| // SPDX-License-Identifier: GPL-2.0 |
| |
| // Copyright (C) 2024 Google LLC. |
| |
| //! A linked list implementation. |
| |
| use crate::init::PinInit; |
| use crate::sync::ArcBorrow; |
| use crate::types::Opaque; |
| use core::iter::{DoubleEndedIterator, FusedIterator}; |
| use core::marker::PhantomData; |
| use core::ptr; |
| |
| mod impl_list_item_mod; |
| pub use self::impl_list_item_mod::{ |
| impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr, |
| }; |
| |
| mod arc; |
| pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc}; |
| |
| mod arc_field; |
| pub use self::arc_field::{define_list_arc_field_getter, ListArcField}; |
| |
| /// A linked list. |
| /// |
| /// All elements in this linked list will be [`ListArc`] references to the value. Since a value can |
| /// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same |
| /// prev/next pointers are not used for several linked lists. |
| /// |
| /// # Invariants |
| /// |
| /// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks` |
| /// field of the first element in the list. |
| /// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle. |
| /// * For every item in the list, the list owns the associated [`ListArc`] reference and has |
| /// exclusive access to the `ListLinks` field. |
| pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> { |
| first: *mut ListLinksFields, |
| _ty: PhantomData<ListArc<T, ID>>, |
| } |
| |
| // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same |
| // type of access to the `ListArc<T, ID>` elements. |
| unsafe impl<T, const ID: u64> Send for List<T, ID> |
| where |
| ListArc<T, ID>: Send, |
| T: ?Sized + ListItem<ID>, |
| { |
| } |
| // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same |
| // type of access to the `ListArc<T, ID>` elements. |
| unsafe impl<T, const ID: u64> Sync for List<T, ID> |
| where |
| ListArc<T, ID>: Sync, |
| T: ?Sized + ListItem<ID>, |
| { |
| } |
| |
| /// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`]. |
| /// |
| /// # Safety |
| /// |
| /// Implementers must ensure that they provide the guarantees documented on methods provided by |
| /// this trait. |
| /// |
| /// [`ListArc<Self>`]: ListArc |
| pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> { |
| /// Views the [`ListLinks`] for this value. |
| /// |
| /// # Guarantees |
| /// |
| /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove` |
| /// since the most recent such call, then this returns the same pointer as the one returned by |
| /// the most recent call to `prepare_to_insert`. |
| /// |
| /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers. |
| /// |
| /// # Safety |
| /// |
| /// The provided pointer must point at a valid value. (It need not be in an `Arc`.) |
| unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>; |
| |
| /// View the full value given its [`ListLinks`] field. |
| /// |
| /// Can only be used when the value is in a list. |
| /// |
| /// # Guarantees |
| /// |
| /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`. |
| /// * The returned pointer is valid until the next call to `post_remove`. |
| /// |
| /// # Safety |
| /// |
| /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or |
| /// from a call to `view_links` that happened after the most recent call to |
| /// `prepare_to_insert`. |
| /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have |
| /// been called. |
| unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self; |
| |
| /// This is called when an item is inserted into a [`List`]. |
| /// |
| /// # Guarantees |
| /// |
| /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is |
| /// called. |
| /// |
| /// # Safety |
| /// |
| /// * The provided pointer must point at a valid value in an [`Arc`]. |
| /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate. |
| /// * The caller must own the [`ListArc`] for this value. |
| /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been |
| /// called after this call to `prepare_to_insert`. |
| /// |
| /// [`Arc`]: crate::sync::Arc |
| unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>; |
| |
| /// This undoes a previous call to `prepare_to_insert`. |
| /// |
| /// # Guarantees |
| /// |
| /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`. |
| /// |
| /// # Safety |
| /// |
| /// The provided pointer must be the pointer returned by the most recent call to |
| /// `prepare_to_insert`. |
| unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self; |
| } |
| |
| #[repr(C)] |
| #[derive(Copy, Clone)] |
| struct ListLinksFields { |
| next: *mut ListLinksFields, |
| prev: *mut ListLinksFields, |
| } |
| |
| /// The prev/next pointers for an item in a linked list. |
| /// |
| /// # Invariants |
| /// |
| /// The fields are null if and only if this item is not in a list. |
| #[repr(transparent)] |
| pub struct ListLinks<const ID: u64 = 0> { |
| // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked |
| // list. |
| inner: Opaque<ListLinksFields>, |
| } |
| |
| // SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the |
| // associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to |
| // move this an instance of this type to a different thread if the pointees are `!Send`. |
| unsafe impl<const ID: u64> Send for ListLinks<ID> {} |
| // SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's |
| // okay to have immutable access to a ListLinks from several threads at once. |
| unsafe impl<const ID: u64> Sync for ListLinks<ID> {} |
| |
| impl<const ID: u64> ListLinks<ID> { |
| /// Creates a new initializer for this type. |
| pub fn new() -> impl PinInit<Self> { |
| // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will |
| // not be constructed in an `Arc` that already has a `ListArc`. |
| ListLinks { |
| inner: Opaque::new(ListLinksFields { |
| prev: ptr::null_mut(), |
| next: ptr::null_mut(), |
| }), |
| } |
| } |
| |
| /// # Safety |
| /// |
| /// `me` must be dereferenceable. |
| #[inline] |
| unsafe fn fields(me: *mut Self) -> *mut ListLinksFields { |
| // SAFETY: The caller promises that the pointer is valid. |
| unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) } |
| } |
| |
| /// # Safety |
| /// |
| /// `me` must be dereferenceable. |
| #[inline] |
| unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self { |
| me.cast() |
| } |
| } |
| |
| /// Similar to [`ListLinks`], but also contains a pointer to the full value. |
| /// |
| /// This type can be used instead of [`ListLinks`] to support lists with trait objects. |
| #[repr(C)] |
| pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> { |
| /// The `ListLinks` field inside this value. |
| /// |
| /// This is public so that it can be used with `impl_has_list_links!`. |
| pub inner: ListLinks<ID>, |
| // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and |
| // `ptr::null()` doesn't work for `T: ?Sized`. |
| self_ptr: Opaque<*const T>, |
| } |
| |
| // SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries. |
| unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {} |
| // SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore, |
| // it's okay to have immutable access to a ListLinks from several threads at once. |
| // |
| // Note that `inner` being a public field does not prevent this type from being opaque, since |
| // `inner` is a opaque type. |
| unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {} |
| |
| impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> { |
| /// The offset from the [`ListLinks`] to the self pointer field. |
| pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr); |
| |
| /// Creates a new initializer for this type. |
| pub fn new() -> impl PinInit<Self> { |
| // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will |
| // not be constructed in an `Arc` that already has a `ListArc`. |
| Self { |
| inner: ListLinks { |
| inner: Opaque::new(ListLinksFields { |
| prev: ptr::null_mut(), |
| next: ptr::null_mut(), |
| }), |
| }, |
| self_ptr: Opaque::uninit(), |
| } |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> { |
| /// Creates a new empty list. |
| pub const fn new() -> Self { |
| Self { |
| first: ptr::null_mut(), |
| _ty: PhantomData, |
| } |
| } |
| |
| /// Returns whether this list is empty. |
| pub fn is_empty(&self) -> bool { |
| self.first.is_null() |
| } |
| |
| /// Add the provided item to the back of the list. |
| pub fn push_back(&mut self, item: ListArc<T, ID>) { |
| let raw_item = ListArc::into_raw(item); |
| // SAFETY: |
| // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`. |
| // * Since we have ownership of the `ListArc`, `post_remove` must have been called after |
| // the most recent call to `prepare_to_insert`, if any. |
| // * We own the `ListArc`. |
| // * Removing items from this list is always done using `remove_internal_inner`, which |
| // calls `post_remove` before giving up ownership. |
| let list_links = unsafe { T::prepare_to_insert(raw_item) }; |
| // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid. |
| let item = unsafe { ListLinks::fields(list_links) }; |
| |
| if self.first.is_null() { |
| self.first = item; |
| // SAFETY: The caller just gave us ownership of these fields. |
| // INVARIANT: A linked list with one item should be cyclic. |
| unsafe { |
| (*item).next = item; |
| (*item).prev = item; |
| } |
| } else { |
| let next = self.first; |
| // SAFETY: By the type invariant, this pointer is valid or null. We just checked that |
| // it's not null, so it must be valid. |
| let prev = unsafe { (*next).prev }; |
| // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us |
| // ownership of the fields on `item`. |
| // INVARIANT: This correctly inserts `item` between `prev` and `next`. |
