| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2019 Intel Corporation |
| */ |
| |
| #include <drm/drm_managed.h> |
| |
| #include "gem/i915_gem_internal.h" |
| #include "gem/i915_gem_lmem.h" |
| #include "pxp/intel_pxp.h" |
| |
| #include "i915_drv.h" |
| #include "intel_context.h" |
| #include "intel_engine_regs.h" |
| #include "intel_gt.h" |
| #include "intel_gt_buffer_pool.h" |
| #include "intel_gt_clock_utils.h" |
| #include "intel_gt_debugfs.h" |
| #include "intel_gt_gmch.h" |
| #include "intel_gt_pm.h" |
| #include "intel_gt_regs.h" |
| #include "intel_gt_requests.h" |
| #include "intel_migrate.h" |
| #include "intel_mocs.h" |
| #include "intel_pm.h" |
| #include "intel_rc6.h" |
| #include "intel_renderstate.h" |
| #include "intel_rps.h" |
| #include "intel_gt_sysfs.h" |
| #include "intel_uncore.h" |
| #include "shmem_utils.h" |
| |
| static void __intel_gt_init_early(struct intel_gt *gt) |
| { |
| spin_lock_init(>->irq_lock); |
| |
| mutex_init(>->tlb_invalidate_lock); |
| |
| INIT_LIST_HEAD(>->closed_vma); |
| spin_lock_init(>->closed_lock); |
| |
| init_llist_head(>->watchdog.list); |
| INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); |
| |
| intel_gt_init_buffer_pool(gt); |
| intel_gt_init_reset(gt); |
| intel_gt_init_requests(gt); |
| intel_gt_init_timelines(gt); |
| intel_gt_pm_init_early(gt); |
| |
| intel_uc_init_early(>->uc); |
| intel_rps_init_early(>->rps); |
| } |
| |
| /* Preliminary initialization of Tile 0 */ |
| void intel_root_gt_init_early(struct drm_i915_private *i915) |
| { |
| struct intel_gt *gt = to_gt(i915); |
| |
| gt->i915 = i915; |
| gt->uncore = &i915->uncore; |
| |
| __intel_gt_init_early(gt); |
| } |
| |
| static int intel_gt_probe_lmem(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| unsigned int instance = gt->info.id; |
| int id = INTEL_REGION_LMEM_0 + instance; |
| struct intel_memory_region *mem; |
| int err; |
| |
| mem = intel_gt_setup_lmem(gt); |
| if (IS_ERR(mem)) { |
| err = PTR_ERR(mem); |
| if (err == -ENODEV) |
| return 0; |
| |
| drm_err(&i915->drm, |
| "Failed to setup region(%d) type=%d\n", |
| err, INTEL_MEMORY_LOCAL); |
| return err; |
| } |
| |
| mem->id = id; |
| mem->instance = instance; |
| |
| intel_memory_region_set_name(mem, "local%u", mem->instance); |
| |
| GEM_BUG_ON(!HAS_REGION(i915, id)); |
| GEM_BUG_ON(i915->mm.regions[id]); |
| i915->mm.regions[id] = mem; |
| |
| return 0; |
| } |
| |
| int intel_gt_assign_ggtt(struct intel_gt *gt) |
| { |
| gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL); |
| |
| return gt->ggtt ? 0 : -ENOMEM; |
| } |
| |
| static const char * const intel_steering_types[] = { |
| "L3BANK", |
| "MSLICE", |
| "LNCF", |
| }; |
| |
| static const struct intel_mmio_range icl_l3bank_steering_table[] = { |
| { 0x00B100, 0x00B3FF }, |
| {}, |
| }; |
| |
| static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { |
| { 0x004000, 0x004AFF }, |
| { 0x00C800, 0x00CFFF }, |
| { 0x00DD00, 0x00DDFF }, |
| { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ |
| {}, |
| }; |
| |
| static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { |
| { 0x00B000, 0x00B0FF }, |
| { 0x00D800, 0x00D8FF }, |
| {}, |
| }; |
| |
| static const struct intel_mmio_range dg2_lncf_steering_table[] = { |
| { 0x00B000, 0x00B0FF }, |
| { 0x00D880, 0x00D8FF }, |
| {}, |
| }; |
| |
| static u16 slicemask(struct intel_gt *gt, int count) |
| { |
| u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); |
| |
| return intel_slicemask_from_dssmask(dss_mask, count); |
| } |
| |
| int intel_gt_init_mmio(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| |
| intel_gt_init_clock_frequency(gt); |
| |
| intel_uc_init_mmio(>->uc); |
| intel_sseu_info_init(gt); |
| |
| /* |
| * An mslice is unavailable only if both the meml3 for the slice is |
| * disabled *and* all of the DSS in the slice (quadrant) are disabled. |
| */ |
| if (HAS_MSLICES(i915)) |
| gt->info.mslice_mask = |
| slicemask(gt, GEN_DSS_PER_MSLICE) | |
| (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & |
| GEN12_MEML3_EN_MASK); |
| |
| if (IS_DG2(i915)) { |
| gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; |
