| /* Broadcom NetXtreme-C/E network driver. |
| * |
| * Copyright (c) 2014-2016 Broadcom Corporation |
| * Copyright (c) 2016-2019 Broadcom Limited |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <linux/stringify.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/delay.h> |
| #include <asm/byteorder.h> |
| #include <asm/page.h> |
| #include <linux/time.h> |
| #include <linux/mii.h> |
| #include <linux/mdio.h> |
| #include <linux/if.h> |
| #include <linux/if_vlan.h> |
| #include <linux/if_bridge.h> |
| #include <linux/rtc.h> |
| #include <linux/bpf.h> |
| #include <net/gro.h> |
| #include <net/ip.h> |
| #include <net/tcp.h> |
| #include <net/udp.h> |
| #include <net/checksum.h> |
| #include <net/ip6_checksum.h> |
| #include <net/udp_tunnel.h> |
| #include <linux/workqueue.h> |
| #include <linux/prefetch.h> |
| #include <linux/cache.h> |
| #include <linux/log2.h> |
| #include <linux/aer.h> |
| #include <linux/bitmap.h> |
| #include <linux/cpu_rmap.h> |
| #include <linux/cpumask.h> |
| #include <net/pkt_cls.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <net/page_pool.h> |
| #include <linux/align.h> |
| |
| #include "bnxt_hsi.h" |
| #include "bnxt.h" |
| #include "bnxt_hwrm.h" |
| #include "bnxt_ulp.h" |
| #include "bnxt_sriov.h" |
| #include "bnxt_ethtool.h" |
| #include "bnxt_dcb.h" |
| #include "bnxt_xdp.h" |
| #include "bnxt_ptp.h" |
| #include "bnxt_vfr.h" |
| #include "bnxt_tc.h" |
| #include "bnxt_devlink.h" |
| #include "bnxt_debugfs.h" |
| |
| #define BNXT_TX_TIMEOUT (5 * HZ) |
| #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ |
| NETIF_MSG_TX_ERR) |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); |
| |
| #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) |
| #define BNXT_RX_DMA_OFFSET NET_SKB_PAD |
| #define BNXT_RX_COPY_THRESH 256 |
| |
| #define BNXT_TX_PUSH_THRESH 164 |
| |
| /* indexed by enum board_idx */ |
| static const struct { |
| char *name; |
| } board_info[] = { |
| [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, |
| [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, |
| [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, |
| [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, |
| [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, |
| [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, |
| [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, |
| [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, |
| [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, |
| [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, |
| [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, |
| [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, |
| [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, |
| [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, |
| [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, |
| [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, |
| [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, |
| [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, |
| [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, |
| [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, |
| [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, |
| [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, |
| [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, |
| [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, |
| [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, |
| [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, |
| [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, |
| [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, |
| [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, |
| [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, |
| [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, |
| [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, |
| [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, |
| [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, |
| [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, |
| [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, |
| [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, |
| [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, |
| [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, |
| [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, |
| [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, |
| [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, |
| [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, |
| [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, |
| [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, |
| }; |
| |
| static const struct pci_device_id bnxt_pci_tbl[] = { |
| { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, |
| { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, |
| { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, |
| { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, |
| { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, |
| { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, |
| { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, |
| { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, |
| { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, |
| { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, |
| { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, |
| { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, |
| { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, |
| { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, |
| { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, |
| { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, |
| { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, |
| { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, |
| { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, |
| { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, |
| #ifdef CONFIG_BNXT_SRIOV |
| { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, |
| { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, |
| { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, |
| #endif |
| { 0 } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); |
| |
| static const u16 bnxt_vf_req_snif[] = { |
| HWRM_FUNC_CFG, |
| HWRM_FUNC_VF_CFG, |
| HWRM_PORT_PHY_QCFG, |
| HWRM_CFA_L2_FILTER_ALLOC, |
| }; |
| |
| static const u16 bnxt_async_events_arr[] = { |
| ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, |
| ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, |
| ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, |
| ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, |
| ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, |
| ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, |
| ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, |
| ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, |
| ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, |
| ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, |
| ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, |
| ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, |
| ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, |
| ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, |
| ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, |
| ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, |
| }; |
| |
| static struct workqueue_struct *bnxt_pf_wq; |
| |
| static bool bnxt_vf_pciid(enum board_idx idx) |
| { |
| return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || |
| idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || |
| idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || |
| idx == NETXTREME_E_P5_VF_HV); |
| } |
| |
| #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) |
| #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) |
| #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) |
| |
| #define BNXT_CP_DB_IRQ_DIS(db) \ |
| writel(DB_CP_IRQ_DIS_FLAGS, db) |
| |
| #define BNXT_DB_CQ(db, idx) \ |
| writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) |
| |
| #define BNXT_DB_NQ_P5(db, idx) \ |
| bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ |
| (db)->doorbell) |
| |
| #define BNXT_DB_CQ_ARM(db, idx) \ |
| writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) |
| |
| #define BNXT_DB_NQ_ARM_P5(db, idx) \ |
| bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ |
| (db)->doorbell) |
| |
| static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| BNXT_DB_NQ_P5(db, idx); |
| else |
| BNXT_DB_CQ(db, idx); |
| } |
| |
| static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| BNXT_DB_NQ_ARM_P5(db, idx); |
| else |
| BNXT_DB_CQ_ARM(db, idx); |
| } |
| |
| static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | |
| RING_CMP(idx), db->doorbell); |
| else |
| BNXT_DB_CQ(db, idx); |
| } |
| |
| const u16 bnxt_lhint_arr[] = { |
| TX_BD_FLAGS_LHINT_512_AND_SMALLER, |
| TX_BD_FLAGS_LHINT_512_TO_1023, |
| TX_BD_FLAGS_LHINT_1024_TO_2047, |
| TX_BD_FLAGS_LHINT_1024_TO_2047, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| TX_BD_FLAGS_LHINT_2048_AND_LARGER, |
| }; |
| |
| static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) |
| { |
| struct metadata_dst *md_dst = skb_metadata_dst(skb); |
| |
| if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) |
| return 0; |
| |
| return md_dst->u.port_info.port_id; |
| } |
| |
| static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, |
| u16 prod) |
| { |
| bnxt_db_write(bp, &txr->tx_db, prod); |
| txr->kick_pending = 0; |
| } |
| |
| static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, |
| struct bnxt_tx_ring_info *txr, |
| struct netdev_queue *txq) |
| { |
| netif_tx_stop_queue(txq); |
| |
| /* netif_tx_stop_queue() must be done before checking |
| * tx index in bnxt_tx_avail() below, because in |
| * bnxt_tx_int(), we update tx index before checking for |
| * netif_tx_queue_stopped(). |
| */ |
| smp_mb(); |
| if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) { |
| netif_tx_wake_queue(txq); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| struct tx_bd *txbd; |
| struct tx_bd_ext *txbd1; |
| struct netdev_queue *txq; |
| int i; |
| dma_addr_t mapping; |
| unsigned int length, pad = 0; |
| u32 len, free_size, vlan_tag_flags, cfa_action, flags; |
| u16 prod, last_frag; |
| struct pci_dev *pdev = bp->pdev; |
| struct bnxt_tx_ring_info *txr; |
| struct bnxt_sw_tx_bd *tx_buf; |
| __le32 lflags = 0; |
| |
| i = skb_get_queue_mapping(skb); |
| if (unlikely(i >= bp->tx_nr_rings)) { |
| dev_kfree_skb_any(skb); |
| dev_core_stats_tx_dropped_inc(dev); |
| return NETDEV_TX_OK; |
| } |
| |
| txq = netdev_get_tx_queue(dev, i); |
| txr = &bp->tx_ring[bp->tx_ring_map[i]]; |
| prod = txr->tx_prod; |
| |
| free_size = bnxt_tx_avail(bp, txr); |
| if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { |
| /* We must have raced with NAPI cleanup */ |
| if (net_ratelimit() && txr->kick_pending) |
| netif_warn(bp, tx_err, dev, |
| "bnxt: ring busy w/ flush pending!\n"); |
| if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) |
| return NETDEV_TX_BUSY; |
| } |
| |
| length = skb->len; |
| len = skb_headlen(skb); |
| last_frag = skb_shinfo(skb)->nr_frags; |
| |
| txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; |
| |
| txbd->tx_bd_opaque = prod; |
| |
| tx_buf = &txr->tx_buf_ring[prod]; |
| tx_buf->skb = skb; |
| tx_buf->nr_frags = last_frag; |
| |
| vlan_tag_flags = 0; |
| cfa_action = bnxt_xmit_get_cfa_action(skb); |
| if (skb_vlan_tag_present(skb)) { |
| vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | |
| skb_vlan_tag_get(skb); |
| /* Currently supports 8021Q, 8021AD vlan offloads |
| * QINQ1, QINQ2, QINQ3 vlan headers are deprecated |
| */ |
| if (skb->vlan_proto == htons(ETH_P_8021Q)) |
| vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; |
| } |
| |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { |
| struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; |
| |
| if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && |
| atomic_dec_if_positive(&ptp->tx_avail) >= 0) { |
| if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, |
| &ptp->tx_hdr_off)) { |
| if (vlan_tag_flags) |
| ptp->tx_hdr_off += VLAN_HLEN; |
| lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| } else { |
| atomic_inc(&bp->ptp_cfg->tx_avail); |
| } |
| } |
| } |
| |
| if (unlikely(skb->no_fcs)) |
| lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); |
| |
| if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && |
| !lflags) { |
| struct tx_push_buffer *tx_push_buf = txr->tx_push; |
| struct tx_push_bd *tx_push = &tx_push_buf->push_bd; |
| struct tx_bd_ext *tx_push1 = &tx_push->txbd2; |
| void __iomem *db = txr->tx_db.doorbell; |
| void *pdata = tx_push_buf->data; |
| u64 *end; |
| int j, push_len; |
| |
| /* Set COAL_NOW to be ready quickly for the next push */ |
| tx_push->tx_bd_len_flags_type = |
| cpu_to_le32((length << TX_BD_LEN_SHIFT) | |
| TX_BD_TYPE_LONG_TX_BD | |
| TX_BD_FLAGS_LHINT_512_AND_SMALLER | |
| TX_BD_FLAGS_COAL_NOW | |
| TX_BD_FLAGS_PACKET_END | |
| (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| tx_push1->tx_bd_hsize_lflags = |
| cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); |
| else |
| tx_push1->tx_bd_hsize_lflags = 0; |
| |
| tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); |
| tx_push1->tx_bd_cfa_action = |
| cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); |
| |
| end = pdata + length; |
| end = PTR_ALIGN(end, 8) - 1; |
| *end = 0; |
| |
| skb_copy_from_linear_data(skb, pdata, len); |
| pdata += len; |
| for (j = 0; j < last_frag; j++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; |
| void *fptr; |
| |
| fptr = skb_frag_address_safe(frag); |
| if (!fptr) |
| goto normal_tx; |
| |
| memcpy(pdata, fptr, skb_frag_size(frag)); |
| pdata += skb_frag_size(frag); |
| } |
| |
| txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; |
| txbd->tx_bd_haddr = txr->data_mapping; |
| prod = NEXT_TX(prod); |
| txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; |
| memcpy(txbd, tx_push1, sizeof(*txbd)); |
| prod = NEXT_TX(prod); |
| tx_push->doorbell = |
| cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); |
| txr->tx_prod = prod; |
| |
| tx_buf->is_push = 1; |
| netdev_tx_sent_queue(txq, skb->len); |
| wmb(); /* Sync is_push and byte queue before pushing data */ |
| |
| push_len = (length + sizeof(*tx_push) + 7) / 8; |
| if (push_len > 16) { |
| __iowrite64_copy(db, tx_push_buf, 16); |
| __iowrite32_copy(db + 4, tx_push_buf + 1, |
| (push_len - 16) << 1); |
| } else { |
| __iowrite64_copy(db, tx_push_buf, push_len); |
| } |
| |
| goto tx_done; |
| } |
| |
| normal_tx: |
| if (length < BNXT_MIN_PKT_SIZE) { |
| pad = BNXT_MIN_PKT_SIZE - length; |
| if (skb_pad(skb, pad)) |
| /* SKB already freed. */ |
| goto tx_kick_pending; |
| length = BNXT_MIN_PKT_SIZE; |
| } |
| |
| mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(&pdev->dev, mapping))) |
| goto tx_free; |
| |
| dma_unmap_addr_set(tx_buf, mapping, mapping); |
| flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | |
| ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); |
| |
| txbd->tx_bd_haddr = cpu_to_le64(mapping); |
| |
| prod = NEXT_TX(prod); |
| txbd1 = (struct tx_bd_ext *) |
| &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; |
| |
| txbd1->tx_bd_hsize_lflags = lflags; |
| if (skb_is_gso(skb)) { |
| u32 hdr_len; |
| |
| if (skb->encapsulation) |
| hdr_len = skb_inner_network_offset(skb) + |
| skb_inner_network_header_len(skb) + |
| inner_tcp_hdrlen(skb); |
| else |
| hdr_len = skb_transport_offset(skb) + |
| tcp_hdrlen(skb); |
| |
| txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | |
| TX_BD_FLAGS_T_IPID | |
| (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); |
| length = skb_shinfo(skb)->gso_size; |
| txbd1->tx_bd_mss = cpu_to_le32(length); |
| length += hdr_len; |
| } else if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| txbd1->tx_bd_hsize_lflags |= |
| cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); |
| txbd1->tx_bd_mss = 0; |
| } |
| |
| length >>= 9; |
| if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { |
| dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", |
| skb->len); |
| i = 0; |
| goto tx_dma_error; |
| } |
| flags |= bnxt_lhint_arr[length]; |
| txbd->tx_bd_len_flags_type = cpu_to_le32(flags); |
| |
| txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); |
| txbd1->tx_bd_cfa_action = |
| cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); |
| for (i = 0; i < last_frag; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| prod = NEXT_TX(prod); |
| txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; |
| |
| len = skb_frag_size(frag); |
| mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, |
| DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(&pdev->dev, mapping))) |
| goto tx_dma_error; |
| |
| tx_buf = &txr->tx_buf_ring[prod]; |
| dma_unmap_addr_set(tx_buf, mapping, mapping); |
| |
| txbd->tx_bd_haddr = cpu_to_le64(mapping); |
| |
| flags = len << TX_BD_LEN_SHIFT; |
| txbd->tx_bd_len_flags_type = cpu_to_le32(flags); |
| } |
| |
| flags &= ~TX_BD_LEN; |
| txbd->tx_bd_len_flags_type = |
| cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | |
| TX_BD_FLAGS_PACKET_END); |
| |
| netdev_tx_sent_queue(txq, skb->len); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Sync BD data before updating doorbell */ |
| wmb(); |
| |
| prod = NEXT_TX(prod); |
| txr->tx_prod = prod; |
| |
| if (!netdev_xmit_more() || netif_xmit_stopped(txq)) |
| bnxt_txr_db_kick(bp, txr, prod); |
| else |
| txr->kick_pending = 1; |
| |
| tx_done: |
| |
| if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { |
| if (netdev_xmit_more() && !tx_buf->is_push) |
| bnxt_txr_db_kick(bp, txr, prod); |
| |
| bnxt_txr_netif_try_stop_queue(bp, txr, txq); |
| } |
| return NETDEV_TX_OK; |
| |
| tx_dma_error: |
| if (BNXT_TX_PTP_IS_SET(lflags)) |
| atomic_inc(&bp->ptp_cfg->tx_avail); |
| |
| last_frag = i; |
| |
| /* start back at beginning and unmap skb */ |
| prod = txr->tx_prod; |
| tx_buf = &txr->tx_buf_ring[prod]; |
| dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), |
| skb_headlen(skb), DMA_TO_DEVICE); |
| prod = NEXT_TX(prod); |
| |
| /* unmap remaining mapped pages */ |
| for (i = 0; i < last_frag; i++) { |
| prod = NEXT_TX(prod); |
| tx_buf = &txr->tx_buf_ring[prod]; |
| dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), |
| skb_frag_size(&skb_shinfo(skb)->frags[i]), |
| DMA_TO_DEVICE); |
| } |
| |
| tx_free: |
| dev_kfree_skb_any(skb); |
| tx_kick_pending: |
| if (txr->kick_pending) |
| bnxt_txr_db_kick(bp, txr, txr->tx_prod); |
| txr->tx_buf_ring[txr->tx_prod].skb = NULL; |
| dev_core_stats_tx_dropped_inc(dev); |
| return NETDEV_TX_OK; |
| } |
| |
| static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) |
| { |
| struct bnxt_tx_ring_info *txr = bnapi->tx_ring; |
| struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); |
| u16 cons = txr->tx_cons; |
| struct pci_dev *pdev = bp->pdev; |
| int i; |
| unsigned int tx_bytes = 0; |
| |
| for (i = 0; i < nr_pkts; i++) { |
| struct bnxt_sw_tx_bd *tx_buf; |
| bool compl_deferred = false; |
| struct sk_buff *skb; |
| int j, last; |
| |
| tx_buf = &txr->tx_buf_ring[cons]; |
| cons = NEXT_TX(cons); |
| skb = tx_buf->skb; |
| tx_buf->skb = NULL; |
| |
| if (tx_buf->is_push) { |
| tx_buf->is_push = 0; |
| goto next_tx_int; |
| } |
| |
| dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), |
| skb_headlen(skb), DMA_TO_DEVICE); |
| last = tx_buf->nr_frags; |
| |
| for (j = 0; j < last; j++) { |
| cons = NEXT_TX(cons); |
| tx_buf = &txr->tx_buf_ring[cons]; |
| dma_unmap_page( |
| &pdev->dev, |
| dma_unmap_addr(tx_buf, mapping), |
| skb_frag_size(&skb_shinfo(skb)->frags[j]), |
| DMA_TO_DEVICE); |
| } |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| if (!bnxt_get_tx_ts_p5(bp, skb)) |
| compl_deferred = true; |
| else |
| atomic_inc(&bp->ptp_cfg->tx_avail); |
| } |
| } |
| |
| next_tx_int: |
| cons = NEXT_TX(cons); |
| |
| tx_bytes += skb->len; |
| if (!compl_deferred) |
| dev_kfree_skb_any(skb); |
| } |
| |
| netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); |
| txr->tx_cons = cons; |
| |
| /* Need to make the tx_cons update visible to bnxt_start_xmit() |
| * before checking for netif_tx_queue_stopped(). Without the |
| * memory barrier, there is a small possibility that bnxt_start_xmit() |
| * will miss it and cause the queue to be stopped forever. |
| */ |
| smp_mb(); |
| |
| if (unlikely(netif_tx_queue_stopped(txq)) && |
| bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh && |
| READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) |
| netif_tx_wake_queue(txq); |
| } |
| |
| static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, |
| struct bnxt_rx_ring_info *rxr, |
| gfp_t gfp) |
| { |
| struct device *dev = &bp->pdev->dev; |
| struct page *page; |
| |
| page = page_pool_dev_alloc_pages(rxr->page_pool); |
| if (!page) |
| return NULL; |
| |
| *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| if (dma_mapping_error(dev, *mapping)) { |
| page_pool_recycle_direct(rxr->page_pool, page); |
| return NULL; |
| } |
| return page; |
| } |
| |
| static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, |
| gfp_t gfp) |
| { |
| u8 *data; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (gfp == GFP_ATOMIC) |
| data = napi_alloc_frag(bp->rx_buf_size); |
| else |
| data = netdev_alloc_frag(bp->rx_buf_size); |
| if (!data) |
| return NULL; |
| |
| *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, |
| bp->rx_buf_use_size, bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| |
| if (dma_mapping_error(&pdev->dev, *mapping)) { |
| skb_free_frag(data); |
| data = NULL; |
| } |
| return data; |
| } |
| |
| int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, |
| u16 prod, gfp_t gfp) |
| { |
| struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; |
| dma_addr_t mapping; |
| |
| if (BNXT_RX_PAGE_MODE(bp)) { |
| struct page *page = |
| __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); |
| |
| if (!page) |
| return -ENOMEM; |
| |
| mapping += bp->rx_dma_offset; |
| rx_buf->data = page; |
| rx_buf->data_ptr = page_address(page) + bp->rx_offset; |
| } else { |
| u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); |
| |
| if (!data) |
| return -ENOMEM; |
| |
| rx_buf->data = data; |
| rx_buf->data_ptr = data + bp->rx_offset; |
| } |
| rx_buf->mapping = mapping; |
| |
| rxbd->rx_bd_haddr = cpu_to_le64(mapping); |
| return 0; |
| } |
| |
| void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) |
| { |
| u16 prod = rxr->rx_prod; |
| struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; |
| struct rx_bd *cons_bd, *prod_bd; |
| |
| prod_rx_buf = &rxr->rx_buf_ring[prod]; |
| cons_rx_buf = &rxr->rx_buf_ring[cons]; |
| |
| prod_rx_buf->data = data; |
| prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; |
| |
| prod_rx_buf->mapping = cons_rx_buf->mapping; |
| |
| prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; |
| |
| prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; |
| } |
| |
| static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) |
| { |
| u16 next, max = rxr->rx_agg_bmap_size; |
| |
| next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); |
| if (next >= max) |
| next = find_first_zero_bit(rxr->rx_agg_bmap, max); |
| return next; |
| } |
| |
| static inline int bnxt_alloc_rx_page(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr, |
| u16 prod, gfp_t gfp) |
| { |
| struct rx_bd *rxbd = |
| &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| struct bnxt_sw_rx_agg_bd *rx_agg_buf; |
| struct pci_dev *pdev = bp->pdev; |
| struct page *page; |
| dma_addr_t mapping; |
| u16 sw_prod = rxr->rx_sw_agg_prod; |
| unsigned int offset = 0; |
| |
| if (BNXT_RX_PAGE_MODE(bp)) { |
| page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); |
| |
| if (!page) |
| return -ENOMEM; |
| |
| } else { |
| if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { |
| page = rxr->rx_page; |
| if (!page) { |
| page = alloc_page(gfp); |
| if (!page) |
| return -ENOMEM; |
| rxr->rx_page = page; |
| rxr->rx_page_offset = 0; |
| } |
| offset = rxr->rx_page_offset; |
| rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; |
| if (rxr->rx_page_offset == PAGE_SIZE) |
| rxr->rx_page = NULL; |
| else |
| get_page(page); |
| } else { |
| page = alloc_page(gfp); |
| if (!page) |
| return -ENOMEM; |
| } |
| |
| mapping = dma_map_page_attrs(&pdev->dev, page, offset, |
| BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, |
| DMA_ATTR_WEAK_ORDERING); |
| if (dma_mapping_error(&pdev->dev, mapping)) { |
| __free_page(page); |
| return -EIO; |
| } |
| } |
| |
| if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) |
| sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); |
| |
| __set_bit(sw_prod, rxr->rx_agg_bmap); |
| rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; |
| rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); |
| |
| rx_agg_buf->page = page; |
| rx_agg_buf->offset = offset; |
| rx_agg_buf->mapping = mapping; |
| rxbd->rx_bd_haddr = cpu_to_le64(mapping); |
| rxbd->rx_bd_opaque = sw_prod; |
| return 0; |
| } |
| |
| static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, |
| struct bnxt_cp_ring_info *cpr, |
| u16 cp_cons, u16 curr) |
| { |
| struct rx_agg_cmp *agg; |
| |
| cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); |
| agg = (struct rx_agg_cmp *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| return agg; |
| } |
| |
| static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr, |
| u16 agg_id, u16 curr) |
| { |
| struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; |
| |
| return &tpa_info->agg_arr[curr]; |
| } |
| |
| static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, |
| u16 start, u32 agg_bufs, bool tpa) |
| { |
| struct bnxt_napi *bnapi = cpr->bnapi; |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| u16 prod = rxr->rx_agg_prod; |
| u16 sw_prod = rxr->rx_sw_agg_prod; |
| bool p5_tpa = false; |
| u32 i; |
| |
| if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) |
| p5_tpa = true; |
| |
| for (i = 0; i < agg_bufs; i++) { |
| u16 cons; |
| struct rx_agg_cmp *agg; |
| struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; |
| struct rx_bd *prod_bd; |
| struct page *page; |
| |
| if (p5_tpa) |
| agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); |
| else |
| agg = bnxt_get_agg(bp, cpr, idx, start + i); |
| cons = agg->rx_agg_cmp_opaque; |
| __clear_bit(cons, rxr->rx_agg_bmap); |
| |
| if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) |
| sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); |
| |
| __set_bit(sw_prod, rxr->rx_agg_bmap); |
| prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; |
| cons_rx_buf = &rxr->rx_agg_ring[cons]; |
| |
| /* It is possible for sw_prod to be equal to cons, so |
| * set cons_rx_buf->page to NULL first. |
| */ |
| page = cons_rx_buf->page; |
| cons_rx_buf->page = NULL; |
| prod_rx_buf->page = page; |
| prod_rx_buf->offset = cons_rx_buf->offset; |
| |
