure_definitions = failure_defs,
};
const struct scsi_exec_args exec_args = {
.sshdr = &sshdr,
.failures = &failures,
};
spintime = 0;
/* Spin up drives, as required. Only do this at boot time */
/* Spinup needs to be done for module loads too. */
do {
bool media_was_present = sdkp->media_present;
scsi_failures_reset_retries(&failures);
the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
NULL, 0, SD_TIMEOUT,
sdkp->max_retries, &exec_args);
if (the_result > 0) {
/*
* If the drive has indicated to us that it doesn't
* have any media in it, don't bother with any more
* polling.
*/
if (media_not_present(sdkp, &sshdr)) {
if (media_was_present)
sd_printk(KERN_NOTICE, sdkp,
"Media removed, stopped polling\n");
return;
}
sense_valid = scsi_sense_valid(&sshdr);
}
if (!scsi_status_is_check_condition(the_result)) {
/* no sense, TUR either succeeded or failed
* with a status error */
if(!spintime && !scsi_status_is_good(the_result)) {
sd_print_result(sdkp, "Test Unit Ready failed",
the_result);
}
break;
}
/*
* The device does not want the automatic start to be issued.
*/
if (sdkp->device->no_start_on_add)
break;
if (sense_valid && sshdr.sense_key == NOT_READY) {
if (sshdr.asc == 4 && sshdr.ascq == 3)
break; /* manual intervention required */
if (sshdr.asc == 4 && sshdr.ascq == 0xb)
break; /* standby */
if (sshdr.asc == 4 && sshdr.ascq == 0xc)
break; /* unavailable */
if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
break; /* sanitize in progress */
if (sshdr.asc == 4 && sshdr.ascq == 0x24)
break; /* depopulation in progress */
if (sshdr.asc == 4 && sshdr.ascq == 0x25)
break; /* depopulation restoration in progress */
/*
* Issue command to spin up drive when not ready
*/
if (!spintime) {
/* Return immediately and start spin cycle */
const u8 start_cmd[10] = {
[0] = START_STOP,
[1] = 1,
[4] = sdkp->device->start_stop_pwr_cond ?
0x11 : 1,
};
sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
scsi_execute_cmd(sdkp->device, start_cmd,
REQ_OP_DRV_IN, NULL, 0,
SD_TIMEOUT, sdkp->max_retries,
&exec_args);
spintime_expire = jiffies + 100 * HZ;
spintime = 1;
}
/* Wait 1 second for next try */
msleep(1000);
printk(KERN_CONT ".");
/*
* Wait for USB flash devices with slow firmware.
* Yes, this sense key/ASC combination shouldn't
* occur here. It's characteristic of these devices.
*/
} else if (sense_valid &&
sshdr.sense_key == UNIT_ATTENTION &&
sshdr.asc == 0x28) {
if (!spintime) {
spintime_expire = jiffies + 5 * HZ;
spintime = 1;
}
/* Wait 1 second for next try */
msleep(1000);
} else {
/* we don't understand the sense code, so it's
* probably pointless to loop */
if(!spintime) {
sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
sd_print_sense_hdr(sdkp, &sshdr);
}
break;
}
} while (spintime && time_before_eq(jiffies, spintime_expire));
if (spintime) {
if (scsi_status_is_good(the_result))
printk(KERN_CONT "ready\n");
else
printk(KERN_CONT "not responding...\n");
}
}
/*
* Determine whether disk supports Data Integrity Field.
*/
static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
{
struct scsi_device *sdp = sdkp->device;
u8 type;
if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
sdkp->protection_type = 0;
return 0;
}
type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
if (type > T10_PI_TYPE3_PROTECTION) {
sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
" protection type %u. Disabling disk!\n",
type);
sdkp->protection_type = 0;
return -ENODEV;
}
sdkp->protection_type = type;
return 0;
}
static void sd_config_protection(struct scsi_disk *sdkp,
struct queue_limits *lim)
{
struct scsi_device *sdp = sdkp->device;
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
sd_dif_config_host(sdkp, lim);
if (!sdkp->protection_type)
return;
if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
sd_first_printk(KERN_NOTICE, sdkp,
"Disabling DIF Type %u protection\n",
sdkp->protection_type);
sdkp->protection_type = 0;
}
sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
sdkp->protection_type);
}
static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
struct scsi_sense_hdr *sshdr, int sense_valid,
int the_result)
{
if (sense_valid)
sd_print_sense_hdr(sdkp, sshdr);
else
sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
/*
* Set dirty bit for removable devices if not ready -
* sometimes drives will not report this properly.
*/
if (sdp->removable &&
sense_valid && sshdr->sense_key == NOT_READY)
set_media_not_present(sdkp);
/*
* We used to set media_present to 0 here to indicate no media
* in the drive, but some drives fail read capacity even with
* media present, so we can't do that.