| gt->steering_table[LNCF] = dg2_lncf_steering_table; |
| } else if (IS_XEHPSDV(i915)) { |
| gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; |
| gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; |
| } else if (GRAPHICS_VER(i915) >= 11 && |
| GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { |
| gt->steering_table[L3BANK] = icl_l3bank_steering_table; |
| gt->info.l3bank_mask = |
| ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & |
| GEN10_L3BANK_MASK; |
| } else if (HAS_MSLICES(i915)) { |
| MISSING_CASE(INTEL_INFO(i915)->platform); |
| } |
| |
| return intel_engines_init_mmio(gt); |
| } |
| |
| static void init_unused_ring(struct intel_gt *gt, u32 base) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| |
| intel_uncore_write(uncore, RING_CTL(base), 0); |
| intel_uncore_write(uncore, RING_HEAD(base), 0); |
| intel_uncore_write(uncore, RING_TAIL(base), 0); |
| intel_uncore_write(uncore, RING_START(base), 0); |
| } |
| |
| static void init_unused_rings(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| |
| if (IS_I830(i915)) { |
| init_unused_ring(gt, PRB1_BASE); |
| init_unused_ring(gt, SRB0_BASE); |
| init_unused_ring(gt, SRB1_BASE); |
| init_unused_ring(gt, SRB2_BASE); |
| init_unused_ring(gt, SRB3_BASE); |
| } else if (GRAPHICS_VER(i915) == 2) { |
| init_unused_ring(gt, SRB0_BASE); |
| init_unused_ring(gt, SRB1_BASE); |
| } else if (GRAPHICS_VER(i915) == 3) { |
| init_unused_ring(gt, PRB1_BASE); |
| init_unused_ring(gt, PRB2_BASE); |
| } |
| } |
| |
| int intel_gt_init_hw(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_uncore *uncore = gt->uncore; |
| int ret; |
| |
| gt->last_init_time = ktime_get(); |
| |
| /* Double layer security blanket, see i915_gem_init() */ |
| intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); |
| |
| if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) |
| intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); |
| |
| if (IS_HASWELL(i915)) |
| intel_uncore_write(uncore, |
| HSW_MI_PREDICATE_RESULT_2, |
| IS_HSW_GT3(i915) ? |
| LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); |
| |
| /* Apply the GT workarounds... */ |
| intel_gt_apply_workarounds(gt); |
| /* ...and determine whether they are sticking. */ |
| intel_gt_verify_workarounds(gt, "init"); |
| |
| intel_gt_init_swizzling(gt); |
| |
| /* |
| * At least 830 can leave some of the unused rings |
| * "active" (ie. head != tail) after resume which |
| * will prevent c3 entry. Makes sure all unused rings |
| * are totally idle. |
| */ |
| init_unused_rings(gt); |
| |
| ret = i915_ppgtt_init_hw(gt); |
| if (ret) { |
| DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); |
| goto out; |
| } |
| |
| /* We can't enable contexts until all firmware is loaded */ |
| ret = intel_uc_init_hw(>->uc); |
| if (ret) { |
| i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); |
| goto out; |
| } |
| |
| intel_mocs_init(gt); |
| |
| out: |
| intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); |
| return ret; |
| } |
| |
| static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) |
| { |
| intel_uncore_rmw(uncore, reg, 0, set); |
| } |
| |
| static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) |
| { |
| intel_uncore_rmw(uncore, reg, clr, 0); |
| } |
| |
| static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) |
| { |
| intel_uncore_rmw(uncore, reg, 0, 0); |
| } |
| |
| static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) |
| { |
| GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); |
| GEN6_RING_FAULT_REG_POSTING_READ(engine); |
| } |
| |
| void |
| intel_gt_clear_error_registers(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_uncore *uncore = gt->uncore; |
| u32 eir; |
| |
| if (GRAPHICS_VER(i915) != 2) |
| clear_register(uncore, PGTBL_ER); |
| |
| if (GRAPHICS_VER(i915) < 4) |
| clear_register(uncore, IPEIR(RENDER_RING_BASE)); |
| else |
| clear_register(uncore, IPEIR_I965); |
| |
| clear_register(uncore, EIR); |
| eir = intel_uncore_read(uncore, EIR); |
| if (eir) { |
| /* |
| * some errors might have become stuck, |
| * mask them. |
| */ |
| DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); |
| rmw_set(uncore, EMR, eir); |
