blob: c4e25966d3e9f6fc7870a3fa6dcf96bcab21439c [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021-2022 Intel Corporation
*/
#include <linux/types.h>
#include <drm/drm_print.h>
#include "gt/intel_engine_regs.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_regs.h"
#include "gt/intel_lrc.h"
#include "guc_capture_fwif.h"
#include "intel_guc_capture.h"
#include "intel_guc_fwif.h"
#include "i915_drv.h"
#include "i915_gpu_error.h"
#include "i915_irq.h"
#include "i915_memcpy.h"
#include "i915_reg.h"
/*
* Define all device tables of GuC error capture register lists
* NOTE: For engine-registers, GuC only needs the register offsets
* from the engine-mmio-base
*/
#define COMMON_BASE_GLOBAL \
{ FORCEWAKE_MT, 0, 0, "FORCEWAKE" }
#define COMMON_GEN9BASE_GLOBAL \
{ GEN8_FAULT_TLB_DATA0, 0, 0, "GEN8_FAULT_TLB_DATA0" }, \
{ GEN8_FAULT_TLB_DATA1, 0, 0, "GEN8_FAULT_TLB_DATA1" }, \
{ ERROR_GEN6, 0, 0, "ERROR_GEN6" }, \
{ DONE_REG, 0, 0, "DONE_REG" }, \
{ HSW_GTT_CACHE_EN, 0, 0, "HSW_GTT_CACHE_EN" }
#define COMMON_GEN12BASE_GLOBAL \
{ GEN12_FAULT_TLB_DATA0, 0, 0, "GEN12_FAULT_TLB_DATA0" }, \
{ GEN12_FAULT_TLB_DATA1, 0, 0, "GEN12_FAULT_TLB_DATA1" }, \
{ GEN12_AUX_ERR_DBG, 0, 0, "AUX_ERR_DBG" }, \
{ GEN12_GAM_DONE, 0, 0, "GAM_DONE" }, \
{ GEN12_RING_FAULT_REG, 0, 0, "FAULT_REG" }
#define COMMON_BASE_ENGINE_INSTANCE \
{ RING_PSMI_CTL(0), 0, 0, "RC PSMI" }, \
{ RING_ESR(0), 0, 0, "ESR" }, \
{ RING_DMA_FADD(0), 0, 0, "RING_DMA_FADD_LDW" }, \
{ RING_DMA_FADD_UDW(0), 0, 0, "RING_DMA_FADD_UDW" }, \
{ RING_IPEIR(0), 0, 0, "IPEIR" }, \
{ RING_IPEHR(0), 0, 0, "IPEHR" }, \
{ RING_INSTPS(0), 0, 0, "INSTPS" }, \
{ RING_BBADDR(0), 0, 0, "RING_BBADDR_LOW32" }, \
{ RING_BBADDR_UDW(0), 0, 0, "RING_BBADDR_UP32" }, \
{ RING_BBSTATE(0), 0, 0, "BB_STATE" }, \
{ CCID(0), 0, 0, "CCID" }, \
{ RING_ACTHD(0), 0, 0, "ACTHD_LDW" }, \
{ RING_ACTHD_UDW(0), 0, 0, "ACTHD_UDW" }, \
{ RING_INSTPM(0), 0, 0, "INSTPM" }, \
{ RING_INSTDONE(0), 0, 0, "INSTDONE" }, \
{ RING_NOPID(0), 0, 0, "RING_NOPID" }, \
{ RING_START(0), 0, 0, "START" }, \
{ RING_HEAD(0), 0, 0, "HEAD" }, \
{ RING_TAIL(0), 0, 0, "TAIL" }, \
{ RING_CTL(0), 0, 0, "CTL" }, \
{ RING_MI_MODE(0), 0, 0, "MODE" }, \
{ RING_CONTEXT_CONTROL(0), 0, 0, "RING_CONTEXT_CONTROL" }, \
{ RING_HWS_PGA(0), 0, 0, "HWS" }, \
{ RING_MODE_GEN7(0), 0, 0, "GFX_MODE" }, \
{ GEN8_RING_PDP_LDW(0, 0), 0, 0, "PDP0_LDW" }, \
{ GEN8_RING_PDP_UDW(0, 0), 0, 0, "PDP0_UDW" }, \
{ GEN8_RING_PDP_LDW(0, 1), 0, 0, "PDP1_LDW" }, \
{ GEN8_RING_PDP_UDW(0, 1), 0, 0, "PDP1_UDW" }, \
{ GEN8_RING_PDP_LDW(0, 2), 0, 0, "PDP2_LDW" }, \
{ GEN8_RING_PDP_UDW(0, 2), 0, 0, "PDP2_UDW" }, \
{ GEN8_RING_PDP_LDW(0, 3), 0, 0, "PDP3_LDW" }, \
{ GEN8_RING_PDP_UDW(0, 3), 0, 0, "PDP3_UDW" }
#define COMMON_BASE_HAS_EU \
{ EIR, 0, 0, "EIR" }
#define COMMON_BASE_RENDER \
{ GEN7_SC_INSTDONE, 0, 0, "GEN7_SC_INSTDONE" }
#define COMMON_GEN12BASE_RENDER \
{ GEN12_SC_INSTDONE_EXTRA, 0, 0, "GEN12_SC_INSTDONE_EXTRA" }, \
{ GEN12_SC_INSTDONE_EXTRA2, 0, 0, "GEN12_SC_INSTDONE_EXTRA2" }
#define COMMON_GEN12BASE_VEC \
{ GEN12_SFC_DONE(0), 0, 0, "SFC_DONE[0]" }, \
{ GEN12_SFC_DONE(1), 0, 0, "SFC_DONE[1]" }, \
{ GEN12_SFC_DONE(2), 0, 0, "SFC_DONE[2]" }, \
{ GEN12_SFC_DONE(3), 0, 0, "SFC_DONE[3]" }
/* XE_LPD - Global */
static const struct __guc_mmio_reg_descr xe_lpd_global_regs[] = {
COMMON_BASE_GLOBAL,
COMMON_GEN9BASE_GLOBAL,
COMMON_GEN12BASE_GLOBAL,
};
/* XE_LPD - Render / Compute Per-Class */
static const struct __guc_mmio_reg_descr xe_lpd_rc_class_regs[] = {
COMMON_BASE_HAS_EU,
COMMON_BASE_RENDER,
COMMON_GEN12BASE_RENDER,
};
/* GEN9/XE_LPD - Render / Compute Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_lpd_rc_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/* GEN9/XE_LPD - Media Decode/Encode Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_lpd_vd_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/* XE_LPD - Video Enhancement Per-Class */
static const struct __guc_mmio_reg_descr xe_lpd_vec_class_regs[] = {
COMMON_GEN12BASE_VEC,
};
/* GEN9/XE_LPD - Video Enhancement Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_lpd_vec_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/* GEN9/XE_LPD - Blitter Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_lpd_blt_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/* GEN9 - Global */
static const struct __guc_mmio_reg_descr default_global_regs[] = {
COMMON_BASE_GLOBAL,
COMMON_GEN9BASE_GLOBAL,
};
static const struct __guc_mmio_reg_descr default_rc_class_regs[] = {
COMMON_BASE_HAS_EU,
COMMON_BASE_RENDER,
};
/*
* Empty lists:
* GEN9/XE_LPD - Blitter Per-Class
* GEN9/XE_LPD - Media Decode/Encode Per-Class
* GEN9 - VEC Class
*/
static const struct __guc_mmio_reg_descr empty_regs_list[] = {
};
#define TO_GCAP_DEF_OWNER(x) (GUC_CAPTURE_LIST_INDEX_##x)
#define TO_GCAP_DEF_TYPE(x) (GUC_CAPTURE_LIST_TYPE_##x)
#define MAKE_REGLIST(regslist, regsowner, regstype, class) \
{ \
regslist, \
ARRAY_SIZE(regslist), \
TO_GCAP_DEF_OWNER(regsowner), \
TO_GCAP_DEF_TYPE(regstype), \
class, \
NULL, \
}
/* List of lists */
static struct __guc_mmio_reg_descr_group default_lists[] = {
MAKE_REGLIST(default_global_regs, PF, GLOBAL, 0),
MAKE_REGLIST(default_rc_class_regs, PF, ENGINE_CLASS, GUC_RENDER_CLASS),
MAKE_REGLIST(xe_lpd_rc_inst_regs, PF, ENGINE_INSTANCE, GUC_RENDER_CLASS),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_VIDEO_CLASS),
MAKE_REGLIST(xe_lpd_vd_inst_regs, PF, ENGINE_INSTANCE, GUC_VIDEO_CLASS),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_VIDEOENHANCE_CLASS),