*/
sdkp->capacity = 0; /* unknown mapped to zero - as usual */
}
#define RC16_LEN 32
#if RC16_LEN > SD_BUF_SIZE
#error RC16_LEN must not be more than SD_BUF_SIZE
#endif
#define READ_CAPACITY_RETRIES_ON_RESET 10
static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
struct queue_limits *lim, unsigned char *buffer)
{
unsigned char cmd[16];
struct scsi_sense_hdr sshdr;
const struct scsi_exec_args exec_args = {
.sshdr = &sshdr,
};
int sense_valid = 0;
int the_result;
int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
unsigned int alignment;
unsigned long long lba;
unsigned sector_size;
if (sdp->no_read_capacity_16)
return -EINVAL;
do {
memset(cmd, 0, 16);
cmd[0] = SERVICE_ACTION_IN_16;
cmd[1] = SAI_READ_CAPACITY_16;
cmd[13] = RC16_LEN;
memset(buffer, 0, RC16_LEN);
the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
buffer, RC16_LEN, SD_TIMEOUT,
sdkp->max_retries, &exec_args);
if (the_result > 0) {
if (media_not_present(sdkp, &sshdr))
return -ENODEV;
sense_valid = scsi_sense_valid(&sshdr);
if (sense_valid &&
sshdr.sense_key == ILLEGAL_REQUEST &&
(sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
sshdr.ascq == 0x00)
/* Invalid Command Operation Code or
* Invalid Field in CDB, just retry
* silently with RC10 */
return -EINVAL;
if (sense_valid &&
sshdr.sense_key == UNIT_ATTENTION &&
sshdr.asc == 0x29 && sshdr.ascq == 0x00)
/* Device reset might occur several times,
* give it one more chance */
if (--reset_retries > 0)
continue;
}
retries--;
} while (the_result && retries);
if (the_result) {
sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
return -EINVAL;
}
sector_size = get_unaligned_be32(&buffer[8]);
lba = get_unaligned_be64(&buffer[0]);
if (sd_read_protection_type(sdkp, buffer) < 0) {
sdkp->capacity = 0;
return -ENODEV;
}
/* Logical blocks per physical block exponent */
sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
/* RC basis */
sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
/* Lowest aligned logical block */
alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
lim->alignment_offset = alignment;
if (alignment && sdkp->first_scan)
sd_printk(KERN_NOTICE, sdkp,
"physical block alignment offset: %u\n", alignment);
if (buffer[14] & 0x80) { /* LBPME */
sdkp->lbpme = 1;
if (buffer[14] & 0x40) /* LBPRZ */
sdkp->lbprz = 1;
}
sdkp->capacity = lba + 1;
return sector_size;
}
static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
unsigned char *buffer)
{
static const u8 cmd[10] = { READ_CAPACITY };
struct scsi_sense_hdr sshdr;
struct scsi_failure failure_defs[] = {
/* Do not retry Medium Not Present */
{
.sense = UNIT_ATTENTION,
.asc = 0x3A,
.result = SAM_STAT_CHECK_CONDITION,
},
{
.sense = NOT_READY,
.asc = 0x3A,
.result = SAM_STAT_CHECK_CONDITION,
},
/* Device reset might occur several times so retry a lot */
{
.sense = UNIT_ATTENTION,
.asc = 0x29,
.allowed = READ_CAPACITY_RETRIES_ON_RESET,
.result = SAM_STAT_CHECK_CONDITION,
},
/* Any other error not listed above retry 3 times */
{
.result = SCMD_FAILURE_RESULT_ANY,
.allowed = 3,
},
{}
};
struct scsi_failures failures = {
.failure_definitions = failure_defs,
};
const struct scsi_exec_args exec_args = {
.sshdr = &sshdr,
.failures = &failures,
};
int sense_valid = 0;
int the_result;
sector_t lba;
unsigned sector_size;
memset(buffer, 0, 8);
the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
8, SD_TIMEOUT, sdkp->max_retries,
&exec_args);
if (the_result > 0) {
sense_valid = scsi_sense_valid(&sshdr);
if (media_not_present(sdkp, &sshdr))
return -ENODEV;
}
if (the_result) {
sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
return -EINVAL;
}
sector_size = get_unaligned_be32(&buffer[4]);
lba = get_unaligned_be32(&buffer[0]);
if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
/* Some buggy (usb cardreader) devices return an lba of
0xffffffff when the want to report a size of 0 (with
which they really mean no media is present) */
sdkp->capacity = 0;
sdkp->physical_block_size = sector_size;
return sector_size;
}
sdkp->capacity = lba + 1;
sdkp->physical_block_size = sector_size;
return sector_size;
}
static int sd_try_rc16_first(struct scsi_device *sdp)
{
if (sdp->host->max_cmd_len < 16)
return 0;
if (sdp->try_rc_10_first)
return 0;
if (sdp->scsi_level > SCSI_SPC_2)
return 1;
if (scsi_device_protection(sdp))
return 1;
return 0;
}
/*
* read disk capacity
*/
static void
sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
unsigned char *buffer)
{
int sector_size;
struct scsi_device *sdp = sdkp->device;
if (sd_try_rc16_first(sdp)) {
sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
if (sector_size == -EOVERFLOW)
goto got_data;
if (sector_size == -ENODEV)
return;
if (sector_size < 0)
sector_size = read_capacity_10(sdkp, sdp, buffer);
if (sector_size < 0)
return;
} else {
sector_size = read_capacity_10(sdkp, sdp, buffer);
if (sector_size == -EOVERFLOW)
goto got_data;
if (sector_size < 0)
return;
if ((sizeof(sdkp->capacity) > 4) &&
(sdkp->capacity > 0xffffffffULL)) {
int old_sector_size = sector_size;
sd_printk(KERN_NOTICE, sdkp, "Very big device. "
"Trying to use READ CAPACITY(16).\n");
sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
if (sector_size < 0) {
sd_printk(KERN_NOTICE, sdkp,
"Using 0xffffffff as device size\n");
sdkp->capacity = 1 + (sector_t) 0xffffffff;
sector_size = old_sector_size;
goto got_data;
}
/* Remember that READ CAPACITY(16) succeeded */
sdp->try_rc_10_first = 0;
}
}
/* Some devices are known to return the total number of blocks,
* not the highest block number. Some devices have versions
* which do this and others which do not. Some devices we might
* suspect of doing this but we don't know for certain.
*
* If we know the reported capacity is wrong, decrement it. If
* we can only guess, then assume the number of blocks is even
* (usually true but not always) and err on the side of lowering
* the capacity.
*/
if (sdp->fix_capacity ||
(sdp->guess_capacity && (sdkp->capacity & 0x01))) {
sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
"from its reported value: %llu\n",
(unsigned long long) sdkp->capacity);
--sdkp->capacity;
}
got_data:
if (sector_size == 0) {
sector_size = 512;
sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
"assuming 512.\n");
}
if (sector_size != 512 &&
sector_size != 1024 &&
sector_size != 2048 &&
sector_size != 4096) {
sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
sector_size);
/*
* The user might want to re-format the drive with
* a supported sectorsize. Once this happens, it
* would be relatively trivial to set the thing up.
* For this reason, we leave the thing in the table.
