| /* |
| * net/dccp/output.c |
| * |
| * An implementation of the DCCP protocol |
| * Arnaldo Carvalho de Melo <acme@conectiva.com.br> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/dccp.h> |
| #include <linux/kernel.h> |
| #include <linux/skbuff.h> |
| |
| #include <net/sock.h> |
| |
| #include "ackvec.h" |
| #include "ccid.h" |
| #include "dccp.h" |
| |
| static inline void dccp_event_ack_sent(struct sock *sk) |
| { |
| inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); |
| } |
| |
| static inline void dccp_skb_entail(struct sock *sk, struct sk_buff *skb) |
| { |
| skb_set_owner_w(skb, sk); |
| WARN_ON(sk->sk_send_head); |
| sk->sk_send_head = skb; |
| } |
| |
| /* |
| * All SKB's seen here are completely headerless. It is our |
| * job to build the DCCP header, and pass the packet down to |
| * IP so it can do the same plus pass the packet off to the |
| * device. |
| */ |
| static int dccp_transmit_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| if (likely(skb != NULL)) { |
| const struct inet_sock *inet = inet_sk(sk); |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| struct dccp_sock *dp = dccp_sk(sk); |
| struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb); |
| struct dccp_hdr *dh; |
| /* XXX For now we're using only 48 bits sequence numbers */ |
| const int dccp_header_size = sizeof(*dh) + |
| sizeof(struct dccp_hdr_ext) + |
| dccp_packet_hdr_len(dcb->dccpd_type); |
| int err, set_ack = 1; |
| u64 ackno = dp->dccps_gsr; |
| |
| dccp_inc_seqno(&dp->dccps_gss); |
| |
| switch (dcb->dccpd_type) { |
| case DCCP_PKT_DATA: |
| set_ack = 0; |
| /* fall through */ |
| case DCCP_PKT_DATAACK: |
| break; |
| |
| case DCCP_PKT_SYNC: |
| case DCCP_PKT_SYNCACK: |
| ackno = dcb->dccpd_seq; |
| /* fall through */ |
| default: |
| /* |
| * Only data packets should come through with skb->sk |
| * set. |
| */ |
| WARN_ON(skb->sk); |
| skb_set_owner_w(skb, sk); |
| break; |
| } |
| |
| dcb->dccpd_seq = dp->dccps_gss; |
| dccp_insert_options(sk, skb); |
| |
| skb->h.raw = skb_push(skb, dccp_header_size); |
| dh = dccp_hdr(skb); |
| |
| /* Build DCCP header and checksum it. */ |
| memset(dh, 0, dccp_header_size); |
| dh->dccph_type = dcb->dccpd_type; |
| dh->dccph_sport = inet->sport; |
| dh->dccph_dport = inet->dport; |
| dh->dccph_doff = (dccp_header_size + dcb->dccpd_opt_len) / 4; |
| dh->dccph_ccval = dcb->dccpd_ccval; |
| /* XXX For now we're using only 48 bits sequence numbers */ |
| dh->dccph_x = 1; |
| |
| dp->dccps_awh = dp->dccps_gss; |
| dccp_hdr_set_seq(dh, dp->dccps_gss); |
| if (set_ack) |
| dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), ackno); |
| |
| switch (dcb->dccpd_type) { |
| case DCCP_PKT_REQUEST: |
| dccp_hdr_request(skb)->dccph_req_service = |
| dp->dccps_service; |
| break; |
| case DCCP_PKT_RESET: |
| dccp_hdr_reset(skb)->dccph_reset_code = |
| dcb->dccpd_reset_code; |
| break; |
| } |
| |
| icsk->icsk_af_ops->send_check(sk, skb->len, skb); |
| |
| if (set_ack) |
| dccp_event_ack_sent(sk); |
| |
| DCCP_INC_STATS(DCCP_MIB_OUTSEGS); |
| |
| memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); |
| err = icsk->icsk_af_ops->queue_xmit(skb, 0); |
| if (err <= 0) |
| return err; |
| |
| /* NET_XMIT_CN is special. It does not guarantee, |
| * that this packet is lost. It tells that device |
| * is about to start to drop packets or already |
| * drops some packets of the same priority and |
| * invokes us to send less aggressively. |
| */ |
| return err == NET_XMIT_CN ? 0 : err; |
| } |
| return -ENOBUFS; |
| } |
| |
| unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu) |
| { |
| struct dccp_sock *dp = dccp_sk(sk); |
| int mss_now = (pmtu - inet_csk(sk)->icsk_af_ops->net_header_len - |
| sizeof(struct dccp_hdr) - sizeof(struct dccp_hdr_ext)); |
| |