MAKE_REGLIST(xe_lpd_vec_inst_regs, PF, ENGINE_INSTANCE, GUC_VIDEOENHANCE_CLASS),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_BLITTER_CLASS),
MAKE_REGLIST(xe_lpd_blt_inst_regs, PF, ENGINE_INSTANCE, GUC_BLITTER_CLASS),
{}
};
static const struct __guc_mmio_reg_descr_group xe_lpd_lists[] = {
MAKE_REGLIST(xe_lpd_global_regs, PF, GLOBAL, 0),
MAKE_REGLIST(xe_lpd_rc_class_regs, PF, ENGINE_CLASS, GUC_RENDER_CLASS),
MAKE_REGLIST(xe_lpd_rc_inst_regs, PF, ENGINE_INSTANCE, GUC_RENDER_CLASS),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_VIDEO_CLASS),
MAKE_REGLIST(xe_lpd_vd_inst_regs, PF, ENGINE_INSTANCE, GUC_VIDEO_CLASS),
MAKE_REGLIST(xe_lpd_vec_class_regs, PF, ENGINE_CLASS, GUC_VIDEOENHANCE_CLASS),
MAKE_REGLIST(xe_lpd_vec_inst_regs, PF, ENGINE_INSTANCE, GUC_VIDEOENHANCE_CLASS),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_BLITTER_CLASS),
MAKE_REGLIST(xe_lpd_blt_inst_regs, PF, ENGINE_INSTANCE, GUC_BLITTER_CLASS),
{}
};
static const struct __guc_mmio_reg_descr_group *
guc_capture_get_one_list(const struct __guc_mmio_reg_descr_group *reglists,
u32 owner, u32 type, u32 id)
{
int i;
if (!reglists)
return NULL;
for (i = 0; reglists[i].list; ++i) {
if (reglists[i].owner == owner && reglists[i].type == type &&
(reglists[i].engine == id || reglists[i].type == GUC_CAPTURE_LIST_TYPE_GLOBAL))
return &reglists[i];
}
return NULL;
}
static struct __guc_mmio_reg_descr_group *
guc_capture_get_one_ext_list(struct __guc_mmio_reg_descr_group *reglists,
u32 owner, u32 type, u32 id)
{
int i;
if (!reglists)
return NULL;
for (i = 0; reglists[i].extlist; ++i) {
if (reglists[i].owner == owner && reglists[i].type == type &&
(reglists[i].engine == id || reglists[i].type == GUC_CAPTURE_LIST_TYPE_GLOBAL))
return &reglists[i];
}
return NULL;
}
static void guc_capture_free_extlists(struct __guc_mmio_reg_descr_group *reglists)
{
int i = 0;
if (!reglists)
return;
while (reglists[i].extlist)
kfree(reglists[i++].extlist);
}
struct __ext_steer_reg {
const char *name;
i915_reg_t reg;
};
static const struct __ext_steer_reg xe_extregs[] = {
{"GEN7_SAMPLER_INSTDONE", GEN7_SAMPLER_INSTDONE},
{"GEN7_ROW_INSTDONE", GEN7_ROW_INSTDONE}
};
static void __fill_ext_reg(struct __guc_mmio_reg_descr *ext,
const struct __ext_steer_reg *extlist,
int slice_id, int subslice_id)
{
ext->reg = extlist->reg;
ext->flags = FIELD_PREP(GUC_REGSET_STEERING_GROUP, slice_id);
ext->flags |= FIELD_PREP(GUC_REGSET_STEERING_INSTANCE, subslice_id);
ext->regname = extlist->name;
}
static int
__alloc_ext_regs(struct __guc_mmio_reg_descr_group *newlist,
const struct __guc_mmio_reg_descr_group *rootlist, int num_regs)
{
struct __guc_mmio_reg_descr *list;
list = kcalloc(num_regs, sizeof(struct __guc_mmio_reg_descr), GFP_KERNEL);
if (!list)
return -ENOMEM;
newlist->extlist = list;
newlist->num_regs = num_regs;
newlist->owner = rootlist->owner;
newlist->engine = rootlist->engine;
newlist->type = rootlist->type;
return 0;
}
static void
guc_capture_alloc_steered_lists_xe_lpd(struct intel_guc *guc,
const struct __guc_mmio_reg_descr_group *lists)
{
struct intel_gt *gt = guc_to_gt(guc);
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
int slice, subslice, i, num_steer_regs, num_tot_regs = 0;
const struct __guc_mmio_reg_descr_group *list;
struct __guc_mmio_reg_descr_group *extlists;
struct __guc_mmio_reg_descr *extarray;
struct sseu_dev_info *sseu;
/* In XE_LPD we only have steered registers for the render-class */
list = guc_capture_get_one_list(lists, GUC_CAPTURE_LIST_INDEX_PF,
GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, GUC_RENDER_CLASS);
/* skip if extlists was previously allocated */
if (!list || guc->capture->extlists)
return;
num_steer_regs = ARRAY_SIZE(xe_extregs);
sseu = &gt->info.sseu;
for_each_instdone_slice_subslice(i915, sseu, slice, subslice)
num_tot_regs += num_steer_regs;
if (!num_tot_regs)
return;
/* allocate an extra for an end marker */
extlists = kcalloc(2, sizeof(struct __guc_mmio_reg_descr_group), GFP_KERNEL);
if (!extlists)
return;
if (__alloc_ext_regs(&extlists[0], list, num_tot_regs)) {
kfree(extlists);
return;
}
extarray = extlists[0].extlist;
for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
for (i = 0; i < num_steer_regs; ++i) {
__fill_ext_reg(extarray, &xe_extregs[i], slice, subslice);
++extarray;
}
}
guc->capture->extlists = extlists;
}
static const struct __ext_steer_reg xehpg_extregs[] = {
{"XEHPG_INSTDONE_GEOM_SVG", XEHPG_INSTDONE_GEOM_SVG}
};
static bool __has_xehpg_extregs(u32 ipver)
{
return (ipver >= IP_VER(12, 55));
}
static void
guc_capture_alloc_steered_lists_xe_hpg(struct intel_guc *guc,
const struct __guc_mmio_reg_descr_group *lists,
u32 ipver)
{
struct intel_gt *gt = guc_to_gt(guc);
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
struct sseu_dev_info *sseu;
int slice, subslice, i, iter, num_steer_regs, num_tot_regs = 0;
const struct __guc_mmio_reg_descr_group *list;
struct __guc_mmio_reg_descr_group *extlists;
struct __guc_mmio_reg_descr *extarray;
/* In XE_LP / HPG we only have render-class steering registers during error-capture */
list = guc_capture_get_one_list(lists, GUC_CAPTURE_LIST_INDEX_PF,
GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, GUC_RENDER_CLASS);
/* skip if extlists was previously allocated */
if (!list || guc->capture->extlists)
return;
num_steer_regs = ARRAY_SIZE(xe_extregs);
if (__has_xehpg_extregs(ipver))