| intel_uncore_write(uncore, GEN2_IIR, |
| I915_MASTER_ERROR_INTERRUPT); |
| } |
| |
| if (GRAPHICS_VER(i915) >= 12) { |
| rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); |
| intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); |
| } else if (GRAPHICS_VER(i915) >= 8) { |
| rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); |
| intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); |
| } else if (GRAPHICS_VER(i915) >= 6) { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine_masked(engine, gt, engine_mask, id) |
| gen6_clear_engine_error_register(engine); |
| } |
| } |
| |
| static void gen6_check_faults(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| u32 fault; |
| |
| for_each_engine(engine, gt, id) { |
| fault = GEN6_RING_FAULT_REG_READ(engine); |
| if (fault & RING_FAULT_VALID) { |
| drm_dbg(&engine->i915->drm, "Unexpected fault\n" |
| "\tAddr: 0x%08lx\n" |
| "\tAddress space: %s\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| fault & PAGE_MASK, |
| fault & RING_FAULT_GTTSEL_MASK ? |
| "GGTT" : "PPGTT", |
| RING_FAULT_SRCID(fault), |
| RING_FAULT_FAULT_TYPE(fault)); |
| } |
| } |
| } |
| |
| static void gen8_check_faults(struct intel_gt *gt) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; |
| u32 fault; |
| |
| if (GRAPHICS_VER(gt->i915) >= 12) { |
| fault_reg = GEN12_RING_FAULT_REG; |
| fault_data0_reg = GEN12_FAULT_TLB_DATA0; |
| fault_data1_reg = GEN12_FAULT_TLB_DATA1; |
| } else { |
| fault_reg = GEN8_RING_FAULT_REG; |
| fault_data0_reg = GEN8_FAULT_TLB_DATA0; |
| fault_data1_reg = GEN8_FAULT_TLB_DATA1; |
| } |
| |
| fault = intel_uncore_read(uncore, fault_reg); |
| if (fault & RING_FAULT_VALID) { |
| u32 fault_data0, fault_data1; |
| u64 fault_addr; |
| |
| fault_data0 = intel_uncore_read(uncore, fault_data0_reg); |
| fault_data1 = intel_uncore_read(uncore, fault_data1_reg); |
| |
| fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | |
| ((u64)fault_data0 << 12); |
| |
| drm_dbg(&uncore->i915->drm, "Unexpected fault\n" |
| "\tAddr: 0x%08x_%08x\n" |
| "\tAddress space: %s\n" |
| "\tEngine ID: %d\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| upper_32_bits(fault_addr), lower_32_bits(fault_addr), |
| fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", |
| GEN8_RING_FAULT_ENGINE_ID(fault), |
| RING_FAULT_SRCID(fault), |
| RING_FAULT_FAULT_TYPE(fault)); |
| } |
| } |
| |
| void intel_gt_check_and_clear_faults(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| |
| /* From GEN8 onwards we only have one 'All Engine Fault Register' */ |
| if (GRAPHICS_VER(i915) >= 8) |
| gen8_check_faults(gt); |
| else if (GRAPHICS_VER(i915) >= 6) |
| gen6_check_faults(gt); |
| else |
| return; |
| |
| intel_gt_clear_error_registers(gt, ALL_ENGINES); |
| } |
| |
| void intel_gt_flush_ggtt_writes(struct intel_gt *gt) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| intel_wakeref_t wakeref; |
| |
| /* |
| * No actual flushing is required for the GTT write domain for reads |
| * from the GTT domain. Writes to it "immediately" go to main memory |
| * as far as we know, so there's no chipset flush. It also doesn't |
| * land in the GPU render cache. |
| * |
| * However, we do have to enforce the order so that all writes through |
| * the GTT land before any writes to the device, such as updates to |
| * the GATT itself. |
| * |
| * We also have to wait a bit for the writes to land from the GTT. |
| * An uncached read (i.e. mmio) seems to be ideal for the round-trip |
| * timing. This issue has only been observed when switching quickly |
| * between GTT writes and CPU reads from inside the kernel on recent hw, |
| * and it appears to only affect discrete GTT blocks (i.e. on LLC |
| * system agents we cannot reproduce this behaviour, until Cannonlake |
| * that was!). |
| */ |
| |
| wmb(); |
| |
| if (INTEL_INFO(gt->i915)->has_coherent_ggtt) |
| return; |
| |
| intel_gt_chipset_flush(gt); |
| |
| with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&uncore->lock, flags); |
| intel_uncore_posting_read_fw(uncore, |
| RING_HEAD(RENDER_RING_BASE)); |
| spin_unlock_irqrestore(&uncore->lock, flags); |
| } |
| } |
| |