| prod_rx_buf->mapping = cons_rx_buf->mapping; |
| |
| prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| |
| prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); |
| prod_bd->rx_bd_opaque = sw_prod; |
| |
| prod = NEXT_RX_AGG(prod); |
| sw_prod = NEXT_RX_AGG(sw_prod); |
| } |
| rxr->rx_agg_prod = prod; |
| rxr->rx_sw_agg_prod = sw_prod; |
| } |
| |
| static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr, |
| u16 cons, void *data, u8 *data_ptr, |
| dma_addr_t dma_addr, |
| unsigned int offset_and_len) |
| { |
| unsigned int len = offset_and_len & 0xffff; |
| struct page *page = data; |
| u16 prod = rxr->rx_prod; |
| struct sk_buff *skb; |
| int err; |
| |
| err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); |
| if (unlikely(err)) { |
| bnxt_reuse_rx_data(rxr, cons, data); |
| return NULL; |
| } |
| dma_addr -= bp->rx_dma_offset; |
| dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| skb = build_skb(page_address(page), BNXT_PAGE_MODE_BUF_SIZE + |
| bp->rx_dma_offset); |
| if (!skb) { |
| __free_page(page); |
| return NULL; |
| } |
| skb_mark_for_recycle(skb); |
| skb_reserve(skb, bp->rx_dma_offset); |
| __skb_put(skb, len); |
| |
| return skb; |
| } |
| |
| static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr, |
| u16 cons, void *data, u8 *data_ptr, |
| dma_addr_t dma_addr, |
| unsigned int offset_and_len) |
| { |
| unsigned int payload = offset_and_len >> 16; |
| unsigned int len = offset_and_len & 0xffff; |
| skb_frag_t *frag; |
| struct page *page = data; |
| u16 prod = rxr->rx_prod; |
| struct sk_buff *skb; |
| int off, err; |
| |
| err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); |
| if (unlikely(err)) { |
| bnxt_reuse_rx_data(rxr, cons, data); |
| return NULL; |
| } |
| dma_addr -= bp->rx_dma_offset; |
| dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| |
| if (unlikely(!payload)) |
| payload = eth_get_headlen(bp->dev, data_ptr, len); |
| |
| skb = napi_alloc_skb(&rxr->bnapi->napi, payload); |
| if (!skb) { |
| __free_page(page); |
| return NULL; |
| } |
| |
| skb_mark_for_recycle(skb); |
| off = (void *)data_ptr - page_address(page); |
| skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); |
| memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, |
| payload + NET_IP_ALIGN); |
| |
| frag = &skb_shinfo(skb)->frags[0]; |
| skb_frag_size_sub(frag, payload); |
| skb_frag_off_add(frag, payload); |
| skb->data_len -= payload; |
| skb->tail += payload; |
| |
| return skb; |
| } |
| |
| static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr, u16 cons, |
| void *data, u8 *data_ptr, |
| dma_addr_t dma_addr, |
| unsigned int offset_and_len) |
| { |
| u16 prod = rxr->rx_prod; |
| struct sk_buff *skb; |
| int err; |
| |
| err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); |
| if (unlikely(err)) { |
| bnxt_reuse_rx_data(rxr, cons, data); |
| return NULL; |
| } |
| |
| skb = build_skb(data, bp->rx_buf_size); |
| dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, |
| bp->rx_dir, DMA_ATTR_WEAK_ORDERING); |
| if (!skb) { |
| skb_free_frag(data); |
| return NULL; |
| } |
| |
| skb_reserve(skb, bp->rx_offset); |
| skb_put(skb, offset_and_len & 0xffff); |
| return skb; |
| } |
| |
| static u32 __bnxt_rx_agg_pages(struct bnxt *bp, |
| struct bnxt_cp_ring_info *cpr, |
| struct skb_shared_info *shinfo, |
| u16 idx, u32 agg_bufs, bool tpa, |
| struct xdp_buff *xdp) |
| { |
| struct bnxt_napi *bnapi = cpr->bnapi; |
| struct pci_dev *pdev = bp->pdev; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| u16 prod = rxr->rx_agg_prod; |
| u32 i, total_frag_len = 0; |
| bool p5_tpa = false; |
| |
| if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) |
| p5_tpa = true; |
| |
| for (i = 0; i < agg_bufs; i++) { |
| skb_frag_t *frag = &shinfo->frags[i]; |
| u16 cons, frag_len; |
| struct rx_agg_cmp *agg; |
| struct bnxt_sw_rx_agg_bd *cons_rx_buf; |
| struct page *page; |
| dma_addr_t mapping; |
| |
| if (p5_tpa) |
| agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); |
| else |
| agg = bnxt_get_agg(bp, cpr, idx, i); |
| cons = agg->rx_agg_cmp_opaque; |
| frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & |
| RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; |
| |
| cons_rx_buf = &rxr->rx_agg_ring[cons]; |
| skb_frag_off_set(frag, cons_rx_buf->offset); |
| skb_frag_size_set(frag, frag_len); |
| __skb_frag_set_page(frag, cons_rx_buf->page); |
| shinfo->nr_frags = i + 1; |
| __clear_bit(cons, rxr->rx_agg_bmap); |
| |
| /* It is possible for bnxt_alloc_rx_page() to allocate |
| * a sw_prod index that equals the cons index, so we |
| * need to clear the cons entry now. |
| */ |
| mapping = cons_rx_buf->mapping; |
| page = cons_rx_buf->page; |
| cons_rx_buf->page = NULL; |
| |
| if (xdp && page_is_pfmemalloc(page)) |
| xdp_buff_set_frag_pfmemalloc(xdp); |
| |
| if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { |
| unsigned int nr_frags; |
| |
| nr_frags = --shinfo->nr_frags; |
| __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); |
| cons_rx_buf->page = page; |
| |
| /* Update prod since possibly some pages have been |
| * allocated already. |
| */ |
| rxr->rx_agg_prod = prod; |
| bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); |
| return 0; |
| } |
| |
| dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, |
| bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| |
| total_frag_len += frag_len; |
| prod = NEXT_RX_AGG(prod); |
| } |
| rxr->rx_agg_prod = prod; |
| return total_frag_len; |
| } |
| |
| static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, |
| struct bnxt_cp_ring_info *cpr, |
| struct sk_buff *skb, u16 idx, |
| u32 agg_bufs, bool tpa) |
| { |
| struct skb_shared_info *shinfo = skb_shinfo(skb); |
| u32 total_frag_len = 0; |
| |
| total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, |
| agg_bufs, tpa, NULL); |
| if (!total_frag_len) { |
| dev_kfree_skb(skb); |
| return NULL; |
| } |
| |
| skb->data_len += total_frag_len; |
| skb->len += total_frag_len; |
| skb->truesize += PAGE_SIZE * agg_bufs; |
| return skb; |
| } |
| |
| static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, |
| struct bnxt_cp_ring_info *cpr, |
| struct xdp_buff *xdp, u16 idx, |
| u32 agg_bufs, bool tpa) |
| { |
| struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); |
| u32 total_frag_len = 0; |
| |
| if (!xdp_buff_has_frags(xdp)) |
| shinfo->nr_frags = 0; |
| |
| total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, |
| idx, agg_bufs, tpa, xdp); |
| if (total_frag_len) { |
| xdp_buff_set_frags_flag(xdp); |
| shinfo->nr_frags = agg_bufs; |
| shinfo->xdp_frags_size = total_frag_len; |
| } |
| return total_frag_len; |
| } |
| |
| static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, |
| u8 agg_bufs, u32 *raw_cons) |
| { |
| u16 last; |
| struct rx_agg_cmp *agg; |
| |
| *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); |
| last = RING_CMP(*raw_cons); |
| agg = (struct rx_agg_cmp *) |
| &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; |
| return RX_AGG_CMP_VALID(agg, *raw_cons); |
| } |
| |
| static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, |
| unsigned int len, |
| dma_addr_t mapping) |
| { |
| struct bnxt *bp = bnapi->bp; |
| struct pci_dev *pdev = bp->pdev; |
| struct sk_buff *skb; |
| |
| skb = napi_alloc_skb(&bnapi->napi, len); |
| if (!skb) |
| return NULL; |
| |
| dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, |
| bp->rx_dir); |
| |
| memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, |
| len + NET_IP_ALIGN); |
| |
| dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, |
| bp->rx_dir); |
| |
| skb_put(skb, len); |
| return skb; |
| } |
| |
| static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, |
| u32 *raw_cons, void *cmp) |
| { |
| struct rx_cmp *rxcmp = cmp; |
| u32 tmp_raw_cons = *raw_cons; |
| u8 cmp_type, agg_bufs = 0; |
| |
| cmp_type = RX_CMP_TYPE(rxcmp); |
| |
| if (cmp_type == CMP_TYPE_RX_L2_CMP) { |
| agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & |
| RX_CMP_AGG_BUFS) >> |
| RX_CMP_AGG_BUFS_SHIFT; |
| } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { |
| struct rx_tpa_end_cmp *tpa_end = cmp; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| return 0; |
| |
| agg_bufs = TPA_END_AGG_BUFS(tpa_end); |
| } |
| |
| if (agg_bufs) { |
| if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) |
| return -EBUSY; |
| } |
| *raw_cons = tmp_raw_cons; |
| return 0; |
| } |
| |
| static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) |
| { |
| if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) |
| return; |
| |
| if (BNXT_PF(bp)) |
| queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); |
| else |
| schedule_delayed_work(&bp->fw_reset_task, delay); |
| } |
| |
| static void bnxt_queue_sp_work(struct bnxt *bp) |
| { |
| if (BNXT_PF(bp)) |
| queue_work(bnxt_pf_wq, &bp->sp_task); |
| else |
| schedule_work(&bp->sp_task); |
| } |
| |
| static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) |
| { |
| if (!rxr->bnapi->in_reset) { |
| rxr->bnapi->in_reset = true; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); |
| else |
| set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| rxr->rx_next_cons = 0xffff; |
| } |
| |
| static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) |
| { |
| struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; |
| u16 idx = agg_id & MAX_TPA_P5_MASK; |
| |
| if (test_bit(idx, map->agg_idx_bmap)) |
| idx = find_first_zero_bit(map->agg_idx_bmap, |
| BNXT_AGG_IDX_BMAP_SIZE); |
| __set_bit(idx, map->agg_idx_bmap); |
| map->agg_id_tbl[agg_id] = idx; |
| return idx; |
| } |
| |
| static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) |
| { |
| struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; |
| |
| __clear_bit(idx, map->agg_idx_bmap); |
| } |
| |
| static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) |
| { |
| struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; |
| |
| return map->agg_id_tbl[agg_id]; |
| } |
| |
| static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, |
| struct rx_tpa_start_cmp *tpa_start, |
| struct rx_tpa_start_cmp_ext *tpa_start1) |
| { |
| struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; |
| struct bnxt_tpa_info *tpa_info; |
| u16 cons, prod, agg_id; |
| struct rx_bd *prod_bd; |
| dma_addr_t mapping; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| agg_id = TPA_START_AGG_ID_P5(tpa_start); |
| agg_id = bnxt_alloc_agg_idx(rxr, agg_id); |
| } else { |
| agg_id = TPA_START_AGG_ID(tpa_start); |
| } |
| cons = tpa_start->rx_tpa_start_cmp_opaque; |
| prod = rxr->rx_prod; |
| cons_rx_buf = &rxr->rx_buf_ring[cons]; |
| prod_rx_buf = &rxr->rx_buf_ring[prod]; |
| tpa_info = &rxr->rx_tpa[agg_id]; |
| |
| if (unlikely(cons != rxr->rx_next_cons || |
| TPA_START_ERROR(tpa_start))) { |
| netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", |
| cons, rxr->rx_next_cons, |
| TPA_START_ERROR_CODE(tpa_start1)); |
| bnxt_sched_reset(bp, rxr); |
| return; |
| } |
| /* Store cfa_code in tpa_info to use in tpa_end |
| * completion processing. |
| */ |
| tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); |
| prod_rx_buf->data = tpa_info->data; |
| prod_rx_buf->data_ptr = tpa_info->data_ptr; |
| |
| mapping = tpa_info->mapping; |
| prod_rx_buf->mapping = mapping; |
| |
| prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| |
| prod_bd->rx_bd_haddr = cpu_to_le64(mapping); |
| |
| tpa_info->data = cons_rx_buf->data; |
| tpa_info->data_ptr = cons_rx_buf->data_ptr; |
| cons_rx_buf->data = NULL; |
| tpa_info->mapping = cons_rx_buf->mapping; |
| |
| tpa_info->len = |
| le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> |
| RX_TPA_START_CMP_LEN_SHIFT; |
| if (likely(TPA_START_HASH_VALID(tpa_start))) { |
| u32 hash_type = TPA_START_HASH_TYPE(tpa_start); |
| |
| tpa_info->hash_type = PKT_HASH_TYPE_L4; |
| tpa_info->gso_type = SKB_GSO_TCPV4; |
| /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ |
| if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) |
| tpa_info->gso_type = SKB_GSO_TCPV6; |
| tpa_info->rss_hash = |
| le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); |
| } else { |
| tpa_info->hash_type = PKT_HASH_TYPE_NONE; |
| tpa_info->gso_type = 0; |
| netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); |
| } |
| tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); |
| tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); |
| tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); |
| tpa_info->agg_count = 0; |
| |
| rxr->rx_prod = NEXT_RX(prod); |
| cons = NEXT_RX(cons); |
| rxr->rx_next_cons = NEXT_RX(cons); |
| cons_rx_buf = &rxr->rx_buf_ring[cons]; |
| |
| bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); |
| rxr->rx_prod = NEXT_RX(rxr->rx_prod); |
| cons_rx_buf->data = NULL; |
| } |
| |
| static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) |
| { |
| if (agg_bufs) |
| bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); |
| } |
| |
| #ifdef CONFIG_INET |
| static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) |
| { |
| struct udphdr *uh = NULL; |
| |
| if (ip_proto == htons(ETH_P_IP)) { |
| struct iphdr *iph = (struct iphdr *)skb->data; |
| |
| if (iph->protocol == IPPROTO_UDP) |
| uh = (struct udphdr *)(iph + 1); |
| } else { |
| struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; |
| |
| if (iph->nexthdr == IPPROTO_UDP) |
| uh = (struct udphdr *)(iph + 1); |
| } |
| if (uh) { |
| if (uh->check) |
| skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; |
| else |
| skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; |
| } |
| } |
| #endif |
| |
| static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, |
| int payload_off, int tcp_ts, |
| struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| struct tcphdr *th; |
| int len, nw_off; |
| u16 outer_ip_off, inner_ip_off, inner_mac_off; |
| u32 hdr_info = tpa_info->hdr_info; |
| bool loopback = false; |
| |
| inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); |
| inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); |
| outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); |
| |
| /* If the packet is an internal loopback packet, the offsets will |
| * have an extra 4 bytes. |
| */ |
| if (inner_mac_off == 4) { |
| loopback = true; |
| } else if (inner_mac_off > 4) { |
| __be16 proto = *((__be16 *)(skb->data + inner_ip_off - |
| ETH_HLEN - 2)); |
| |
| /* We only support inner iPv4/ipv6. If we don't see the |
| * correct protocol ID, it must be a loopback packet where |
| * the offsets are off by 4. |
| */ |
| if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) |
| loopback = true; |
| } |
| if (loopback) { |
| /* internal loopback packet, subtract all offsets by 4 */ |
| inner_ip_off -= 4; |
| inner_mac_off -= 4; |
| outer_ip_off -= 4; |
| } |
| |
| nw_off = inner_ip_off - ETH_HLEN; |
| skb_set_network_header(skb, nw_off); |
| if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { |
| struct ipv6hdr *iph = ipv6_hdr(skb); |
| |
| skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); |
| len = skb->len - skb_transport_offset(skb); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); |
| } else { |
| struct iphdr *iph = ip_hdr(skb); |
| |
| skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); |
| len = skb->len - skb_transport_offset(skb); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); |
| } |
| |
| if (inner_mac_off) { /* tunnel */ |
| __be16 proto = *((__be16 *)(skb->data + outer_ip_off - |
| ETH_HLEN - 2)); |
| |
| bnxt_gro_tunnel(skb, proto); |
| } |
| #endif |
| return skb; |
| } |
| |
| static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, |
| int payload_off, int tcp_ts, |
| struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| u16 outer_ip_off, inner_ip_off, inner_mac_off; |
| u32 hdr_info = tpa_info->hdr_info; |
| int iphdr_len, nw_off; |
| |
| inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); |
| inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); |
| outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); |
| |
| nw_off = inner_ip_off - ETH_HLEN; |
| skb_set_network_header(skb, nw_off); |
| iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? |
| sizeof(struct ipv6hdr) : sizeof(struct iphdr); |
| skb_set_transport_header(skb, nw_off + iphdr_len); |
| |
| if (inner_mac_off) { /* tunnel */ |
| __be16 proto = *((__be16 *)(skb->data + outer_ip_off - |
| ETH_HLEN - 2)); |
| |
| bnxt_gro_tunnel(skb, proto); |
| } |
| #endif |
| return skb; |
| } |
| |
| #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) |
| #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) |
| |
| static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, |
| int payload_off, int tcp_ts, |
| struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| struct tcphdr *th; |
| int len, nw_off, tcp_opt_len = 0; |
| |
| if (tcp_ts) |
| tcp_opt_len = 12; |
| |
| if (tpa_info->gso_type == SKB_GSO_TCPV4) { |
| struct iphdr *iph; |
| |
| nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - |
| ETH_HLEN; |
| skb_set_network_header(skb, nw_off); |
| iph = ip_hdr(skb); |
| skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); |
| len = skb->len - skb_transport_offset(skb); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); |
| } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { |
| struct ipv6hdr *iph; |
| |
| nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - |
| ETH_HLEN; |
| skb_set_network_header(skb, nw_off); |
| iph = ipv6_hdr(skb); |
| skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); |
| len = skb->len - skb_transport_offset(skb); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); |
| } else { |
| dev_kfree_skb_any(skb); |
| return NULL; |
| } |
| |
| if (nw_off) /* tunnel */ |
| bnxt_gro_tunnel(skb, skb->protocol); |
| #endif |
| return skb; |
| } |
| |
| static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, |
| struct bnxt_tpa_info *tpa_info, |
| struct rx_tpa_end_cmp *tpa_end, |
| struct rx_tpa_end_cmp_ext *tpa_end1, |
| struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| int payload_off; |
| u16 segs; |
| |
| segs = TPA_END_TPA_SEGS(tpa_end); |
| if (segs == 1) |
| return skb; |
| |
| NAPI_GRO_CB(skb)->count = segs; |
| skb_shinfo(skb)->gso_size = |
| le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); |
| skb_shinfo(skb)->gso_type = tpa_info->gso_type; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); |
| else |
| payload_off = TPA_END_PAYLOAD_OFF(tpa_end); |
| skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); |
| if (likely(skb)) |
| tcp_gro_complete(skb); |
| #endif |
| return skb; |
| } |
| |
| /* Given the cfa_code of a received packet determine which |
| * netdev (vf-rep or PF) the packet is destined to. |
| */ |
| static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) |
| { |
| struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); |
| |
| /* if vf-rep dev is NULL, the must belongs to the PF */ |
| return dev ? dev : bp->dev; |
| } |
| |
| static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, |
| struct bnxt_cp_ring_info *cpr, |
| u32 *raw_cons, |
| struct rx_tpa_end_cmp *tpa_end, |
| struct rx_tpa_end_cmp_ext *tpa_end1, |
| u8 *event) |
| { |
| struct bnxt_napi *bnapi = cpr->bnapi; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| u8 *data_ptr, agg_bufs; |
| unsigned int len; |
| struct bnxt_tpa_info *tpa_info; |
| dma_addr_t mapping; |
| struct sk_buff *skb; |
| u16 idx = 0, agg_id; |
| void *data; |
| bool gro; |
| |
| if (unlikely(bnapi->in_reset)) { |
| int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); |
| |
| if (rc < 0) |
| return ERR_PTR(-EBUSY); |
| return NULL; |
| } |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| agg_id = TPA_END_AGG_ID_P5(tpa_end); |
| agg_id = bnxt_lookup_agg_idx(rxr, agg_id); |
| agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); |
| tpa_info = &rxr->rx_tpa[agg_id]; |
| if (unlikely(agg_bufs != tpa_info->agg_count)) { |
| netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", |
| agg_bufs, tpa_info->agg_count); |
| agg_bufs = tpa_info->agg_count; |
| } |
| tpa_info->agg_count = 0; |
| *event |= BNXT_AGG_EVENT; |
| bnxt_free_agg_idx(rxr, agg_id); |
| idx = agg_id; |
| gro = !!(bp->flags & BNXT_FLAG_GRO); |
| } else { |
| agg_id = TPA_END_AGG_ID(tpa_end); |
| agg_bufs = TPA_END_AGG_BUFS(tpa_end); |
| tpa_info = &rxr->rx_tpa[agg_id]; |
| idx = RING_CMP(*raw_cons); |
| if (agg_bufs) { |
| if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) |
| return ERR_PTR(-EBUSY); |
| |
| *event |= BNXT_AGG_EVENT; |
| idx = NEXT_CMP(idx); |
| } |
| gro = !!TPA_END_GRO(tpa_end); |
| } |
| data = tpa_info->data; |
| data_ptr = tpa_info->data_ptr; |
| prefetch(data_ptr); |
| len = tpa_info->len; |
| mapping = tpa_info->mapping; |
| |
| if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { |
| bnxt_abort_tpa(cpr, idx, agg_bufs); |
| if (agg_bufs > MAX_SKB_FRAGS) |
| netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", |
| agg_bufs, (int)MAX_SKB_FRAGS); |
| return NULL; |
| } |
| |
| if (len <= bp->rx_copy_thresh) { |
| skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); |
| if (!skb) { |
| bnxt_abort_tpa(cpr, idx, agg_bufs); |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| return NULL; |
| } |
| } else { |
| u8 *new_data; |
| dma_addr_t new_mapping; |
| |
| new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); |
| if (!new_data) { |
| bnxt_abort_tpa(cpr, idx, agg_bufs); |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| return NULL; |
| } |
| |
| tpa_info->data = new_data; |
| tpa_info->data_ptr = new_data + bp->rx_offset; |
| tpa_info->mapping = new_mapping; |
| |
| skb = build_skb(data, bp->rx_buf_size); |
| dma_unmap_single_attrs(&bp->pdev->dev, mapping, |
| bp->rx_buf_use_size, bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| |
| if (!skb) { |
| skb_free_frag(data); |
| bnxt_abort_tpa(cpr, idx, agg_bufs); |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| return NULL; |
| } |
| skb_reserve(skb, bp->rx_offset); |
| skb_put(skb, len); |
| } |
| |
| if (agg_bufs) { |
| skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); |
| if (!skb) { |
| /* Page reuse already handled by bnxt_rx_pages(). */ |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| return NULL; |
| } |
| } |
| |
| skb->protocol = |
| eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); |
| |
| if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) |
| skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); |
| |
| if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && |
| (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { |
| __be16 vlan_proto = htons(tpa_info->metadata >> |
| RX_CMP_FLAGS2_METADATA_TPID_SFT); |
| u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; |
| |
| if (eth_type_vlan(vlan_proto)) { |
| __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); |
| } else { |
| dev_kfree_skb(skb); |
| return NULL; |
| } |
| } |
| |
| skb_checksum_none_assert(skb); |
| if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->csum_level = |
| (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; |
| } |
| |
| if (gro) |
| skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); |
| |
| return skb; |
| } |
| |
| static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, |
| struct rx_agg_cmp *rx_agg) |
| { |
| u16 agg_id = TPA_AGG_AGG_ID(rx_agg); |
| struct bnxt_tpa_info *tpa_info; |
| |
| agg_id = bnxt_lookup_agg_idx(rxr, agg_id); |
| tpa_info = &rxr->rx_tpa[agg_id]; |
| BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); |
| tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; |
| } |
| |
| static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, |
| struct sk_buff *skb) |
| { |
| if (skb->dev != bp->dev) { |
| /* this packet belongs to a vf-rep */ |
| bnxt_vf_rep_rx(bp, skb); |
| return; |
| } |
| skb_record_rx_queue(skb, bnapi->index); |
| napi_gro_receive(&bnapi->napi, skb); |
| } |
| |
| /* returns the following: |
| * 1 - 1 packet successfully received |
| * 0 - successful TPA_START, packet not completed yet |
| * -EBUSY - completion ring does not have all the agg buffers yet |
| * -ENOMEM - packet aborted due to out of memory |
| * -EIO - packet aborted due to hw error indicated in BD |
| */ |
| static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, |
| u32 *raw_cons, u8 *event) |
| { |
| struct bnxt_napi *bnapi = cpr->bnapi; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| struct net_device *dev = bp->dev; |
| struct rx_cmp *rxcmp; |
| struct rx_cmp_ext *rxcmp1; |
| u32 tmp_raw_cons = *raw_cons; |
| u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); |
| struct bnxt_sw_rx_bd *rx_buf; |
| unsigned int len; |
| u8 *data_ptr, agg_bufs, cmp_type; |
| bool xdp_active = false; |
| dma_addr_t dma_addr; |
| struct sk_buff *skb; |
| struct xdp_buff xdp; |
| u32 flags, misc; |
| void *data; |
| int rc = 0; |
| |
| rxcmp = (struct rx_cmp *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| cmp_type = RX_CMP_TYPE(rxcmp); |
| |
| if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { |
| bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); |
| goto next_rx_no_prod_no_len; |
| } |
| |
| tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); |
| cp_cons = RING_CMP(tmp_raw_cons); |
| rxcmp1 = (struct rx_cmp_ext *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) |
| return -EBUSY; |
| |
| /* The valid test of the entry must be done first before |
| * reading any further. |
| */ |
| dma_rmb(); |
| prod = rxr->rx_prod; |
| |
| if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { |
| bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, |
| (struct rx_tpa_start_cmp_ext *)rxcmp1); |
| |
| *event |= BNXT_RX_EVENT; |
| goto next_rx_no_prod_no_len; |
| |
| } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { |
| skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, |
| (struct rx_tpa_end_cmp *)rxcmp, |
| (struct rx_tpa_end_cmp_ext *)rxcmp1, event); |
| |
| if (IS_ERR(skb)) |
| return -EBUSY; |
| |
| rc = -ENOMEM; |
| if (likely(skb)) { |
| bnxt_deliver_skb(bp, bnapi, skb); |
| rc = 1; |
| } |
| *event |= BNXT_RX_EVENT; |
| goto next_rx_no_prod_no_len; |
| } |
| |
| cons = rxcmp->rx_cmp_opaque; |
| if (unlikely(cons != rxr->rx_next_cons)) { |
| int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); |
| |
| /* 0xffff is forced error, don't print it */ |
| if (rxr->rx_next_cons != 0xffff) |
| netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", |
| cons, rxr->rx_next_cons); |
| bnxt_sched_reset(bp, rxr); |
| if (rc1) |
| return rc1; |
| goto next_rx_no_prod_no_len; |
| } |
| rx_buf = &rxr->rx_buf_ring[cons]; |
| data = rx_buf->data; |
| data_ptr = rx_buf->data_ptr; |
| prefetch(data_ptr); |
| |
| misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); |
| agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; |
| |
| if (agg_bufs) { |
| if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) |
| return -EBUSY; |
| |
| cp_cons = NEXT_CMP(cp_cons); |
| *event |= BNXT_AGG_EVENT; |
| } |
| *event |= BNXT_RX_EVENT; |
| |
| rx_buf->data = NULL; |