num_steer_regs += ARRAY_SIZE(xehpg_extregs);
sseu = &gt->info.sseu;
for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
num_tot_regs += num_steer_regs;
}
if (!num_tot_regs)
return;
/* allocate an extra for an end marker */
extlists = kcalloc(2, sizeof(struct __guc_mmio_reg_descr_group), GFP_KERNEL);
if (!extlists)
return;
if (__alloc_ext_regs(&extlists[0], list, num_tot_regs)) {
kfree(extlists);
return;
}
extarray = extlists[0].extlist;
for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
for (i = 0; i < ARRAY_SIZE(xe_extregs); ++i) {
__fill_ext_reg(extarray, &xe_extregs[i], slice, subslice);
++extarray;
}
if (__has_xehpg_extregs(ipver)) {
for (i = 0; i < ARRAY_SIZE(xehpg_extregs); ++i) {
__fill_ext_reg(extarray, &xehpg_extregs[i], slice, subslice);
++extarray;
}
}
}
drm_dbg(&i915->drm, "GuC-capture found %d-ext-regs.\n", num_tot_regs);
guc->capture->extlists = extlists;
}
static const struct __guc_mmio_reg_descr_group *
guc_capture_get_device_reglist(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
if (GRAPHICS_VER(i915) > 11) {
/*
* For certain engine classes, there are slice and subslice
* level registers requiring steering. We allocate and populate
* these at init time based on hw config add it as an extension
* list at the end of the pre-populated render list.
*/
if (IS_DG2(i915))
guc_capture_alloc_steered_lists_xe_hpg(guc, xe_lpd_lists, IP_VER(12, 55));
else if (IS_XEHPSDV(i915))
guc_capture_alloc_steered_lists_xe_hpg(guc, xe_lpd_lists, IP_VER(12, 50));
else
guc_capture_alloc_steered_lists_xe_lpd(guc, xe_lpd_lists);
return xe_lpd_lists;
}
/* if GuC submission is enabled on a non-POR platform, just use a common baseline */
return default_lists;
}
static const char *
__stringify_owner(u32 owner)
{
switch (owner) {
case GUC_CAPTURE_LIST_INDEX_PF:
return "PF";
case GUC_CAPTURE_LIST_INDEX_VF:
return "VF";
default:
return "unknown";
}
return "";
}
static const char *
__stringify_type(u32 type)
{
switch (type) {
case GUC_CAPTURE_LIST_TYPE_GLOBAL:
return "Global";
case GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS:
return "Class";
case GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE:
return "Instance";
default:
return "unknown";
}
return "";
}
static const char *
__stringify_engclass(u32 class)
{
switch (class) {
case GUC_RENDER_CLASS:
return "Render";
case GUC_VIDEO_CLASS:
return "Video";
case GUC_VIDEOENHANCE_CLASS:
return "VideoEnhance";
case GUC_BLITTER_CLASS:
return "Blitter";
case GUC_COMPUTE_CLASS:
return "Compute";
default:
return "unknown";
}
return "";
}
static void
guc_capture_warn_with_list_info(struct drm_i915_private *i915, char *msg,
u32 owner, u32 type, u32 classid)
{
if (type == GUC_CAPTURE_LIST_TYPE_GLOBAL)
drm_dbg(&i915->drm, "GuC-capture: %s for %s %s-Registers.\n", msg,
__stringify_owner(owner), __stringify_type(type));
else
drm_dbg(&i915->drm, "GuC-capture: %s for %s %s-Registers on %s-Engine\n", msg,
__stringify_owner(owner), __stringify_type(type),
__stringify_engclass(classid));
}
static int
guc_capture_list_init(struct intel_guc *guc, u32 owner, u32 type, u32 classid,
struct guc_mmio_reg *ptr, u16 num_entries)
{
u32 i = 0, j = 0;
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
const struct __guc_mmio_reg_descr_group *reglists = guc->capture->reglists;
struct __guc_mmio_reg_descr_group *extlists = guc->capture->extlists;
const struct __guc_mmio_reg_descr_group *match;
struct __guc_mmio_reg_descr_group *matchext;
if (!reglists)
return -ENODEV;
match = guc_capture_get_one_list(reglists, owner, type, classid);
if (!match) {
guc_capture_warn_with_list_info(i915, "Missing register list init", owner, type,
classid);
return -ENODATA;
}
for (i = 0; i < num_entries && i < match->num_regs; ++i) {
ptr[i].offset = match->list[i].reg.reg;
ptr[i].value = 0xDEADF00D;
ptr[i].flags = match->list[i].flags;
ptr[i].mask = match->list[i].mask;
}
matchext = guc_capture_get_one_ext_list(extlists, owner, type, classid);
if (matchext) {
for (i = match->num_regs, j = 0; i < num_entries &&
i < (match->num_regs + matchext->num_regs) &&
j < matchext->num_regs; ++i, ++j) {
ptr[i].offset = matchext->extlist[j].reg.reg;
ptr[i].value = 0xDEADF00D;
ptr[i].flags = matchext->extlist[j].flags;
ptr[i].mask = matchext->extlist[j].mask;
}
}
if (i < num_entries)
drm_dbg(&i915->drm, "GuC-capture: Init reglist short %d out %d.\n",
(int)i, (int)num_entries);
return 0;
}
static int
guc_cap_list_num_regs(struct intel_guc_state_capture *gc, u32 owner, u32 type, u32 classid)
{
const struct __guc_mmio_reg_descr_group *match;
struct __guc_mmio_reg_descr_group *matchext;
int num_regs;
match = guc_capture_get_one_list(gc->reglists, owner, type, classid);
if (!match)
return 0;
num_regs = match->num_regs;
matchext = guc_capture_get_one_ext_list(gc->extlists, owner, type, classid);
if (matchext)
num_regs += matchext->num_regs;
return num_regs;
}
int
intel_guc_capture_getlistsize(struct intel_guc *guc, u32 owner, u32 type, u32 classid,
size_t *size)
{
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
struct intel_guc_state_capture *gc = guc->capture;
struct __guc_capture_ads_cache *cache = &gc->ads_cache[owner][type][classid];
int num_regs;
if (!gc->reglists)
return -ENODEV;
if (cache->is_valid) {
*size = cache->size;
return cache->status;
}
num_regs = guc_cap_list_num_regs(gc, owner, type, classid);
if (!num_regs) {
guc_capture_warn_with_list_info(i915, "Missing register list size",
owner, type, classid);