*/
sdkp->capacity = 0;
/*
* set a bogus sector size so the normal read/write
* logic in the block layer will eventually refuse any
* request on this device without tripping over power
* of two sector size assumptions
*/
sector_size = 512;
}
lim->logical_block_size = sector_size;
lim->physical_block_size = sdkp->physical_block_size;
sdkp->device->sector_size = sector_size;
if (sdkp->capacity > 0xffffffff)
sdp->use_16_for_rw = 1;
}
/*
* Print disk capacity
*/
static void
sd_print_capacity(struct scsi_disk *sdkp,
sector_t old_capacity)
{
int sector_size = sdkp->device->sector_size;
char cap_str_2[10], cap_str_10[10];
if (!sdkp->first_scan && old_capacity == sdkp->capacity)
return;
string_get_size(sdkp->capacity, sector_size,
STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
string_get_size(sdkp->capacity, sector_size,
STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
sd_printk(KERN_NOTICE, sdkp,
"%llu %d-byte logical blocks: (%s/%s)\n",
(unsigned long long)sdkp->capacity,
sector_size, cap_str_10, cap_str_2);
if (sdkp->physical_block_size != sector_size)
sd_printk(KERN_NOTICE, sdkp,
"%u-byte physical blocks\n",
sdkp->physical_block_size);
}
/* called with buffer of length 512 */
static inline int
sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
unsigned char *buffer, int len, struct scsi_mode_data *data,
struct scsi_sense_hdr *sshdr)
{
/*
* If we must use MODE SENSE(10), make sure that the buffer length
* is at least 8 bytes so that the mode sense header fits.
*/
if (sdkp->device->use_10_for_ms && len < 8)
len = 8;
return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
SD_TIMEOUT, sdkp->max_retries, data, sshdr);
}
/*
* read write protect setting, if possible - called only in sd_revalidate_disk()
* called with buffer of length SD_BUF_SIZE
*/
static void
sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
{
int res;
struct scsi_device *sdp = sdkp->device;
struct scsi_mode_data data;
int old_wp = sdkp->write_prot;
set_disk_ro(sdkp->disk, 0);
if (sdp->skip_ms_page_3f) {
sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
return;
}
if (sdp->use_192_bytes_for_3f) {
res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
} else {
/*
* First attempt: ask for all pages (0x3F), but only 4 bytes.
* We have to start carefully: some devices hang if we ask
* for more than is available.
*/
res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
/*
* Second attempt: ask for page 0 When only page 0 is
* implemented, a request for page 3F may return Sense Key
* 5: Illegal Request, Sense Code 24: Invalid field in
* CDB.
*/
if (res < 0)
res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
/*
* Third attempt: ask 255 bytes, as we did earlier.
*/
if (res < 0)
res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
&data, NULL);
}
if (res < 0) {
sd_first_printk(KERN_WARNING, sdkp,
"Test WP failed, assume Write Enabled\n");
} else {
sdkp->write_prot = ((data.device_specific & 0x80) != 0);
set_disk_ro(sdkp->disk, sdkp->write_prot);
if (sdkp->first_scan || old_wp != sdkp->write_prot) {
sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
sdkp->write_prot ? "on" : "off");
sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
}
}
}
/*
* sd_read_cache_type - called only from sd_revalidate_disk()
* called with buffer of length SD_BUF_SIZE
*/
static void
sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
{
int len = 0, res;
struct scsi_device *sdp = sdkp->device;
int dbd;
int modepage;
int first_len;
struct scsi_mode_data data;
struct scsi_sense_hdr sshdr;
int old_wce = sdkp->WCE;
int old_rcd = sdkp->RCD;
int old_dpofua = sdkp->DPOFUA;
if (sdkp->cache_override)
return;
first_len = 4;
if (sdp->skip_ms_page_8) {
if (sdp->type == TYPE_RBC)
goto defaults;
else {
if (sdp->skip_ms_page_3f)
goto defaults;
modepage = 0x3F;
if (sdp->use_192_bytes_for_3f)
first_len = 192;
dbd = 0;
}
} else if (sdp->type == TYPE_RBC) {
modepage = 6;
dbd = 8;
} else {
modepage = 8;
dbd = 0;
}
/* cautiously ask */
res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
&data, &sshdr);
if (res < 0)
goto bad_sense;
if (!data.header_length) {
modepage = 6;
first_len = 0;
sd_first_printk(KERN_ERR, sdkp,
"Missing header in MODE_SENSE response\n");
}
/* that went OK, now ask for the proper length */
len = data.length;
/*
* We're only interested in the first three bytes, actually.
* But the data cache page is defined for the first 20.
*/
if (len < 3)
goto bad_sense;
else if (len > SD_BUF_SIZE) {
sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
"data from %d to %d bytes\n", len, SD_BUF_SIZE);
len = SD_BUF_SIZE;
}
if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
len = 192;
/* Get the data */
if (len > first_len)
res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
&data, &sshdr);
if (!res) {
int offset = data.header_length + data.block_descriptor_length;
while (offset < len) {
u8 page_code = buffer[offset] & 0x3F;
u8 spf = buffer[offset] & 0x40;
if (page_code == 8 || page_code == 6) {
/* We're interested only in the first 3 bytes.