| if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { |
| u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); |
| |
| bnxt_reuse_rx_data(rxr, cons, data); |
| if (agg_bufs) |
| bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, |
| false); |
| |
| rc = -EIO; |
| if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { |
| bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5) && |
| !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { |
| netdev_warn_once(bp->dev, "RX buffer error %x\n", |
| rx_err); |
| bnxt_sched_reset(bp, rxr); |
| } |
| } |
| goto next_rx_no_len; |
| } |
| |
| flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); |
| len = flags >> RX_CMP_LEN_SHIFT; |
| dma_addr = rx_buf->mapping; |
| |
| if (bnxt_xdp_attached(bp, rxr)) { |
| bnxt_xdp_buff_init(bp, rxr, cons, &data_ptr, &len, &xdp); |
| if (agg_bufs) { |
| u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, |
| cp_cons, agg_bufs, |
| false); |
| if (!frag_len) { |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| rc = -ENOMEM; |
| goto next_rx; |
| } |
| } |
| xdp_active = true; |
| } |
| |
| if (xdp_active) { |
| if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &len, event)) { |
| rc = 1; |
| goto next_rx; |
| } |
| } |
| |
| if (len <= bp->rx_copy_thresh) { |
| skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); |
| bnxt_reuse_rx_data(rxr, cons, data); |
| if (!skb) { |
| if (agg_bufs) { |
| if (!xdp_active) |
| bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, |
| agg_bufs, false); |
| else |
| bnxt_xdp_buff_frags_free(rxr, &xdp); |
| } |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| rc = -ENOMEM; |
| goto next_rx; |
| } |
| } else { |
| u32 payload; |
| |
| if (rx_buf->data_ptr == data_ptr) |
| payload = misc & RX_CMP_PAYLOAD_OFFSET; |
| else |
| payload = 0; |
| skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, |
| payload | len); |
| if (!skb) { |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| rc = -ENOMEM; |
| goto next_rx; |
| } |
| } |
| |
| if (agg_bufs) { |
| if (!xdp_active) { |
| skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); |
| if (!skb) { |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| rc = -ENOMEM; |
| goto next_rx; |
| } |
| } else { |
| skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); |
| if (!skb) { |
| /* we should be able to free the old skb here */ |
| bnxt_xdp_buff_frags_free(rxr, &xdp); |
| cpr->sw_stats.rx.rx_oom_discards += 1; |
| rc = -ENOMEM; |
| goto next_rx; |
| } |
| } |
| } |
| |
| if (RX_CMP_HASH_VALID(rxcmp)) { |
| u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); |
| enum pkt_hash_types type = PKT_HASH_TYPE_L4; |
| |
| /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ |
| if (hash_type != 1 && hash_type != 3) |
| type = PKT_HASH_TYPE_L3; |
| skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); |
| } |
| |
| cfa_code = RX_CMP_CFA_CODE(rxcmp1); |
| skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); |
| |
| if ((rxcmp1->rx_cmp_flags2 & |
| cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && |
| (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { |
| u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); |
| u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; |
| __be16 vlan_proto = htons(meta_data >> |
| RX_CMP_FLAGS2_METADATA_TPID_SFT); |
| |
| if (eth_type_vlan(vlan_proto)) { |
| __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); |
| } else { |
| dev_kfree_skb(skb); |
| goto next_rx; |
| } |
| } |
| |
| skb_checksum_none_assert(skb); |
| if (RX_CMP_L4_CS_OK(rxcmp1)) { |
| if (dev->features & NETIF_F_RXCSUM) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->csum_level = RX_CMP_ENCAP(rxcmp1); |
| } |
| } else { |
| if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { |
| if (dev->features & NETIF_F_RXCSUM) |
| bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; |
| } |
| } |
| |
| if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == |
| RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); |
| u64 ns, ts; |
| |
| if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { |
| struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; |
| |
| spin_lock_bh(&ptp->ptp_lock); |
| ns = timecounter_cyc2time(&ptp->tc, ts); |
| spin_unlock_bh(&ptp->ptp_lock); |
| memset(skb_hwtstamps(skb), 0, |
| sizeof(*skb_hwtstamps(skb))); |
| skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); |
| } |
| } |
| } |
| bnxt_deliver_skb(bp, bnapi, skb); |
| rc = 1; |
| |
| next_rx: |
| cpr->rx_packets += 1; |
| cpr->rx_bytes += len; |
| |
| next_rx_no_len: |
| rxr->rx_prod = NEXT_RX(prod); |
| rxr->rx_next_cons = NEXT_RX(cons); |
| |
| next_rx_no_prod_no_len: |
| *raw_cons = tmp_raw_cons; |
| |
| return rc; |
| } |
| |
| /* In netpoll mode, if we are using a combined completion ring, we need to |
| * discard the rx packets and recycle the buffers. |
| */ |
| static int bnxt_force_rx_discard(struct bnxt *bp, |
| struct bnxt_cp_ring_info *cpr, |
| u32 *raw_cons, u8 *event) |
| { |
| u32 tmp_raw_cons = *raw_cons; |
| struct rx_cmp_ext *rxcmp1; |
| struct rx_cmp *rxcmp; |
| u16 cp_cons; |
| u8 cmp_type; |
| int rc; |
| |
| cp_cons = RING_CMP(tmp_raw_cons); |
| rxcmp = (struct rx_cmp *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); |
| cp_cons = RING_CMP(tmp_raw_cons); |
| rxcmp1 = (struct rx_cmp_ext *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) |
| return -EBUSY; |
| |
| /* The valid test of the entry must be done first before |
| * reading any further. |
| */ |
| dma_rmb(); |
| cmp_type = RX_CMP_TYPE(rxcmp); |
| if (cmp_type == CMP_TYPE_RX_L2_CMP) { |
| rxcmp1->rx_cmp_cfa_code_errors_v2 |= |
| cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); |
| } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { |
| struct rx_tpa_end_cmp_ext *tpa_end1; |
| |
| tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; |
| tpa_end1->rx_tpa_end_cmp_errors_v2 |= |
| cpu_to_le32(RX_TPA_END_CMP_ERRORS); |
| } |
| rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); |
| if (rc && rc != -EBUSY) |
| cpr->sw_stats.rx.rx_netpoll_discards += 1; |
| return rc; |
| } |
| |
| u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| u32 reg = fw_health->regs[reg_idx]; |
| u32 reg_type, reg_off, val = 0; |
| |
| reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); |
| reg_off = BNXT_FW_HEALTH_REG_OFF(reg); |
| switch (reg_type) { |
| case BNXT_FW_HEALTH_REG_TYPE_CFG: |
| pci_read_config_dword(bp->pdev, reg_off, &val); |
| break; |
| case BNXT_FW_HEALTH_REG_TYPE_GRC: |
| reg_off = fw_health->mapped_regs[reg_idx]; |
| fallthrough; |
| case BNXT_FW_HEALTH_REG_TYPE_BAR0: |
| val = readl(bp->bar0 + reg_off); |
| break; |
| case BNXT_FW_HEALTH_REG_TYPE_BAR1: |
| val = readl(bp->bar1 + reg_off); |
| break; |
| } |
| if (reg_idx == BNXT_FW_RESET_INPROG_REG) |
| val &= fw_health->fw_reset_inprog_reg_mask; |
| return val; |
| } |
| |
| static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) |
| { |
| int i; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| u16 grp_idx = bp->rx_ring[i].bnapi->index; |
| struct bnxt_ring_grp_info *grp_info; |
| |
| grp_info = &bp->grp_info[grp_idx]; |
| if (grp_info->agg_fw_ring_id == ring_id) |
| return grp_idx; |
| } |
| return INVALID_HW_RING_ID; |
| } |
| |
| static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) |
| { |
| u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); |
| |
| switch (err_type) { |
| case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: |
| netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", |
| BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); |
| break; |
| case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: |
| netdev_warn(bp->dev, "Pause Storm detected!\n"); |
| break; |
| case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: |
| netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); |
| break; |
| default: |
| netdev_err(bp->dev, "FW reported unknown error type %u\n", |
| err_type); |
| break; |
| } |
| } |
| |
| #define BNXT_GET_EVENT_PORT(data) \ |
| ((data) & \ |
| ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) |
| |
| #define BNXT_EVENT_RING_TYPE(data2) \ |
| ((data2) & \ |
| ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) |
| |
| #define BNXT_EVENT_RING_TYPE_RX(data2) \ |
| (BNXT_EVENT_RING_TYPE(data2) == \ |
| ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) |
| |
| #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ |
| (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ |
| ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) |
| |
| #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ |
| (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ |
| ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) |
| |
| #define BNXT_PHC_BITS 48 |
| |
| static int bnxt_async_event_process(struct bnxt *bp, |
| struct hwrm_async_event_cmpl *cmpl) |
| { |
| u16 event_id = le16_to_cpu(cmpl->event_id); |
| u32 data1 = le32_to_cpu(cmpl->event_data1); |
| u32 data2 = le32_to_cpu(cmpl->event_data2); |
| |
| netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", |
| event_id, data1, data2); |
| |
| /* TODO CHIMP_FW: Define event id's for link change, error etc */ |
| switch (event_id) { |
| case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| if (BNXT_VF(bp)) |
| goto async_event_process_exit; |
| |
| /* print unsupported speed warning in forced speed mode only */ |
| if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && |
| (data1 & 0x20000)) { |
| u16 fw_speed = link_info->force_link_speed; |
| u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); |
| |
| if (speed != SPEED_UNKNOWN) |
| netdev_warn(bp->dev, "Link speed %d no longer supported\n", |
| speed); |
| } |
| set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); |
| } |
| fallthrough; |
| case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: |
| case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: |
| set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); |
| fallthrough; |
| case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: |
| set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); |
| break; |
| case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: |
| set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); |
| break; |
| case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { |
| u16 port_id = BNXT_GET_EVENT_PORT(data1); |
| |
| if (BNXT_VF(bp)) |
| break; |
| |
| if (bp->pf.port_id != port_id) |
| break; |
| |
| set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); |
| break; |
| } |
| case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: |
| if (BNXT_PF(bp)) |
| goto async_event_process_exit; |
| set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); |
| break; |
| case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { |
| char *type_str = "Solicited"; |
| |
| if (!bp->fw_health) |
| goto async_event_process_exit; |
| |
| bp->fw_reset_timestamp = jiffies; |
| bp->fw_reset_min_dsecs = cmpl->timestamp_lo; |
| if (!bp->fw_reset_min_dsecs) |
| bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; |
| bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); |
| if (!bp->fw_reset_max_dsecs) |
| bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; |
| if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { |
| set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); |
| } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { |
| type_str = "Fatal"; |
| bp->fw_health->fatalities++; |
| set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); |
| } else if (data2 && BNXT_FW_STATUS_HEALTHY != |
| EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { |
| type_str = "Non-fatal"; |
| bp->fw_health->survivals++; |
| set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); |
| } |
| netif_warn(bp, hw, bp->dev, |
| "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", |
| type_str, data1, data2, |
| bp->fw_reset_min_dsecs * 100, |
| bp->fw_reset_max_dsecs * 100); |
| set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); |
| break; |
| } |
| case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| char *status_desc = "healthy"; |
| u32 status; |
| |
| if (!fw_health) |
| goto async_event_process_exit; |
| |
| if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { |
| fw_health->enabled = false; |
| netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); |
| break; |
| } |
| fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); |
| fw_health->tmr_multiplier = |
| DIV_ROUND_UP(fw_health->polling_dsecs * HZ, |
| bp->current_interval * 10); |
| fw_health->tmr_counter = fw_health->tmr_multiplier; |
| if (!fw_health->enabled) |
| fw_health->last_fw_heartbeat = |
| bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); |
| fw_health->last_fw_reset_cnt = |
| bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); |
| status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); |
| if (status != BNXT_FW_STATUS_HEALTHY) |
| status_desc = "unhealthy"; |
| netif_info(bp, drv, bp->dev, |
| "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", |
| fw_health->primary ? "primary" : "backup", status, |
| status_desc, fw_health->last_fw_reset_cnt); |
| if (!fw_health->enabled) { |
| /* Make sure tmr_counter is set and visible to |
| * bnxt_health_check() before setting enabled to true. |
| */ |
| smp_wmb(); |
| fw_health->enabled = true; |
| } |
| goto async_event_process_exit; |
| } |
| case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: |
| netif_notice(bp, hw, bp->dev, |
| "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", |
| data1, data2); |
| goto async_event_process_exit; |
| case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { |
| struct bnxt_rx_ring_info *rxr; |
| u16 grp_idx; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| goto async_event_process_exit; |
| |
| netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", |
| BNXT_EVENT_RING_TYPE(data2), data1); |
| if (!BNXT_EVENT_RING_TYPE_RX(data2)) |
| goto async_event_process_exit; |
| |
| grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); |
| if (grp_idx == INVALID_HW_RING_ID) { |
| netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", |
| data1); |
| goto async_event_process_exit; |
| } |
| rxr = bp->bnapi[grp_idx]->rx_ring; |
| bnxt_sched_reset(bp, rxr); |
| goto async_event_process_exit; |
| } |
| case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| |
| netif_notice(bp, hw, bp->dev, |
| "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", |
| data1, data2); |
| if (fw_health) { |
| fw_health->echo_req_data1 = data1; |
| fw_health->echo_req_data2 = data2; |
| set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); |
| break; |
| } |
| goto async_event_process_exit; |
| } |
| case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { |
| bnxt_ptp_pps_event(bp, data1, data2); |
| goto async_event_process_exit; |
| } |
| case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { |
| bnxt_event_error_report(bp, data1, data2); |
| goto async_event_process_exit; |
| } |
| case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { |
| switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { |
| case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: |
| if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) { |
| struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; |
| u64 ns; |
| |
| spin_lock_bh(&ptp->ptp_lock); |
| bnxt_ptp_update_current_time(bp); |
| ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << |
| BNXT_PHC_BITS) | ptp->current_time); |
| bnxt_ptp_rtc_timecounter_init(ptp, ns); |
| spin_unlock_bh(&ptp->ptp_lock); |
| } |
| break; |
| } |
| goto async_event_process_exit; |
| } |
| case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { |
| u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; |
| |
| hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); |
| goto async_event_process_exit; |
| } |
| default: |
| goto async_event_process_exit; |
| } |
| bnxt_queue_sp_work(bp); |
| async_event_process_exit: |
| bnxt_ulp_async_events(bp, cmpl); |
| return 0; |
| } |
| |
| static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) |
| { |
| u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; |
| struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; |
| struct hwrm_fwd_req_cmpl *fwd_req_cmpl = |
| (struct hwrm_fwd_req_cmpl *)txcmp; |
| |
| switch (cmpl_type) { |
| case CMPL_BASE_TYPE_HWRM_DONE: |
| seq_id = le16_to_cpu(h_cmpl->sequence_id); |
| hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); |
| break; |
| |
| case CMPL_BASE_TYPE_HWRM_FWD_REQ: |
| vf_id = le16_to_cpu(fwd_req_cmpl->source_id); |
| |
| if ((vf_id < bp->pf.first_vf_id) || |
| (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { |
| netdev_err(bp->dev, "Msg contains invalid VF id %x\n", |
| vf_id); |
| return -EINVAL; |
| } |
| |
| set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); |
| set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| break; |
| |
| case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: |
| bnxt_async_event_process(bp, |
| (struct hwrm_async_event_cmpl *)txcmp); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t bnxt_msix(int irq, void *dev_instance) |
| { |
| struct bnxt_napi *bnapi = dev_instance; |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| u32 cons = RING_CMP(cpr->cp_raw_cons); |
| |
| cpr->event_ctr++; |
| prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); |
| napi_schedule(&bnapi->napi); |
| return IRQ_HANDLED; |
| } |
| |
| static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) |
| { |
| u32 raw_cons = cpr->cp_raw_cons; |
| u16 cons = RING_CMP(raw_cons); |
| struct tx_cmp *txcmp; |
| |
| txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; |
| |
| return TX_CMP_VALID(txcmp, raw_cons); |
| } |
| |
| static irqreturn_t bnxt_inta(int irq, void *dev_instance) |
| { |
| struct bnxt_napi *bnapi = dev_instance; |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| u32 cons = RING_CMP(cpr->cp_raw_cons); |
| u32 int_status; |
| |
| prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); |
| |
| if (!bnxt_has_work(bp, cpr)) { |
| int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); |
| /* return if erroneous interrupt */ |
| if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) |
| return IRQ_NONE; |
| } |
| |
| /* disable ring IRQ */ |
| BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); |
| |
| /* Return here if interrupt is shared and is disabled. */ |
| if (unlikely(atomic_read(&bp->intr_sem) != 0)) |
| return IRQ_HANDLED; |
| |
| napi_schedule(&bnapi->napi); |
| return IRQ_HANDLED; |
| } |
| |
| static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, |
| int budget) |
| { |
| struct bnxt_napi *bnapi = cpr->bnapi; |
| u32 raw_cons = cpr->cp_raw_cons; |
| u32 cons; |
| int tx_pkts = 0; |
| int rx_pkts = 0; |
| u8 event = 0; |
| struct tx_cmp *txcmp; |
| |
| cpr->has_more_work = 0; |
| cpr->had_work_done = 1; |
| while (1) { |
| int rc; |
| |
| cons = RING_CMP(raw_cons); |
| txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; |
| |
| if (!TX_CMP_VALID(txcmp, raw_cons)) |
| break; |
| |
| /* The valid test of the entry must be done first before |
| * reading any further. |
| */ |
| dma_rmb(); |
| if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { |
| tx_pkts++; |
| /* return full budget so NAPI will complete. */ |
| if (unlikely(tx_pkts >= bp->tx_wake_thresh)) { |
| rx_pkts = budget; |
| raw_cons = NEXT_RAW_CMP(raw_cons); |
| if (budget) |
| cpr->has_more_work = 1; |
| break; |
| } |
| } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { |
| if (likely(budget)) |
| rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); |
| else |
| rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, |
| &event); |
| if (likely(rc >= 0)) |
| rx_pkts += rc; |
| /* Increment rx_pkts when rc is -ENOMEM to count towards |
| * the NAPI budget. Otherwise, we may potentially loop |
| * here forever if we consistently cannot allocate |
| * buffers. |
| */ |
| else if (rc == -ENOMEM && budget) |
| rx_pkts++; |
| else if (rc == -EBUSY) /* partial completion */ |
| break; |
| } else if (unlikely((TX_CMP_TYPE(txcmp) == |
| CMPL_BASE_TYPE_HWRM_DONE) || |
| (TX_CMP_TYPE(txcmp) == |
| CMPL_BASE_TYPE_HWRM_FWD_REQ) || |
| (TX_CMP_TYPE(txcmp) == |
| CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { |
| bnxt_hwrm_handler(bp, txcmp); |
| } |
| raw_cons = NEXT_RAW_CMP(raw_cons); |
| |
| if (rx_pkts && rx_pkts == budget) { |
| cpr->has_more_work = 1; |
| break; |
| } |
| } |
| |
| if (event & BNXT_REDIRECT_EVENT) |
| xdp_do_flush(); |
| |
| if (event & BNXT_TX_EVENT) { |
| struct bnxt_tx_ring_info *txr = bnapi->tx_ring; |
| u16 prod = txr->tx_prod; |
| |
| /* Sync BD data before updating doorbell */ |
| wmb(); |
| |
| bnxt_db_write_relaxed(bp, &txr->tx_db, prod); |
| } |
| |
| cpr->cp_raw_cons = raw_cons; |
| bnapi->tx_pkts += tx_pkts; |
| bnapi->events |= event; |
| return rx_pkts; |
| } |
| |
| static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) |
| { |
| if (bnapi->tx_pkts) { |
| bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); |
| bnapi->tx_pkts = 0; |
| } |
| |
| if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| |
| bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); |
| } |
| if (bnapi->events & BNXT_AGG_EVENT) { |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| |
| bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); |
| } |
| bnapi->events = 0; |
| } |
| |
| static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, |
| int budget) |
| { |
| struct bnxt_napi *bnapi = cpr->bnapi; |
| int rx_pkts; |
| |
| rx_pkts = __bnxt_poll_work(bp, cpr, budget); |
| |
| /* ACK completion ring before freeing tx ring and producing new |
| * buffers in rx/agg rings to prevent overflowing the completion |
| * ring. |
| */ |
| bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); |
| |
| __bnxt_poll_work_done(bp, bnapi); |
| return rx_pkts; |
| } |
| |
| static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) |
| { |
| struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| struct tx_cmp *txcmp; |
| struct rx_cmp_ext *rxcmp1; |
| u32 cp_cons, tmp_raw_cons; |
| u32 raw_cons = cpr->cp_raw_cons; |
| u32 rx_pkts = 0; |
| u8 event = 0; |
| |
| while (1) { |
| int rc; |
| |
| cp_cons = RING_CMP(raw_cons); |
| txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| if (!TX_CMP_VALID(txcmp, raw_cons)) |
| break; |
| |
| /* The valid test of the entry must be done first before |
| * reading any further. |
| */ |
| dma_rmb(); |
| if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { |
| tmp_raw_cons = NEXT_RAW_CMP(raw_cons); |
| cp_cons = RING_CMP(tmp_raw_cons); |
| rxcmp1 = (struct rx_cmp_ext *) |
| &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; |
| |
| if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) |
| break; |
| |
| /* force an error to recycle the buffer */ |
| rxcmp1->rx_cmp_cfa_code_errors_v2 |= |
| cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); |
| |
| rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); |
| if (likely(rc == -EIO) && budget) |
| rx_pkts++; |
| else if (rc == -EBUSY) /* partial completion */ |
| break; |
| } else if (unlikely(TX_CMP_TYPE(txcmp) == |
| CMPL_BASE_TYPE_HWRM_DONE)) { |
| bnxt_hwrm_handler(bp, txcmp); |
| } else { |
| netdev_err(bp->dev, |
| "Invalid completion received on special ring\n"); |
| } |
| raw_cons = NEXT_RAW_CMP(raw_cons); |
| |
| if (rx_pkts == budget) |
| break; |
| } |
| |
| cpr->cp_raw_cons = raw_cons; |
| BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); |
| bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); |
| |
| if (event & BNXT_AGG_EVENT) |
| bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); |
| |
| if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { |
| napi_complete_done(napi, rx_pkts); |
| BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); |
| } |
| return rx_pkts; |
| } |
| |
| static int bnxt_poll(struct napi_struct *napi, int budget) |
| { |
| struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); |
| struct bnxt *bp = bnapi->bp; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| int work_done = 0; |
| |
| if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { |
| napi_complete(napi); |
| return 0; |
| } |
| while (1) { |
| work_done += bnxt_poll_work(bp, cpr, budget - work_done); |
| |
| if (work_done >= budget) { |
| if (!budget) |
| BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); |
| break; |
| } |
| |
| if (!bnxt_has_work(bp, cpr)) { |
| if (napi_complete_done(napi, work_done)) |
| BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); |
| break; |
| } |
| } |
| if (bp->flags & BNXT_FLAG_DIM) { |
| struct dim_sample dim_sample = {}; |
| |
| dim_update_sample(cpr->event_ctr, |
| cpr->rx_packets, |
| cpr->rx_bytes, |
| &dim_sample); |
| net_dim(&cpr->dim, dim_sample); |
| } |
| return work_done; |
| } |
| |
| static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) |
| { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| int i, work_done = 0; |
| |
| for (i = 0; i < 2; i++) { |
| struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; |
| |
| if (cpr2) { |
| work_done += __bnxt_poll_work(bp, cpr2, |
| budget - work_done); |
| cpr->has_more_work |= cpr2->has_more_work; |
| } |
| } |
| return work_done; |
| } |
| |
| static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, |
| u64 dbr_type) |
| { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; |
| struct bnxt_db_info *db; |
| |
| if (cpr2 && cpr2->had_work_done) { |
| db = &cpr2->cp_db; |
| bnxt_writeq(bp, db->db_key64 | dbr_type | |
| RING_CMP(cpr2->cp_raw_cons), db->doorbell); |
| cpr2->had_work_done = 0; |
| } |
| } |
| __bnxt_poll_work_done(bp, bnapi); |
| } |
| |
| static int bnxt_poll_p5(struct napi_struct *napi, int budget) |
| { |
| struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_cp_ring_info *cpr_rx; |
| u32 raw_cons = cpr->cp_raw_cons; |
| struct bnxt *bp = bnapi->bp; |
| struct nqe_cn *nqcmp; |
| int work_done = 0; |
| u32 cons; |
| |
| if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { |
| napi_complete(napi); |
| return 0; |
| } |
| if (cpr->has_more_work) { |
| cpr->has_more_work = 0; |
| work_done = __bnxt_poll_cqs(bp, bnapi, budget); |
| } |
| while (1) { |
| cons = RING_CMP(raw_cons); |
| nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; |
| |
| if (!NQ_CMP_VALID(nqcmp, raw_cons)) { |
| if (cpr->has_more_work) |
| break; |
| |
| __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); |
| cpr->cp_raw_cons = raw_cons; |
| if (napi_complete_done(napi, work_done)) |
| BNXT_DB_NQ_ARM_P5(&cpr->cp_db, |
| cpr->cp_raw_cons); |
| goto poll_done; |
| } |
| |
| /* The valid test of the entry must be done first before |
| * reading any further. |
| */ |
| dma_rmb(); |
| |
| if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { |
| u32 idx = le32_to_cpu(nqcmp->cq_handle_low); |
| struct bnxt_cp_ring_info *cpr2; |
| |
| /* No more budget for RX work */ |