return -ENODATA;
}
*size = PAGE_ALIGN((sizeof(struct guc_debug_capture_list)) +
(num_regs * sizeof(struct guc_mmio_reg)));
return 0;
}
static void guc_capture_create_prealloc_nodes(struct intel_guc *guc);
int
intel_guc_capture_getlist(struct intel_guc *guc, u32 owner, u32 type, u32 classid,
void **outptr)
{
struct intel_guc_state_capture *gc = guc->capture;
struct __guc_capture_ads_cache *cache = &gc->ads_cache[owner][type][classid];
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
struct guc_debug_capture_list *listnode;
int ret, num_regs;
u8 *caplist, *tmp;
size_t size = 0;
if (!gc->reglists)
return -ENODEV;
if (cache->is_valid) {
*outptr = cache->ptr;
return cache->status;
}
/*
* ADS population of input registers is a good
* time to pre-allocate cachelist output nodes
*/
guc_capture_create_prealloc_nodes(guc);
ret = intel_guc_capture_getlistsize(guc, owner, type, classid, &size);
if (ret) {
cache->is_valid = true;
cache->ptr = NULL;
cache->size = 0;
cache->status = ret;
return ret;
}
caplist = kzalloc(size, GFP_KERNEL);
if (!caplist) {
drm_dbg(&i915->drm, "GuC-capture: failed to alloc cached caplist");
return -ENOMEM;
}
/* populate capture list header */
tmp = caplist;
num_regs = guc_cap_list_num_regs(guc->capture, owner, type, classid);
listnode = (struct guc_debug_capture_list *)tmp;
listnode->header.info = FIELD_PREP(GUC_CAPTURELISTHDR_NUMDESCR, (u32)num_regs);
/* populate list of register descriptor */
tmp += sizeof(struct guc_debug_capture_list);
guc_capture_list_init(guc, owner, type, classid, (struct guc_mmio_reg *)tmp, num_regs);
/* cache this list */
cache->is_valid = true;
cache->ptr = caplist;
cache->size = size;
cache->status = 0;
*outptr = caplist;
return 0;
}
int
intel_guc_capture_getnullheader(struct intel_guc *guc,
void **outptr, size_t *size)
{
struct intel_guc_state_capture *gc = guc->capture;
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
int tmp = sizeof(u32) * 4;
void *null_header;
if (gc->ads_null_cache) {
*outptr = gc->ads_null_cache;
*size = tmp;
return 0;
}
null_header = kzalloc(tmp, GFP_KERNEL);
if (!null_header) {
drm_dbg(&i915->drm, "GuC-capture: failed to alloc cached nulllist");
return -ENOMEM;
}
gc->ads_null_cache = null_header;
*outptr = null_header;
*size = tmp;
return 0;
}
#define GUC_CAPTURE_OVERBUFFER_MULTIPLIER 3
int
intel_guc_capture_output_min_size_est(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
struct intel_engine_cs *engine;
enum intel_engine_id id;
int worst_min_size = 0, num_regs = 0;
size_t tmp = 0;
if (!guc->capture)
return -ENODEV;
/*
* If every single engine-instance suffered a failure in quick succession but
* were all unrelated, then a burst of multiple error-capture events would dump
* registers for every one engine instance, one at a time. In this case, GuC
* would even dump the global-registers repeatedly.
*
* For each engine instance, there would be 1 x guc_state_capture_group_t output
* followed by 3 x guc_state_capture_t lists. The latter is how the register
* dumps are split across different register types (where the '3' are global vs class
* vs instance). Finally, let's multiply the whole thing by 3x (just so we are
* not limited to just 1 round of data in a worst case full register dump log)
*
* NOTE: intel_guc_log that allocates the log buffer would round this size up to
* a power of two.
*/
for_each_engine(engine, gt, id) {
worst_min_size += sizeof(struct guc_state_capture_group_header_t) +
(3 * sizeof(struct guc_state_capture_header_t));
if (!intel_guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_GLOBAL, 0, &tmp))
num_regs += tmp;
if (!intel_guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS,
engine->class, &tmp)) {
num_regs += tmp;
}
if (!intel_guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE,
engine->class, &tmp)) {
num_regs += tmp;
}
}
worst_min_size += (num_regs * sizeof(struct guc_mmio_reg));
return (worst_min_size * GUC_CAPTURE_OVERBUFFER_MULTIPLIER);
}
/*
* KMD Init time flows:
* --------------------
* --> alloc A: GuC input capture regs lists (registered to GuC via ADS).
* intel_guc_ads acquires the register lists by calling
* intel_guc_capture_list_size and intel_guc_capture_list_get 'n' times,
* where n = 1 for global-reg-list +
* num_engine_classes for class-reg-list +
* num_engine_classes for instance-reg-list
* (since all instances of the same engine-class type
* have an identical engine-instance register-list).
* ADS module also calls separately for PF vs VF.
*
* --> alloc B: GuC output capture buf (registered via guc_init_params(log_param))
* Size = #define CAPTURE_BUFFER_SIZE (warns if on too-small)
* Note2: 'x 3' to hold multiple capture groups
*
* GUC Runtime notify capture:
* --------------------------
* --> G2H STATE_CAPTURE_NOTIFICATION
* L--> intel_guc_capture_process
* L--> Loop through B (head..tail) and for each engine instance's
* err-state-captured register-list we find, we alloc 'C':
* --> alloc C: A capture-output-node structure that includes misc capture info along
* with 3 register list dumps (global, engine-class and engine-instance)
* This node is created from a pre-allocated list of blank nodes in
* guc->capture->cachelist and populated with the error-capture
* data from GuC and then it's added into guc->capture->outlist linked
* list. This list is used for matchup and printout by i915_gpu_coredump
* and err_print_gt, (when user invokes the error capture sysfs).