| /* Now subtract optional transport overhead */ |
| mss_now -= dp->dccps_ext_header_len; |
| |
| /* |
| * FIXME: this should come from the CCID infrastructure, where, say, |
| * TFRC will say it wants TIMESTAMPS, ELAPSED time, etc, for now lets |
| * put a rough estimate for NDP + TIMESTAMP + TIMESTAMP_ECHO + ELAPSED |
| * TIME + TFRC_OPT_LOSS_EVENT_RATE + TFRC_OPT_RECEIVE_RATE + padding to |
| * make it a multiple of 4 |
| */ |
| |
| mss_now -= ((5 + 6 + 10 + 6 + 6 + 6 + 3) / 4) * 4; |
| |
| /* And store cached results */ |
| dp->dccps_pmtu_cookie = pmtu; |
| dp->dccps_mss_cache = mss_now; |
| |
| return mss_now; |
| } |
| |
| EXPORT_SYMBOL_GPL(dccp_sync_mss); |
| |
| void dccp_write_space(struct sock *sk) |
| { |
| read_lock(&sk->sk_callback_lock); |
| |
| if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) |
| wake_up_interruptible(sk->sk_sleep); |
| /* Should agree with poll, otherwise some programs break */ |
| if (sock_writeable(sk)) |
| sk_wake_async(sk, 2, POLL_OUT); |
| |
| read_unlock(&sk->sk_callback_lock); |
| } |
| |
| /** |
| * dccp_wait_for_ccid - Wait for ccid to tell us we can send a packet |
| * @sk: socket to wait for |
| * @timeo: for how long |
| */ |
| static int dccp_wait_for_ccid(struct sock *sk, struct sk_buff *skb, |
| long *timeo) |
| { |
| struct dccp_sock *dp = dccp_sk(sk); |
| DEFINE_WAIT(wait); |
| long delay; |
| int rc; |
| |
| while (1) { |
| prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); |
| |
| if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) |
| goto do_error; |
| if (!*timeo) |
| goto do_nonblock; |
| if (signal_pending(current)) |
| goto do_interrupted; |
| |
| rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb, |
| skb->len); |
| if (rc <= 0) |
| break; |
| delay = msecs_to_jiffies(rc); |
| if (delay > *timeo || delay < 0) |
| goto do_nonblock; |
| |
| sk->sk_write_pending++; |
| release_sock(sk); |
| *timeo -= schedule_timeout(delay); |
| lock_sock(sk); |
| sk->sk_write_pending--; |
| } |
| out: |
| finish_wait(sk->sk_sleep, &wait); |
| return rc; |
| |
| do_error: |
| rc = -EPIPE; |
| goto out; |
| do_nonblock: |
| rc = -EAGAIN; |
| goto out; |
| do_interrupted: |
| rc = sock_intr_errno(*timeo); |
| goto out; |
| } |
| |
| int dccp_write_xmit(struct sock *sk, struct sk_buff *skb, long *timeo) |
| { |
| const struct dccp_sock *dp = dccp_sk(sk); |
| int err = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb, |
| skb->len); |
| |
| if (err > 0) |
| err = dccp_wait_for_ccid(sk, skb, timeo); |
| |
| if (err == 0) { |
| struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb); |
| const int len = skb->len; |
| |
| if (sk->sk_state == DCCP_PARTOPEN) { |
| /* See 8.1.5. Handshake Completion */ |
| inet_csk_schedule_ack(sk); |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, |
| inet_csk(sk)->icsk_rto, |
| DCCP_RTO_MAX); |
| dcb->dccpd_type = DCCP_PKT_DATAACK; |
| } else if (dccp_ack_pending(sk)) |
| dcb->dccpd_type = DCCP_PKT_DATAACK; |
| else |
| dcb->dccpd_type = DCCP_PKT_DATA; |
| |
| err = dccp_transmit_skb(sk, skb); |
| ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, 0, len); |
| } else |
| kfree_skb(skb); |
| |
| return err; |
| } |
| |
| int dccp_retransmit_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk) != 0) |
| return -EHOSTUNREACH; /* Routing failure or similar. */ |
| |
| return dccp_transmit_skb(sk, (skb_cloned(skb) ? |
| pskb_copy(skb, GFP_ATOMIC): |
| skb_clone(skb, GFP_ATOMIC))); |
| } |
| |
| struct sk_buff *dccp_make_response(struct sock *sk, struct dst_entry *dst, |
| struct request_sock *req) |
| { |
| struct dccp_hdr *dh; |
| struct dccp_request_sock *dreq; |
| const int dccp_header_size = sizeof(struct dccp_hdr) + |
| sizeof(struct dccp_hdr_ext) + |
| sizeof(struct dccp_hdr_response); |
| struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN + |
| dccp_header_size, 1, |
| GFP_ATOMIC); |
| if (skb == NULL) |
| return NULL; |
| |
| /* Reserve space for headers. */ |
| skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size); |
| |
| skb->dst = dst_clone(dst); |
| skb->csum = 0; |
| |
| dreq = dccp_rsk(req); |
| DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESPONSE; |
| DCCP_SKB_CB(skb)->dccpd_seq = dreq->dreq_iss; |
| dccp_insert_options(sk, skb); |
| |
| skb->h.raw = skb_push(skb, dccp_header_size); |
| |
| dh = dccp_hdr(skb); |
| memset(dh, 0, dccp_header_size); |
| |
| dh->dccph_sport = inet_sk(sk)->sport; |
| dh->dccph_dport = inet_rsk(req)->rmt_port; |
| dh->dccph_doff = (dccp_header_size + |
| DCCP_SKB_CB(skb)->dccpd_opt_len) / 4; |
| dh->dccph_type = DCCP_PKT_RESPONSE; |
| dh->dccph_x = 1; |
| dccp_hdr_set_seq(dh, dreq->dreq_iss); |
| dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dreq->dreq_isr); |
| dccp_hdr_response(skb)->dccph_resp_service = dreq->dreq_service; |
| |
| dh->dccph_checksum = dccp_v4_checksum(skb, inet_rsk(req)->loc_addr, |
| inet_rsk(req)->rmt_addr); |
| |
| DCCP_INC_STATS(DCCP_MIB_OUTSEGS); |
| return skb; |
| } |
| |
| EXPORT_SYMBOL_GPL(dccp_make_response); |
| |
| struct sk_buff *dccp_make_reset(struct sock *sk, struct dst_entry *dst, |
| const enum dccp_reset_codes code) |
| |
| { |
| struct dccp_hdr *dh; |
| struct dccp_sock *dp = dccp_sk(sk); |
| const int dccp_header_size = sizeof(struct dccp_hdr) + |
| sizeof(struct dccp_hdr_ext) + |
| sizeof(struct dccp_hdr_reset); |
| struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN + |
| dccp_header_size, 1, |
| GFP_ATOMIC); |
| if (skb == NULL) |
| return NULL; |
| |
| /* Reserve space for headers. */ |
| skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size); |
| |
| skb->dst = dst_clone(dst); |
| skb->csum = 0; |
| |
| dccp_inc_seqno(&dp->dccps_gss); |
| |
| DCCP_SKB_CB(skb)->dccpd_reset_code = code; |
| DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESET; |
| DCCP_SKB_CB(skb)->dccpd_seq = dp->dccps_gss; |
| dccp_insert_options(sk, skb); |
| |
| skb->h.raw = skb_push(skb, dccp_header_size); |
| |
| dh = dccp_hdr(skb); |
| memset(dh, 0, dccp_header_size); |
| |
| dh->dccph_sport = inet_sk(sk)->sport; |
| dh->dccph_dport = inet_sk(sk)->dport; |
| dh->dccph_doff = (dccp_header_size + |
| DCCP_SKB_CB(skb)->dccpd_opt_len) / 4; |
| dh->dccph_type = DCCP_PKT_RESET; |
| dh->dccph_x = 1; |
| dccp_hdr_set_seq(dh, dp->dccps_gss); |
| dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dp->dccps_gsr); |
| |
| dccp_hdr_reset(skb)->dccph_reset_code = code; |
| |
| dh->dccph_checksum = dccp_v4_checksum(skb, inet_sk(sk)->saddr, |
| inet_sk(sk)->daddr); |
| |
| DCCP_INC_STATS(DCCP_MIB_OUTSEGS); |
| return skb; |
| } |
| |
| /* |
| * Do all connect socket setups that can be done AF independent. |
| */ |
| static inline void dccp_connect_init(struct sock *sk) |
| { |
| struct dccp_sock *dp = dccp_sk(sk); |
| struct dst_entry *dst = __sk_dst_get(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| sk->sk_err = 0; |
| sock_reset_flag(sk, SOCK_DONE); |
| |
| dccp_sync_mss(sk, dst_mtu(dst)); |
| |
| dccp_update_gss(sk, dp->dccps_iss); |
| /* |
| * SWL and AWL are initially adjusted so that they are not less than |
| * the initial Sequence Numbers received and sent, respectively: |
| * SWL := max(GSR + 1 - floor(W/4), ISR), |
| * AWL := max(GSS - W' + 1, ISS). |
| * These adjustments MUST be applied only at the beginning of the |
| * connection. |
| */ |
| dccp_set_seqno(&dp->dccps_awl, max48(dp->dccps_awl, dp->dccps_iss)); |
| |
| icsk->icsk_retransmits = 0; |
| } |
| |
| int dccp_connect(struct sock *sk) |
| { |
| struct sk_buff *skb; |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| dccp_connect_init(sk); |