| if (budget && work_done >= budget && idx == BNXT_RX_HDL) |
| break; |
| |
| cpr2 = cpr->cp_ring_arr[idx]; |
| work_done += __bnxt_poll_work(bp, cpr2, |
| budget - work_done); |
| cpr->has_more_work |= cpr2->has_more_work; |
| } else { |
| bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); |
| } |
| raw_cons = NEXT_RAW_CMP(raw_cons); |
| } |
| __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); |
| if (raw_cons != cpr->cp_raw_cons) { |
| cpr->cp_raw_cons = raw_cons; |
| BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); |
| } |
| poll_done: |
| cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL]; |
| if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) { |
| struct dim_sample dim_sample = {}; |
| |
| dim_update_sample(cpr->event_ctr, |
| cpr_rx->rx_packets, |
| cpr_rx->rx_bytes, |
| &dim_sample); |
| net_dim(&cpr->dim, dim_sample); |
| } |
| return work_done; |
| } |
| |
| static void bnxt_free_tx_skbs(struct bnxt *bp) |
| { |
| int i, max_idx; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (!bp->tx_ring) |
| return; |
| |
| max_idx = bp->tx_nr_pages * TX_DESC_CNT; |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| int j; |
| |
| if (!txr->tx_buf_ring) |
| continue; |
| |
| for (j = 0; j < max_idx;) { |
| struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; |
| struct sk_buff *skb; |
| int k, last; |
| |
| if (i < bp->tx_nr_rings_xdp && |
| tx_buf->action == XDP_REDIRECT) { |
| dma_unmap_single(&pdev->dev, |
| dma_unmap_addr(tx_buf, mapping), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| xdp_return_frame(tx_buf->xdpf); |
| tx_buf->action = 0; |
| tx_buf->xdpf = NULL; |
| j++; |
| continue; |
| } |
| |
| skb = tx_buf->skb; |
| if (!skb) { |
| j++; |
| continue; |
| } |
| |
| tx_buf->skb = NULL; |
| |
| if (tx_buf->is_push) { |
| dev_kfree_skb(skb); |
| j += 2; |
| continue; |
| } |
| |
| dma_unmap_single(&pdev->dev, |
| dma_unmap_addr(tx_buf, mapping), |
| skb_headlen(skb), |
| DMA_TO_DEVICE); |
| |
| last = tx_buf->nr_frags; |
| j += 2; |
| for (k = 0; k < last; k++, j++) { |
| int ring_idx = j & bp->tx_ring_mask; |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; |
| |
| tx_buf = &txr->tx_buf_ring[ring_idx]; |
| dma_unmap_page( |
| &pdev->dev, |
| dma_unmap_addr(tx_buf, mapping), |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| } |
| dev_kfree_skb(skb); |
| } |
| netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); |
| } |
| } |
| |
| static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) |
| { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; |
| struct pci_dev *pdev = bp->pdev; |
| struct bnxt_tpa_idx_map *map; |
| int i, max_idx, max_agg_idx; |
| |
| max_idx = bp->rx_nr_pages * RX_DESC_CNT; |
| max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; |
| if (!rxr->rx_tpa) |
| goto skip_rx_tpa_free; |
| |
| for (i = 0; i < bp->max_tpa; i++) { |
| struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; |
| u8 *data = tpa_info->data; |
| |
| if (!data) |
| continue; |
| |
| dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, |
| bp->rx_buf_use_size, bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| |
| tpa_info->data = NULL; |
| |
| skb_free_frag(data); |
| } |
| |
| skip_rx_tpa_free: |
| if (!rxr->rx_buf_ring) |
| goto skip_rx_buf_free; |
| |
| for (i = 0; i < max_idx; i++) { |
| struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; |
| dma_addr_t mapping = rx_buf->mapping; |
| void *data = rx_buf->data; |
| |
| if (!data) |
| continue; |
| |
| rx_buf->data = NULL; |
| if (BNXT_RX_PAGE_MODE(bp)) { |
| mapping -= bp->rx_dma_offset; |
| dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, |
| bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| page_pool_recycle_direct(rxr->page_pool, data); |
| } else { |
| dma_unmap_single_attrs(&pdev->dev, mapping, |
| bp->rx_buf_use_size, bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| skb_free_frag(data); |
| } |
| } |
| |
| skip_rx_buf_free: |
| if (!rxr->rx_agg_ring) |
| goto skip_rx_agg_free; |
| |
| for (i = 0; i < max_agg_idx; i++) { |
| struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; |
| struct page *page = rx_agg_buf->page; |
| |
| if (!page) |
| continue; |
| |
| if (BNXT_RX_PAGE_MODE(bp)) { |
| dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, |
| BNXT_RX_PAGE_SIZE, bp->rx_dir, |
| DMA_ATTR_WEAK_ORDERING); |
| rx_agg_buf->page = NULL; |
| __clear_bit(i, rxr->rx_agg_bmap); |
| |
| page_pool_recycle_direct(rxr->page_pool, page); |
| } else { |
| dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, |
| BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, |
| DMA_ATTR_WEAK_ORDERING); |
| rx_agg_buf->page = NULL; |
| __clear_bit(i, rxr->rx_agg_bmap); |
| |
| __free_page(page); |
| } |
| } |
| |
| skip_rx_agg_free: |
| if (rxr->rx_page) { |
| __free_page(rxr->rx_page); |
| rxr->rx_page = NULL; |
| } |
| map = rxr->rx_tpa_idx_map; |
| if (map) |
| memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); |
| } |
| |
| static void bnxt_free_rx_skbs(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->rx_ring) |
| return; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) |
| bnxt_free_one_rx_ring_skbs(bp, i); |
| } |
| |
| static void bnxt_free_skbs(struct bnxt *bp) |
| { |
| bnxt_free_tx_skbs(bp); |
| bnxt_free_rx_skbs(bp); |
| } |
| |
| static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) |
| { |
| u8 init_val = mem_init->init_val; |
| u16 offset = mem_init->offset; |
| u8 *p2 = p; |
| int i; |
| |
| if (!init_val) |
| return; |
| if (offset == BNXT_MEM_INVALID_OFFSET) { |
| memset(p, init_val, len); |
| return; |
| } |
| for (i = 0; i < len; i += mem_init->size) |
| *(p2 + i + offset) = init_val; |
| } |
| |
| static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| int i; |
| |
| if (!rmem->pg_arr) |
| goto skip_pages; |
| |
| for (i = 0; i < rmem->nr_pages; i++) { |
| if (!rmem->pg_arr[i]) |
| continue; |
| |
| dma_free_coherent(&pdev->dev, rmem->page_size, |
| rmem->pg_arr[i], rmem->dma_arr[i]); |
| |
| rmem->pg_arr[i] = NULL; |
| } |
| skip_pages: |
| if (rmem->pg_tbl) { |
| size_t pg_tbl_size = rmem->nr_pages * 8; |
| |
| if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) |
| pg_tbl_size = rmem->page_size; |
| dma_free_coherent(&pdev->dev, pg_tbl_size, |
| rmem->pg_tbl, rmem->pg_tbl_map); |
| rmem->pg_tbl = NULL; |
| } |
| if (rmem->vmem_size && *rmem->vmem) { |
| vfree(*rmem->vmem); |
| *rmem->vmem = NULL; |
| } |
| } |
| |
| static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| u64 valid_bit = 0; |
| int i; |
| |
| if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) |
| valid_bit = PTU_PTE_VALID; |
| if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { |
| size_t pg_tbl_size = rmem->nr_pages * 8; |
| |
| if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) |
| pg_tbl_size = rmem->page_size; |
| rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, |
| &rmem->pg_tbl_map, |
| GFP_KERNEL); |
| if (!rmem->pg_tbl) |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < rmem->nr_pages; i++) { |
| u64 extra_bits = valid_bit; |
| |
| rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, |
| rmem->page_size, |
| &rmem->dma_arr[i], |
| GFP_KERNEL); |
| if (!rmem->pg_arr[i]) |
| return -ENOMEM; |
| |
| if (rmem->mem_init) |
| bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], |
| rmem->page_size); |
| if (rmem->nr_pages > 1 || rmem->depth > 0) { |
| if (i == rmem->nr_pages - 2 && |
| (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) |
| extra_bits |= PTU_PTE_NEXT_TO_LAST; |
| else if (i == rmem->nr_pages - 1 && |
| (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) |
| extra_bits |= PTU_PTE_LAST; |
| rmem->pg_tbl[i] = |
| cpu_to_le64(rmem->dma_arr[i] | extra_bits); |
| } |
| } |
| |
| if (rmem->vmem_size) { |
| *rmem->vmem = vzalloc(rmem->vmem_size); |
| if (!(*rmem->vmem)) |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_tpa_info(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| |
| kfree(rxr->rx_tpa_idx_map); |
| rxr->rx_tpa_idx_map = NULL; |
| if (rxr->rx_tpa) { |
| kfree(rxr->rx_tpa[0].agg_arr); |
| rxr->rx_tpa[0].agg_arr = NULL; |
| } |
| kfree(rxr->rx_tpa); |
| rxr->rx_tpa = NULL; |
| } |
| } |
| |
| static int bnxt_alloc_tpa_info(struct bnxt *bp) |
| { |
| int i, j, total_aggs = 0; |
| |
| bp->max_tpa = MAX_TPA; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| if (!bp->max_tpa_v2) |
| return 0; |
| bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); |
| total_aggs = bp->max_tpa * MAX_SKB_FRAGS; |
| } |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct rx_agg_cmp *agg; |
| |
| rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), |
| GFP_KERNEL); |
| if (!rxr->rx_tpa) |
| return -ENOMEM; |
| |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| continue; |
| agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); |
| rxr->rx_tpa[0].agg_arr = agg; |
| if (!agg) |
| return -ENOMEM; |
| for (j = 1; j < bp->max_tpa; j++) |
| rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; |
| rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), |
| GFP_KERNEL); |
| if (!rxr->rx_tpa_idx_map) |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_rx_rings(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->rx_ring) |
| return; |
| |
| bnxt_free_tpa_info(bp); |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| |
| if (rxr->xdp_prog) |
| bpf_prog_put(rxr->xdp_prog); |
| |
| if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) |
| xdp_rxq_info_unreg(&rxr->xdp_rxq); |
| |
| page_pool_destroy(rxr->page_pool); |
| rxr->page_pool = NULL; |
| |
| kfree(rxr->rx_agg_bmap); |
| rxr->rx_agg_bmap = NULL; |
| |
| ring = &rxr->rx_ring_struct; |
| bnxt_free_ring(bp, &ring->ring_mem); |
| |
| ring = &rxr->rx_agg_ring_struct; |
| bnxt_free_ring(bp, &ring->ring_mem); |
| } |
| } |
| |
| static int bnxt_alloc_rx_page_pool(struct bnxt *bp, |
| struct bnxt_rx_ring_info *rxr) |
| { |
| struct page_pool_params pp = { 0 }; |
| |
| pp.pool_size = bp->rx_ring_size; |
| pp.nid = dev_to_node(&bp->pdev->dev); |
| pp.dev = &bp->pdev->dev; |
| pp.dma_dir = DMA_BIDIRECTIONAL; |
| |
| rxr->page_pool = page_pool_create(&pp); |
| if (IS_ERR(rxr->page_pool)) { |
| int err = PTR_ERR(rxr->page_pool); |
| |
| rxr->page_pool = NULL; |
| return err; |
| } |
| return 0; |
| } |
| |
| static int bnxt_alloc_rx_rings(struct bnxt *bp) |
| { |
| int i, rc = 0, agg_rings = 0; |
| |
| if (!bp->rx_ring) |
| return -ENOMEM; |
| |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| agg_rings = 1; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| |
| ring = &rxr->rx_ring_struct; |
| |
| rc = bnxt_alloc_rx_page_pool(bp, rxr); |
| if (rc) |
| return rc; |
| |
| rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); |
| if (rc < 0) |
| return rc; |
| |
| rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, |
| MEM_TYPE_PAGE_POOL, |
| rxr->page_pool); |
| if (rc) { |
| xdp_rxq_info_unreg(&rxr->xdp_rxq); |
| return rc; |
| } |
| |
| rc = bnxt_alloc_ring(bp, &ring->ring_mem); |
| if (rc) |
| return rc; |
| |
| ring->grp_idx = i; |
| if (agg_rings) { |
| u16 mem_size; |
| |
| ring = &rxr->rx_agg_ring_struct; |
| rc = bnxt_alloc_ring(bp, &ring->ring_mem); |
| if (rc) |
| return rc; |
| |
| ring->grp_idx = i; |
| rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; |
| mem_size = rxr->rx_agg_bmap_size / 8; |
| rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); |
| if (!rxr->rx_agg_bmap) |
| return -ENOMEM; |
| } |
| } |
| if (bp->flags & BNXT_FLAG_TPA) |
| rc = bnxt_alloc_tpa_info(bp); |
| return rc; |
| } |
| |
| static void bnxt_free_tx_rings(struct bnxt *bp) |
| { |
| int i; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (!bp->tx_ring) |
| return; |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| |
| if (txr->tx_push) { |
| dma_free_coherent(&pdev->dev, bp->tx_push_size, |
| txr->tx_push, txr->tx_push_mapping); |
| txr->tx_push = NULL; |
| } |
| |
| ring = &txr->tx_ring_struct; |
| |
| bnxt_free_ring(bp, &ring->ring_mem); |
| } |
| } |
| |
| static int bnxt_alloc_tx_rings(struct bnxt *bp) |
| { |
| int i, j, rc; |
| struct pci_dev *pdev = bp->pdev; |
| |
| bp->tx_push_size = 0; |
| if (bp->tx_push_thresh) { |
| int push_size; |
| |
| push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + |
| bp->tx_push_thresh); |
| |
| if (push_size > 256) { |
| push_size = 0; |
| bp->tx_push_thresh = 0; |
| } |
| |
| bp->tx_push_size = push_size; |
| } |
| |
| for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| u8 qidx; |
| |
| ring = &txr->tx_ring_struct; |
| |
| rc = bnxt_alloc_ring(bp, &ring->ring_mem); |
| if (rc) |
| return rc; |
| |
| ring->grp_idx = txr->bnapi->index; |
| if (bp->tx_push_size) { |
| dma_addr_t mapping; |
| |
| /* One pre-allocated DMA buffer to backup |
| * TX push operation |
| */ |
| txr->tx_push = dma_alloc_coherent(&pdev->dev, |
| bp->tx_push_size, |
| &txr->tx_push_mapping, |
| GFP_KERNEL); |
| |
| if (!txr->tx_push) |
| return -ENOMEM; |
| |
| mapping = txr->tx_push_mapping + |
| sizeof(struct tx_push_bd); |
| txr->data_mapping = cpu_to_le64(mapping); |
| } |
| qidx = bp->tc_to_qidx[j]; |
| ring->queue_id = bp->q_info[qidx].queue_id; |
| spin_lock_init(&txr->xdp_tx_lock); |
| if (i < bp->tx_nr_rings_xdp) |
| continue; |
| if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) |
| j++; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) |
| { |
| struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; |
| |
| kfree(cpr->cp_desc_ring); |
| cpr->cp_desc_ring = NULL; |
| ring->ring_mem.pg_arr = NULL; |
| kfree(cpr->cp_desc_mapping); |
| cpr->cp_desc_mapping = NULL; |
| ring->ring_mem.dma_arr = NULL; |
| } |
| |
| static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) |
| { |
| cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); |
| if (!cpr->cp_desc_ring) |
| return -ENOMEM; |
| cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), |
| GFP_KERNEL); |
| if (!cpr->cp_desc_mapping) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void bnxt_free_all_cp_arrays(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| |
| if (!bnapi) |
| continue; |
| bnxt_free_cp_arrays(&bnapi->cp_ring); |
| } |
| } |
| |
| static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) |
| { |
| int i, n = bp->cp_nr_pages; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| int rc; |
| |
| if (!bnapi) |
| continue; |
| rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); |
| if (rc) |
| return rc; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_cp_rings(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_ring_struct *ring; |
| int j; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| ring = &cpr->cp_ring_struct; |
| |
| bnxt_free_ring(bp, &ring->ring_mem); |
| |
| for (j = 0; j < 2; j++) { |
| struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; |
| |
| if (cpr2) { |
| ring = &cpr2->cp_ring_struct; |
| bnxt_free_ring(bp, &ring->ring_mem); |
| bnxt_free_cp_arrays(cpr2); |
| kfree(cpr2); |
| cpr->cp_ring_arr[j] = NULL; |
| } |
| } |
| } |
| } |
| |
| static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) |
| { |
| struct bnxt_ring_mem_info *rmem; |
| struct bnxt_ring_struct *ring; |
| struct bnxt_cp_ring_info *cpr; |
| int rc; |
| |
| cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); |
| if (!cpr) |
| return NULL; |
| |
| rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); |
| if (rc) { |
| bnxt_free_cp_arrays(cpr); |
| kfree(cpr); |
| return NULL; |
| } |
| ring = &cpr->cp_ring_struct; |
| rmem = &ring->ring_mem; |
| rmem->nr_pages = bp->cp_nr_pages; |
| rmem->page_size = HW_CMPD_RING_SIZE; |
| rmem->pg_arr = (void **)cpr->cp_desc_ring; |
| rmem->dma_arr = cpr->cp_desc_mapping; |
| rmem->flags = BNXT_RMEM_RING_PTE_FLAG; |
| rc = bnxt_alloc_ring(bp, rmem); |
| if (rc) { |
| bnxt_free_ring(bp, rmem); |
| bnxt_free_cp_arrays(cpr); |
| kfree(cpr); |
| cpr = NULL; |
| } |
| return cpr; |
| } |
| |
| static int bnxt_alloc_cp_rings(struct bnxt *bp) |
| { |
| bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); |
| int i, rc, ulp_base_vec, ulp_msix; |
| |
| ulp_msix = bnxt_get_ulp_msix_num(bp); |
| ulp_base_vec = bnxt_get_ulp_msix_base(bp); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_ring_struct *ring; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| cpr->bnapi = bnapi; |
| ring = &cpr->cp_ring_struct; |
| |
| rc = bnxt_alloc_ring(bp, &ring->ring_mem); |
| if (rc) |
| return rc; |
| |
| if (ulp_msix && i >= ulp_base_vec) |
| ring->map_idx = i + ulp_msix; |
| else |
| ring->map_idx = i; |
| |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| continue; |
| |
| if (i < bp->rx_nr_rings) { |
| struct bnxt_cp_ring_info *cpr2 = |
| bnxt_alloc_cp_sub_ring(bp); |
| |
| cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; |
| if (!cpr2) |
| return -ENOMEM; |
| cpr2->bnapi = bnapi; |
| } |
| if ((sh && i < bp->tx_nr_rings) || |
| (!sh && i >= bp->rx_nr_rings)) { |
| struct bnxt_cp_ring_info *cpr2 = |
| bnxt_alloc_cp_sub_ring(bp); |
| |
| cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; |
| if (!cpr2) |
| return -ENOMEM; |
| cpr2->bnapi = bnapi; |
| } |
| } |
| return 0; |
| } |
| |
| static void bnxt_init_ring_struct(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_ring_mem_info *rmem; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_rx_ring_info *rxr; |
| struct bnxt_tx_ring_info *txr; |
| struct bnxt_ring_struct *ring; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| ring = &cpr->cp_ring_struct; |
| rmem = &ring->ring_mem; |
| rmem->nr_pages = bp->cp_nr_pages; |
| rmem->page_size = HW_CMPD_RING_SIZE; |
| rmem->pg_arr = (void **)cpr->cp_desc_ring; |
| rmem->dma_arr = cpr->cp_desc_mapping; |
| rmem->vmem_size = 0; |
| |
| rxr = bnapi->rx_ring; |
| if (!rxr) |
| goto skip_rx; |
| |
| ring = &rxr->rx_ring_struct; |
| rmem = &ring->ring_mem; |
| rmem->nr_pages = bp->rx_nr_pages; |
| rmem->page_size = HW_RXBD_RING_SIZE; |
| rmem->pg_arr = (void **)rxr->rx_desc_ring; |
| rmem->dma_arr = rxr->rx_desc_mapping; |
| rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; |
| rmem->vmem = (void **)&rxr->rx_buf_ring; |
| |
| ring = &rxr->rx_agg_ring_struct; |
| rmem = &ring->ring_mem; |
| rmem->nr_pages = bp->rx_agg_nr_pages; |
| rmem->page_size = HW_RXBD_RING_SIZE; |
| rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; |
| rmem->dma_arr = rxr->rx_agg_desc_mapping; |
| rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; |
| rmem->vmem = (void **)&rxr->rx_agg_ring; |
| |
| skip_rx: |
| txr = bnapi->tx_ring; |
| if (!txr) |
| continue; |
| |
| ring = &txr->tx_ring_struct; |
| rmem = &ring->ring_mem; |
| rmem->nr_pages = bp->tx_nr_pages; |
| rmem->page_size = HW_RXBD_RING_SIZE; |
| rmem->pg_arr = (void **)txr->tx_desc_ring; |
| rmem->dma_arr = txr->tx_desc_mapping; |
| rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; |
| rmem->vmem = (void **)&txr->tx_buf_ring; |
| } |
| } |
| |
| static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) |
| { |
| int i; |
| u32 prod; |
| struct rx_bd **rx_buf_ring; |
| |
| rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; |
| for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { |
| int j; |
| struct rx_bd *rxbd; |
| |
| rxbd = rx_buf_ring[i]; |
| if (!rxbd) |
| continue; |
| |
| for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { |
| rxbd->rx_bd_len_flags_type = cpu_to_le32(type); |
| rxbd->rx_bd_opaque = prod; |
| } |
| } |
| } |
| |
| static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) |
| { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; |
| struct net_device *dev = bp->dev; |
| u32 prod; |
| int i; |
| |
| prod = rxr->rx_prod; |
| for (i = 0; i < bp->rx_ring_size; i++) { |
| if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { |
| netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", |
| ring_nr, i, bp->rx_ring_size); |
| break; |
| } |
| prod = NEXT_RX(prod); |
| } |
| rxr->rx_prod = prod; |
| |
| if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) |
| return 0; |
| |
| prod = rxr->rx_agg_prod; |
| for (i = 0; i < bp->rx_agg_ring_size; i++) { |
| if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { |
| netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", |
| ring_nr, i, bp->rx_ring_size); |
| break; |
| } |
| prod = NEXT_RX_AGG(prod); |
| } |
| rxr->rx_agg_prod = prod; |
| |
| if (rxr->rx_tpa) { |
| dma_addr_t mapping; |
| u8 *data; |
| |
| for (i = 0; i < bp->max_tpa; i++) { |
| data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| rxr->rx_tpa[i].data = data; |
| rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; |
| rxr->rx_tpa[i].mapping = mapping; |
| } |
| } |
| return 0; |
| } |
| |
| static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) |
| { |
| struct bnxt_rx_ring_info *rxr; |
| struct bnxt_ring_struct *ring; |
| u32 type; |
| |
| type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | |
| RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; |
| |
| if (NET_IP_ALIGN == 2) |
| type |= RX_BD_FLAGS_SOP; |
| |
| rxr = &bp->rx_ring[ring_nr]; |
| ring = &rxr->rx_ring_struct; |
| bnxt_init_rxbd_pages(ring, type); |
| |
| if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { |
| bpf_prog_add(bp->xdp_prog, 1); |
| rxr->xdp_prog = bp->xdp_prog; |
| } |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| |
| ring = &rxr->rx_agg_ring_struct; |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| |
| if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { |
| type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | |
| RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; |
| |
| bnxt_init_rxbd_pages(ring, type); |
| } |
| |
| return bnxt_alloc_one_rx_ring(bp, ring_nr); |
| } |
| |
| static void bnxt_init_cp_rings(struct bnxt *bp) |
| { |
| int i, j; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; |
| struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; |
| |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; |
| cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; |
| for (j = 0; j < 2; j++) { |
| struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; |
| |
| if (!cpr2) |
| continue; |
| |
| ring = &cpr2->cp_ring_struct; |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; |
| cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; |
| } |
| } |
| } |
| |
| static int bnxt_init_rx_rings(struct bnxt *bp) |
| { |
| int i, rc = 0; |
| |
| if (BNXT_RX_PAGE_MODE(bp)) { |
| bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; |
| bp->rx_dma_offset = XDP_PACKET_HEADROOM; |
| } else { |
| bp->rx_offset = BNXT_RX_OFFSET; |
| bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; |
| } |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| rc = bnxt_init_one_rx_ring(bp, i); |
| if (rc) |
| break; |
| } |
| |
| return rc; |
| } |
| |
| static int bnxt_init_tx_rings(struct bnxt *bp) |
| { |
| u16 i; |
| |
| bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, |
| BNXT_MIN_TX_DESC_CNT); |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring = &txr->tx_ring_struct; |
| |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| } |
| |
| return 0; |
| } |
| |
| static void bnxt_free_ring_grps(struct bnxt *bp) |
| { |
| kfree(bp->grp_info); |
| bp->grp_info = NULL; |
| } |
| |
| static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) |
| { |
| int i; |
| |
| if (irq_re_init) { |
| bp->grp_info = kcalloc(bp->cp_nr_rings, |
| sizeof(struct bnxt_ring_grp_info), |
| GFP_KERNEL); |
| if (!bp->grp_info) |
| return -ENOMEM; |
| } |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| if (irq_re_init) |
| bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; |
| bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; |
| bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_vnics(struct bnxt *bp) |
| { |
| kfree(bp->vnic_info); |
| bp->vnic_info = NULL; |
| bp->nr_vnics = 0; |
| } |
| |
| static int bnxt_alloc_vnics(struct bnxt *bp) |
| { |
| int num_vnics = 1; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) |
| num_vnics += bp->rx_nr_rings; |
| #endif |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| num_vnics++; |
| |
| bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), |
| GFP_KERNEL); |
| if (!bp->vnic_info) |
| return -ENOMEM; |
| |
| bp->nr_vnics = num_vnics; |
| return 0; |
| } |
| |
| static void bnxt_init_vnics(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->nr_vnics; i++) { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; |
| int j; |
| |
| vnic->fw_vnic_id = INVALID_HW_RING_ID; |
| for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) |
| vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; |
| |
| vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; |
| |
| if (bp->vnic_info[i].rss_hash_key) { |
| if (i == 0) |
| prandom_bytes(vnic->rss_hash_key, |
| HW_HASH_KEY_SIZE); |
| else |
| memcpy(vnic->rss_hash_key, |
| bp->vnic_info[0].rss_hash_key, |
| HW_HASH_KEY_SIZE); |
| } |
| } |
| } |
| |
| static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) |
| { |
| int pages; |
| |
| pages = ring_size / desc_per_pg; |
| |
| if (!pages) |
| return 1; |
| |
| pages++; |
| |
| while (pages & (pages - 1)) |
| pages++; |
| |
| return pages; |
| } |
| |
| void bnxt_set_tpa_flags(struct bnxt *bp) |
| { |
| bp->flags &= ~BNXT_FLAG_TPA; |
| if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) |
| return; |
| if (bp->dev->features & NETIF_F_LRO) |
| bp->flags |= BNXT_FLAG_LRO; |
| else if (bp->dev->features & NETIF_F_GRO_HW) |
| bp->flags |= BNXT_FLAG_GRO; |
| } |
| |
| /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must |
| * be set on entry. |
| */ |
| void bnxt_set_ring_params(struct bnxt *bp) |
| { |
| u32 ring_size, rx_size, rx_space, max_rx_cmpl; |
| u32 agg_factor = 0, agg_ring_size = 0; |
| |
| /* 8 for CRC and VLAN */ |
| rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); |
| |
| rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| |
| bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; |
| ring_size = bp->rx_ring_size; |
| bp->rx_agg_ring_size = 0; |
| bp->rx_agg_nr_pages = 0; |
| |
| if (bp->flags & BNXT_FLAG_TPA) |
| agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); |
| |
| bp->flags &= ~BNXT_FLAG_JUMBO; |
| if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { |
| u32 jumbo_factor; |
| |
| bp->flags |= BNXT_FLAG_JUMBO; |
| jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; |
| if (jumbo_factor > agg_factor) |
| agg_factor = jumbo_factor; |
| } |
| if (agg_factor) { |
| if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { |
| ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; |
| netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", |
| bp->rx_ring_size, ring_size); |
| bp->rx_ring_size = ring_size; |
| } |
| agg_ring_size = ring_size * agg_factor; |
| |
| bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, |
| RX_DESC_CNT); |
| if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { |
| u32 tmp = agg_ring_size; |
| |
| bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; |
| agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; |
| netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", |
| tmp, agg_ring_size); |
| } |
| bp->rx_agg_ring_size = agg_ring_size; |
| bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; |
| |
| if (BNXT_RX_PAGE_MODE(bp)) { |
| rx_space = BNXT_PAGE_MODE_BUF_SIZE; |
| rx_size = BNXT_MAX_PAGE_MODE_MTU; |
| } else { |
| rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); |
| rx_space = rx_size + NET_SKB_PAD + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| } |
| } |
| |
| bp->rx_buf_use_size = rx_size; |
| bp->rx_buf_size = rx_space; |
| |
| bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); |
| bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; |
| |
| ring_size = bp->tx_ring_size; |
| bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); |
| bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; |
| |
| max_rx_cmpl = bp->rx_ring_size; |
| /* MAX TPA needs to be added because TPA_START completions are |
| * immediately recycled, so the TPA completions are not bound by |
| * the RX ring size. |
| */ |
| if (bp->flags & BNXT_FLAG_TPA) |
| max_rx_cmpl += bp->max_tpa; |
| /* RX and TPA completions are 32-byte, all others are 16-byte */ |
| ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; |
| bp->cp_ring_size = ring_size; |
| |
| bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); |
| if (bp->cp_nr_pages > MAX_CP_PAGES) { |
| bp->cp_nr_pages = MAX_CP_PAGES; |
| bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; |
| netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", |
| ring_size, bp->cp_ring_size); |
| } |
| bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; |
| bp->cp_ring_mask = bp->cp_bit - 1; |
| } |
| |
| /* Changing allocation mode of RX rings. |
| * TODO: Update when extending xdp_rxq_info to support allocation modes. |
| */ |
| int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) |
| { |
| if (page_mode) { |
| bp->flags &= ~BNXT_FLAG_AGG_RINGS; |
| bp->flags |= BNXT_FLAG_RX_PAGE_MODE; |
| |
| if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { |
| bp->flags |= BNXT_FLAG_JUMBO; |
| bp->rx_skb_func = bnxt_rx_multi_page_skb; |
| bp->dev->max_mtu = |
| min_t(u16, bp->max_mtu, BNXT_MAX_MTU); |
| } else { |
| bp->flags |= BNXT_FLAG_NO_AGG_RINGS; |
| bp->rx_skb_func = bnxt_rx_page_skb; |
| bp->dev->max_mtu = |
| min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); |
| } |
| bp->rx_dir = DMA_BIDIRECTIONAL; |
| /* Disable LRO or GRO_HW */ |
| netdev_update_features(bp->dev); |
| } else { |
| bp->dev->max_mtu = bp->max_mtu; |
| bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; |
| bp->rx_dir = DMA_FROM_DEVICE; |
| bp->rx_skb_func = bnxt_rx_skb; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_vnic_attributes(struct bnxt *bp) |
| { |
| int i; |
| struct bnxt_vnic_info *vnic; |
| struct pci_dev *pdev = bp->pdev; |
| |
| if (!bp->vnic_info) |
| return; |
| |
| for (i = 0; i < bp->nr_vnics; i++) { |
| vnic = &bp->vnic_info[i]; |
| |
| kfree(vnic->fw_grp_ids); |
| vnic->fw_grp_ids = NULL; |
| |
| kfree(vnic->uc_list); |
| vnic->uc_list = NULL; |
| |
| if (vnic->mc_list) { |
| dma_free_coherent(&pdev->dev, vnic->mc_list_size, |
| vnic->mc_list, vnic->mc_list_mapping); |
| vnic->mc_list = NULL; |
| } |
| |
| if (vnic->rss_table) { |
| dma_free_coherent(&pdev->dev, vnic->rss_table_size, |
| vnic->rss_table, |
| vnic->rss_table_dma_addr); |
| vnic->rss_table = NULL; |
| } |
| |
| vnic->rss_hash_key = NULL; |
| vnic->flags = 0; |
| } |
| } |
| |
| static int bnxt_alloc_vnic_attributes(struct bnxt *bp) |
| { |
| int i, rc = 0, size; |
| struct bnxt_vnic_info *vnic; |
| struct pci_dev *pdev = bp->pdev; |
| int max_rings; |
| |
| for (i = 0; i < bp->nr_vnics; i++) { |
| vnic = &bp->vnic_info[i]; |
| |
| if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { |
| int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; |
| |
| if (mem_size > 0) { |
| vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); |
| if (!vnic->uc_list) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| } |
| } |
| |
| if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { |
| vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; |
| vnic->mc_list = |
| dma_alloc_coherent(&pdev->dev, |
| vnic->mc_list_size, |
| &vnic->mc_list_mapping, |
| GFP_KERNEL); |
| if (!vnic->mc_list) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| } |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| goto vnic_skip_grps; |
| |
| if (vnic->flags & BNXT_VNIC_RSS_FLAG) |
| max_rings = bp->rx_nr_rings; |
| else |
| max_rings = 1; |
| |
| vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); |
| if (!vnic->fw_grp_ids) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| vnic_skip_grps: |
| if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && |
| !(vnic->flags & BNXT_VNIC_RSS_FLAG)) |
| continue; |
| |
| /* Allocate rss table and hash key */ |
| size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); |
| |
| vnic->rss_table_size = size + HW_HASH_KEY_SIZE; |
| vnic->rss_table = dma_alloc_coherent(&pdev->dev, |
| vnic->rss_table_size, |
| &vnic->rss_table_dma_addr, |
| GFP_KERNEL); |
| if (!vnic->rss_table) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| vnic->rss_hash_key = ((void *)vnic->rss_table) + size; |
| vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; |
| } |
| return 0; |
| |
| out: |
| return rc; |
| } |
| |
| static void bnxt_free_hwrm_resources(struct bnxt *bp) |
| { |
| struct bnxt_hwrm_wait_token *token; |
| |
| dma_pool_destroy(bp->hwrm_dma_pool); |
| bp->hwrm_dma_pool = NULL; |
| |
| rcu_read_lock(); |
| hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) |
| WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); |
| rcu_read_unlock(); |
| } |
| |
| static int bnxt_alloc_hwrm_resources(struct bnxt *bp) |
| { |
| bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, |
| BNXT_HWRM_DMA_SIZE, |
| BNXT_HWRM_DMA_ALIGN, 0); |
| if (!bp->hwrm_dma_pool) |
| return -ENOMEM; |
| |
| INIT_HLIST_HEAD(&bp->hwrm_pending_list); |
| |
| return 0; |
| } |
| |
| static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) |
| { |
| kfree(stats->hw_masks); |
| stats->hw_masks = NULL; |
| kfree(stats->sw_stats); |
| stats->sw_stats = NULL; |
| if (stats->hw_stats) { |
| dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, |
| stats->hw_stats_map); |
| stats->hw_stats = NULL; |
| } |
| } |
| |
| static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, |
| bool alloc_masks) |
| { |
| stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, |
| &stats->hw_stats_map, GFP_KERNEL); |
| if (!stats->hw_stats) |
| return -ENOMEM; |
| |
| stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); |
| if (!stats->sw_stats) |
| goto stats_mem_err; |
| |
| if (alloc_masks) { |
| stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); |
| if (!stats->hw_masks) |
| goto stats_mem_err; |
| } |
| return 0; |
| |
| stats_mem_err: |
| bnxt_free_stats_mem(bp, stats); |
| return -ENOMEM; |
| } |
| |
| static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) |
| mask_arr[i] = mask; |
| } |
| |
| static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) |
| mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); |
| } |
| |
| static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, |
| struct bnxt_stats_mem *stats) |
| { |
| struct hwrm_func_qstats_ext_output *resp; |
| struct hwrm_func_qstats_ext_input *req; |
| __le64 *hw_masks; |
| int rc; |
| |
| if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || |
| !(bp->flags & BNXT_FLAG_CHIP_P5)) |
| return -EOPNOTSUPP; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(0xffff); |
| req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) { |
| hw_masks = &resp->rx_ucast_pkts; |
| bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); |
| } |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); |
| static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); |
| |
| static void bnxt_init_stats(struct bnxt *bp) |
| { |
| struct bnxt_napi *bnapi = bp->bnapi[0]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_stats_mem *stats; |
| __le64 *rx_stats, *tx_stats; |
| int rc, rx_count, tx_count; |
| u64 *rx_masks, *tx_masks; |
| u64 mask; |
| u8 flags; |
| |
| cpr = &bnapi->cp_ring; |
| stats = &cpr->stats; |
| rc = bnxt_hwrm_func_qstat_ext(bp, stats); |
| if (rc) { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| mask = (1ULL << 48) - 1; |
| else |
| mask = -1ULL; |
| bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); |
| } |
| if (bp->flags & BNXT_FLAG_PORT_STATS) { |
| stats = &bp->port_stats; |
| rx_stats = stats->hw_stats; |
| rx_masks = stats->hw_masks; |
| rx_count = sizeof(struct rx_port_stats) / 8; |
| tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; |
| tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; |
| tx_count = sizeof(struct tx_port_stats) / 8; |
| |
| flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; |
| rc = bnxt_hwrm_port_qstats(bp, flags); |
| if (rc) { |
| mask = (1ULL << 40) - 1; |
| |
| bnxt_fill_masks(rx_masks, mask, rx_count); |
| bnxt_fill_masks(tx_masks, mask, tx_count); |
| } else { |
| bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); |
| bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); |
| bnxt_hwrm_port_qstats(bp, 0); |
| } |
| } |
| if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { |
| stats = &bp->rx_port_stats_ext; |
| rx_stats = stats->hw_stats; |
| rx_masks = stats->hw_masks; |
| rx_count = sizeof(struct rx_port_stats_ext) / 8; |
| stats = &bp->tx_port_stats_ext; |
| tx_stats = stats->hw_stats; |
| tx_masks = stats->hw_masks; |
| tx_count = sizeof(struct tx_port_stats_ext) / 8; |
| |
| flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; |
| rc = bnxt_hwrm_port_qstats_ext(bp, flags); |
| if (rc) { |
| mask = (1ULL << 40) - 1; |
| |
| bnxt_fill_masks(rx_masks, mask, rx_count); |
| if (tx_stats) |
| bnxt_fill_masks(tx_masks, mask, tx_count); |
| } else { |
| bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); |
| if (tx_stats) |
| bnxt_copy_hw_masks(tx_masks, tx_stats, |
| tx_count); |
| bnxt_hwrm_port_qstats_ext(bp, 0); |
| } |
| } |
| } |
| |
| static void bnxt_free_port_stats(struct bnxt *bp) |
| { |
| bp->flags &= ~BNXT_FLAG_PORT_STATS; |
| bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; |
| |
| bnxt_free_stats_mem(bp, &bp->port_stats); |
| bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); |
| bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); |
| } |
| |
| static void bnxt_free_ring_stats(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| bnxt_free_stats_mem(bp, &cpr->stats); |
| } |
| } |
| |
| static int bnxt_alloc_stats(struct bnxt *bp) |
| { |
| u32 size, i; |
| int rc; |
| |
| size = bp->hw_ring_stats_size; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| cpr->stats.len = size; |
| rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); |
| if (rc) |
| return rc; |
| |
| cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; |
| } |
| |
| if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) |
| return 0; |
| |
| if (bp->port_stats.hw_stats) |
| goto alloc_ext_stats; |
| |
| bp->port_stats.len = BNXT_PORT_STATS_SIZE; |
| rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); |
| if (rc) |
| return rc; |
| |
| bp->flags |= BNXT_FLAG_PORT_STATS; |
| |
| alloc_ext_stats: |
| /* Display extended statistics only if FW supports it */ |
| if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) |
| if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) |
| return 0; |
| |
| if (bp->rx_port_stats_ext.hw_stats) |
| goto alloc_tx_ext_stats; |
| |
| bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); |
| rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); |
| /* Extended stats are optional */ |
| if (rc) |
| return 0; |
| |
| alloc_tx_ext_stats: |
| if (bp->tx_port_stats_ext.hw_stats) |
| return 0; |
| |
| if (bp->hwrm_spec_code >= 0x10902 || |
| (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { |
| bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); |
| rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); |
| /* Extended stats are optional */ |
| if (rc) |
| return 0; |
| } |
| bp->flags |= BNXT_FLAG_PORT_STATS_EXT; |
| return 0; |
| } |
| |
| static void bnxt_clear_ring_indices(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_rx_ring_info *rxr; |
| struct bnxt_tx_ring_info *txr; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| cpr->cp_raw_cons = 0; |
| |
| txr = bnapi->tx_ring; |
| if (txr) { |
| txr->tx_prod = 0; |
| txr->tx_cons = 0; |
| } |
| |
| rxr = bnapi->rx_ring; |
| if (rxr) { |
| rxr->rx_prod = 0; |
| rxr->rx_agg_prod = 0; |
| rxr->rx_sw_agg_prod = 0; |
| rxr->rx_next_cons = 0; |
| } |
| } |
| } |
| |
| static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| int i; |
| |
| /* Under rtnl_lock and all our NAPIs have been disabled. It's |
| * safe to delete the hash table. |
| */ |
| for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { |
| struct hlist_head *head; |
| struct hlist_node *tmp; |
| struct bnxt_ntuple_filter *fltr; |
| |
| head = &bp->ntp_fltr_hash_tbl[i]; |
| hlist_for_each_entry_safe(fltr, tmp, head, hash) { |
| hlist_del(&fltr->hash); |
| kfree(fltr); |
| } |
| } |
| if (irq_reinit) { |
| kfree(bp->ntp_fltr_bmap); |
| bp->ntp_fltr_bmap = NULL; |
| } |
| bp->ntp_fltr_count = 0; |
| #endif |
| } |
| |
| static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| int i, rc = 0; |
| |
| if (!(bp->flags & BNXT_FLAG_RFS)) |
| return 0; |
| |
| for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) |
| INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); |
| |
| bp->ntp_fltr_count = 0; |
| bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), |
| sizeof(long), |
| GFP_KERNEL); |
| |
| if (!bp->ntp_fltr_bmap) |
| rc = -ENOMEM; |
| |
| return rc; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) |
| { |
| bnxt_free_vnic_attributes(bp); |
| bnxt_free_tx_rings(bp); |
| bnxt_free_rx_rings(bp); |
| bnxt_free_cp_rings(bp); |
| bnxt_free_all_cp_arrays(bp); |
| bnxt_free_ntp_fltrs(bp, irq_re_init); |
| if (irq_re_init) { |
| bnxt_free_ring_stats(bp); |
| if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || |
| test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) |
| bnxt_free_port_stats(bp); |
| bnxt_free_ring_grps(bp); |
| bnxt_free_vnics(bp); |
| kfree(bp->tx_ring_map); |
| bp->tx_ring_map = NULL; |
| kfree(bp->tx_ring); |
| bp->tx_ring = NULL; |
| kfree(bp->rx_ring); |
| bp->rx_ring = NULL; |
| kfree(bp->bnapi); |
| bp->bnapi = NULL; |
| } else { |
| bnxt_clear_ring_indices(bp); |
| } |
| } |
| |
| static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) |
| { |
| int i, j, rc, size, arr_size; |
| void *bnapi; |
| |
| if (irq_re_init) { |
| /* Allocate bnapi mem pointer array and mem block for |
| * all queues |
| */ |
| arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * |
| bp->cp_nr_rings); |
| size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); |
| bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); |
| if (!bnapi) |
| return -ENOMEM; |
| |
| bp->bnapi = bnapi; |
| bnapi += arr_size; |
| for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { |
| bp->bnapi[i] = bnapi; |
| bp->bnapi[i]->index = i; |
| bp->bnapi[i]->bp = bp; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| struct bnxt_cp_ring_info *cpr = |
| &bp->bnapi[i]->cp_ring; |
| |
| cpr->cp_ring_struct.ring_mem.flags = |
| BNXT_RMEM_RING_PTE_FLAG; |
| } |
| } |
| |
| bp->rx_ring = kcalloc(bp->rx_nr_rings, |
| sizeof(struct bnxt_rx_ring_info), |
| GFP_KERNEL); |
| if (!bp->rx_ring) |
| return -ENOMEM; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| rxr->rx_ring_struct.ring_mem.flags = |
| BNXT_RMEM_RING_PTE_FLAG; |
| rxr->rx_agg_ring_struct.ring_mem.flags = |
| BNXT_RMEM_RING_PTE_FLAG; |
| } |
| rxr->bnapi = bp->bnapi[i]; |
| bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; |
| } |
| |
| bp->tx_ring = kcalloc(bp->tx_nr_rings, |
| sizeof(struct bnxt_tx_ring_info), |
| GFP_KERNEL); |
| if (!bp->tx_ring) |
| return -ENOMEM; |
| |
| bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), |
| GFP_KERNEL); |
| |
| if (!bp->tx_ring_map) |
| return -ENOMEM; |
| |
| if (bp->flags & BNXT_FLAG_SHARED_RINGS) |
| j = 0; |
| else |
| j = bp->rx_nr_rings; |
| |
| for (i = 0; i < bp->tx_nr_rings; i++, j++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| txr->tx_ring_struct.ring_mem.flags = |
| BNXT_RMEM_RING_PTE_FLAG; |
| txr->bnapi = bp->bnapi[j]; |
| bp->bnapi[j]->tx_ring = txr; |
| bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; |
| if (i >= bp->tx_nr_rings_xdp) { |
| txr->txq_index = i - bp->tx_nr_rings_xdp; |
| bp->bnapi[j]->tx_int = bnxt_tx_int; |
| } else { |
| bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; |
| bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; |
| } |
| } |
| |
| rc = bnxt_alloc_stats(bp); |
| if (rc) |
| goto alloc_mem_err; |
| bnxt_init_stats(bp); |
| |
| rc = bnxt_alloc_ntp_fltrs(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| rc = bnxt_alloc_vnics(bp); |
| if (rc) |
| goto alloc_mem_err; |
| } |
| |
| rc = bnxt_alloc_all_cp_arrays(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| bnxt_init_ring_struct(bp); |
| |
| rc = bnxt_alloc_rx_rings(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| rc = bnxt_alloc_tx_rings(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| rc = bnxt_alloc_cp_rings(bp); |
| if (rc) |
| goto alloc_mem_err; |
| |
| bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | |
| BNXT_VNIC_UCAST_FLAG; |
| rc = bnxt_alloc_vnic_attributes(bp); |
| if (rc) |
| goto alloc_mem_err; |
| return 0; |
| |
| alloc_mem_err: |
| bnxt_free_mem(bp, true); |
| return rc; |
| } |
| |
| static void bnxt_disable_int(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; |
| |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) |
| bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); |
| } |
| } |
| |
| static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) |
| { |
| struct bnxt_napi *bnapi = bp->bnapi[n]; |
| struct bnxt_cp_ring_info *cpr; |
| |
| cpr = &bnapi->cp_ring; |
| return cpr->cp_ring_struct.map_idx; |
| } |
| |
| static void bnxt_disable_int_sync(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->irq_tbl) |
| return; |
| |
| atomic_inc(&bp->intr_sem); |
| |
| bnxt_disable_int(bp); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| int map_idx = bnxt_cp_num_to_irq_num(bp, i); |
| |
| synchronize_irq(bp->irq_tbl[map_idx].vector); |
| } |
| } |
| |
| static void bnxt_enable_int(struct bnxt *bp) |
| { |
| int i; |
| |
| atomic_set(&bp->intr_sem, 0); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); |
| } |
| } |
| |
| int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, |
| bool async_only) |
| { |
| DECLARE_BITMAP(async_events_bmap, 256); |
| u32 *events = (u32 *)async_events_bmap; |
| struct hwrm_func_drv_rgtr_output *resp; |
| struct hwrm_func_drv_rgtr_input *req; |
| u32 flags; |
| int rc, i; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); |
| if (rc) |
| return rc; |
| |
| req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | |
| FUNC_DRV_RGTR_REQ_ENABLES_VER | |
| FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); |
| |
| req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); |
| flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; |
| if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) |
| flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; |
| if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) |
| flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | |
| FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; |
| req->flags = cpu_to_le32(flags); |
| req->ver_maj_8b = DRV_VER_MAJ; |
| req->ver_min_8b = DRV_VER_MIN; |
| req->ver_upd_8b = DRV_VER_UPD; |
| req->ver_maj = cpu_to_le16(DRV_VER_MAJ); |
| req->ver_min = cpu_to_le16(DRV_VER_MIN); |
| req->ver_upd = cpu_to_le16(DRV_VER_UPD); |
| |
| if (BNXT_PF(bp)) { |
| u32 data[8]; |
| int i; |
| |
| memset(data, 0, sizeof(data)); |
| for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { |
| u16 cmd = bnxt_vf_req_snif[i]; |
| unsigned int bit, idx; |
| |
| idx = cmd / 32; |
| bit = cmd % 32; |
| data[idx] |= 1 << bit; |
| } |
| |
| for (i = 0; i < 8; i++) |
| req->vf_req_fwd[i] = cpu_to_le32(data[i]); |
| |
| req->enables |= |
| cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); |
| } |
| |
| if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) |
| req->flags |= cpu_to_le32( |
| FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); |
| |
| memset(async_events_bmap, 0, sizeof(async_events_bmap)); |
| for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { |
| u16 event_id = bnxt_async_events_arr[i]; |
| |
| if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && |
| !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) |
| continue; |
| __set_bit(bnxt_async_events_arr[i], async_events_bmap); |
| } |
| if (bmap && bmap_size) { |
| for (i = 0; i < bmap_size; i++) { |
| if (test_bit(i, bmap)) |
| __set_bit(i, async_events_bmap); |
| } |
| } |
| for (i = 0; i < 8; i++) |
| req->async_event_fwd[i] |= cpu_to_le32(events[i]); |
| |
| if (async_only) |
| req->enables = |
| cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) { |
| set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); |
| if (resp->flags & |
| cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) |
| bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; |
| } |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) |
| { |
| struct hwrm_func_drv_unrgtr_input *req; |
| int rc; |
| |
| if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); |
| if (rc) |
| return rc; |
| return hwrm_req_send(bp, req); |
| } |
| |
| static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) |
| { |
| struct hwrm_tunnel_dst_port_free_input *req; |
| int rc; |
| |
| if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && |
| bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) |
| return 0; |
| if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && |
| bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); |
| if (rc) |
| return rc; |
| |
| req->tunnel_type = tunnel_type; |
| |
| switch (tunnel_type) { |
| case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: |
| req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); |
| bp->vxlan_port = 0; |
| bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; |
| break; |
| case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: |
| req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); |
| bp->nge_port = 0; |
| bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; |
| break; |
| default: |
| break; |
| } |
| |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", |
| rc); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, |
| u8 tunnel_type) |
| { |
| struct hwrm_tunnel_dst_port_alloc_output *resp; |
| struct hwrm_tunnel_dst_port_alloc_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); |
| if (rc) |
| return rc; |
| |
| req->tunnel_type = tunnel_type; |
| req->tunnel_dst_port_val = port; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", |
| rc); |
| goto err_out; |
| } |
| |
| switch (tunnel_type) { |
| case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: |
| bp->vxlan_port = port; |
| bp->vxlan_fw_dst_port_id = |
| le16_to_cpu(resp->tunnel_dst_port_id); |
| break; |
| case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: |
| bp->nge_port = port; |
| bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); |
| break; |
| default: |
| break; |
| } |
| |
| err_out: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) |
| { |
| struct hwrm_cfa_l2_set_rx_mask_input *req; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); |
| if (rc) |
| return rc; |
| |
| req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); |
| if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { |
| req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); |
| req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); |
| } |
| req->mask = cpu_to_le32(vnic->rx_mask); |
| return hwrm_req_send_silent(bp, req); |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, |
| struct bnxt_ntuple_filter *fltr) |
| { |
| struct hwrm_cfa_ntuple_filter_free_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); |
| if (rc) |
| return rc; |
| |
| req->ntuple_filter_id = fltr->filter_id; |
| return hwrm_req_send(bp, req); |
| } |
| |
| #define BNXT_NTP_FLTR_FLAGS \ |
| (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) |
| |
| #define BNXT_NTP_TUNNEL_FLTR_FLAG \ |
| CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE |
| |
| static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, |
| struct bnxt_ntuple_filter *fltr) |
| { |
| struct hwrm_cfa_ntuple_filter_alloc_output *resp; |
| struct hwrm_cfa_ntuple_filter_alloc_input *req; |
| struct flow_keys *keys = &fltr->fkeys; |
| struct bnxt_vnic_info *vnic; |
| u32 flags = 0; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); |
| if (rc) |
| return rc; |
| |
| req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; |
| |
| if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { |
| flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; |
| req->dst_id = cpu_to_le16(fltr->rxq); |
| } else { |
| vnic = &bp->vnic_info[fltr->rxq + 1]; |
| req->dst_id = cpu_to_le16(vnic->fw_vnic_id); |
| } |
| req->flags = cpu_to_le32(flags); |
| req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); |
| |
| req->ethertype = htons(ETH_P_IP); |
| memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); |
| req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; |
| req->ip_protocol = keys->basic.ip_proto; |
| |
| if (keys->basic.n_proto == htons(ETH_P_IPV6)) { |
| int i; |
| |
| req->ethertype = htons(ETH_P_IPV6); |
| req->ip_addr_type = |
| CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; |
| *(struct in6_addr *)&req->src_ipaddr[0] = |
| keys->addrs.v6addrs.src; |
| *(struct in6_addr *)&req->dst_ipaddr[0] = |
| keys->addrs.v6addrs.dst; |
| for (i = 0; i < 4; i++) { |
| req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); |
| req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); |
| } |
| } else { |
| req->src_ipaddr[0] = keys->addrs.v4addrs.src; |
| req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); |
| req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; |
| req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); |
| } |
| if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { |
| req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); |
| req->tunnel_type = |
| CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; |
| } |
| |
| req->src_port = keys->ports.src; |
| req->src_port_mask = cpu_to_be16(0xffff); |
| req->dst_port = keys->ports.dst; |
| req->dst_port_mask = cpu_to_be16(0xffff); |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) |
| fltr->filter_id = resp->ntuple_filter_id; |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| #endif |
| |
| static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, |
| const u8 *mac_addr) |