*
* GUC --> notify context reset:
* -----------------------------
* --> G2H CONTEXT RESET
* L--> guc_handle_context_reset --> i915_capture_error_state
* L--> i915_gpu_coredump(..IS_GUC_CAPTURE) --> gt_record_engines
* --> capture_engine(..IS_GUC_CAPTURE)
* L--> intel_guc_capture_get_matching_node is where
* detach C from internal linked list and add it into
* intel_engine_coredump struct (if the context and
* engine of the event notification matches a node
* in the link list).
*
* User Sysfs / Debugfs
* --------------------
* --> i915_gpu_coredump_copy_to_buffer->
* L--> err_print_to_sgl --> err_print_gt
* L--> error_print_guc_captures
* L--> intel_guc_capture_print_node prints the
* register lists values of the attached node
* on the error-engine-dump being reported.
* L--> i915_reset_error_state ... -->__i915_gpu_coredump_free
* L--> ... cleanup_gt -->
* L--> intel_guc_capture_free_node returns the
* capture-output-node back to the internal
* cachelist for reuse.
*
*/
static int guc_capture_buf_cnt(struct __guc_capture_bufstate *buf)
{
if (buf->wr >= buf->rd)
return (buf->wr - buf->rd);
return (buf->size - buf->rd) + buf->wr;
}
static int guc_capture_buf_cnt_to_end(struct __guc_capture_bufstate *buf)
{
if (buf->rd > buf->wr)
return (buf->size - buf->rd);
return (buf->wr - buf->rd);
}
/*
* GuC's error-capture output is a ring buffer populated in a byte-stream fashion:
*
* The GuC Log buffer region for error-capture is managed like a ring buffer.
* The GuC firmware dumps error capture logs into this ring in a byte-stream flow.
* Additionally, as per the current and foreseeable future, all packed error-
* capture output structures are dword aligned.
*
* That said, if the GuC firmware is in the midst of writing a structure that is larger
* than one dword but the tail end of the err-capture buffer-region has lesser space left,
* we would need to extract that structure one dword at a time straddled across the end,
* onto the start of the ring.
*
* Below function, guc_capture_log_remove_dw is a helper for that. All callers of this
* function would typically do a straight-up memcpy from the ring contents and will only
* call this helper if their structure-extraction is straddling across the end of the
* ring. GuC firmware does not add any padding. The reason for the no-padding is to ease
* scalability for future expansion of output data types without requiring a redesign
* of the flow controls.
*/
static int
guc_capture_log_remove_dw(struct intel_guc *guc, struct __guc_capture_bufstate *buf,
u32 *dw)
{
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
int tries = 2;
int avail = 0;
u32 *src_data;
if (!guc_capture_buf_cnt(buf))
return 0;
while (tries--) {
avail = guc_capture_buf_cnt_to_end(buf);
if (avail >= sizeof(u32)) {
src_data = (u32 *)(buf->data + buf->rd);
*dw = *src_data;
buf->rd += 4;
return 4;
}
if (avail)
drm_dbg(&i915->drm, "GuC-Cap-Logs not dword aligned, skipping.\n");
buf->rd = 0;
}
return 0;
}
static bool
guc_capture_data_extracted(struct __guc_capture_bufstate *b,
int size, void *dest)
{
if (guc_capture_buf_cnt_to_end(b) >= size) {
memcpy(dest, (b->data + b->rd), size);
b->rd += size;
return true;
}
return false;
}
static int
guc_capture_log_get_group_hdr(struct intel_guc *guc, struct __guc_capture_bufstate *buf,
struct guc_state_capture_group_header_t *ghdr)
{
int read = 0;
int fullsize = sizeof(struct guc_state_capture_group_header_t);
if (fullsize > guc_capture_buf_cnt(buf))
return -1;
if (guc_capture_data_extracted(buf, fullsize, (void *)ghdr))
return 0;
read += guc_capture_log_remove_dw(guc, buf, &ghdr->owner);
read += guc_capture_log_remove_dw(guc, buf, &ghdr->info);
if (read != fullsize)
return -1;
return 0;
}
static int
guc_capture_log_get_data_hdr(struct intel_guc *guc, struct __guc_capture_bufstate *buf,
struct guc_state_capture_header_t *hdr)
{
int read = 0;
int fullsize = sizeof(struct guc_state_capture_header_t);
if (fullsize > guc_capture_buf_cnt(buf))
return -1;
if (guc_capture_data_extracted(buf, fullsize, (void *)hdr))
return 0;
read += guc_capture_log_remove_dw(guc, buf, &hdr->owner);
read += guc_capture_log_remove_dw(guc, buf, &hdr->info);
read += guc_capture_log_remove_dw(guc, buf, &hdr->lrca);
read += guc_capture_log_remove_dw(guc, buf, &hdr->guc_id);
read += guc_capture_log_remove_dw(guc, buf, &hdr->num_mmios);
if (read != fullsize)
return -1;
return 0;
}
static int
guc_capture_log_get_register(struct intel_guc *guc, struct __guc_capture_bufstate *buf,
struct guc_mmio_reg *reg)
{
int read = 0;
int fullsize = sizeof(struct guc_mmio_reg);
if (fullsize > guc_capture_buf_cnt(buf))
return -1;
if (guc_capture_data_extracted(buf, fullsize, (void *)reg))
return 0;
read += guc_capture_log_remove_dw(guc, buf, &reg->offset);
read += guc_capture_log_remove_dw(guc, buf, &reg->value);
read += guc_capture_log_remove_dw(guc, buf, &reg->flags);
read += guc_capture_log_remove_dw(guc, buf, &reg->mask);
if (read != fullsize)
return -1;
return 0;
}
static void
guc_capture_delete_one_node(struct intel_guc *guc, struct __guc_capture_parsed_output *node)
{
int i;
for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i)
kfree(node->reginfo[i].regs);
list_del(&node->link);
kfree(node);
}
static void
guc_capture_delete_prealloc_nodes(struct intel_guc *guc)
{
struct __guc_capture_parsed_output *n, *ntmp;
/*
* NOTE: At the end of driver operation, we must assume that we
* have prealloc nodes in both the cachelist as well as outlist
* if unclaimed error capture events occurred prior to shutdown.