| void intel_gt_chipset_flush(struct intel_gt *gt) |
| { |
| wmb(); |
| if (GRAPHICS_VER(gt->i915) < 6) |
| intel_gt_gmch_gen5_chipset_flush(gt); |
| } |
| |
| void intel_gt_driver_register(struct intel_gt *gt) |
| { |
| intel_gsc_init(>->gsc, gt->i915); |
| |
| intel_rps_driver_register(>->rps); |
| |
| intel_gt_debugfs_register(gt); |
| intel_gt_sysfs_register(gt); |
| } |
| |
| static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| int ret; |
| |
| obj = i915_gem_object_create_lmem(i915, size, |
| I915_BO_ALLOC_VOLATILE | |
| I915_BO_ALLOC_GPU_ONLY); |
| if (IS_ERR(obj)) |
| obj = i915_gem_object_create_stolen(i915, size); |
| if (IS_ERR(obj)) |
| obj = i915_gem_object_create_internal(i915, size); |
| if (IS_ERR(obj)) { |
| drm_err(&i915->drm, "Failed to allocate scratch page\n"); |
| return PTR_ERR(obj); |
| } |
| |
| vma = i915_vma_instance(obj, >->ggtt->vm, NULL); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err_unref; |
| } |
| |
| ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); |
| if (ret) |
| goto err_unref; |
| |
| gt->scratch = i915_vma_make_unshrinkable(vma); |
| |
| return 0; |
| |
| err_unref: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static void intel_gt_fini_scratch(struct intel_gt *gt) |
| { |
| i915_vma_unpin_and_release(>->scratch, 0); |
| } |
| |
| static struct i915_address_space *kernel_vm(struct intel_gt *gt) |
| { |
| if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) |
| return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; |
| else |
| return i915_vm_get(>->ggtt->vm); |
| } |
| |
| static int __engines_record_defaults(struct intel_gt *gt) |
| { |
| struct i915_request *requests[I915_NUM_ENGINES] = {}; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int err = 0; |
| |
| /* |
| * As we reset the gpu during very early sanitisation, the current |
| * register state on the GPU should reflect its defaults values. |
| * We load a context onto the hw (with restore-inhibit), then switch |
| * over to a second context to save that default register state. We |
| * can then prime every new context with that state so they all start |
| * from the same default HW values. |
| */ |
| |
| for_each_engine(engine, gt, id) { |
| struct intel_renderstate so; |
| struct intel_context *ce; |
| struct i915_request *rq; |
| |
| /* We must be able to switch to something! */ |
| GEM_BUG_ON(!engine->kernel_context); |
| |
| ce = intel_context_create(engine); |
| if (IS_ERR(ce)) { |
| err = PTR_ERR(ce); |
| goto out; |
| } |
| |
| err = intel_renderstate_init(&so, ce); |
| if (err) |
| goto err; |
| |
| rq = i915_request_create(ce); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto err_fini; |
| } |
| |
| err = intel_engine_emit_ctx_wa(rq); |
| if (err) |
| goto err_rq; |
| |
| err = intel_renderstate_emit(&so, rq); |
| if (err) |
| goto err_rq; |
| |
| err_rq: |
| requests[id] = i915_request_get(rq); |
| i915_request_add(rq); |
| err_fini: |
| intel_renderstate_fini(&so, ce); |
| err: |
| if (err) { |
| intel_context_put(ce); |
| goto out; |
| } |
| } |
| |
| /* Flush the default context image to memory, and enable powersaving. */ |
| if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { |
| err = -EIO; |
| goto out; |
| } |
| |
| for (id = 0; id < ARRAY_SIZE(requests); id++) { |
| struct i915_request *rq; |
| struct file *state; |
| |
| rq = requests[id]; |
| if (!rq) |
| continue; |
| |
| if (rq->fence.error) { |
| err = -EIO; |
| goto out; |
| } |
| |
| GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); |
| if (!rq->context->state) |
| continue; |
| |
| /* Keep a copy of the state's backing pages; free the obj */ |
| state = shmem_create_from_object(rq->context->state->obj); |
| if (IS_ERR(state)) { |
| err = PTR_ERR(state); |
| goto out; |
| } |
| rq->engine->default_state = state; |
| } |
| |
| out: |
| /* |
| * If we have to abandon now, we expect the engines to be idle |
| * and ready to be torn-down. The quickest way we can accomplish |
| * this is by declaring ourselves wedged. |
| */ |
| if (err) |
| intel_gt_set_wedged(gt); |
| |
| for (id = 0; id < ARRAY_SIZE(requests); id++) { |
| struct intel_context *ce; |