| { |
| struct hwrm_cfa_l2_filter_alloc_output *resp; |
| struct hwrm_cfa_l2_filter_alloc_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); |
| if (rc) |
| return rc; |
| |
| req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); |
| if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| req->flags |= |
| cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); |
| req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); |
| req->enables = |
| cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | |
| CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | |
| CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); |
| memcpy(req->l2_addr, mac_addr, ETH_ALEN); |
| req->l2_addr_mask[0] = 0xff; |
| req->l2_addr_mask[1] = 0xff; |
| req->l2_addr_mask[2] = 0xff; |
| req->l2_addr_mask[3] = 0xff; |
| req->l2_addr_mask[4] = 0xff; |
| req->l2_addr_mask[5] = 0xff; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) |
| bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = |
| resp->l2_filter_id; |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) |
| { |
| struct hwrm_cfa_l2_filter_free_input *req; |
| u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ |
| int rc; |
| |
| /* Any associated ntuple filters will also be cleared by firmware. */ |
| rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); |
| if (rc) |
| return rc; |
| hwrm_req_hold(bp, req); |
| for (i = 0; i < num_of_vnics; i++) { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; |
| |
| for (j = 0; j < vnic->uc_filter_count; j++) { |
| req->l2_filter_id = vnic->fw_l2_filter_id[j]; |
| |
| rc = hwrm_req_send(bp, req); |
| } |
| vnic->uc_filter_count = 0; |
| } |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; |
| struct hwrm_vnic_tpa_cfg_input *req; |
| int rc; |
| |
| if (vnic->fw_vnic_id == INVALID_HW_RING_ID) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); |
| if (rc) |
| return rc; |
| |
| if (tpa_flags) { |
| u16 mss = bp->dev->mtu - 40; |
| u32 nsegs, n, segs = 0, flags; |
| |
| flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | |
| VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | |
| VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | |
| VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | |
| VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; |
| if (tpa_flags & BNXT_FLAG_GRO) |
| flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; |
| |
| req->flags = cpu_to_le32(flags); |
| |
| req->enables = |
| cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | |
| VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | |
| VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); |
| |
| /* Number of segs are log2 units, and first packet is not |
| * included as part of this units. |
| */ |
| if (mss <= BNXT_RX_PAGE_SIZE) { |
| n = BNXT_RX_PAGE_SIZE / mss; |
| nsegs = (MAX_SKB_FRAGS - 1) * n; |
| } else { |
| n = mss / BNXT_RX_PAGE_SIZE; |
| if (mss & (BNXT_RX_PAGE_SIZE - 1)) |
| n++; |
| nsegs = (MAX_SKB_FRAGS - n) / n; |
| } |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| segs = MAX_TPA_SEGS_P5; |
| max_aggs = bp->max_tpa; |
| } else { |
| segs = ilog2(nsegs); |
| } |
| req->max_agg_segs = cpu_to_le16(segs); |
| req->max_aggs = cpu_to_le16(max_aggs); |
| |
| req->min_agg_len = cpu_to_le32(512); |
| } |
| req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); |
| |
| return hwrm_req_send(bp, req); |
| } |
| |
| static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) |
| { |
| struct bnxt_ring_grp_info *grp_info; |
| |
| grp_info = &bp->grp_info[ring->grp_idx]; |
| return grp_info->cp_fw_ring_id; |
| } |
| |
| static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| struct bnxt_napi *bnapi = rxr->bnapi; |
| struct bnxt_cp_ring_info *cpr; |
| |
| cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; |
| return cpr->cp_ring_struct.fw_ring_id; |
| } else { |
| return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); |
| } |
| } |
| |
| static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| struct bnxt_napi *bnapi = txr->bnapi; |
| struct bnxt_cp_ring_info *cpr; |
| |
| cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; |
| return cpr->cp_ring_struct.fw_ring_id; |
| } else { |
| return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); |
| } |
| } |
| |
| static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) |
| { |
| int entries; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; |
| else |
| entries = HW_HASH_INDEX_SIZE; |
| |
| bp->rss_indir_tbl_entries = entries; |
| bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), |
| GFP_KERNEL); |
| if (!bp->rss_indir_tbl) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) |
| { |
| u16 max_rings, max_entries, pad, i; |
| |
| if (!bp->rx_nr_rings) |
| return; |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| max_rings = bp->rx_nr_rings - 1; |
| else |
| max_rings = bp->rx_nr_rings; |
| |
| max_entries = bnxt_get_rxfh_indir_size(bp->dev); |
| |
| for (i = 0; i < max_entries; i++) |
| bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); |
| |
| pad = bp->rss_indir_tbl_entries - max_entries; |
| if (pad) |
| memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); |
| } |
| |
| static u16 bnxt_get_max_rss_ring(struct bnxt *bp) |
| { |
| u16 i, tbl_size, max_ring = 0; |
| |
| if (!bp->rss_indir_tbl) |
| return 0; |
| |
| tbl_size = bnxt_get_rxfh_indir_size(bp->dev); |
| for (i = 0; i < tbl_size; i++) |
| max_ring = max(max_ring, bp->rss_indir_tbl[i]); |
| return max_ring; |
| } |
| |
| int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| return 2; |
| return 1; |
| } |
| |
| static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) |
| { |
| bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); |
| u16 i, j; |
| |
| /* Fill the RSS indirection table with ring group ids */ |
| for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { |
| if (!no_rss) |
| j = bp->rss_indir_tbl[i]; |
| vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); |
| } |
| } |
| |
| static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, |
| struct bnxt_vnic_info *vnic) |
| { |
| __le16 *ring_tbl = vnic->rss_table; |
| struct bnxt_rx_ring_info *rxr; |
| u16 tbl_size, i; |
| |
| tbl_size = bnxt_get_rxfh_indir_size(bp->dev); |
| |
| for (i = 0; i < tbl_size; i++) { |
| u16 ring_id, j; |
| |
| j = bp->rss_indir_tbl[i]; |
| rxr = &bp->rx_ring[j]; |
| |
| ring_id = rxr->rx_ring_struct.fw_ring_id; |
| *ring_tbl++ = cpu_to_le16(ring_id); |
| ring_id = bnxt_cp_ring_for_rx(bp, rxr); |
| *ring_tbl++ = cpu_to_le16(ring_id); |
| } |
| } |
| |
| static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| __bnxt_fill_hw_rss_tbl_p5(bp, vnic); |
| else |
| __bnxt_fill_hw_rss_tbl(bp, vnic); |
| } |
| |
| static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_rss_cfg_input *req; |
| int rc; |
| |
| if ((bp->flags & BNXT_FLAG_CHIP_P5) || |
| vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); |
| if (rc) |
| return rc; |
| |
| if (set_rss) { |
| bnxt_fill_hw_rss_tbl(bp, vnic); |
| req->hash_type = cpu_to_le32(bp->rss_hash_cfg); |
| req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; |
| req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); |
| req->hash_key_tbl_addr = |
| cpu_to_le64(vnic->rss_hash_key_dma_addr); |
| } |
| req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); |
| return hwrm_req_send(bp, req); |
| } |
| |
| static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_rss_cfg_input *req; |
| dma_addr_t ring_tbl_map; |
| u32 i, nr_ctxs; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); |
| if (rc) |
| return rc; |
| |
| req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); |
| if (!set_rss) |
| return hwrm_req_send(bp, req); |
| |
| bnxt_fill_hw_rss_tbl(bp, vnic); |
| req->hash_type = cpu_to_le32(bp->rss_hash_cfg); |
| req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; |
| req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); |
| ring_tbl_map = vnic->rss_table_dma_addr; |
| nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); |
| |
| hwrm_req_hold(bp, req); |
| for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { |
| req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); |
| req->ring_table_pair_index = i; |
| req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto exit; |
| } |
| |
| exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_plcmodes_cfg_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); |
| if (rc) |
| return rc; |
| |
| req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); |
| req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); |
| |
| if (BNXT_RX_PAGE_MODE(bp) && !BNXT_RX_JUMBO_MODE(bp)) { |
| req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | |
| VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); |
| req->enables |= |
| cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); |
| } |
| /* thresholds not implemented in firmware yet */ |
| req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); |
| req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); |
| req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); |
| return hwrm_req_send(bp, req); |
| } |
| |
| static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, |
| u16 ctx_idx) |
| { |
| struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; |
| |
| if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) |
| return; |
| |
| req->rss_cos_lb_ctx_id = |
| cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); |
| |
| hwrm_req_send(bp, req); |
| bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; |
| } |
| |
| static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) |
| { |
| int i, j; |
| |
| for (i = 0; i < bp->nr_vnics; i++) { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; |
| |
| for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { |
| if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) |
| bnxt_hwrm_vnic_ctx_free_one(bp, i, j); |
| } |
| } |
| bp->rsscos_nr_ctxs = 0; |
| } |
| |
| static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) |
| { |
| struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; |
| struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) |
| bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = |
| le16_to_cpu(resp->rss_cos_lb_ctx_id); |
| hwrm_req_drop(bp, req); |
| |
| return rc; |
| } |
| |
| static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) |
| { |
| if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) |
| return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; |
| return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; |
| } |
| |
| int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_cfg_input *req; |
| unsigned int ring = 0, grp_idx; |
| u16 def_vlan = 0; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); |
| if (rc) |
| return rc; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; |
| |
| req->default_rx_ring_id = |
| cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); |
| req->default_cmpl_ring_id = |
| cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); |
| req->enables = |
| cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | |
| VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); |
| goto vnic_mru; |
| } |
| req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); |
| /* Only RSS support for now TBD: COS & LB */ |
| if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { |
| req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); |
| req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | |
| VNIC_CFG_REQ_ENABLES_MRU); |
| } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { |
| req->rss_rule = |
| cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); |
| req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | |
| VNIC_CFG_REQ_ENABLES_MRU); |
| req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); |
| } else { |
| req->rss_rule = cpu_to_le16(0xffff); |
| } |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp) && |
| (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { |
| req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); |
| req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); |
| } else { |
| req->cos_rule = cpu_to_le16(0xffff); |
| } |
| |
| if (vnic->flags & BNXT_VNIC_RSS_FLAG) |
| ring = 0; |
| else if (vnic->flags & BNXT_VNIC_RFS_FLAG) |
| ring = vnic_id - 1; |
| else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| ring = bp->rx_nr_rings - 1; |
| |
| grp_idx = bp->rx_ring[ring].bnapi->index; |
| req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); |
| req->lb_rule = cpu_to_le16(0xffff); |
| vnic_mru: |
| req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); |
| |
| req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_VF(bp)) |
| def_vlan = bp->vf.vlan; |
| #endif |
| if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) |
| req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); |
| if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) |
| req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); |
| |
| return hwrm_req_send(bp, req); |
| } |
| |
| static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) |
| { |
| if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { |
| struct hwrm_vnic_free_input *req; |
| |
| if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) |
| return; |
| |
| req->vnic_id = |
| cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); |
| |
| hwrm_req_send(bp, req); |
| bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; |
| } |
| } |
| |
| static void bnxt_hwrm_vnic_free(struct bnxt *bp) |
| { |
| u16 i; |
| |
| for (i = 0; i < bp->nr_vnics; i++) |
| bnxt_hwrm_vnic_free_one(bp, i); |
| } |
| |
| static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, |
| unsigned int start_rx_ring_idx, |
| unsigned int nr_rings) |
| { |
| unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| struct hwrm_vnic_alloc_output *resp; |
| struct hwrm_vnic_alloc_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); |
| if (rc) |
| return rc; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| goto vnic_no_ring_grps; |
| |
| /* map ring groups to this vnic */ |
| for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { |
| grp_idx = bp->rx_ring[i].bnapi->index; |
| if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { |
| netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", |
| j, nr_rings); |
| break; |
| } |
| vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; |
| } |
| |
| vnic_no_ring_grps: |
| for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) |
| vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; |
| if (vnic_id == 0) |
| req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) |
| vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) |
| { |
| struct hwrm_vnic_qcaps_output *resp; |
| struct hwrm_vnic_qcaps_input *req; |
| int rc; |
| |
| bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); |
| bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); |
| if (bp->hwrm_spec_code < 0x10600) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) { |
| u32 flags = le32_to_cpu(resp->flags); |
| |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5) && |
| (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) |
| bp->flags |= BNXT_FLAG_NEW_RSS_CAP; |
| if (flags & |
| VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) |
| bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; |
| |
| /* Older P5 fw before EXT_HW_STATS support did not set |
| * VLAN_STRIP_CAP properly. |
| */ |
| if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || |
| (BNXT_CHIP_P5_THOR(bp) && |
| !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) |
| bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; |
| bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); |
| if (bp->max_tpa_v2) { |
| if (BNXT_CHIP_P5_THOR(bp)) |
| bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; |
| else |
| bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; |
| } |
| } |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) |
| { |
| struct hwrm_ring_grp_alloc_output *resp; |
| struct hwrm_ring_grp_alloc_input *req; |
| int rc; |
| u16 i; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| unsigned int grp_idx = bp->rx_ring[i].bnapi->index; |
| |
| req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); |
| req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); |
| req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); |
| req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); |
| |
| rc = hwrm_req_send(bp, req); |
| |
| if (rc) |
| break; |
| |
| bp->grp_info[grp_idx].fw_grp_id = |
| le32_to_cpu(resp->ring_group_id); |
| } |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) |
| { |
| struct hwrm_ring_grp_free_input *req; |
| u16 i; |
| |
| if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) |
| return; |
| |
| if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) |
| return; |
| |
| hwrm_req_hold(bp, req); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) |
| continue; |
| req->ring_group_id = |
| cpu_to_le32(bp->grp_info[i].fw_grp_id); |
| |
| hwrm_req_send(bp, req); |
| bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; |
| } |
| hwrm_req_drop(bp, req); |
| } |
| |
| static int hwrm_ring_alloc_send_msg(struct bnxt *bp, |
| struct bnxt_ring_struct *ring, |
| u32 ring_type, u32 map_index) |
| { |
| struct hwrm_ring_alloc_output *resp; |
| struct hwrm_ring_alloc_input *req; |
| struct bnxt_ring_mem_info *rmem = &ring->ring_mem; |
| struct bnxt_ring_grp_info *grp_info; |
| int rc, err = 0; |
| u16 ring_id; |
| |
| rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); |
| if (rc) |
| goto exit; |
| |
| req->enables = 0; |
| if (rmem->nr_pages > 1) { |
| req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); |
| /* Page size is in log2 units */ |
| req->page_size = BNXT_PAGE_SHIFT; |
| req->page_tbl_depth = 1; |
| } else { |
| req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); |
| } |
| req->fbo = 0; |
| /* Association of ring index with doorbell index and MSIX number */ |
| req->logical_id = cpu_to_le16(map_index); |
| |
| switch (ring_type) { |
| case HWRM_RING_ALLOC_TX: { |
| struct bnxt_tx_ring_info *txr; |
| |
| txr = container_of(ring, struct bnxt_tx_ring_info, |
| tx_ring_struct); |
| req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; |
| /* Association of transmit ring with completion ring */ |
| grp_info = &bp->grp_info[ring->grp_idx]; |
| req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); |
| req->length = cpu_to_le32(bp->tx_ring_mask + 1); |
| req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); |
| req->queue_id = cpu_to_le16(ring->queue_id); |
| break; |
| } |
| case HWRM_RING_ALLOC_RX: |
| req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; |
| req->length = cpu_to_le32(bp->rx_ring_mask + 1); |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| u16 flags = 0; |
| |
| /* Association of rx ring with stats context */ |
| grp_info = &bp->grp_info[ring->grp_idx]; |
| req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); |
| req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); |
| req->enables |= cpu_to_le32( |
| RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); |
| if (NET_IP_ALIGN == 2) |
| flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; |
| req->flags = cpu_to_le16(flags); |
| } |
| break; |
| case HWRM_RING_ALLOC_AGG: |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; |
| /* Association of agg ring with rx ring */ |
| grp_info = &bp->grp_info[ring->grp_idx]; |
| req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); |
| req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); |
| req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); |
| req->enables |= cpu_to_le32( |
| RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | |
| RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); |
| } else { |
| req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; |
| } |
| req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); |
| break; |
| case HWRM_RING_ALLOC_CMPL: |
| req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; |
| req->length = cpu_to_le32(bp->cp_ring_mask + 1); |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| /* Association of cp ring with nq */ |
| grp_info = &bp->grp_info[map_index]; |
| req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); |
| req->cq_handle = cpu_to_le64(ring->handle); |
| req->enables |= cpu_to_le32( |
| RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); |
| } else if (bp->flags & BNXT_FLAG_USING_MSIX) { |
| req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; |
| } |
| break; |
| case HWRM_RING_ALLOC_NQ: |
| req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; |
| req->length = cpu_to_le32(bp->cp_ring_mask + 1); |
| if (bp->flags & BNXT_FLAG_USING_MSIX) |
| req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; |
| break; |
| default: |
| netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", |
| ring_type); |
| return -1; |
| } |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| err = le16_to_cpu(resp->error_code); |
| ring_id = le16_to_cpu(resp->ring_id); |
| hwrm_req_drop(bp, req); |
| |
| exit: |
| if (rc || err) { |
| netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", |
| ring_type, rc, err); |
| return -EIO; |
| } |
| ring->fw_ring_id = ring_id; |
| return rc; |
| } |
| |
| static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) |
| { |
| int rc; |
| |
| if (BNXT_PF(bp)) { |
| struct hwrm_func_cfg_input *req; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(0xffff); |
| req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); |
| req->async_event_cr = cpu_to_le16(idx); |
| return hwrm_req_send(bp, req); |
| } else { |
| struct hwrm_func_vf_cfg_input *req; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); |
| if (rc) |
| return rc; |
| |
| req->enables = |
| cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); |
| req->async_event_cr = cpu_to_le16(idx); |
| return hwrm_req_send(bp, req); |
| } |
| } |
| |
| static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, |
| u32 map_idx, u32 xid) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| if (BNXT_PF(bp)) |
| db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; |
| else |
| db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; |
| switch (ring_type) { |
| case HWRM_RING_ALLOC_TX: |
| db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; |
| break; |
| case HWRM_RING_ALLOC_RX: |
| case HWRM_RING_ALLOC_AGG: |
| db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; |
| break; |
| case HWRM_RING_ALLOC_CMPL: |
| db->db_key64 = DBR_PATH_L2; |
| break; |
| case HWRM_RING_ALLOC_NQ: |
| db->db_key64 = DBR_PATH_L2; |
| break; |
| } |
| db->db_key64 |= (u64)xid << DBR_XID_SFT; |
| } else { |
| db->doorbell = bp->bar1 + map_idx * 0x80; |
| switch (ring_type) { |
| case HWRM_RING_ALLOC_TX: |
| db->db_key32 = DB_KEY_TX; |
| break; |
| case HWRM_RING_ALLOC_RX: |
| case HWRM_RING_ALLOC_AGG: |
| db->db_key32 = DB_KEY_RX; |
| break; |
| case HWRM_RING_ALLOC_CMPL: |
| db->db_key32 = DB_KEY_CP; |
| break; |
| } |
| } |
| } |
| |
| static int bnxt_hwrm_ring_alloc(struct bnxt *bp) |
| { |
| bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); |
| int i, rc = 0; |
| u32 type; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| type = HWRM_RING_ALLOC_NQ; |
| else |
| type = HWRM_RING_ALLOC_CMPL; |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; |
| u32 map_idx = ring->map_idx; |
| unsigned int vector; |
| |
| vector = bp->irq_tbl[map_idx].vector; |
| disable_irq_nosync(vector); |
| rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); |
| if (rc) { |
| enable_irq(vector); |
| goto err_out; |
| } |
| bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); |
| bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); |
| enable_irq(vector); |
| bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; |
| |
| if (!i) { |
| rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); |
| if (rc) |
| netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); |
| } |
| } |
| |
| type = HWRM_RING_ALLOC_TX; |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring; |
| u32 map_idx; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| struct bnxt_napi *bnapi = txr->bnapi; |
| struct bnxt_cp_ring_info *cpr, *cpr2; |
| u32 type2 = HWRM_RING_ALLOC_CMPL; |
| |
| cpr = &bnapi->cp_ring; |
| cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; |
| ring = &cpr2->cp_ring_struct; |
| ring->handle = BNXT_TX_HDL; |
| map_idx = bnapi->index; |
| rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); |
| if (rc) |
| goto err_out; |
| bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, |
| ring->fw_ring_id); |
| bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); |
| } |
| ring = &txr->tx_ring_struct; |
| map_idx = i; |
| rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); |
| if (rc) |
| goto err_out; |
| bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); |
| } |
| |
| type = HWRM_RING_ALLOC_RX; |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; |
| struct bnxt_napi *bnapi = rxr->bnapi; |
| u32 map_idx = bnapi->index; |
| |
| rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); |
| if (rc) |
| goto err_out; |
| bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); |
| /* If we have agg rings, post agg buffers first. */ |
| if (!agg_rings) |
| bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); |
| bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| u32 type2 = HWRM_RING_ALLOC_CMPL; |
| struct bnxt_cp_ring_info *cpr2; |
| |
| cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; |
| ring = &cpr2->cp_ring_struct; |
| ring->handle = BNXT_RX_HDL; |
| rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); |
| if (rc) |
| goto err_out; |
| bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, |
| ring->fw_ring_id); |
| bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); |
| } |
| } |
| |
| if (agg_rings) { |
| type = HWRM_RING_ALLOC_AGG; |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring = |
| &rxr->rx_agg_ring_struct; |
| u32 grp_idx = ring->grp_idx; |
| u32 map_idx = grp_idx + bp->rx_nr_rings; |
| |
| rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); |
| if (rc) |
| goto err_out; |
| |
| bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, |
| ring->fw_ring_id); |
| bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); |
| bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); |
| bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; |
| } |
| } |
| err_out: |
| return rc; |
| } |
| |
| static int hwrm_ring_free_send_msg(struct bnxt *bp, |
| struct bnxt_ring_struct *ring, |
| u32 ring_type, int cmpl_ring_id) |
| { |
| struct hwrm_ring_free_output *resp; |
| struct hwrm_ring_free_input *req; |
| u16 error_code = 0; |
| int rc; |
| |
| if (BNXT_NO_FW_ACCESS(bp)) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_RING_FREE); |
| if (rc) |