*/
list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link)
guc_capture_delete_one_node(guc, n);
list_for_each_entry_safe(n, ntmp, &guc->capture->cachelist, link)
guc_capture_delete_one_node(guc, n);
}
static void
guc_capture_add_node_to_list(struct __guc_capture_parsed_output *node,
struct list_head *list)
{
list_add_tail(&node->link, list);
}
static void
guc_capture_add_node_to_outlist(struct intel_guc_state_capture *gc,
struct __guc_capture_parsed_output *node)
{
guc_capture_add_node_to_list(node, &gc->outlist);
}
static void
guc_capture_add_node_to_cachelist(struct intel_guc_state_capture *gc,
struct __guc_capture_parsed_output *node)
{
guc_capture_add_node_to_list(node, &gc->cachelist);
}
static void
guc_capture_init_node(struct intel_guc *guc, struct __guc_capture_parsed_output *node)
{
struct guc_mmio_reg *tmp[GUC_CAPTURE_LIST_TYPE_MAX];
int i;
for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) {
tmp[i] = node->reginfo[i].regs;
memset(tmp[i], 0, sizeof(struct guc_mmio_reg) *
guc->capture->max_mmio_per_node);
}
memset(node, 0, sizeof(*node));
for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i)
node->reginfo[i].regs = tmp[i];
INIT_LIST_HEAD(&node->link);
}
static struct __guc_capture_parsed_output *
guc_capture_get_prealloc_node(struct intel_guc *guc)
{
struct __guc_capture_parsed_output *found = NULL;
if (!list_empty(&guc->capture->cachelist)) {
struct __guc_capture_parsed_output *n, *ntmp;
/* get first avail node from the cache list */
list_for_each_entry_safe(n, ntmp, &guc->capture->cachelist, link) {
found = n;
list_del(&n->link);
break;
}
} else {
struct __guc_capture_parsed_output *n, *ntmp;
/* traverse down and steal back the oldest node already allocated */
list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) {
found = n;
}
if (found)
list_del(&found->link);
}
if (found)
guc_capture_init_node(guc, found);
return found;
}
static struct __guc_capture_parsed_output *
guc_capture_alloc_one_node(struct intel_guc *guc)
{
struct __guc_capture_parsed_output *new;
int i;
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) {
new->reginfo[i].regs = kcalloc(guc->capture->max_mmio_per_node,
sizeof(struct guc_mmio_reg), GFP_KERNEL);
if (!new->reginfo[i].regs) {
while (i)
kfree(new->reginfo[--i].regs);
kfree(new);
return NULL;
}
}
guc_capture_init_node(guc, new);
return new;
}
static struct __guc_capture_parsed_output *
guc_capture_clone_node(struct intel_guc *guc, struct __guc_capture_parsed_output *original,
u32 keep_reglist_mask)
{
struct __guc_capture_parsed_output *new;
int i;
new = guc_capture_get_prealloc_node(guc);
if (!new)
return NULL;
if (!original)
return new;
new->is_partial = original->is_partial;
/* copy reg-lists that we want to clone */
for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) {
if (keep_reglist_mask & BIT(i)) {
GEM_BUG_ON(original->reginfo[i].num_regs >
guc->capture->max_mmio_per_node);
memcpy(new->reginfo[i].regs, original->reginfo[i].regs,
original->reginfo[i].num_regs * sizeof(struct guc_mmio_reg));
new->reginfo[i].num_regs = original->reginfo[i].num_regs;
new->reginfo[i].vfid = original->reginfo[i].vfid;
if (i == GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS) {
new->eng_class = original->eng_class;
} else if (i == GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE) {
new->eng_inst = original->eng_inst;
new->guc_id = original->guc_id;
new->lrca = original->lrca;
}
}
}
return new;
}
static void
__guc_capture_create_prealloc_nodes(struct intel_guc *guc)
{
struct __guc_capture_parsed_output *node = NULL;
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
int i;
for (i = 0; i < PREALLOC_NODES_MAX_COUNT; ++i) {
node = guc_capture_alloc_one_node(guc);
if (!node) {
drm_warn(&i915->drm, "GuC Capture pre-alloc-cache failure\n");
/* dont free the priors, use what we got and cleanup at shutdown */
return;
}
guc_capture_add_node_to_cachelist(guc->capture, node);
}
}
static int
guc_get_max_reglist_count(struct intel_guc *guc)
{
int i, j, k, tmp, maxregcount = 0;
for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; ++i) {
for (j = 0; j < GUC_CAPTURE_LIST_TYPE_MAX; ++j) {
for (k = 0; k < GUC_MAX_ENGINE_CLASSES; ++k) {
if (j == GUC_CAPTURE_LIST_TYPE_GLOBAL && k > 0)
continue;
tmp = guc_cap_list_num_regs(guc->capture, i, j, k);
if (tmp > maxregcount)
maxregcount = tmp;
}
}
}
if (!maxregcount)
maxregcount = PREALLOC_NODES_DEFAULT_NUMREGS;
return maxregcount;
}
static void
guc_capture_create_prealloc_nodes(struct intel_guc *guc)
{
/* skip if we've already done the pre-alloc */
if (guc->capture->max_mmio_per_node)
return;
guc->capture->max_mmio_per_node = guc_get_max_reglist_count(guc);
__guc_capture_create_prealloc_nodes(guc);
}
static int
guc_capture_extract_reglists(struct intel_guc *guc, struct __guc_capture_bufstate *buf)
{
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
struct guc_state_capture_group_header_t ghdr = {0};
struct guc_state_capture_header_t hdr = {0};
struct __guc_capture_parsed_output *node = NULL;
struct guc_mmio_reg *regs = NULL;
int i, numlists, numregs, ret = 0;
enum guc_capture_type datatype;
struct guc_mmio_reg tmp;
bool is_partial = false;
i = guc_capture_buf_cnt(buf);
if (!i)
return -ENODATA;
if (i % sizeof(u32)) {
drm_warn(&i915->drm, "GuC Capture new entries unaligned\n");
ret = -EIO;
goto bailout;
}
/* first get the capture group header */
if (guc_capture_log_get_group_hdr(guc, buf, &ghdr)) {
ret = -EIO;
goto bailout;
}
/*
* we would typically expect a layout as below where n would be expected to be
* anywhere between 3 to n where n > 3 if we are seeing multiple dependent engine
* instances being reset together.
* ____________________________________________
* | Capture Group |
* | ________________________________________ |
* | | Capture Group Header: | |
* | | - num_captures = 5 | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture1: | |
* | | Hdr: GLOBAL, numregs=a | |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... rega | | |
* | | |__________________________________| | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture2: | |
* | | Hdr: CLASS=RENDER/COMPUTE, numregs=b| |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... regb | | |
* | | |__________________________________| | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture3: | |
* | | Hdr: INSTANCE=RCS, numregs=c | |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... regc | | |
* | | |__________________________________| | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture4: | |
* | | Hdr: CLASS=RENDER/COMPUTE, numregs=d| |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... regd | | |
* | | |__________________________________| | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture5: | |
* | | Hdr: INSTANCE=CCS0, numregs=e | |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... rege | | |
* | | |__________________________________| | |
* | |______________________________________| |
* |__________________________________________|
*/
is_partial = FIELD_GET(CAP_GRP_HDR_CAPTURE_TYPE, ghdr.info);
numlists = FIELD_GET(CAP_GRP_HDR_NUM_CAPTURES, ghdr.info);
while (numlists--) {
if (guc_capture_log_get_data_hdr(guc, buf, &hdr)) {
ret = -EIO;
break;
}
datatype = FIELD_GET(CAP_HDR_CAPTURE_TYPE, hdr.info);
if (datatype > GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE) {
/* unknown capture type - skip over to next capture set */
numregs = FIELD_GET(CAP_HDR_NUM_MMIOS, hdr.num_mmios);
while (numregs--) {
if (guc_capture_log_get_register(guc, buf, &tmp)) {
ret = -EIO;
break;
}
}
continue;
} else if (node) {
/*
* Based on the current capture type and what we have so far,
* decide if we should add the current node into the internal
* linked list for match-up when i915_gpu_coredump calls later
* (and alloc a blank node for the next set of reglists)
* or continue with the same node or clone the current node
* but only retain the global or class registers (such as the
* case of dependent engine resets).