*/
if (len - offset <= 2) {
sd_first_printk(KERN_ERR, sdkp,
"Incomplete mode parameter "
"data\n");
goto defaults;
} else {
modepage = page_code;
goto Page_found;
}
} else {
/* Go to the next page */
if (spf && len - offset > 3)
offset += 4 + (buffer[offset+2] << 8) +
buffer[offset+3];
else if (!spf && len - offset > 1)
offset += 2 + buffer[offset+1];
else {
sd_first_printk(KERN_ERR, sdkp,
"Incomplete mode "
"parameter data\n");
goto defaults;
}
}
}
sd_first_printk(KERN_WARNING, sdkp,
"No Caching mode page found\n");
goto defaults;
Page_found:
if (modepage == 8) {
sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
} else {
sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
sdkp->RCD = 0;
}
sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
if (sdp->broken_fua) {
sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
sdkp->DPOFUA = 0;
} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
!sdkp->device->use_16_for_rw) {
sd_first_printk(KERN_NOTICE, sdkp,
"Uses READ/WRITE(6), disabling FUA\n");
sdkp->DPOFUA = 0;
}
/* No cache flush allowed for write protected devices */
if (sdkp->WCE && sdkp->write_prot)
sdkp->WCE = 0;
if (sdkp->first_scan || old_wce != sdkp->WCE ||
old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
sd_printk(KERN_NOTICE, sdkp,
"Write cache: %s, read cache: %s, %s\n",
sdkp->WCE ? "enabled" : "disabled",
sdkp->RCD ? "disabled" : "enabled",
sdkp->DPOFUA ? "supports DPO and FUA"
: "doesn't support DPO or FUA");
return;
}
bad_sense:
if (res == -EIO && scsi_sense_valid(&sshdr) &&
sshdr.sense_key == ILLEGAL_REQUEST &&
sshdr.asc == 0x24 && sshdr.ascq == 0x0)
/* Invalid field in CDB */
sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
else
sd_first_printk(KERN_ERR, sdkp,
"Asking for cache data failed\n");
defaults:
if (sdp->wce_default_on) {
sd_first_printk(KERN_NOTICE, sdkp,
"Assuming drive cache: write back\n");
sdkp->WCE = 1;
} else {
sd_first_printk(KERN_WARNING, sdkp,
"Assuming drive cache: write through\n");
sdkp->WCE = 0;
}
sdkp->RCD = 0;
sdkp->DPOFUA = 0;
}
static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
{
u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
struct {
struct scsi_stream_status_header h;
struct scsi_stream_status s;
} buf;
struct scsi_device *sdev = sdkp->device;
struct scsi_sense_hdr sshdr;
const struct scsi_exec_args exec_args = {
.sshdr = &sshdr,
};
int res;
put_unaligned_be16(stream_id, &cdb[4]);
put_unaligned_be32(sizeof(buf), &cdb[10]);
res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
SD_TIMEOUT, sdkp->max_retries, &exec_args);
if (res < 0)
return false;
if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
sd_print_sense_hdr(sdkp, &sshdr);
if (res)
return false;
if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
return false;
return buf.h.stream_status[0].perm;
}
static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
{
struct scsi_device *sdp = sdkp->device;
const struct scsi_io_group_descriptor *desc, *start, *end;
u16 permanent_stream_count_old;
struct scsi_sense_hdr sshdr;
struct scsi_mode_data data;
int res;
if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
return;
res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
/*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
sdkp->max_retries, &data, &sshdr);
if (res < 0)
return;
start = (void *)buffer + data.header_length + 16;
end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
sizeof(*end));
/*
* From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
* should assign the lowest numbered stream identifiers to permanent
* streams.
*/
for (desc = start; desc < end; desc++)
if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
break;
permanent_stream_count_old = sdkp->permanent_stream_count;
sdkp->permanent_stream_count = desc - start;
if (sdkp->rscs && sdkp->permanent_stream_count < 2)
sd_printk(KERN_INFO, sdkp,
"Unexpected: RSCS has been set and the permanent stream count is %u\n",
sdkp->permanent_stream_count);
else if (sdkp->permanent_stream_count != permanent_stream_count_old)
sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
sdkp->permanent_stream_count);
}
/*
* The ATO bit indicates whether the DIF application tag is available
* for use by the operating system.
*/
static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
{
int res, offset;
struct scsi_device *sdp = sdkp->device;
struct scsi_mode_data data;
struct scsi_sense_hdr sshdr;
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
return;
if (sdkp->protection_type == 0)
return;
res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
sdkp->max_retries, &data, &sshdr);
if (res < 0 || !data.header_length ||
data.length < 6) {
sd_first_printk(KERN_WARNING, sdkp,
"getting Control mode page failed, assume no ATO\n");
if (res == -EIO && scsi_sense_valid(&sshdr))
sd_print_sense_hdr(sdkp, &sshdr);
return;
}
offset = data.header_length + data.block_descriptor_length;
if ((buffer[offset] & 0x3f) != 0x0a) {
sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
return;
}
if ((buffer[offset + 5] & 0x80) == 0)
return;
sdkp->ATO = 1;
return;
}
static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
{
if (!sdkp->lbpme)
return SD_LBP_FULL;
if (!sdkp->lbpvpd) {
/* LBP VPD page not provided */
if (sdkp->max_unmap_blocks)
return SD_LBP_UNMAP;
return SD_LBP_WS16;
}
/* LBP VPD page tells us what to use */
if (sdkp->lbpu && sdkp->max_unmap_blocks)
return SD_LBP_UNMAP;
if (sdkp->lbpws)
return SD_LBP_WS16;
if (sdkp->lbpws10)
return SD_LBP_WS10;
return SD_LBP_DISABLE;
}
/*
* Query disk device for preferred I/O sizes.
*/
static void sd_read_block_limits(struct scsi_disk *sdkp,
struct queue_limits *lim)
{
struct scsi_vpd *vpd;
rcu_read_lock();
vpd = rcu_dereference(sdkp->device->vpd_pgb0);
if (!vpd || vpd->len < 16)
goto out;
sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
if (vpd->len >= 64) {
unsigned int lba_count, desc_count;
sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
if (!sdkp->lbpme)
goto config_atomic;
lba_count = get_unaligned_be32(&vpd->data[20]);
desc_count = get_unaligned_be32(&vpd->data[24]);
if (lba_count && desc_count)
sdkp->max_unmap_blocks = lba_count;
sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
if (vpd->data[32] & 0x80)
sdkp->unmap_alignment =
get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
config_atomic:
sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
sd_config_atomic(sdkp, lim);
}
out:
rcu_read_unlock();
}
/* Parse the Block Limits Extension VPD page (0xb7) */
static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
{
struct scsi_vpd *vpd;
rcu_read_lock();
vpd = rcu_dereference(sdkp->device->vpd_pgb7);
if (vpd && vpd->len >= 2)
sdkp->rscs = vpd->data[5] & 1;
rcu_read_unlock();
}
/* Query block device characteristics */
static void sd_read_block_characteristics(struct scsi_disk *sdkp,
struct queue_limits *lim)
{
struct scsi_vpd *vpd;
u16 rot;
rcu_read_lock();
vpd = rcu_dereference(sdkp->device->vpd_pgb1);
if (!vpd || vpd->len <= 8) {
rcu_read_unlock();
return;
}
rot = get_unaligned_be16(&vpd->data[4]);
sdkp->zoned = (vpd->data[8] >> 4) & 3;
rcu_read_unlock();
if (rot == 1)
lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
if (!sdkp->first_scan)
return;
if (sdkp->device->type == TYPE_ZBC)
sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
else if (sdkp->zoned == 1)
sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
else if (sdkp->zoned == 2)
sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
}
/**
* sd_read_block_provisioning - Query provisioning VPD page
* @sdkp: disk to query
*/
static void sd_read_block_provisioning(struct scsi_disk *sdkp)
{
struct scsi_vpd *vpd;
if (sdkp->lbpme == 0)
return;
rcu_read_lock();
vpd = rcu_dereference(sdkp->device->vpd_pgb2);
if (!vpd || vpd->len < 8) {
rcu_read_unlock();
return;
}
sdkp->lbpvpd = 1;
sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
rcu_read_unlock();
}
static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
{
struct scsi_device *sdev = sdkp->device;
if (sdev->host->no_write_same) {
sdev->no_write_same = 1;
return;
}
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
struct scsi_vpd *vpd;
sdev->no_report_opcodes = 1;
/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
* CODES is unsupported and the device has an ATA
* Information VPD page (SAT).