| goto exit; |
| |
| req->cmpl_ring = cpu_to_le16(cmpl_ring_id); |
| req->ring_type = ring_type; |
| req->ring_id = cpu_to_le16(ring->fw_ring_id); |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| error_code = le16_to_cpu(resp->error_code); |
| hwrm_req_drop(bp, req); |
| exit: |
| if (rc || error_code) { |
| netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", |
| ring_type, rc, error_code); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) |
| { |
| u32 type; |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; |
| struct bnxt_ring_struct *ring = &txr->tx_ring_struct; |
| |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) { |
| u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); |
| |
| hwrm_ring_free_send_msg(bp, ring, |
| RING_FREE_REQ_RING_TYPE_TX, |
| close_path ? cmpl_ring_id : |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| } |
| } |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; |
| u32 grp_idx = rxr->bnapi->index; |
| |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) { |
| u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); |
| |
| hwrm_ring_free_send_msg(bp, ring, |
| RING_FREE_REQ_RING_TYPE_RX, |
| close_path ? cmpl_ring_id : |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[grp_idx].rx_fw_ring_id = |
| INVALID_HW_RING_ID; |
| } |
| } |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| type = RING_FREE_REQ_RING_TYPE_RX_AGG; |
| else |
| type = RING_FREE_REQ_RING_TYPE_RX; |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; |
| u32 grp_idx = rxr->bnapi->index; |
| |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) { |
| u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); |
| |
| hwrm_ring_free_send_msg(bp, ring, type, |
| close_path ? cmpl_ring_id : |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[grp_idx].agg_fw_ring_id = |
| INVALID_HW_RING_ID; |
| } |
| } |
| |
| /* The completion rings are about to be freed. After that the |
| * IRQ doorbell will not work anymore. So we need to disable |
| * IRQ here. |
| */ |
| bnxt_disable_int_sync(bp); |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| type = RING_FREE_REQ_RING_TYPE_NQ; |
| else |
| type = RING_FREE_REQ_RING_TYPE_L2_CMPL; |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_ring_struct *ring; |
| int j; |
| |
| for (j = 0; j < 2; j++) { |
| struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; |
| |
| if (cpr2) { |
| ring = &cpr2->cp_ring_struct; |
| if (ring->fw_ring_id == INVALID_HW_RING_ID) |
| continue; |
| hwrm_ring_free_send_msg(bp, ring, |
| RING_FREE_REQ_RING_TYPE_L2_CMPL, |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| } |
| } |
| ring = &cpr->cp_ring_struct; |
| if (ring->fw_ring_id != INVALID_HW_RING_ID) { |
| hwrm_ring_free_send_msg(bp, ring, type, |
| INVALID_HW_RING_ID); |
| ring->fw_ring_id = INVALID_HW_RING_ID; |
| bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; |
| } |
| } |
| } |
| |
| static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, |
| bool shared); |
| |
| static int bnxt_hwrm_get_rings(struct bnxt *bp) |
| { |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| struct hwrm_func_qcfg_output *resp; |
| struct hwrm_func_qcfg_input *req; |
| int rc; |
| |
| if (bp->hwrm_spec_code < 0x10601) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(0xffff); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) { |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); |
| if (BNXT_NEW_RM(bp)) { |
| u16 cp, stats; |
| |
| hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); |
| hw_resc->resv_hw_ring_grps = |
| le32_to_cpu(resp->alloc_hw_ring_grps); |
| hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); |
| cp = le16_to_cpu(resp->alloc_cmpl_rings); |
| stats = le16_to_cpu(resp->alloc_stat_ctx); |
| hw_resc->resv_irqs = cp; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| int rx = hw_resc->resv_rx_rings; |
| int tx = hw_resc->resv_tx_rings; |
| |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| rx >>= 1; |
| if (cp < (rx + tx)) { |
| bnxt_trim_rings(bp, &rx, &tx, cp, false); |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| rx <<= 1; |
| hw_resc->resv_rx_rings = rx; |
| hw_resc->resv_tx_rings = tx; |
| } |
| hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); |
| hw_resc->resv_hw_ring_grps = rx; |
| } |
| hw_resc->resv_cp_rings = cp; |
| hw_resc->resv_stat_ctxs = stats; |
| } |
| hwrm_req_drop(bp, req); |
| return 0; |
| } |
| |
| int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) |
| { |
| struct hwrm_func_qcfg_output *resp; |
| struct hwrm_func_qcfg_input *req; |
| int rc; |
| |
| if (bp->hwrm_spec_code < 0x10601) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(fid); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) |
| *tx_rings = le16_to_cpu(resp->alloc_tx_rings); |
| |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static bool bnxt_rfs_supported(struct bnxt *bp); |
| |
| static struct hwrm_func_cfg_input * |
| __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, |
| int ring_grps, int cp_rings, int stats, int vnics) |
| { |
| struct hwrm_func_cfg_input *req; |
| u32 enables = 0; |
| |
| if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) |
| return NULL; |
| |
| req->fid = cpu_to_le16(0xffff); |
| enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; |
| req->num_tx_rings = cpu_to_le16(tx_rings); |
| if (BNXT_NEW_RM(bp)) { |
| enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; |
| enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; |
| enables |= tx_rings + ring_grps ? |
| FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; |
| enables |= rx_rings ? |
| FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; |
| } else { |
| enables |= cp_rings ? |
| FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; |
| enables |= ring_grps ? |
| FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | |
| FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; |
| } |
| enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; |
| |
| req->num_rx_rings = cpu_to_le16(rx_rings); |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); |
| req->num_msix = cpu_to_le16(cp_rings); |
| req->num_rsscos_ctxs = |
| cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); |
| } else { |
| req->num_cmpl_rings = cpu_to_le16(cp_rings); |
| req->num_hw_ring_grps = cpu_to_le16(ring_grps); |
| req->num_rsscos_ctxs = cpu_to_le16(1); |
| if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && |
| bnxt_rfs_supported(bp)) |
| req->num_rsscos_ctxs = |
| cpu_to_le16(ring_grps + 1); |
| } |
| req->num_stat_ctxs = cpu_to_le16(stats); |
| req->num_vnics = cpu_to_le16(vnics); |
| } |
| req->enables = cpu_to_le32(enables); |
| return req; |
| } |
| |
| static struct hwrm_func_vf_cfg_input * |
| __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, |
| int ring_grps, int cp_rings, int stats, int vnics) |
| { |
| struct hwrm_func_vf_cfg_input *req; |
| u32 enables = 0; |
| |
| if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) |
| return NULL; |
| |
| enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; |
| enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | |
| FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; |
| enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| enables |= tx_rings + ring_grps ? |
| FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; |
| } else { |
| enables |= cp_rings ? |
| FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; |
| enables |= ring_grps ? |
| FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; |
| } |
| enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; |
| enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; |
| |
| req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); |
| req->num_tx_rings = cpu_to_le16(tx_rings); |
| req->num_rx_rings = cpu_to_le16(rx_rings); |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); |
| req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); |
| } else { |
| req->num_cmpl_rings = cpu_to_le16(cp_rings); |
| req->num_hw_ring_grps = cpu_to_le16(ring_grps); |
| req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); |
| } |
| req->num_stat_ctxs = cpu_to_le16(stats); |
| req->num_vnics = cpu_to_le16(vnics); |
| |
| req->enables = cpu_to_le32(enables); |
| return req; |
| } |
| |
| static int |
| bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, |
| int ring_grps, int cp_rings, int stats, int vnics) |
| { |
| struct hwrm_func_cfg_input *req; |
| int rc; |
| |
| req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, |
| cp_rings, stats, vnics); |
| if (!req) |
| return -ENOMEM; |
| |
| if (!req->enables) { |
| hwrm_req_drop(bp, req); |
| return 0; |
| } |
| |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| return rc; |
| |
| if (bp->hwrm_spec_code < 0x10601) |
| bp->hw_resc.resv_tx_rings = tx_rings; |
| |
| return bnxt_hwrm_get_rings(bp); |
| } |
| |
| static int |
| bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, |
| int ring_grps, int cp_rings, int stats, int vnics) |
| { |
| struct hwrm_func_vf_cfg_input *req; |
| int rc; |
| |
| if (!BNXT_NEW_RM(bp)) { |
| bp->hw_resc.resv_tx_rings = tx_rings; |
| return 0; |
| } |
| |
| req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, |
| cp_rings, stats, vnics); |
| if (!req) |
| return -ENOMEM; |
| |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| return rc; |
| |
| return bnxt_hwrm_get_rings(bp); |
| } |
| |
| static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, |
| int cp, int stat, int vnic) |
| { |
| if (BNXT_PF(bp)) |
| return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, |
| vnic); |
| else |
| return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, |
| vnic); |
| } |
| |
| int bnxt_nq_rings_in_use(struct bnxt *bp) |
| { |
| int cp = bp->cp_nr_rings; |
| int ulp_msix, ulp_base; |
| |
| ulp_msix = bnxt_get_ulp_msix_num(bp); |
| if (ulp_msix) { |
| ulp_base = bnxt_get_ulp_msix_base(bp); |
| cp += ulp_msix; |
| if ((ulp_base + ulp_msix) > cp) |
| cp = ulp_base + ulp_msix; |
| } |
| return cp; |
| } |
| |
| static int bnxt_cp_rings_in_use(struct bnxt *bp) |
| { |
| int cp; |
| |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| return bnxt_nq_rings_in_use(bp); |
| |
| cp = bp->tx_nr_rings + bp->rx_nr_rings; |
| return cp; |
| } |
| |
| static int bnxt_get_func_stat_ctxs(struct bnxt *bp) |
| { |
| int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); |
| int cp = bp->cp_nr_rings; |
| |
| if (!ulp_stat) |
| return cp; |
| |
| if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) |
| return bnxt_get_ulp_msix_base(bp) + ulp_stat; |
| |
| return cp + ulp_stat; |
| } |
| |
| /* Check if a default RSS map needs to be setup. This function is only |
| * used on older firmware that does not require reserving RX rings. |
| */ |
| static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) |
| { |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| |
| /* The RSS map is valid for RX rings set to resv_rx_rings */ |
| if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { |
| hw_resc->resv_rx_rings = bp->rx_nr_rings; |
| if (!netif_is_rxfh_configured(bp->dev)) |
| bnxt_set_dflt_rss_indir_tbl(bp); |
| } |
| } |
| |
| static bool bnxt_need_reserve_rings(struct bnxt *bp) |
| { |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| int cp = bnxt_cp_rings_in_use(bp); |
| int nq = bnxt_nq_rings_in_use(bp); |
| int rx = bp->rx_nr_rings, stat; |
| int vnic = 1, grp = rx; |
| |
| if (hw_resc->resv_tx_rings != bp->tx_nr_rings && |
| bp->hwrm_spec_code >= 0x10601) |
| return true; |
| |
| /* Old firmware does not need RX ring reservations but we still |
| * need to setup a default RSS map when needed. With new firmware |
| * we go through RX ring reservations first and then set up the |
| * RSS map for the successfully reserved RX rings when needed. |
| */ |
| if (!BNXT_NEW_RM(bp)) { |
| bnxt_check_rss_tbl_no_rmgr(bp); |
| return false; |
| } |
| if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) |
| vnic = rx + 1; |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| rx <<= 1; |
| stat = bnxt_get_func_stat_ctxs(bp); |
| if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || |
| hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || |
| (hw_resc->resv_hw_ring_grps != grp && |
| !(bp->flags & BNXT_FLAG_CHIP_P5))) |
| return true; |
| if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && |
| hw_resc->resv_irqs != nq) |
| return true; |
| return false; |
| } |
| |
| static int __bnxt_reserve_rings(struct bnxt *bp) |
| { |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| int cp = bnxt_nq_rings_in_use(bp); |
| int tx = bp->tx_nr_rings; |
| int rx = bp->rx_nr_rings; |
| int grp, rx_rings, rc; |
| int vnic = 1, stat; |
| bool sh = false; |
| |
| if (!bnxt_need_reserve_rings(bp)) |
| return 0; |
| |
| if (bp->flags & BNXT_FLAG_SHARED_RINGS) |
| sh = true; |
| if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) |
| vnic = rx + 1; |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| rx <<= 1; |
| grp = bp->rx_nr_rings; |
| stat = bnxt_get_func_stat_ctxs(bp); |
| |
| rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); |
| if (rc) |
| return rc; |
| |
| tx = hw_resc->resv_tx_rings; |
| if (BNXT_NEW_RM(bp)) { |
| rx = hw_resc->resv_rx_rings; |
| cp = hw_resc->resv_irqs; |
| grp = hw_resc->resv_hw_ring_grps; |
| vnic = hw_resc->resv_vnics; |
| stat = hw_resc->resv_stat_ctxs; |
| } |
| |
| rx_rings = rx; |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) { |
| if (rx >= 2) { |
| rx_rings = rx >> 1; |
| } else { |
| if (netif_running(bp->dev)) |
| return -ENOMEM; |
| |
| bp->flags &= ~BNXT_FLAG_AGG_RINGS; |
| bp->flags |= BNXT_FLAG_NO_AGG_RINGS; |
| bp->dev->hw_features &= ~NETIF_F_LRO; |
| bp->dev->features &= ~NETIF_F_LRO; |
| bnxt_set_ring_params(bp); |
| } |
| } |
| rx_rings = min_t(int, rx_rings, grp); |
| cp = min_t(int, cp, bp->cp_nr_rings); |
| if (stat > bnxt_get_ulp_stat_ctxs(bp)) |
| stat -= bnxt_get_ulp_stat_ctxs(bp); |
| cp = min_t(int, cp, stat); |
| rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| rx = rx_rings << 1; |
| cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; |
| bp->tx_nr_rings = tx; |
| |
| /* If we cannot reserve all the RX rings, reset the RSS map only |
| * if absolutely necessary |
| */ |
| if (rx_rings != bp->rx_nr_rings) { |
| netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", |
| rx_rings, bp->rx_nr_rings); |
| if (netif_is_rxfh_configured(bp->dev) && |
| (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != |
| bnxt_get_nr_rss_ctxs(bp, rx_rings) || |
| bnxt_get_max_rss_ring(bp) >= rx_rings)) { |
| netdev_warn(bp->dev, "RSS table entries reverting to default\n"); |
| bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; |
| } |
| } |
| bp->rx_nr_rings = rx_rings; |
| bp->cp_nr_rings = cp; |
| |
| if (!tx || !rx || !cp || !grp || !vnic || !stat) |
| return -ENOMEM; |
| |
| if (!netif_is_rxfh_configured(bp->dev)) |
| bnxt_set_dflt_rss_indir_tbl(bp); |
| |
| return rc; |
| } |
| |
| static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, |
| int ring_grps, int cp_rings, int stats, |
| int vnics) |
| { |
| struct hwrm_func_vf_cfg_input *req; |
| u32 flags; |
| |
| if (!BNXT_NEW_RM(bp)) |
| return 0; |
| |
| req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, |
| cp_rings, stats, vnics); |
| flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | |
| FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | |
| FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | |
| FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | |
| FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | |
| FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; |
| |
| req->flags = cpu_to_le32(flags); |
| return hwrm_req_send_silent(bp, req); |
| } |
| |
| static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, |
| int ring_grps, int cp_rings, int stats, |
| int vnics) |
| { |
| struct hwrm_func_cfg_input *req; |
| u32 flags; |
| |
| req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, |
| cp_rings, stats, vnics); |
| flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; |
| if (BNXT_NEW_RM(bp)) { |
| flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | |
| FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | |
| FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | |
| FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | |
| FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; |
| else |
| flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; |
| } |
| |
| req->flags = cpu_to_le32(flags); |
| return hwrm_req_send_silent(bp, req); |
| } |
| |
| static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, |
| int ring_grps, int cp_rings, int stats, |
| int vnics) |
| { |
| if (bp->hwrm_spec_code < 0x10801) |
| return 0; |
| |
| if (BNXT_PF(bp)) |
| return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, |
| ring_grps, cp_rings, stats, |
| vnics); |
| |
| return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, |
| cp_rings, stats, vnics); |
| } |
| |
| static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) |
| { |
| struct bnxt_coal_cap *coal_cap = &bp->coal_cap; |
| struct hwrm_ring_aggint_qcaps_output *resp; |
| struct hwrm_ring_aggint_qcaps_input *req; |
| int rc; |
| |
| coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; |
| coal_cap->num_cmpl_dma_aggr_max = 63; |
| coal_cap->num_cmpl_dma_aggr_during_int_max = 63; |
| coal_cap->cmpl_aggr_dma_tmr_max = 65535; |
| coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; |
| coal_cap->int_lat_tmr_min_max = 65535; |
| coal_cap->int_lat_tmr_max_max = 65535; |
| coal_cap->num_cmpl_aggr_int_max = 65535; |
| coal_cap->timer_units = 80; |
| |
| if (bp->hwrm_spec_code < 0x10902) |
| return; |
| |
| if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) |
| return; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send_silent(bp, req); |
| if (!rc) { |
| coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); |
| coal_cap->nq_params = le32_to_cpu(resp->nq_params); |
| coal_cap->num_cmpl_dma_aggr_max = |
| le16_to_cpu(resp->num_cmpl_dma_aggr_max); |
| coal_cap->num_cmpl_dma_aggr_during_int_max = |
| le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); |
| coal_cap->cmpl_aggr_dma_tmr_max = |
| le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); |
| coal_cap->cmpl_aggr_dma_tmr_during_int_max = |
| le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); |
| coal_cap->int_lat_tmr_min_max = |
| le16_to_cpu(resp->int_lat_tmr_min_max); |
| coal_cap->int_lat_tmr_max_max = |
| le16_to_cpu(resp->int_lat_tmr_max_max); |
| coal_cap->num_cmpl_aggr_int_max = |
| le16_to_cpu(resp->num_cmpl_aggr_int_max); |
| coal_cap->timer_units = le16_to_cpu(resp->timer_units); |
| } |
| hwrm_req_drop(bp, req); |
| } |
| |
| static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) |
| { |
| struct bnxt_coal_cap *coal_cap = &bp->coal_cap; |
| |
| return usec * 1000 / coal_cap->timer_units; |
| } |
| |
| static void bnxt_hwrm_set_coal_params(struct bnxt *bp, |
| struct bnxt_coal *hw_coal, |
| struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) |
| { |
| struct bnxt_coal_cap *coal_cap = &bp->coal_cap; |
| u16 val, tmr, max, flags = hw_coal->flags; |
| u32 cmpl_params = coal_cap->cmpl_params; |
| |
| max = hw_coal->bufs_per_record * 128; |
| if (hw_coal->budget) |
| max = hw_coal->bufs_per_record * hw_coal->budget; |
| max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); |
| |
| val = clamp_t(u16, hw_coal->coal_bufs, 1, max); |
| req->num_cmpl_aggr_int = cpu_to_le16(val); |
| |
| val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); |
| req->num_cmpl_dma_aggr = cpu_to_le16(val); |
| |
| val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, |
| coal_cap->num_cmpl_dma_aggr_during_int_max); |
| req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); |
| |
| tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); |
| tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); |
| req->int_lat_tmr_max = cpu_to_le16(tmr); |
| |
| /* min timer set to 1/2 of interrupt timer */ |
| if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { |
| val = tmr / 2; |
| val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); |
| req->int_lat_tmr_min = cpu_to_le16(val); |
| req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); |
| } |
| |
| /* buf timer set to 1/4 of interrupt timer */ |
| val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); |
| req->cmpl_aggr_dma_tmr = cpu_to_le16(val); |
| |
| if (cmpl_params & |
| RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { |
| tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); |
| val = clamp_t(u16, tmr, 1, |
| coal_cap->cmpl_aggr_dma_tmr_during_int_max); |
| req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); |
| req->enables |= |
| cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); |
| } |
| |
| if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && |
| hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) |
| flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; |
| req->flags = cpu_to_le16(flags); |
| req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); |
| } |
| |
| static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, |
| struct bnxt_coal *hw_coal) |
| { |
| struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_coal_cap *coal_cap = &bp->coal_cap; |
| u32 nq_params = coal_cap->nq_params; |
| u16 tmr; |
| int rc; |
| |
| if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); |
| if (rc) |
| return rc; |
| |
| req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); |
| req->flags = |
| cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); |
| |
| tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; |
| tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); |
| req->int_lat_tmr_min = cpu_to_le16(tmr); |
| req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); |
| return hwrm_req_send(bp, req); |
| } |
| |
| int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) |
| { |
| struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| struct bnxt_coal coal; |
| int rc; |
| |
| /* Tick values in micro seconds. |
| * 1 coal_buf x bufs_per_record = 1 completion record. |
| */ |
| memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); |
| |
| coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; |
| coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; |
| |
| if (!bnapi->rx_ring) |
| return -ENODEV; |
| |
| rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); |
| if (rc) |
| return rc; |
| |
| bnxt_hwrm_set_coal_params(bp, &coal, req_rx); |
| |
| req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); |
| |
| return hwrm_req_send(bp, req_rx); |
| } |
| |
| int bnxt_hwrm_set_coal(struct bnxt *bp) |
| { |
| struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, |
| *req; |
| int i, rc; |
| |
| rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); |
| if (rc) |
| return rc; |
| |
| rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); |
| if (rc) { |
| hwrm_req_drop(bp, req_rx); |
| return rc; |
| } |
| |
| bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); |
| bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); |
| |
| hwrm_req_hold(bp, req_rx); |
| hwrm_req_hold(bp, req_tx); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_coal *hw_coal; |
| u16 ring_id; |
| |
| req = req_rx; |
| if (!bnapi->rx_ring) { |
| ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); |
| req = req_tx; |
| } else { |
| ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); |
| } |
| req->ring_id = cpu_to_le16(ring_id); |
| |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| break; |
| |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| continue; |
| |
| if (bnapi->rx_ring && bnapi->tx_ring) { |
| req = req_tx; |
| ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); |
| req->ring_id = cpu_to_le16(ring_id); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| break; |
| } |
| if (bnapi->rx_ring) |
| hw_coal = &bp->rx_coal; |
| else |
| hw_coal = &bp->tx_coal; |
| __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); |
| } |
| hwrm_req_drop(bp, req_rx); |
| hwrm_req_drop(bp, req_tx); |
| return rc; |
| } |
| |
| static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) |
| { |
| struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; |
| struct hwrm_stat_ctx_free_input *req; |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| return; |
| |
| if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) |
| return; |
| if (BNXT_FW_MAJ(bp) <= 20) { |
| if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { |
| hwrm_req_drop(bp, req); |
| return; |
| } |
| hwrm_req_hold(bp, req0); |
| } |
| hwrm_req_hold(bp, req); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { |
| req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); |
| if (req0) { |
| req0->stat_ctx_id = req->stat_ctx_id; |
| hwrm_req_send(bp, req0); |
| } |
| hwrm_req_send(bp, req); |
| |
| cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; |
| } |
| } |
| hwrm_req_drop(bp, req); |
| if (req0) |
| hwrm_req_drop(bp, req0); |
| } |
| |
| static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) |
| { |
| struct hwrm_stat_ctx_alloc_output *resp; |
| struct hwrm_stat_ctx_alloc_input *req; |
| int rc, i; |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); |
| if (rc) |
| return rc; |
| |
| req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); |
| req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); |
| |
| resp = hwrm_req_hold(bp, req); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| |
| req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); |
| |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| break; |
| |
| cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); |
| |
| bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; |
| } |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_func_qcfg(struct bnxt *bp) |
| { |
| struct hwrm_func_qcfg_output *resp; |
| struct hwrm_func_qcfg_input *req; |
| u32 min_db_offset = 0; |
| u16 flags; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(0xffff); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto func_qcfg_exit; |
| |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_VF(bp)) { |
| struct bnxt_vf_info *vf = &bp->vf; |
| |
| vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; |
| } else { |
| bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); |
| } |
| #endif |
| flags = le16_to_cpu(resp->flags); |
| if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | |
| FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { |
| bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; |
| if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) |
| bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; |
| } |
| if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) |
| bp->flags |= BNXT_FLAG_MULTI_HOST; |
| if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) |
| bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; |