| unsafe { |
| (*item).next = next; |
| (*item).prev = prev; |
| (*prev).next = item; |
| (*next).prev = item; |
| } |
| } |
| } |
| |
| /// Add the provided item to the front of the list. |
| pub fn push_front(&mut self, item: ListArc<T, ID>) { |
| let raw_item = ListArc::into_raw(item); |
| // SAFETY: |
| // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`. |
| // * If this requirement is violated, then the previous caller of `prepare_to_insert` |
| // violated the safety requirement that they can't give up ownership of the `ListArc` |
| // until they call `post_remove`. |
| // * We own the `ListArc`. |
| // * Removing items] from this list is always done using `remove_internal_inner`, which |
| // calls `post_remove` before giving up ownership. |
| let list_links = unsafe { T::prepare_to_insert(raw_item) }; |
| // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid. |
| let item = unsafe { ListLinks::fields(list_links) }; |
| |
| if self.first.is_null() { |
| // SAFETY: The caller just gave us ownership of these fields. |
| // INVARIANT: A linked list with one item should be cyclic. |
| unsafe { |
| (*item).next = item; |
| (*item).prev = item; |
| } |
| } else { |
| let next = self.first; |
| // SAFETY: We just checked that `next` is non-null. |
| let prev = unsafe { (*next).prev }; |
| // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us |
| // ownership of the fields on `item`. |
| // INVARIANT: This correctly inserts `item` between `prev` and `next`. |
| unsafe { |
| (*item).next = next; |
| (*item).prev = prev; |
| (*prev).next = item; |
| (*next).prev = item; |
| } |
| } |
| self.first = item; |
| } |
| |
| /// Removes the last item from this list. |
| pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> { |
| if self.first.is_null() { |
| return None; |
| } |
| |
| // SAFETY: We just checked that the list is not empty. |
| let last = unsafe { (*self.first).prev }; |
| // SAFETY: The last item of this list is in this list. |
| Some(unsafe { self.remove_internal(last) }) |
| } |
| |
| /// Removes the first item from this list. |
| pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> { |
| if self.first.is_null() { |
| return None; |
| } |
| |
| // SAFETY: The first item of this list is in this list. |
| Some(unsafe { self.remove_internal(self.first) }) |
| } |
| |
| /// Removes the provided item from this list and returns it. |
| /// |
| /// This returns `None` if the item is not in the list. (Note that by the safety requirements, |
| /// this means that the item is not in any list.) |
| /// |
| /// # Safety |
| /// |
| /// `item` must not be in a different linked list (with the same id). |
| pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> { |
| let mut item = unsafe { ListLinks::fields(T::view_links(item)) }; |
| // SAFETY: The user provided a reference, and reference are never dangling. |
| // |
| // As for why this is not a data race, there are two cases: |
| // |
| // * If `item` is not in any list, then these fields are read-only and null. |
| // * If `item` is in this list, then we have exclusive access to these fields since we |
| // have a mutable reference to the list. |
| // |
| // In either case, there's no race. |
| let ListLinksFields { next, prev } = unsafe { *item }; |
| |
| debug_assert_eq!(next.is_null(), prev.is_null()); |
| if !next.is_null() { |
| // This is really a no-op, but this ensures that `item` is a raw pointer that was |
| // obtained without going through a pointer->reference->pointer conversion roundtrip. |
| // This ensures that the list is valid under the more restrictive strict provenance |
| // ruleset. |
| // |
| // SAFETY: We just checked that `next` is not null, and it's not dangling by the |
| // list invariants. |
| unsafe { |
| debug_assert_eq!(item, (*next).prev); |
| item = (*next).prev; |
| } |
| |
| // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it |
| // is in this list. The pointers are in the right order. |
| Some(unsafe { self.remove_internal_inner(item, next, prev) }) |
| } else { |
| None |
| } |
| } |
| |
| /// Removes the provided item from the list. |
| /// |
| /// # Safety |
| /// |
| /// `item` must point at an item in this list. |
| unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> { |
| // SAFETY: The caller promises that this pointer is not dangling, and there's no data race |
| // since we have a mutable reference to the list containing `item`. |
| let ListLinksFields { next, prev } = unsafe { *item }; |
| // SAFETY: The pointers are ok and in the right order. |
| unsafe { self.remove_internal_inner(item, next, prev) } |
| } |
| |
| /// Removes the provided item from the list. |
| /// |
| /// # Safety |
| /// |
| /// The `item` pointer must point at an item in this list, and we must have `(*item).next == |
| /// next` and `(*item).prev == prev`. |