*/
rcu_read_lock();
vpd = rcu_dereference(sdev->vpd_pg89);
if (vpd)
sdev->no_write_same = 1;
rcu_read_unlock();
}
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
sdkp->ws16 = 1;
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
sdkp->ws10 = 1;
}
static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
{
struct scsi_device *sdev = sdkp->device;
if (!sdev->security_supported)
return;
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
SECURITY_PROTOCOL_IN, 0) == 1 &&
scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
SECURITY_PROTOCOL_OUT, 0) == 1)
sdkp->security = 1;
}
static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
{
return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
}
/**
* sd_read_cpr - Query concurrent positioning ranges
* @sdkp: disk to query
*/
static void sd_read_cpr(struct scsi_disk *sdkp)
{
struct blk_independent_access_ranges *iars = NULL;
unsigned char *buffer = NULL;
unsigned int nr_cpr = 0;
int i, vpd_len, buf_len = SD_BUF_SIZE;
u8 *desc;
/*
* We need to have the capacity set first for the block layer to be
* able to check the ranges.
*/
if (sdkp->first_scan)
return;
if (!sdkp->capacity)
goto out;
/*
* Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
* leading to a maximum page size of 64 + 256*32 bytes.
*/
buf_len = 64 + 256*32;
buffer = kmalloc(buf_len, GFP_KERNEL);
if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
goto out;
/* We must have at least a 64B header and one 32B range descriptor */
vpd_len = get_unaligned_be16(&buffer[2]) + 4;
if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
sd_printk(KERN_ERR, sdkp,
"Invalid Concurrent Positioning Ranges VPD page\n");
goto out;
}
nr_cpr = (vpd_len - 64) / 32;
if (nr_cpr == 1) {
nr_cpr = 0;
goto out;
}
iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
if (!iars) {
nr_cpr = 0;
goto out;
}
desc = &buffer[64];
for (i = 0; i < nr_cpr; i++, desc += 32) {
if (desc[0] != i) {
sd_printk(KERN_ERR, sdkp,
"Invalid Concurrent Positioning Range number\n");
nr_cpr = 0;
break;
}
iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
}
out:
disk_set_independent_access_ranges(sdkp->disk, iars);
if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
sd_printk(KERN_NOTICE, sdkp,
"%u concurrent positioning ranges\n", nr_cpr);
sdkp->nr_actuators = nr_cpr;
}
kfree(buffer);
}
static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
{
struct scsi_device *sdp = sdkp->device;
unsigned int min_xfer_bytes =
logical_to_bytes(sdp, sdkp->min_xfer_blocks);
if (sdkp->min_xfer_blocks == 0)
return false;
if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
sd_first_printk(KERN_WARNING, sdkp,
"Preferred minimum I/O size %u bytes not a " \
"multiple of physical block size (%u bytes)\n",
min_xfer_bytes, sdkp->physical_block_size);
sdkp->min_xfer_blocks = 0;
return false;
}
sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
min_xfer_bytes);
return true;
}
/*
* Determine the device's preferred I/O size for reads and writes
* unless the reported value is unreasonably small, large, not a
* multiple of the physical block size, or simply garbage.
*/
static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
unsigned int dev_max)
{
struct scsi_device *sdp = sdkp->device;
unsigned int opt_xfer_bytes =
logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
unsigned int min_xfer_bytes =
logical_to_bytes(sdp, sdkp->min_xfer_blocks);
if (sdkp->opt_xfer_blocks == 0)
return false;
if (sdkp->opt_xfer_blocks > dev_max) {
sd_first_printk(KERN_WARNING, sdkp,
"Optimal transfer size %u logical blocks " \
"> dev_max (%u logical blocks)\n",
sdkp->opt_xfer_blocks, dev_max);
return false;
}
if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
sd_first_printk(KERN_WARNING, sdkp,
"Optimal transfer size %u logical blocks " \
"> sd driver limit (%u logical blocks)\n",
sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
return false;
}
if (opt_xfer_bytes < PAGE_SIZE) {
sd_first_printk(KERN_WARNING, sdkp,
"Optimal transfer size %u bytes < " \
"PAGE_SIZE (%u bytes)\n",
opt_xfer_bytes, (unsigned int)PAGE_SIZE);
return false;
}
if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
sd_first_printk(KERN_WARNING, sdkp,
"Optimal transfer size %u bytes not a " \
"multiple of preferred minimum block " \
"size (%u bytes)\n",
opt_xfer_bytes, min_xfer_bytes);
return false;
}
if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
sd_first_printk(KERN_WARNING, sdkp,
"Optimal transfer size %u bytes not a " \
"multiple of physical block size (%u bytes)\n",
opt_xfer_bytes, sdkp->physical_block_size);
return false;
}
sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
opt_xfer_bytes);
return true;
}
static void sd_read_block_zero(struct scsi_disk *sdkp)
{
struct scsi_device *sdev = sdkp->device;
unsigned int buf_len = sdev->sector_size;
u8 *buffer, cmd[16] = { };
buffer = kmalloc(buf_len, GFP_KERNEL);
if (!buffer)
return;
if (sdev->use_16_for_rw) {
cmd[0] = READ_16;
put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
} else {
cmd[0] = READ_10;
put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
}
scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
SD_TIMEOUT, sdkp->max_retries, NULL);
kfree(buffer);
}
/**
* sd_revalidate_disk - called the first time a new disk is seen,
* performs disk spin up, read_capacity, etc.