*/
if (datatype == GUC_CAPTURE_LIST_TYPE_GLOBAL) {
guc_capture_add_node_to_outlist(guc->capture, node);
node = NULL;
} else if (datatype == GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS &&
node->reginfo[GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS].num_regs) {
/* Add to list, clone node and duplicate global list */
guc_capture_add_node_to_outlist(guc->capture, node);
node = guc_capture_clone_node(guc, node,
GCAP_PARSED_REGLIST_INDEX_GLOBAL);
} else if (datatype == GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE &&
node->reginfo[GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE].num_regs) {
/* Add to list, clone node and duplicate global + class lists */
guc_capture_add_node_to_outlist(guc->capture, node);
node = guc_capture_clone_node(guc, node,
(GCAP_PARSED_REGLIST_INDEX_GLOBAL |
GCAP_PARSED_REGLIST_INDEX_ENGCLASS));
}
}
if (!node) {
node = guc_capture_get_prealloc_node(guc);
if (!node) {
ret = -ENOMEM;
break;
}
if (datatype != GUC_CAPTURE_LIST_TYPE_GLOBAL)
drm_dbg(&i915->drm, "GuC Capture missing global dump: %08x!\n",
datatype);
}
node->is_partial = is_partial;
node->reginfo[datatype].vfid = FIELD_GET(CAP_HDR_CAPTURE_VFID, hdr.owner);
switch (datatype) {
case GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE:
node->eng_class = FIELD_GET(CAP_HDR_ENGINE_CLASS, hdr.info);
node->eng_inst = FIELD_GET(CAP_HDR_ENGINE_INSTANCE, hdr.info);
node->lrca = hdr.lrca;
node->guc_id = hdr.guc_id;
break;
case GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS:
node->eng_class = FIELD_GET(CAP_HDR_ENGINE_CLASS, hdr.info);
break;
default:
break;
}
numregs = FIELD_GET(CAP_HDR_NUM_MMIOS, hdr.num_mmios);
if (numregs > guc->capture->max_mmio_per_node) {
drm_dbg(&i915->drm, "GuC Capture list extraction clipped by prealloc!\n");
numregs = guc->capture->max_mmio_per_node;
}
node->reginfo[datatype].num_regs = numregs;
regs = node->reginfo[datatype].regs;
i = 0;
while (numregs--) {
if (guc_capture_log_get_register(guc, buf, &regs[i++])) {
ret = -EIO;
break;
}
}
}
bailout:
if (node) {
/* If we have data, add to linked list for match-up when i915_gpu_coredump calls */
for (i = GUC_CAPTURE_LIST_TYPE_GLOBAL; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) {
if (node->reginfo[i].regs) {
guc_capture_add_node_to_outlist(guc->capture, node);
node = NULL;
break;
}
}
if (node) /* else return it back to cache list */
guc_capture_add_node_to_cachelist(guc->capture, node);
}
return ret;
}
static int __guc_capture_flushlog_complete(struct intel_guc *guc)
{
u32 action[] = {
INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
GUC_CAPTURE_LOG_BUFFER
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static void __guc_capture_process_output(struct intel_guc *guc)
{
unsigned int buffer_size, read_offset, write_offset, full_count;
struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
struct guc_log_buffer_state log_buf_state_local;
struct guc_log_buffer_state *log_buf_state;
struct __guc_capture_bufstate buf;
void *src_data = NULL;
bool new_overflow;
int ret;
log_buf_state = guc->log.buf_addr +
(sizeof(struct guc_log_buffer_state) * GUC_CAPTURE_LOG_BUFFER);
src_data = guc->log.buf_addr + intel_guc_get_log_buffer_offset(GUC_CAPTURE_LOG_BUFFER);
/*
* Make a copy of the state structure, inside GuC log buffer
* (which is uncached mapped), on the stack to avoid reading
* from it multiple times.
*/
memcpy(&log_buf_state_local, log_buf_state, sizeof(struct guc_log_buffer_state));
buffer_size = intel_guc_get_log_buffer_size(GUC_CAPTURE_LOG_BUFFER);
read_offset = log_buf_state_local.read_ptr;
write_offset = log_buf_state_local.sampled_write_ptr;
full_count = log_buf_state_local.buffer_full_cnt;
/* Bookkeeping stuff */
guc->log.stats[GUC_CAPTURE_LOG_BUFFER].flush += log_buf_state_local.flush_to_file;
new_overflow = intel_guc_check_log_buf_overflow(&guc->log, GUC_CAPTURE_LOG_BUFFER,
full_count);
/* Now copy the actual logs. */
if (unlikely(new_overflow)) {
/* copy the whole buffer in case of overflow */
read_offset = 0;
write_offset = buffer_size;
} else if (unlikely((read_offset > buffer_size) ||
(write_offset > buffer_size))) {
drm_err(&i915->drm, "invalid GuC log capture buffer state!\n");
/* copy whole buffer as offsets are unreliable */
read_offset = 0;
write_offset = buffer_size;
}
buf.size = buffer_size;
buf.rd = read_offset;
buf.wr = write_offset;
buf.data = src_data;
if (!uc->reset_in_progress) {
do {
ret = guc_capture_extract_reglists(guc, &buf);
} while (ret >= 0);
}
/* Update the state of log buffer err-cap state */
log_buf_state->read_ptr = write_offset;
log_buf_state->flush_to_file = 0;
__guc_capture_flushlog_complete(guc);
}
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
static const char *
guc_capture_reg_to_str(const struct intel_guc *guc, u32 owner, u32 type,
u32 class, u32 id, u32 offset, u32 *is_ext)
{
const struct __guc_mmio_reg_descr_group *reglists = guc->capture->reglists;
struct __guc_mmio_reg_descr_group *extlists = guc->capture->extlists;
const struct __guc_mmio_reg_descr_group *match;
struct __guc_mmio_reg_descr_group *matchext;
int j;
*is_ext = 0;
if (!reglists)
return NULL;
match = guc_capture_get_one_list(reglists, owner, type, id);
if (!match)
return NULL;
for (j = 0; j < match->num_regs; ++j) {
if (offset == match->list[j].reg.reg)
return match->list[j].regname;
}
if (extlists) {
matchext = guc_capture_get_one_ext_list(extlists, owner, type, id);
if (!matchext)
return NULL;
for (j = 0; j < matchext->num_regs; ++j) {