| unsafe fn remove_internal_inner( |
| &mut self, |
| item: *mut ListLinksFields, |
| next: *mut ListLinksFields, |
| prev: *mut ListLinksFields, |
| ) -> ListArc<T, ID> { |
| // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next |
| // pointers are always valid for items in a list. |
| // |
| // INVARIANT: There are three cases: |
| // * If the list has at least three items, then after removing the item, `prev` and `next` |
| // will be next to each other. |
| // * If the list has two items, then the remaining item will point at itself. |
| // * If the list has one item, then `next == prev == item`, so these writes have no |
| // effect. The list remains unchanged and `item` is still in the list for now. |
| unsafe { |
| (*next).prev = prev; |
| (*prev).next = next; |
| } |
| // SAFETY: We have exclusive access to items in the list. |
| // INVARIANT: `item` is being removed, so the pointers should be null. |
| unsafe { |
| (*item).prev = ptr::null_mut(); |
| (*item).next = ptr::null_mut(); |
| } |
| // INVARIANT: There are three cases: |
| // * If `item` was not the first item, then `self.first` should remain unchanged. |
| // * If `item` was the first item and there is another item, then we just updated |
| // `prev->next` to `next`, which is the new first item, and setting `item->next` to null |
| // did not modify `prev->next`. |
| // * If `item` was the only item in the list, then `prev == item`, and we just set |
| // `item->next` to null, so this correctly sets `first` to null now that the list is |
| // empty. |
| if self.first == item { |
| // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this |
| // list, so it must be valid. There is no race since `prev` is still in the list and we |
| // still have exclusive access to the list. |
| self.first = unsafe { (*prev).next }; |
| } |
| |
| // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants |
| // of `List`. |
| let list_links = unsafe { ListLinks::from_fields(item) }; |
| // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call. |
| let raw_item = unsafe { T::post_remove(list_links) }; |
| // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`. |
| unsafe { ListArc::from_raw(raw_item) } |
| } |
| |
| /// Moves all items from `other` into `self`. |
| /// |
| /// The items of `other` are added to the back of `self`, so the last item of `other` becomes |
| /// the last item of `self`. |
| pub fn push_all_back(&mut self, other: &mut List<T, ID>) { |
| // First, we insert the elements into `self`. At the end, we make `other` empty. |
| if self.is_empty() { |
| // INVARIANT: All of the elements in `other` become elements of `self`. |
| self.first = other.first; |
| } else if !other.is_empty() { |
| let other_first = other.first; |
| // SAFETY: The other list is not empty, so this pointer is valid. |
| let other_last = unsafe { (*other_first).prev }; |
| let self_first = self.first; |
| // SAFETY: The self list is not empty, so this pointer is valid. |
| let self_last = unsafe { (*self_first).prev }; |
| |
| // SAFETY: We have exclusive access to both lists, so we can update the pointers. |
| // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to |
| // update `self.first` because the first element of `self` does not change. |
| unsafe { |
| (*self_first).prev = other_last; |
| (*other_last).next = self_first; |
| (*self_last).next = other_first; |
| (*other_first).prev = self_last; |
| } |
| } |
| |
| // INVARIANT: The other list is now empty, so update its pointer. |
| other.first = ptr::null_mut(); |
| } |
| |
| /// Returns a cursor to the first element of the list. |
| /// |
| /// If the list is empty, this returns `None`. |
| pub fn cursor_front(&mut self) -> Option<Cursor<'_, T, ID>> { |
| if self.first.is_null() { |
| None |
| } else { |
| Some(Cursor { |
| current: self.first, |
| list: self, |
| }) |
| } |
| } |
| |
| /// Creates an iterator over the list. |
| pub fn iter(&self) -> Iter<'_, T, ID> { |
| // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point |
| // at the first element of the same list. |
| Iter { |
| current: self.first, |
| stop: self.first, |
| _ty: PhantomData, |
| } |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> { |
| fn default() -> Self { |
| List::new() |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> { |
| fn drop(&mut self) { |
| while let Some(item) = self.pop_front() { |
| drop(item); |
| } |
| } |
| } |
| |
| /// An iterator over a [`List`]. |
| /// |
| /// # Invariants |
| /// |
| /// * There must be a [`List`] that is immutably borrowed for the duration of `'a`. |
| /// * The `current` pointer is null or points at a value in that [`List`]. |
| /// * The `stop` pointer is equal to the `first` field of that [`List`]. |
| #[derive(Clone)] |
| pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> { |