| struct i915_request *rq; |
| |
| rq = requests[id]; |
| if (!rq) |
| continue; |
| |
| ce = rq->context; |
| i915_request_put(rq); |
| intel_context_put(ce); |
| } |
| return err; |
| } |
| |
| static int __engines_verify_workarounds(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int err = 0; |
| |
| if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| return 0; |
| |
| for_each_engine(engine, gt, id) { |
| if (intel_engine_verify_workarounds(engine, "load")) |
| err = -EIO; |
| } |
| |
| /* Flush and restore the kernel context for safety */ |
| if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) |
| err = -EIO; |
| |
| return err; |
| } |
| |
| static void __intel_gt_disable(struct intel_gt *gt) |
| { |
| intel_gt_set_wedged_on_fini(gt); |
| |
| intel_gt_suspend_prepare(gt); |
| intel_gt_suspend_late(gt); |
| |
| GEM_BUG_ON(intel_gt_pm_is_awake(gt)); |
| } |
| |
| int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) |
| { |
| long remaining_timeout; |
| |
| /* If the device is asleep, we have no requests outstanding */ |
| if (!intel_gt_pm_is_awake(gt)) |
| return 0; |
| |
| while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, |
| &remaining_timeout)) > 0) { |
| cond_resched(); |
| if (signal_pending(current)) |
| return -EINTR; |
| } |
| |
| return timeout ? timeout : intel_uc_wait_for_idle(>->uc, |
| remaining_timeout); |
| } |
| |
| int intel_gt_init(struct intel_gt *gt) |
| { |
| int err; |
| |
| err = i915_inject_probe_error(gt->i915, -ENODEV); |
| if (err) |
| return err; |
| |
| intel_gt_init_workarounds(gt); |
| |
| /* |
| * This is just a security blanket to placate dragons. |
| * On some systems, we very sporadically observe that the first TLBs |
| * used by the CS may be stale, despite us poking the TLB reset. If |
| * we hold the forcewake during initialisation these problems |
| * just magically go away. |
| */ |
| intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); |
| |
| err = intel_gt_init_scratch(gt, |
| GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); |
| if (err) |
| goto out_fw; |
| |
| intel_gt_pm_init(gt); |
| |
| gt->vm = kernel_vm(gt); |
| if (!gt->vm) { |
| err = -ENOMEM; |
| goto err_pm; |
| } |
| |
| intel_set_mocs_index(gt); |
| |
| err = intel_engines_init(gt); |
| if (err) |
| goto err_engines; |
| |
| err = intel_uc_init(>->uc); |
| if (err) |
| goto err_engines; |
| |
| err = intel_gt_resume(gt); |
| if (err) |
| goto err_uc_init; |
| |
| err = intel_gt_init_hwconfig(gt); |
| if (err) |
| drm_err(>->i915->drm, "Failed to retrieve hwconfig table: %pe\n", |
| ERR_PTR(err)); |
| |
| err = __engines_record_defaults(gt); |
| if (err) |
| goto err_gt; |
| |
| err = __engines_verify_workarounds(gt); |
| if (err) |
| goto err_gt; |
| |
| intel_uc_init_late(>->uc); |
| |
| err = i915_inject_probe_error(gt->i915, -EIO); |
| if (err) |
| goto err_gt; |
| |
| intel_migrate_init(>->migrate, gt); |
| |
| intel_pxp_init(>->pxp); |
| |
| goto out_fw; |
| err_gt: |
| __intel_gt_disable(gt); |
| intel_uc_fini_hw(>->uc); |
| err_uc_init: |
| intel_uc_fini(>->uc); |
| err_engines: |
| intel_engines_release(gt); |
| i915_vm_put(fetch_and_zero(>->vm)); |
| err_pm: |
| intel_gt_pm_fini(gt); |
| intel_gt_fini_scratch(gt); |
| out_fw: |
| if (err) |
| intel_gt_set_wedged_on_init(gt); |
| intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); |
| return err; |
| } |
| |
| void intel_gt_driver_remove(struct intel_gt *gt) |
| { |
| __intel_gt_disable(gt); |
| |
| intel_migrate_fini(>->migrate); |
| intel_uc_driver_remove(>->uc); |
| |
| intel_engines_release(gt); |
| |
| intel_gt_flush_buffer_pool(gt); |
| } |
| |
| void intel_gt_driver_unregister(struct intel_gt *gt) |
| { |
| intel_wakeref_t wakeref; |
| |
| intel_gt_sysfs_unregister(gt); |
| intel_rps_driver_unregister(>->rps); |
| intel_gsc_fini(>->gsc); |
| |
| intel_pxp_fini(>->pxp); |
| |
| /* |
| * Upon unregistering the device to prevent any new users, cancel |
| * all in-flight requests so that we can quickly unbind the active |
| * resources. |
| */ |
| intel_gt_set_wedged_on_fini(gt); |
| |
| /* Scrub all HW state upon release */ |
| with_intel_runtime_pm(gt->uncore->rpm, wakeref) |