| |
| skb = alloc_skb(MAX_DCCP_HEADER + 15, sk->sk_allocation); |
| if (unlikely(skb == NULL)) |
| return -ENOBUFS; |
| |
| /* Reserve space for headers. */ |
| skb_reserve(skb, MAX_DCCP_HEADER); |
| |
| DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_REQUEST; |
| skb->csum = 0; |
| |
| dccp_skb_entail(sk, skb); |
| dccp_transmit_skb(sk, skb_clone(skb, GFP_KERNEL)); |
| DCCP_INC_STATS(DCCP_MIB_ACTIVEOPENS); |
| |
| /* Timer for repeating the REQUEST until an answer. */ |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, |
| icsk->icsk_rto, DCCP_RTO_MAX); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(dccp_connect); |
| |
| void dccp_send_ack(struct sock *sk) |
| { |
| /* If we have been reset, we may not send again. */ |
| if (sk->sk_state != DCCP_CLOSED) { |
| struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC); |
| |
| if (skb == NULL) { |
| inet_csk_schedule_ack(sk); |
| inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, |
| TCP_DELACK_MAX, |
| DCCP_RTO_MAX); |
| return; |
| } |
| |
| /* Reserve space for headers */ |
| skb_reserve(skb, MAX_DCCP_HEADER); |
| skb->csum = 0; |
| DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_ACK; |
| dccp_transmit_skb(sk, skb); |
| } |
| } |
| |
| EXPORT_SYMBOL_GPL(dccp_send_ack); |
| |
| void dccp_send_delayed_ack(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| /* |
| * FIXME: tune this timer. elapsed time fixes the skew, so no problem |
| * with using 2s, and active senders also piggyback the ACK into a |
| * DATAACK packet, so this is really for quiescent senders. |
| */ |
| unsigned long timeout = jiffies + 2 * HZ; |
| |
| /* Use new timeout only if there wasn't a older one earlier. */ |
| if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { |
| /* If delack timer was blocked or is about to expire, |
| * send ACK now. |
| * |
| * FIXME: check the "about to expire" part |
| */ |
| if (icsk->icsk_ack.blocked) { |
| dccp_send_ack(sk); |
| return; |
| } |
| |
| if (!time_before(timeout, icsk->icsk_ack.timeout)) |
| timeout = icsk->icsk_ack.timeout; |
| } |
| icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; |
| icsk->icsk_ack.timeout = timeout; |
| sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); |
| } |
| |
| void dccp_send_sync(struct sock *sk, const u64 seq, |
| const enum dccp_pkt_type pkt_type) |
| { |
| /* |
| * We are not putting this on the write queue, so |
| * dccp_transmit_skb() will set the ownership to this |
| * sock. |
| */ |
| struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC); |
| |
| if (skb == NULL) |
| /* FIXME: how to make sure the sync is sent? */ |
| return; |
| |
| /* Reserve space for headers and prepare control bits. */ |
| skb_reserve(skb, MAX_DCCP_HEADER); |
| skb->csum = 0; |
| DCCP_SKB_CB(skb)->dccpd_type = pkt_type; |
| DCCP_SKB_CB(skb)->dccpd_seq = seq; |
| |
| dccp_transmit_skb(sk, skb); |
| } |
| |
| /* |
| * Send a DCCP_PKT_CLOSE/CLOSEREQ. The caller locks the socket for us. This |
| * cannot be allowed to fail queueing a DCCP_PKT_CLOSE/CLOSEREQ frame under |
| * any circumstances. |
| */ |
| void dccp_send_close(struct sock *sk, const int active) |
| { |
| struct dccp_sock *dp = dccp_sk(sk); |
| struct sk_buff *skb; |
| const gfp_t prio = active ? GFP_KERNEL : GFP_ATOMIC; |
| |
| skb = alloc_skb(sk->sk_prot->max_header, prio); |
| if (skb == NULL) |
| return; |
| |
| /* Reserve space for headers and prepare control bits. */ |
| skb_reserve(skb, sk->sk_prot->max_header); |
| skb->csum = 0; |
| DCCP_SKB_CB(skb)->dccpd_type = dp->dccps_role == DCCP_ROLE_CLIENT ? |
| DCCP_PKT_CLOSE : DCCP_PKT_CLOSEREQ; |
| |
| if (active) { |
| dccp_skb_entail(sk, skb); |
| dccp_transmit_skb(sk, skb_clone(skb, prio)); |
| } else |
| dccp_transmit_skb(sk, skb); |
| } |