* @disk: struct gendisk we care about
**/
static int sd_revalidate_disk(struct gendisk *disk)
{
struct scsi_disk *sdkp = scsi_disk(disk);
struct scsi_device *sdp = sdkp->device;
sector_t old_capacity = sdkp->capacity;
struct queue_limits lim;
unsigned char *buffer;
unsigned int dev_max;
int err;
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
"sd_revalidate_disk\n"));
/*
* If the device is offline, don't try and read capacity or any
* of the other niceties.
*/
if (!scsi_device_online(sdp))
goto out;
buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
if (!buffer) {
sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
"allocation failure.\n");
goto out;
}
sd_spinup_disk(sdkp);
lim = queue_limits_start_update(sdkp->disk->queue);
/*
* Without media there is no reason to ask; moreover, some devices
* react badly if we do.
*/
if (sdkp->media_present) {
sd_read_capacity(sdkp, &lim, buffer);
/*
* Some USB/UAS devices return generic values for mode pages
* until the media has been accessed. Trigger a READ operation
* to force the device to populate mode pages.
*/
if (sdp->read_before_ms)
sd_read_block_zero(sdkp);
/*
* set the default to rotational. All non-rotational devices
* support the block characteristics VPD page, which will
* cause this to be updated correctly and any device which
* doesn't support it should be treated as rotational.
*/
lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
if (scsi_device_supports_vpd(sdp)) {
sd_read_block_provisioning(sdkp);
sd_read_block_limits(sdkp, &lim);
sd_read_block_limits_ext(sdkp);
sd_read_block_characteristics(sdkp, &lim);
sd_zbc_read_zones(sdkp, &lim, buffer);
}
sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp));
sd_print_capacity(sdkp, old_capacity);
sd_read_write_protect_flag(sdkp, buffer);
sd_read_cache_type(sdkp, buffer);
sd_read_io_hints(sdkp, buffer);
sd_read_app_tag_own(sdkp, buffer);
sd_read_write_same(sdkp, buffer);
sd_read_security(sdkp, buffer);
sd_config_protection(sdkp, &lim);
}
/*
* We now have all cache related info, determine how we deal
* with flush requests.
*/
sd_set_flush_flag(sdkp, &lim);
/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
/* Some devices report a maximum block count for READ/WRITE requests. */
dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
lim.max_dev_sectors = logical_to_sectors(sdp, dev_max);
if (sd_validate_min_xfer_size(sdkp))
lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
else
lim.io_min = 0;
/*
* Limit default to SCSI host optimal sector limit if set. There may be
* an impact on performance for when the size of a request exceeds this
* host limit.
*/
lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
lim.io_opt = min_not_zero(lim.io_opt,
logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
}
sdkp->first_scan = 0;
set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
sd_config_write_same(sdkp, &lim);
kfree(buffer);
blk_mq_freeze_queue(sdkp->disk->queue);
err = queue_limits_commit_update(sdkp->disk->queue, &lim);
blk_mq_unfreeze_queue(sdkp->disk->queue);
if (err)
return err;
/*
* Query concurrent positioning ranges after
* queue_limits_commit_update() unlocked q->limits_lock to avoid
* deadlock with q->sysfs_dir_lock and q->sysfs_lock.
*/
if (sdkp->media_present && scsi_device_supports_vpd(sdp))
sd_read_cpr(sdkp);
/*
* For a zoned drive, revalidating the zones can be done only once
* the gendisk capacity is set. So if this fails, set back the gendisk
* capacity to 0.
*/
if (sd_zbc_revalidate_zones(sdkp))
set_capacity_and_notify(disk, 0);
out:
return 0;
}
/**
* sd_unlock_native_capacity - unlock native capacity
* @disk: struct gendisk to set capacity for
*
* Block layer calls this function if it detects that partitions
* on @disk reach beyond the end of the device. If the SCSI host
* implements ->unlock_native_capacity() method, it's invoked to
* give it a chance to adjust the device capacity.
*
* CONTEXT:
* Defined by block layer. Might sleep.
*/
static void sd_unlock_native_capacity(struct gendisk *disk)
{
struct scsi_device *sdev = scsi_disk(disk)->device;
if (sdev->host->hostt->unlock_native_capacity)
sdev->host->hostt->unlock_native_capacity(sdev);
}
/**
* sd_format_disk_name - format disk name
* @prefix: name prefix - ie. "sd" for SCSI disks
* @index: index of the disk to format name for
* @buf: output buffer
* @buflen: length of the output buffer
*
* SCSI disk names starts at sda. The 26th device is sdz and the
* 27th is sdaa. The last one for two lettered suffix is sdzz
* which is followed by sdaaa.
*
* This is basically 26 base counting with one extra 'nil' entry
* at the beginning from the second digit on and can be
* determined using similar method as 26 base conversion with the
* index shifted -1 after each digit is computed.
*
* CONTEXT:
* Don't care.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
{
const int base = 'z' - 'a' + 1;
char *begin = buf + strlen(prefix);
char *end = buf + buflen;
char *p;
int unit;
p = end - 1;
*p = '\0';
unit = base;
do {
if (p == begin)
return -EINVAL;
*--p = 'a' + (index % unit);
index = (index / unit) - 1;
} while (index >= 0);
memmove(begin, p, end - p);
memcpy(buf, prefix, strlen(prefix));
return 0;
}
/**
* sd_probe - called during driver initialization and whenever a
* new scsi device is attached to the system. It is called once
* for each scsi device (not just disks) present.
* @dev: pointer to device object
*
* Returns 0 if successful (or not interested in this scsi device
* (e.g. scanner)); 1 when there is an error.
*
* Note: this function is invoked from the scsi mid-level.
* This function sets up the mapping between a given
* <host,channel,id,lun> (found in sdp) and new device name
* (e.g. /dev/sda). More precisely it is the block device major
* and minor number that is chosen here.