if (offset == matchext->extlist[j].reg.reg) {
*is_ext = 1;
return matchext->extlist[j].regname;
}
}
}
return NULL;
}
#ifdef CONFIG_DRM_I915_DEBUG_GUC
#define __out(a, ...) \
do { \
drm_warn((&(a)->i915->drm), __VA_ARGS__); \
i915_error_printf((a), __VA_ARGS__); \
} while (0)
#else
#define __out(a, ...) \
i915_error_printf(a, __VA_ARGS__)
#endif
#define GCAP_PRINT_INTEL_ENG_INFO(ebuf, eng) \
do { \
__out(ebuf, " i915-Eng-Name: %s command stream\n", \
(eng)->name); \
__out(ebuf, " i915-Eng-Inst-Class: 0x%02x\n", (eng)->class); \
__out(ebuf, " i915-Eng-Inst-Id: 0x%02x\n", (eng)->instance); \
__out(ebuf, " i915-Eng-LogicalMask: 0x%08x\n", \
(eng)->logical_mask); \
} while (0)
#define GCAP_PRINT_GUC_INST_INFO(ebuf, node) \
do { \
__out(ebuf, " GuC-Engine-Inst-Id: 0x%08x\n", \
(node)->eng_inst); \
__out(ebuf, " GuC-Context-Id: 0x%08x\n", (node)->guc_id); \
__out(ebuf, " LRCA: 0x%08x\n", (node)->lrca); \
} while (0)
int intel_guc_capture_print_engine_node(struct drm_i915_error_state_buf *ebuf,
const struct intel_engine_coredump *ee)
{
const char *grptype[GUC_STATE_CAPTURE_GROUP_TYPE_MAX] = {
"full-capture",
"partial-capture"
};
const char *datatype[GUC_CAPTURE_LIST_TYPE_MAX] = {
"Global",
"Engine-Class",
"Engine-Instance"
};
struct intel_guc_state_capture *cap;
struct __guc_capture_parsed_output *node;
struct intel_engine_cs *eng;
struct guc_mmio_reg *regs;
struct intel_guc *guc;
const char *str;
int numregs, i, j;
u32 is_ext;
if (!ebuf || !ee)
return -EINVAL;
cap = ee->capture;
if (!cap || !ee->engine)
return -ENODEV;
guc = &ee->engine->gt->uc.guc;
__out(ebuf, "global --- GuC Error Capture on %s command stream:\n",
ee->engine->name);
node = ee->guc_capture_node;
if (!node) {
__out(ebuf, " No matching ee-node\n");
return 0;
}
__out(ebuf, "Coverage: %s\n", grptype[node->is_partial]);
for (i = GUC_CAPTURE_LIST_TYPE_GLOBAL; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) {
__out(ebuf, " RegListType: %s\n",
datatype[i % GUC_CAPTURE_LIST_TYPE_MAX]);
__out(ebuf, " Owner-Id: %d\n", node->reginfo[i].vfid);
switch (i) {
case GUC_CAPTURE_LIST_TYPE_GLOBAL:
default:
break;
case GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS:
__out(ebuf, " GuC-Eng-Class: %d\n", node->eng_class);
__out(ebuf, " i915-Eng-Class: %d\n",
guc_class_to_engine_class(node->eng_class));
break;
case GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE:
eng = intel_guc_lookup_engine(guc, node->eng_class, node->eng_inst);
if (eng)
GCAP_PRINT_INTEL_ENG_INFO(ebuf, eng);
else
__out(ebuf, " i915-Eng-Lookup Fail!\n");
GCAP_PRINT_GUC_INST_INFO(ebuf, node);
break;
}
numregs = node->reginfo[i].num_regs;
__out(ebuf, " NumRegs: %d\n", numregs);
j = 0;
while (numregs--) {
regs = node->reginfo[i].regs;
str = guc_capture_reg_to_str(guc, GUC_CAPTURE_LIST_INDEX_PF, i,
node->eng_class, 0, regs[j].offset, &is_ext);
if (!str)
__out(ebuf, " REG-0x%08x", regs[j].offset);
else
__out(ebuf, " %s", str);
if (is_ext)
__out(ebuf, "[%ld][%ld]",
FIELD_GET(GUC_REGSET_STEERING_GROUP, regs[j].flags),
FIELD_GET(GUC_REGSET_STEERING_INSTANCE, regs[j].flags));
__out(ebuf, ": 0x%08x\n", regs[j].value);
++j;
}
}
return 0;
}
#endif //CONFIG_DRM_I915_CAPTURE_ERROR
void intel_guc_capture_free_node(struct intel_engine_coredump *ee)
{
if (!ee || !ee->guc_capture_node)
return;
guc_capture_add_node_to_cachelist(ee->capture, ee->guc_capture_node);
ee->capture = NULL;
ee->guc_capture_node = NULL;
}
void intel_guc_capture_get_matching_node(struct intel_gt *gt,
struct intel_engine_coredump *ee,
struct intel_context *ce)
{
struct __guc_capture_parsed_output *n, *ntmp;
struct drm_i915_private *i915;
struct intel_guc *guc;
if (!gt || !ee || !ce)
return;
i915 = gt->i915;
guc = &gt->uc.guc;
if (!guc->capture)
return;
GEM_BUG_ON(ee->guc_capture_node);
/*
* Look for a matching GuC reported error capture node from
* the internal output link-list based on lrca, guc-id and engine
* identification.
*/
list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) {
if (n->eng_inst == GUC_ID_TO_ENGINE_INSTANCE(ee->engine->guc_id) &&
n->eng_class == GUC_ID_TO_ENGINE_CLASS(ee->engine->guc_id) &&
n->guc_id && n->guc_id == ce->guc_id.id &&
(n->lrca & CTX_GTT_ADDRESS_MASK) && (n->lrca & CTX_GTT_ADDRESS_MASK) ==
(ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) {
list_del(&n->link);
ee->guc_capture_node = n;
ee->capture = guc->capture;
return;
}
}
drm_dbg(&i915->drm, "GuC capture can't match ee to node\n");
}
void intel_guc_capture_process(struct intel_guc *guc)
{
if (guc->capture)
__guc_capture_process_output(guc);
}
static void
guc_capture_free_ads_cache(struct intel_guc_state_capture *gc)
{
int i, j, k;
struct __guc_capture_ads_cache *cache;
for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; ++i) {
for (j = 0; j < GUC_CAPTURE_LIST_TYPE_MAX; ++j) {
for (k = 0; k < GUC_MAX_ENGINE_CLASSES; ++k) {
cache = &gc->ads_cache[i][j][k];
if (cache->is_valid)
kfree(cache->ptr);
}
}
}
kfree(gc->ads_null_cache);
}
void intel_guc_capture_destroy(struct intel_guc *guc)
{
if (!guc->capture)
return;
guc_capture_free_ads_cache(guc->capture);
guc_capture_delete_prealloc_nodes(guc);
guc_capture_free_extlists(guc->capture->extlists);
kfree(guc->capture->extlists);
kfree(guc->capture);
guc->capture = NULL;
}
int intel_guc_capture_init(struct intel_guc *guc)
{
guc->capture = kzalloc(sizeof(*guc->capture), GFP_KERNEL);
if (!guc->capture)
return -ENOMEM;
guc->capture->reglists = guc_capture_get_device_reglist(guc);
INIT_LIST_HEAD(&guc->capture->outlist);
INIT_LIST_HEAD(&guc->capture->cachelist);
return 0;
}