| __intel_gt_reset(gt, ALL_ENGINES); |
| } |
| |
| void intel_gt_driver_release(struct intel_gt *gt) |
| { |
| struct i915_address_space *vm; |
| |
| vm = fetch_and_zero(>->vm); |
| if (vm) /* FIXME being called twice on error paths :( */ |
| i915_vm_put(vm); |
| |
| intel_wa_list_free(>->wa_list); |
| intel_gt_pm_fini(gt); |
| intel_gt_fini_scratch(gt); |
| intel_gt_fini_buffer_pool(gt); |
| intel_gt_fini_hwconfig(gt); |
| } |
| |
| void intel_gt_driver_late_release_all(struct drm_i915_private *i915) |
| { |
| struct intel_gt *gt; |
| unsigned int id; |
| |
| /* We need to wait for inflight RCU frees to release their grip */ |
| rcu_barrier(); |
| |
| for_each_gt(gt, i915, id) { |
| intel_uc_driver_late_release(>->uc); |
| intel_gt_fini_requests(gt); |
| intel_gt_fini_reset(gt); |
| intel_gt_fini_timelines(gt); |
| intel_engines_free(gt); |
| } |
| } |
| |
| /** |
| * intel_gt_reg_needs_read_steering - determine whether a register read |
| * requires explicit steering |
| * @gt: GT structure |
| * @reg: the register to check steering requirements for |
| * @type: type of multicast steering to check |
| * |
| * Determines whether @reg needs explicit steering of a specific type for |
| * reads. |
| * |
| * Returns false if @reg does not belong to a register range of the given |
| * steering type, or if the default (subslice-based) steering IDs are suitable |
| * for @type steering too. |
| */ |
| static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, |
| i915_reg_t reg, |
| enum intel_steering_type type) |
| { |
| const u32 offset = i915_mmio_reg_offset(reg); |
| const struct intel_mmio_range *entry; |
| |
| if (likely(!intel_gt_needs_read_steering(gt, type))) |
| return false; |
| |
| for (entry = gt->steering_table[type]; entry->end; entry++) { |
| if (offset >= entry->start && offset <= entry->end) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering |
| * @gt: GT structure |
| * @type: multicast register type |
| * @sliceid: Slice ID returned |
| * @subsliceid: Subslice ID returned |
| * |
| * Determines sliceid and subsliceid values that will steer reads |
| * of a specific multicast register class to a valid value. |
| */ |
| static void intel_gt_get_valid_steering(struct intel_gt *gt, |
| enum intel_steering_type type, |
| u8 *sliceid, u8 *subsliceid) |
| { |
| switch (type) { |
| case L3BANK: |
| GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ |
| |
| *sliceid = 0; /* unused */ |
| *subsliceid = __ffs(gt->info.l3bank_mask); |
| break; |
| case MSLICE: |
| GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ |
| |
| *sliceid = __ffs(gt->info.mslice_mask); |
| *subsliceid = 0; /* unused */ |
| break; |
| case LNCF: |
| GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ |
| |
| /* |
| * An LNCF is always present if its mslice is present, so we |
| * can safely just steer to LNCF 0 in all cases. |
| */ |
| *sliceid = __ffs(gt->info.mslice_mask) << 1; |
| *subsliceid = 0; /* unused */ |
| break; |
| default: |
| MISSING_CASE(type); |
| *sliceid = 0; |
| *subsliceid = 0; |
| } |
| } |
| |
| /** |
| * intel_gt_read_register_fw - reads a GT register with support for multicast |
| * @gt: GT structure |
| * @reg: register to read |
| * |
| * This function will read a GT register. If the register is a multicast |
| * register, the read will be steered to a valid instance (i.e., one that |
| * isn't fused off or powered down by power gating). |
| * |
| * Returns the value from a valid instance of @reg. |
| */ |
| u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) |
| { |
| int type; |
| u8 sliceid, subsliceid; |
| |
| for (type = 0; type < NUM_STEERING_TYPES; type++) { |
| if (intel_gt_reg_needs_read_steering(gt, reg, type)) { |
| intel_gt_get_valid_steering(gt, type, &sliceid, |
| &subsliceid); |
| return intel_uncore_read_with_mcr_steering_fw(gt->uncore, |
| reg, |
| sliceid, |
| subsliceid); |
| } |
| } |
| |
| return intel_uncore_read_fw(gt->uncore, reg); |
| } |
| |
| /** |
| * intel_gt_get_valid_steering_for_reg - get a valid steering for a register |
| * @gt: GT structure |
| * @reg: register for which the steering is required |