*
* Assume sd_probe is not re-entrant (for time being)
* Also think about sd_probe() and sd_remove() running coincidentally.
**/
static int sd_probe(struct device *dev)
{
struct scsi_device *sdp = to_scsi_device(dev);
struct scsi_disk *sdkp;
struct gendisk *gd;
int index;
int error;
scsi_autopm_get_device(sdp);
error = -ENODEV;
if (sdp->type != TYPE_DISK &&
sdp->type != TYPE_ZBC &&
sdp->type != TYPE_MOD &&
sdp->type != TYPE_RBC)
goto out;
if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
sdev_printk(KERN_WARNING, sdp,
"Unsupported ZBC host-managed device.\n");
goto out;
}
SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
"sd_probe\n"));
error = -ENOMEM;
sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
if (!sdkp)
goto out;
gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
&sd_bio_compl_lkclass);
if (!gd)
goto out_free;
index = ida_alloc(&sd_index_ida, GFP_KERNEL);
if (index < 0) {
sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
goto out_put;
}
error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
if (error) {
sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
goto out_free_index;
}
sdkp->device = sdp;
sdkp->disk = gd;
sdkp->index = index;
sdkp->max_retries = SD_MAX_RETRIES;
atomic_set(&sdkp->openers, 0);
atomic_set(&sdkp->device->ioerr_cnt, 0);
if (!sdp->request_queue->rq_timeout) {
if (sdp->type != TYPE_MOD)
blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
else
blk_queue_rq_timeout(sdp->request_queue,
SD_MOD_TIMEOUT);
}
device_initialize(&sdkp->disk_dev);
sdkp->disk_dev.parent = get_device(dev);
sdkp->disk_dev.class = &sd_disk_class;
dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
error = device_add(&sdkp->disk_dev);
if (error) {
put_device(&sdkp->disk_dev);
goto out;
}
dev_set_drvdata(dev, sdkp);
gd->major = sd_major((index & 0xf0) >> 4);
gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
gd->minors = SD_MINORS;
gd->fops = &sd_fops;
gd->private_data = sdkp;
/* defaults, until the device tells us otherwise */
sdp->sector_size = 512;
sdkp->capacity = 0;
sdkp->media_present = 1;
sdkp->write_prot = 0;
sdkp->cache_override = 0;
sdkp->WCE = 0;
sdkp->RCD = 0;
sdkp->ATO = 0;
sdkp->first_scan = 1;
sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
sd_revalidate_disk(gd);
if (sdp->removable) {
gd->flags |= GENHD_FL_REMOVABLE;
gd->events |= DISK_EVENT_MEDIA_CHANGE;
gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
}
blk_pm_runtime_init(sdp->request_queue, dev);
if (sdp->rpm_autosuspend) {
pm_runtime_set_autosuspend_delay(dev,
sdp->host->rpm_autosuspend_delay);
}
error = device_add_disk(dev, gd, NULL);
if (error) {
device_unregister(&sdkp->disk_dev);
put_disk(gd);
goto out;
}
if (sdkp->security) {
sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
if (sdkp->opal_dev)
sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
}
sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
sdp->removable ? "removable " : "");
scsi_autopm_put_device(sdp);
return 0;
out_free_index:
ida_free(&sd_index_ida, index);
out_put:
put_disk(gd);
out_free:
kfree(sdkp);
out:
scsi_autopm_put_device(sdp);
return error;
}
/**
* sd_remove - called whenever a scsi disk (previously recognized by
* sd_probe) is detached from the system. It is called (potentially
* multiple times) during sd module unload.
* @dev: pointer to device object
*
* Note: this function is invoked from the scsi mid-level.
* This function potentially frees up a device name (e.g. /dev/sdc)
* that could be re-used by a subsequent sd_probe().
* This function is not called when the built-in sd driver is "exit-ed".
**/
static int sd_remove(struct device *dev)
{
struct scsi_disk *sdkp = dev_get_drvdata(dev);
scsi_autopm_get_device(sdkp->device);
device_del(&sdkp->disk_dev);
del_gendisk(sdkp->disk);
if (!sdkp->suspended)
sd_shutdown(dev);
put_disk(sdkp->disk);
return 0;
}
static void scsi_disk_release(struct device *dev)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
ida_free(&sd_index_ida, sdkp->index);
put_device(&sdkp->device->sdev_gendev);
free_opal_dev(sdkp->opal_dev);
kfree(sdkp);
}
static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
{
unsigned char cmd[6] = { START_STOP }; /* START_VALID */
struct scsi_sense_hdr sshdr;
struct scsi_failure failure_defs[] = {
{
/* Power on, reset, or bus device reset occurred */
.sense = UNIT_ATTENTION,
.asc = 0x29,
.ascq = 0,
.result = SAM_STAT_CHECK_CONDITION,
},
{
/* Power on occurred */
.sense = UNIT_ATTENTION,
.asc = 0x29,
.ascq = 1,
.result = SAM_STAT_CHECK_CONDITION,
},
{
/* SCSI bus reset */
.sense = UNIT_ATTENTION,
.asc = 0x29,
.ascq = 2,
.result = SAM_STAT_CHECK_CONDITION,
},
{}
};
struct scsi_failures failures = {
.total_allowed = 3,
.failure_definitions = failure_defs,
};
const struct scsi_exec_args exec_args = {
.sshdr = &sshdr,
.req_flags = BLK_MQ_REQ_PM,
.failures = &failures,
};
struct scsi_device *sdp = sdkp->device;
int res;
if (start)
cmd[4] |= 1; /* START */
if (sdp->start_stop_pwr_cond)
cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
if (!scsi_device_online(sdp))
return -ENODEV;
res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
sdkp->max_retries, &exec_args);
if (res) {
sd_print_result(sdkp, "Start/Stop Unit failed", res);
if (res > 0 && scsi_sense_valid(&sshdr)) {
sd_print_sense_hdr(sdkp, &sshdr);
/* 0x3a is medium not present */
if (sshdr.asc == 0x3a)
res = 0;
}
}
/* SCSI error codes must not go to the generic layer */
if (res)
return -EIO;
return 0;
}
/*
* Send a SYNCHRONIZE CACHE instruction down to the device through
* the normal SCSI command structure. Wait for the command to
* complete.