| current: *mut ListLinksFields, |
| stop: *mut ListLinksFields, |
| _ty: PhantomData<&'a ListArc<T, ID>>, |
| } |
| |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> { |
| type Item = ArcBorrow<'a, T>; |
| |
| fn next(&mut self) -> Option<ArcBorrow<'a, T>> { |
| if self.current.is_null() { |
| return None; |
| } |
| |
| let current = self.current; |
| |
| // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not |
| // dangling. There's no race because the iterator holds an immutable borrow to the list. |
| let next = unsafe { (*current).next }; |
| // INVARIANT: If `current` was the last element of the list, then this updates it to null. |
| // Otherwise, we update it to the next element. |
| self.current = if next != self.stop { |
| next |
| } else { |
| ptr::null_mut() |
| }; |
| |
| // SAFETY: The `current` pointer points at a value in the list. |
| let item = unsafe { T::view_value(ListLinks::from_fields(current)) }; |
| // SAFETY: |
| // * All values in a list are stored in an `Arc`. |
| // * The value cannot be removed from the list for the duration of the lifetime annotated |
| // on the returned `ArcBorrow`, because removing it from the list would require mutable |
| // access to the list. However, the `ArcBorrow` is annotated with the iterator's |
| // lifetime, and the list is immutably borrowed for that lifetime. |
| // * Values in a list never have a `UniqueArc` reference. |
| Some(unsafe { ArcBorrow::from_raw(item) }) |
| } |
| } |
| |
| /// A cursor into a [`List`]. |
| /// |
| /// # Invariants |
| /// |
| /// The `current` pointer points a value in `list`. |
| pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> { |
| current: *mut ListLinksFields, |
| list: &'a mut List<T, ID>, |
| } |
| |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> { |
| /// Access the current element of this cursor. |
| pub fn current(&self) -> ArcBorrow<'_, T> { |
| // SAFETY: The `current` pointer points a value in the list. |
| let me = unsafe { T::view_value(ListLinks::from_fields(self.current)) }; |
| // SAFETY: |
| // * All values in a list are stored in an `Arc`. |
| // * The value cannot be removed from the list for the duration of the lifetime annotated |
| // on the returned `ArcBorrow`, because removing it from the list would require mutable |
| // access to the cursor or the list. However, the `ArcBorrow` holds an immutable borrow |
| // on the cursor, which in turn holds a mutable borrow on the list, so any such |
| // mutable access requires first releasing the immutable borrow on the cursor. |
| // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc` |
| // reference, and `UniqueArc` references must be unique. |
| unsafe { ArcBorrow::from_raw(me) } |
| } |
| |
| /// Move the cursor to the next element. |
| pub fn next(self) -> Option<Cursor<'a, T, ID>> { |
| // SAFETY: The `current` field is always in a list. |
| let next = unsafe { (*self.current).next }; |
| |
| if next == self.list.first { |
| None |
| } else { |
| // INVARIANT: Since `self.current` is in the `list`, its `next` pointer is also in the |
| // `list`. |
| Some(Cursor { |
| current: next, |
| list: self.list, |
| }) |
| } |
| } |
| |
| /// Move the cursor to the previous element. |
| pub fn prev(self) -> Option<Cursor<'a, T, ID>> { |
| // SAFETY: The `current` field is always in a list. |
| let prev = unsafe { (*self.current).prev }; |
| |
| if self.current == self.list.first { |
| None |
| } else { |
| // INVARIANT: Since `self.current` is in the `list`, its `prev` pointer is also in the |
| // `list`. |
| Some(Cursor { |
| current: prev, |
| list: self.list, |
| }) |
| } |
| } |
| |
| /// Remove the current element from the list. |
| pub fn remove(self) -> ListArc<T, ID> { |
| // SAFETY: The `current` pointer always points at a member of the list. |
| unsafe { self.list.remove_internal(self.current) } |
| } |
| } |
| |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {} |
| |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> { |
| type IntoIter = Iter<'a, T, ID>; |
| type Item = ArcBorrow<'a, T>; |
| |
| fn into_iter(self) -> Iter<'a, T, ID> { |
| self.iter() |
| } |
| } |
| |
| /// An owning iterator into a [`List`]. |
| pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> { |
| list: List<T, ID>, |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> { |
| type Item = ListArc<T, ID>; |
| |
| fn next(&mut self) -> Option<ListArc<T, ID>> { |
| self.list.pop_front() |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {} |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> { |
| fn next_back(&mut self) -> Option<ListArc<T, ID>> { |
| self.list.pop_back() |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> { |
| type IntoIter = IntoIter<T, ID>; |
| type Item = ListArc<T, ID>; |
| |
| fn into_iter(self) -> IntoIter<T, ID> { |
| IntoIter { list: self } |
| } |
| } |