| * @sliceid: return variable for slice steering |
| * @subsliceid: return variable for subslice steering |
| * |
| * This function returns a slice/subslice pair that is guaranteed to work for |
| * read steering of the given register. Note that a value will be returned even |
| * if the register is not replicated and therefore does not actually require |
| * steering. |
| */ |
| void intel_gt_get_valid_steering_for_reg(struct intel_gt *gt, i915_reg_t reg, |
| u8 *sliceid, u8 *subsliceid) |
| { |
| int type; |
| |
| for (type = 0; type < NUM_STEERING_TYPES; type++) { |
| if (intel_gt_reg_needs_read_steering(gt, reg, type)) { |
| intel_gt_get_valid_steering(gt, type, sliceid, |
| subsliceid); |
| return; |
| } |
| } |
| |
| *sliceid = gt->default_steering.groupid; |
| *subsliceid = gt->default_steering.instanceid; |
| } |
| |
| u32 intel_gt_read_register(struct intel_gt *gt, i915_reg_t reg) |
| { |
| int type; |
| u8 sliceid, subsliceid; |
| |
| for (type = 0; type < NUM_STEERING_TYPES; type++) { |
| if (intel_gt_reg_needs_read_steering(gt, reg, type)) { |
| intel_gt_get_valid_steering(gt, type, &sliceid, |
| &subsliceid); |
| return intel_uncore_read_with_mcr_steering(gt->uncore, |
| reg, |
| sliceid, |
| subsliceid); |
| } |
| } |
| |
| return intel_uncore_read(gt->uncore, reg); |
| } |
| |
| static void report_steering_type(struct drm_printer *p, |
| struct intel_gt *gt, |
| enum intel_steering_type type, |
| bool dump_table) |
| { |
| const struct intel_mmio_range *entry; |
| u8 slice, subslice; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES); |
| |
| if (!gt->steering_table[type]) { |
| drm_printf(p, "%s steering: uses default steering\n", |
| intel_steering_types[type]); |
| return; |
| } |
| |
| intel_gt_get_valid_steering(gt, type, &slice, &subslice); |
| drm_printf(p, "%s steering: sliceid=0x%x, subsliceid=0x%x\n", |
| intel_steering_types[type], slice, subslice); |
| |
| if (!dump_table) |
| return; |
| |
| for (entry = gt->steering_table[type]; entry->end; entry++) |
| drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end); |
| } |
| |
| void intel_gt_report_steering(struct drm_printer *p, struct intel_gt *gt, |
| bool dump_table) |
| { |
| drm_printf(p, "Default steering: sliceid=0x%x, subsliceid=0x%x\n", |
| gt->default_steering.groupid, |
| gt->default_steering.instanceid); |
| |
| if (HAS_MSLICES(gt->i915)) { |
| report_steering_type(p, gt, MSLICE, dump_table); |
| report_steering_type(p, gt, LNCF, dump_table); |
| } |
| } |
| |
| static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr) |
| { |
| int ret; |
| |
| if (!gt_is_root(gt)) { |
| struct intel_uncore_mmio_debug *mmio_debug; |
| struct intel_uncore *uncore; |
| |
| uncore = kzalloc(sizeof(*uncore), GFP_KERNEL); |
| if (!uncore) |
| return -ENOMEM; |
| |
| mmio_debug = kzalloc(sizeof(*mmio_debug), GFP_KERNEL); |
| if (!mmio_debug) { |
| kfree(uncore); |
| return -ENOMEM; |
| } |
| |
| gt->uncore = uncore; |
| gt->uncore->debug = mmio_debug; |
| |
| __intel_gt_init_early(gt); |
| } |
| |
| intel_uncore_init_early(gt->uncore, gt); |
| |
| ret = intel_uncore_setup_mmio(gt->uncore, phys_addr); |
| if (ret) |
| return ret; |
| |
| gt->phys_addr = phys_addr; |
| |
| return 0; |
| } |
| |
| static void |
| intel_gt_tile_cleanup(struct intel_gt *gt) |
| { |
| intel_uncore_cleanup_mmio(gt->uncore); |
| |
| if (!gt_is_root(gt)) { |
| kfree(gt->uncore->debug); |
| kfree(gt->uncore); |
| kfree(gt); |
| } |
| } |
| |
| int intel_gt_probe_all(struct drm_i915_private *i915) |
| { |
| struct pci_dev *pdev = to_pci_dev(i915->drm.dev); |
| struct intel_gt *gt = &i915->gt0; |
| phys_addr_t phys_addr; |
| unsigned int mmio_bar; |
| int ret; |
| |
| mmio_bar = GRAPHICS_VER(i915) == 2 ? 1 : 0; |
| phys_addr = pci_resource_start(pdev, mmio_bar); |
| |
| /* |
| * We always have at least one primary GT on any device |
| * and it has been already initialized early during probe |
| * in i915_driver_probe() |
| */ |
| ret = intel_gt_tile_setup(gt, phys_addr); |
| if (ret) |
| return ret; |
| |
| i915->gt[0] = gt; |
| |
| /* TODO: add more tiles */ |
| return 0; |
| } |
| |
| int intel_gt_tiles_init(struct drm_i915_private *i915) |