*/
static void sd_shutdown(struct device *dev)
{
struct scsi_disk *sdkp = dev_get_drvdata(dev);
if (!sdkp)
return; /* this can happen */
if (pm_runtime_suspended(dev))
return;
if (sdkp->WCE && sdkp->media_present) {
sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
sd_sync_cache(sdkp);
}
if ((system_state != SYSTEM_RESTART &&
sdkp->device->manage_system_start_stop) ||
(system_state == SYSTEM_POWER_OFF &&
sdkp->device->manage_shutdown)) {
sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
sd_start_stop_device(sdkp, 0);
}
}
static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
{
return (sdev->manage_system_start_stop && !runtime) ||
(sdev->manage_runtime_start_stop && runtime);
}
static int sd_suspend_common(struct device *dev, bool runtime)
{
struct scsi_disk *sdkp = dev_get_drvdata(dev);
int ret = 0;
if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
return 0;
if (sdkp->WCE && sdkp->media_present) {
if (!sdkp->device->silence_suspend)
sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
ret = sd_sync_cache(sdkp);
/* ignore OFFLINE device */
if (ret == -ENODEV)
return 0;
if (ret)
return ret;
}
if (sd_do_start_stop(sdkp->device, runtime)) {
if (!sdkp->device->silence_suspend)
sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
/* an error is not worth aborting a system sleep */
ret = sd_start_stop_device(sdkp, 0);
if (!runtime)
ret = 0;
}
if (!ret)
sdkp->suspended = true;
return ret;
}
static int sd_suspend_system(struct device *dev)
{
if (pm_runtime_suspended(dev))
return 0;
return sd_suspend_common(dev, false);
}
static int sd_suspend_runtime(struct device *dev)
{
return sd_suspend_common(dev, true);
}
static int sd_resume(struct device *dev)
{
struct scsi_disk *sdkp = dev_get_drvdata(dev);
sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
if (opal_unlock_from_suspend(sdkp->opal_dev)) {
sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
return -EIO;
}
return 0;
}
static int sd_resume_common(struct device *dev, bool runtime)
{
struct scsi_disk *sdkp = dev_get_drvdata(dev);
int ret;
if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
return 0;
if (!sd_do_start_stop(sdkp->device, runtime)) {
sdkp->suspended = false;
return 0;
}
sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
ret = sd_start_stop_device(sdkp, 1);
if (!ret) {
sd_resume(dev);
sdkp->suspended = false;
}
return ret;
}
static int sd_resume_system(struct device *dev)
{
if (pm_runtime_suspended(dev)) {
struct scsi_disk *sdkp = dev_get_drvdata(dev);
struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
if (sdp && sdp->force_runtime_start_on_system_start)
pm_request_resume(dev);
return 0;
}
return sd_resume_common(dev, false);
}
static int sd_resume_runtime(struct device *dev)
{
struct scsi_disk *sdkp = dev_get_drvdata(dev);
struct scsi_device *sdp;
if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
return 0;
sdp = sdkp->device;
if (sdp->ignore_media_change) {
/* clear the device's sense data */
static const u8 cmd[10] = { REQUEST_SENSE };
const struct scsi_exec_args exec_args = {
.req_flags = BLK_MQ_REQ_PM,
};
if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
sdp->request_queue->rq_timeout, 1,
&exec_args))
sd_printk(KERN_NOTICE, sdkp,
"Failed to clear sense data\n");
}
return sd_resume_common(dev, true);
}
static const struct dev_pm_ops sd_pm_ops = {
.suspend = sd_suspend_system,
.resume = sd_resume_system,
.poweroff = sd_suspend_system,
.restore = sd_resume_system,
.runtime_suspend = sd_suspend_runtime,
.runtime_resume = sd_resume_runtime,
};
static struct scsi_driver sd_template = {
.gendrv = {
.name = "sd",
.probe = sd_probe,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.remove = sd_remove,
.shutdown = sd_shutdown,
.pm = &sd_pm_ops,
},
.rescan = sd_rescan,
.resume = sd_resume,
.init_command = sd_init_command,
.uninit_command = sd_uninit_command,
.done = sd_done,
.eh_action = sd_eh_action,
.eh_reset = sd_eh_reset,
};
/**
* init_sd - entry point for this driver (both when built in or when
* a module).
*
* Note: this function registers this driver with the scsi mid-level.
**/
static int __init init_sd(void)
{
int majors = 0, i, err;
SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
for (i = 0; i < SD_MAJORS; i++) {
if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
continue;
majors++;
}
if (!majors)
return -ENODEV;
err = class_register(&sd_disk_class);
if (err)
goto err_out;
sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
if (!sd_page_pool) {
printk(KERN_ERR "sd: can't init discard page pool\n");
err = -ENOMEM;
goto err_out_class;
}
err = scsi_register_driver(&sd_template.gendrv);
if (err)
goto err_out_driver;
return 0;
err_out_driver:
mempool_destroy(sd_page_pool);
err_out_class:
class_unregister(&sd_disk_class);
err_out:
for (i = 0; i < SD_MAJORS; i++)
unregister_blkdev(sd_major(i), "sd");
return err;
}
/**
* exit_sd - exit point for this driver (when it is a module).
*
* Note: this function unregisters this driver from the scsi mid-level.
**/
static void __exit exit_sd(void)
{
int i;
SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
scsi_unregister_driver(&sd_template.gendrv);
mempool_destroy(sd_page_pool);
class_unregister(&sd_disk_class);
for (i = 0; i < SD_MAJORS; i++)
unregister_blkdev(sd_major(i), "sd");
}
module_init(init_sd);
module_exit(exit_sd);
void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
{
scsi_print_sense_hdr(sdkp->device,
sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
}
void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
{
const char *hb_string = scsi_hostbyte_string(result);
if (hb_string)
sd_printk(KERN_INFO, sdkp,
"%s: Result: hostbyte=%s driverbyte=%s\n", msg,
hb_string ? hb_string : "invalid",
"DRIVER_OK");
else
sd_printk(KERN_INFO, sdkp,
"%s: Result: hostbyte=0x%02x driverbyte=%s\n",
msg, host_byte(result), "DRIVER_OK");
}