| { |
| struct intel_gt *gt; |
| unsigned int id; |
| int ret; |
| |
| for_each_gt(gt, i915, id) { |
| ret = intel_gt_probe_lmem(gt); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| void intel_gt_release_all(struct drm_i915_private *i915) |
| { |
| struct intel_gt *gt; |
| unsigned int id; |
| |
| for_each_gt(gt, i915, id) { |
| intel_gt_tile_cleanup(gt); |
| i915->gt[id] = NULL; |
| } |
| } |
| |
| void intel_gt_info_print(const struct intel_gt_info *info, |
| struct drm_printer *p) |
| { |
| drm_printf(p, "available engines: %x\n", info->engine_mask); |
| |
| intel_sseu_dump(&info->sseu, p); |
| } |
| |
| struct reg_and_bit { |
| i915_reg_t reg; |
| u32 bit; |
| }; |
| |
| static struct reg_and_bit |
| get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, |
| const i915_reg_t *regs, const unsigned int num) |
| { |
| const unsigned int class = engine->class; |
| struct reg_and_bit rb = { }; |
| |
| if (drm_WARN_ON_ONCE(&engine->i915->drm, |
| class >= num || !regs[class].reg)) |
| return rb; |
| |
| rb.reg = regs[class]; |
| if (gen8 && class == VIDEO_DECODE_CLASS) |
| rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ |
| else |
| rb.bit = engine->instance; |
| |
| rb.bit = BIT(rb.bit); |
| |
| return rb; |
| } |
| |
| void intel_gt_invalidate_tlbs(struct intel_gt *gt) |
| { |
| static const i915_reg_t gen8_regs[] = { |
| [RENDER_CLASS] = GEN8_RTCR, |
| [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ |
| [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, |
| [COPY_ENGINE_CLASS] = GEN8_BTCR, |
| }; |
| static const i915_reg_t gen12_regs[] = { |
| [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, |
| [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, |
| [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, |
| [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, |
| [COMPUTE_CLASS] = GEN12_COMPCTX_TLB_INV_CR, |
| }; |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_uncore *uncore = gt->uncore; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| const i915_reg_t *regs; |
| unsigned int num = 0; |
| |
| if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) |
| return; |
| |
| if (GRAPHICS_VER(i915) == 12) { |
| regs = gen12_regs; |
| num = ARRAY_SIZE(gen12_regs); |
| } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { |
| regs = gen8_regs; |
| num = ARRAY_SIZE(gen8_regs); |
| } else if (GRAPHICS_VER(i915) < 8) { |
| return; |
| } |
| |
| if (drm_WARN_ONCE(&i915->drm, !num, |
| "Platform does not implement TLB invalidation!")) |
| return; |
| |
| GEM_TRACE("\n"); |
| |
| assert_rpm_wakelock_held(&i915->runtime_pm); |
| |
| mutex_lock(>->tlb_invalidate_lock); |
| intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); |
| |
| spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */ |
| |
| for_each_engine(engine, gt, id) { |
| struct reg_and_bit rb; |
| |
| rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); |
| if (!i915_mmio_reg_offset(rb.reg)) |
| continue; |
| |
| intel_uncore_write_fw(uncore, rb.reg, rb.bit); |
| } |
| |
| spin_unlock_irq(&uncore->lock); |
| |
| for_each_engine(engine, gt, id) { |
| /* |
| * HW architecture suggest typical invalidation time at 40us, |
| * with pessimistic cases up to 100us and a recommendation to |
| * cap at 1ms. We go a bit higher just in case. |
| */ |
| const unsigned int timeout_us = 100; |
| const unsigned int timeout_ms = 4; |
| struct reg_and_bit rb; |
| |
| rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); |
| if (!i915_mmio_reg_offset(rb.reg)) |
| continue; |
| |
| if (__intel_wait_for_register_fw(uncore, |
| rb.reg, rb.bit, 0, |
| timeout_us, timeout_ms, |
| NULL)) |
| drm_err_ratelimited(>->i915->drm, |
| "%s TLB invalidation did not complete in %ums!\n", |
| engine->name, timeout_ms); |
| } |
| |
| /* |
| * Use delayed put since a) we mostly expect a flurry of TLB |
| * invalidations so it is good to avoid paying the forcewake cost and |
| * b) it works around a bug in Icelake which cannot cope with too rapid |
| * transitions. |
| */ |
| intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); |
| mutex_unlock(>->tlb_invalidate_lock); |
| } |