| |
| switch (resp->port_partition_type) { |
| case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: |
| case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: |
| case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: |
| bp->port_partition_type = resp->port_partition_type; |
| break; |
| } |
| if (bp->hwrm_spec_code < 0x10707 || |
| resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) |
| bp->br_mode = BRIDGE_MODE_VEB; |
| else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) |
| bp->br_mode = BRIDGE_MODE_VEPA; |
| else |
| bp->br_mode = BRIDGE_MODE_UNDEF; |
| |
| bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); |
| if (!bp->max_mtu) |
| bp->max_mtu = BNXT_MAX_MTU; |
| |
| if (bp->db_size) |
| goto func_qcfg_exit; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| if (BNXT_PF(bp)) |
| min_db_offset = DB_PF_OFFSET_P5; |
| else |
| min_db_offset = DB_VF_OFFSET_P5; |
| } |
| bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * |
| 1024); |
| if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || |
| bp->db_size <= min_db_offset) |
| bp->db_size = pci_resource_len(bp->pdev, 2); |
| |
| func_qcfg_exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, |
| struct hwrm_func_backing_store_qcaps_output *resp) |
| { |
| struct bnxt_mem_init *mem_init; |
| u16 init_mask; |
| u8 init_val; |
| u8 *offset; |
| int i; |
| |
| init_val = resp->ctx_kind_initializer; |
| init_mask = le16_to_cpu(resp->ctx_init_mask); |
| offset = &resp->qp_init_offset; |
| mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; |
| for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { |
| mem_init->init_val = init_val; |
| mem_init->offset = BNXT_MEM_INVALID_OFFSET; |
| if (!init_mask) |
| continue; |
| if (i == BNXT_CTX_MEM_INIT_STAT) |
| offset = &resp->stat_init_offset; |
| if (init_mask & (1 << i)) |
| mem_init->offset = *offset * 4; |
| else |
| mem_init->init_val = 0; |
| } |
| ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; |
| ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; |
| ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; |
| ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; |
| ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; |
| ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; |
| } |
| |
| static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) |
| { |
| struct hwrm_func_backing_store_qcaps_output *resp; |
| struct hwrm_func_backing_store_qcaps_input *req; |
| int rc; |
| |
| if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send_silent(bp, req); |
| if (!rc) { |
| struct bnxt_ctx_pg_info *ctx_pg; |
| struct bnxt_ctx_mem_info *ctx; |
| int i, tqm_rings; |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) { |
| rc = -ENOMEM; |
| goto ctx_err; |
| } |
| ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); |
| ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); |
| ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); |
| ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); |
| ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); |
| ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); |
| ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); |
| ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); |
| ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); |
| ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); |
| ctx->vnic_max_vnic_entries = |
| le16_to_cpu(resp->vnic_max_vnic_entries); |
| ctx->vnic_max_ring_table_entries = |
| le16_to_cpu(resp->vnic_max_ring_table_entries); |
| ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); |
| ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); |
| ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); |
| ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); |
| ctx->tqm_min_entries_per_ring = |
| le32_to_cpu(resp->tqm_min_entries_per_ring); |
| ctx->tqm_max_entries_per_ring = |
| le32_to_cpu(resp->tqm_max_entries_per_ring); |
| ctx->tqm_entries_multiple = resp->tqm_entries_multiple; |
| if (!ctx->tqm_entries_multiple) |
| ctx->tqm_entries_multiple = 1; |
| ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); |
| ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); |
| ctx->mrav_num_entries_units = |
| le16_to_cpu(resp->mrav_num_entries_units); |
| ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); |
| ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); |
| |
| bnxt_init_ctx_initializer(ctx, resp); |
| |
| ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; |
| if (!ctx->tqm_fp_rings_count) |
| ctx->tqm_fp_rings_count = bp->max_q; |
| else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) |
| ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; |
| |
| tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; |
| ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); |
| if (!ctx_pg) { |
| kfree(ctx); |
| rc = -ENOMEM; |
| goto ctx_err; |
| } |
| for (i = 0; i < tqm_rings; i++, ctx_pg++) |
| ctx->tqm_mem[i] = ctx_pg; |
| bp->ctx = ctx; |
| } else { |
| rc = 0; |
| } |
| ctx_err: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, |
| __le64 *pg_dir) |
| { |
| if (!rmem->nr_pages) |
| return; |
| |
| BNXT_SET_CTX_PAGE_ATTR(*pg_attr); |
| if (rmem->depth >= 1) { |
| if (rmem->depth == 2) |
| *pg_attr |= 2; |
| else |
| *pg_attr |= 1; |
| *pg_dir = cpu_to_le64(rmem->pg_tbl_map); |
| } else { |
| *pg_dir = cpu_to_le64(rmem->dma_arr[0]); |
| } |
| } |
| |
| #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ |
| (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ |
| FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ |
| FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ |
| FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ |
| FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) |
| |
| static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) |
| { |
| struct hwrm_func_backing_store_cfg_input *req; |
| struct bnxt_ctx_mem_info *ctx = bp->ctx; |
| struct bnxt_ctx_pg_info *ctx_pg; |
| void **__req = (void **)&req; |
| u32 req_len = sizeof(*req); |
| __le32 *num_entries; |
| __le64 *pg_dir; |
| u32 flags = 0; |
| u8 *pg_attr; |
| u32 ena; |
| int rc; |
| int i; |
| |
| if (!ctx) |
| return 0; |
| |
| if (req_len > bp->hwrm_max_ext_req_len) |
| req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; |
| rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); |
| if (rc) |
| return rc; |
| |
| req->enables = cpu_to_le32(enables); |
| if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { |
| ctx_pg = &ctx->qp_mem; |
| req->qp_num_entries = cpu_to_le32(ctx_pg->entries); |
| req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); |
| req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); |
| req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); |
| bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, |
| &req->qpc_pg_size_qpc_lvl, |
| &req->qpc_page_dir); |
| } |
| if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { |
| ctx_pg = &ctx->srq_mem; |
| req->srq_num_entries = cpu_to_le32(ctx_pg->entries); |
| req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); |
| req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); |
| bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, |
| &req->srq_pg_size_srq_lvl, |
| &req->srq_page_dir); |
| } |
| if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { |
| ctx_pg = &ctx->cq_mem; |
| req->cq_num_entries = cpu_to_le32(ctx_pg->entries); |
| req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); |
| req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); |
| bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, |
| &req->cq_pg_size_cq_lvl, |
| &req->cq_page_dir); |
| } |
| if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { |
| ctx_pg = &ctx->vnic_mem; |
| req->vnic_num_vnic_entries = |
| cpu_to_le16(ctx->vnic_max_vnic_entries); |
| req->vnic_num_ring_table_entries = |
| cpu_to_le16(ctx->vnic_max_ring_table_entries); |
| req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); |
| bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, |
| &req->vnic_pg_size_vnic_lvl, |
| &req->vnic_page_dir); |
| } |
| if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { |
| ctx_pg = &ctx->stat_mem; |
| req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); |
| req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); |
| bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, |
| &req->stat_pg_size_stat_lvl, |
| &req->stat_page_dir); |
| } |
| if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { |
| ctx_pg = &ctx->mrav_mem; |
| req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); |
| if (ctx->mrav_num_entries_units) |
| flags |= |
| FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; |
| req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); |
| bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, |
| &req->mrav_pg_size_mrav_lvl, |
| &req->mrav_page_dir); |
| } |
| if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { |
| ctx_pg = &ctx->tim_mem; |
| req->tim_num_entries = cpu_to_le32(ctx_pg->entries); |
| req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); |
| bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, |
| &req->tim_pg_size_tim_lvl, |
| &req->tim_page_dir); |
| } |
| for (i = 0, num_entries = &req->tqm_sp_num_entries, |
| pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, |
| pg_dir = &req->tqm_sp_page_dir, |
| ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; |
| i < BNXT_MAX_TQM_RINGS; |
| i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { |
| if (!(enables & ena)) |
| continue; |
| |
| req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); |
| ctx_pg = ctx->tqm_mem[i]; |
| *num_entries = cpu_to_le32(ctx_pg->entries); |
| bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); |
| } |
| req->flags = cpu_to_le32(flags); |
| return hwrm_req_send(bp, req); |
| } |
| |
| static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, |
| struct bnxt_ctx_pg_info *ctx_pg) |
| { |
| struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; |
| |
| rmem->page_size = BNXT_PAGE_SIZE; |
| rmem->pg_arr = ctx_pg->ctx_pg_arr; |
| rmem->dma_arr = ctx_pg->ctx_dma_arr; |
| rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; |
| if (rmem->depth >= 1) |
| rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; |
| return bnxt_alloc_ring(bp, rmem); |
| } |
| |
| static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, |
| struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, |
| u8 depth, struct bnxt_mem_init *mem_init) |
| { |
| struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; |
| int rc; |
| |
| if (!mem_size) |
| return -EINVAL; |
| |
| ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); |
| if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { |
| ctx_pg->nr_pages = 0; |
| return -EINVAL; |
| } |
| if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { |
| int nr_tbls, i; |
| |
| rmem->depth = 2; |
| ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), |
| GFP_KERNEL); |
| if (!ctx_pg->ctx_pg_tbl) |
| return -ENOMEM; |
| nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); |
| rmem->nr_pages = nr_tbls; |
| rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); |
| if (rc) |
| return rc; |
| for (i = 0; i < nr_tbls; i++) { |
| struct bnxt_ctx_pg_info *pg_tbl; |
| |
| pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); |
| if (!pg_tbl) |
| return -ENOMEM; |
| ctx_pg->ctx_pg_tbl[i] = pg_tbl; |
| rmem = &pg_tbl->ring_mem; |
| rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; |
| rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; |
| rmem->depth = 1; |
| rmem->nr_pages = MAX_CTX_PAGES; |
| rmem->mem_init = mem_init; |
| if (i == (nr_tbls - 1)) { |
| int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; |
| |
| if (rem) |
| rmem->nr_pages = rem; |
| } |
| rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); |
| if (rc) |
| break; |
| } |
| } else { |
| rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); |
| if (rmem->nr_pages > 1 || depth) |
| rmem->depth = 1; |
| rmem->mem_init = mem_init; |
| rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); |
| } |
| return rc; |
| } |
| |
| static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, |
| struct bnxt_ctx_pg_info *ctx_pg) |
| { |
| struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; |
| |
| if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || |
| ctx_pg->ctx_pg_tbl) { |
| int i, nr_tbls = rmem->nr_pages; |
| |
| for (i = 0; i < nr_tbls; i++) { |
| struct bnxt_ctx_pg_info *pg_tbl; |
| struct bnxt_ring_mem_info *rmem2; |
| |
| pg_tbl = ctx_pg->ctx_pg_tbl[i]; |
| if (!pg_tbl) |
| continue; |
| rmem2 = &pg_tbl->ring_mem; |
| bnxt_free_ring(bp, rmem2); |
| ctx_pg->ctx_pg_arr[i] = NULL; |
| kfree(pg_tbl); |
| ctx_pg->ctx_pg_tbl[i] = NULL; |
| } |
| kfree(ctx_pg->ctx_pg_tbl); |
| ctx_pg->ctx_pg_tbl = NULL; |
| } |
| bnxt_free_ring(bp, rmem); |
| ctx_pg->nr_pages = 0; |
| } |
| |
| void bnxt_free_ctx_mem(struct bnxt *bp) |
| { |
| struct bnxt_ctx_mem_info *ctx = bp->ctx; |
| int i; |
| |
| if (!ctx) |
| return; |
| |
| if (ctx->tqm_mem[0]) { |
| for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) |
| bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); |
| kfree(ctx->tqm_mem[0]); |
| ctx->tqm_mem[0] = NULL; |
| } |
| |
| bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); |
| bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); |
| bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); |
| bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); |
| bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); |
| bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); |
| bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); |
| ctx->flags &= ~BNXT_CTX_FLAG_INITED; |
| } |
| |
| static int bnxt_alloc_ctx_mem(struct bnxt *bp) |
| { |
| struct bnxt_ctx_pg_info *ctx_pg; |
| struct bnxt_ctx_mem_info *ctx; |
| struct bnxt_mem_init *init; |
| u32 mem_size, ena, entries; |
| u32 entries_sp, min; |
| u32 num_mr, num_ah; |
| u32 extra_srqs = 0; |
| u32 extra_qps = 0; |
| u8 pg_lvl = 1; |
| int i, rc; |
| |
| rc = bnxt_hwrm_func_backing_store_qcaps(bp); |
| if (rc) { |
| netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", |
| rc); |
| return rc; |
| } |
| ctx = bp->ctx; |
| if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) |
| return 0; |
| |
| if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { |
| pg_lvl = 2; |
| extra_qps = 65536; |
| extra_srqs = 8192; |
| } |
| |
| ctx_pg = &ctx->qp_mem; |
| ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + |
| extra_qps; |
| if (ctx->qp_entry_size) { |
| mem_size = ctx->qp_entry_size * ctx_pg->entries; |
| init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; |
| rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); |
| if (rc) |
| return rc; |
| } |
| |
| ctx_pg = &ctx->srq_mem; |
| ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; |
| if (ctx->srq_entry_size) { |
| mem_size = ctx->srq_entry_size * ctx_pg->entries; |
| init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; |
| rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); |
| if (rc) |
| return rc; |
| } |
| |
| ctx_pg = &ctx->cq_mem; |
| ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; |
| if (ctx->cq_entry_size) { |
| mem_size = ctx->cq_entry_size * ctx_pg->entries; |
| init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; |
| rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); |
| if (rc) |
| return rc; |
| } |
| |
| ctx_pg = &ctx->vnic_mem; |
| ctx_pg->entries = ctx->vnic_max_vnic_entries + |
| ctx->vnic_max_ring_table_entries; |
| if (ctx->vnic_entry_size) { |
| mem_size = ctx->vnic_entry_size * ctx_pg->entries; |
| init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; |
| rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); |
| if (rc) |
| return rc; |
| } |
| |
| ctx_pg = &ctx->stat_mem; |
| ctx_pg->entries = ctx->stat_max_entries; |
| if (ctx->stat_entry_size) { |
| mem_size = ctx->stat_entry_size * ctx_pg->entries; |
| init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; |
| rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); |
| if (rc) |
| return rc; |
| } |
| |
| ena = 0; |
| if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) |
| goto skip_rdma; |
| |
| ctx_pg = &ctx->mrav_mem; |
| /* 128K extra is needed to accommodate static AH context |
| * allocation by f/w. |
| */ |
| num_mr = 1024 * 256; |
| num_ah = 1024 * 128; |
| ctx_pg->entries = num_mr + num_ah; |
| if (ctx->mrav_entry_size) { |
| mem_size = ctx->mrav_entry_size * ctx_pg->entries; |
| init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; |
| rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); |
| if (rc) |
| return rc; |
| } |
| ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; |
| if (ctx->mrav_num_entries_units) |
| ctx_pg->entries = |
| ((num_mr / ctx->mrav_num_entries_units) << 16) | |
| (num_ah / ctx->mrav_num_entries_units); |
| |
| ctx_pg = &ctx->tim_mem; |
| ctx_pg->entries = ctx->qp_mem.entries; |
| if (ctx->tim_entry_size) { |
| mem_size = ctx->tim_entry_size * ctx_pg->entries; |
| rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); |
| if (rc) |
| return rc; |
| } |
| ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; |
| |
| skip_rdma: |
| min = ctx->tqm_min_entries_per_ring; |
| entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + |
| 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; |
| entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); |
| entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); |
| entries = roundup(entries, ctx->tqm_entries_multiple); |
| entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); |
| for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { |
| ctx_pg = ctx->tqm_mem[i]; |
| ctx_pg->entries = i ? entries : entries_sp; |
| if (ctx->tqm_entry_size) { |
| mem_size = ctx->tqm_entry_size * ctx_pg->entries; |
| rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, |
| NULL); |
| if (rc) |
| return rc; |
| } |
| ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; |
| } |
| ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; |
| rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); |
| if (rc) { |
| netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", |
| rc); |
| return rc; |
| } |
| ctx->flags |= BNXT_CTX_FLAG_INITED; |
| return 0; |
| } |
| |
| int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) |
| { |
| struct hwrm_func_resource_qcaps_output *resp; |
| struct hwrm_func_resource_qcaps_input *req; |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(0xffff); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send_silent(bp, req); |
| if (rc) |
| goto hwrm_func_resc_qcaps_exit; |
| |
| hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); |
| if (!all) |
| goto hwrm_func_resc_qcaps_exit; |
| |
| hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); |
| hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); |
| hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); |
| hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); |
| hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); |
| hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); |
| hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); |
| hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); |
| hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); |
| hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); |
| hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); |
| hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); |
| hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); |
| hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); |
| hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); |
| hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| u16 max_msix = le16_to_cpu(resp->max_msix); |
| |
| hw_resc->max_nqs = max_msix; |
| hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; |
| } |
| |
| if (BNXT_PF(bp)) { |
| struct bnxt_pf_info *pf = &bp->pf; |
| |
| pf->vf_resv_strategy = |
| le16_to_cpu(resp->vf_reservation_strategy); |
| if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) |
| pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; |
| } |
| hwrm_func_resc_qcaps_exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) |
| { |
| struct hwrm_port_mac_ptp_qcfg_output *resp; |
| struct hwrm_port_mac_ptp_qcfg_input *req; |
| struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; |
| bool phc_cfg; |
| u8 flags; |
| int rc; |
| |
| if (bp->hwrm_spec_code < 0x10801) { |
| rc = -ENODEV; |
| goto no_ptp; |
| } |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); |
| if (rc) |
| goto no_ptp; |
| |
| req->port_id = cpu_to_le16(bp->pf.port_id); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto exit; |
| |
| flags = resp->flags; |
| if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { |
| rc = -ENODEV; |
| goto exit; |
| } |
| if (!ptp) { |
| ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); |
| if (!ptp) { |
| rc = -ENOMEM; |
| goto exit; |
| } |
| ptp->bp = bp; |
| bp->ptp_cfg = ptp; |
| } |
| if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { |
| ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); |
| ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); |
| } else if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; |
| ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; |
| } else { |
| rc = -ENODEV; |
| goto exit; |
| } |
| phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; |
| rc = bnxt_ptp_init(bp, phc_cfg); |
| if (rc) |
| netdev_warn(bp->dev, "PTP initialization failed.\n"); |
| exit: |
| hwrm_req_drop(bp, req); |
| if (!rc) |
| return 0; |
| |
| no_ptp: |
| bnxt_ptp_clear(bp); |
| kfree(ptp); |
| bp->ptp_cfg = NULL; |
| return rc; |
| } |
| |
| static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) |
| { |
| struct hwrm_func_qcaps_output *resp; |
| struct hwrm_func_qcaps_input *req; |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| u32 flags, flags_ext, flags_ext2; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(0xffff); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto hwrm_func_qcaps_exit; |
| |
| flags = le32_to_cpu(resp->flags); |
| if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) |
| bp->flags |= BNXT_FLAG_ROCEV1_CAP; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) |
| bp->flags |= BNXT_FLAG_ROCEV2_CAP; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) |
| bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) |
| bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) |
| bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; |
| if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) |
| bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; |
| |
| flags_ext = le32_to_cpu(resp->flags_ext); |
| if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; |
| if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) |
| bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; |
| if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; |
| if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) |
| bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; |
| if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) |
| bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; |
| |
| flags_ext2 = le32_to_cpu(resp->flags_ext2); |
| if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; |
| |
| bp->tx_push_thresh = 0; |
| if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && |
| BNXT_FW_MAJ(bp) > 217) |
| bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; |
| |
| hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); |
| hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); |
| hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); |
| hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); |
| hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); |
| if (!hw_resc->max_hw_ring_grps) |
| hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; |
| hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); |
| hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); |
| hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); |
| |
| if (BNXT_PF(bp)) { |
| struct bnxt_pf_info *pf = &bp->pf; |
| |
| pf->fw_fid = le16_to_cpu(resp->fid); |
| pf->port_id = le16_to_cpu(resp->port_id); |
| memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); |
| pf->first_vf_id = le16_to_cpu(resp->first_vf_id); |
| pf->max_vfs = le16_to_cpu(resp->max_vfs); |
| pf->max_encap_records = le32_to_cpu(resp->max_encap_records); |
| pf->max_decap_records = le32_to_cpu(resp->max_decap_records); |
| pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); |
| pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); |
| pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); |
| pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); |
| bp->flags &= ~BNXT_FLAG_WOL_CAP; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) |
| bp->flags |= BNXT_FLAG_WOL_CAP; |
| if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { |
| __bnxt_hwrm_ptp_qcfg(bp); |
| } else { |
| bnxt_ptp_clear(bp); |
| kfree(bp->ptp_cfg); |
| bp->ptp_cfg = NULL; |
| } |
| } else { |
| #ifdef CONFIG_BNXT_SRIOV |
| struct bnxt_vf_info *vf = &bp->vf; |
| |
| vf->fw_fid = le16_to_cpu(resp->fid); |
| memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); |
| #endif |
| } |
| |
| hwrm_func_qcaps_exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) |
| { |
| struct hwrm_dbg_qcaps_output *resp; |
| struct hwrm_dbg_qcaps_input *req; |
| int rc; |
| |
| bp->fw_dbg_cap = 0; |
| if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) |
| return; |
| |
| rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); |
| if (rc) |
| return; |
| |
| req->fid = cpu_to_le16(0xffff); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto hwrm_dbg_qcaps_exit; |
| |
| bp->fw_dbg_cap = le32_to_cpu(resp->flags); |
| |
| hwrm_dbg_qcaps_exit: |
| hwrm_req_drop(bp, req); |
| } |
| |
| static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); |
| |
| int bnxt_hwrm_func_qcaps(struct bnxt *bp) |
| { |
| int rc; |
| |
| rc = __bnxt_hwrm_func_qcaps(bp); |
| if (rc) |
| return rc; |
| |
| bnxt_hwrm_dbg_qcaps(bp); |
| |
| rc = bnxt_hwrm_queue_qportcfg(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); |
| return rc; |
| } |
| if (bp->hwrm_spec_code >= 0x10803) { |
| rc = bnxt_alloc_ctx_mem(bp); |
| if (rc) |
| return rc; |
| rc = bnxt_hwrm_func_resc_qcaps(bp, true); |
| if (!rc) |
| bp->fw_cap |= BNXT_FW_CAP_NEW_RM; |
| } |
| return 0; |
| } |
| |
| static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) |
| { |
| struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; |
| struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; |
| u32 flags; |
| int rc; |
| |
| if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto hwrm_cfa_adv_qcaps_exit; |
| |
| flags = le32_to_cpu(resp->flags); |
| if (flags & |
| CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; |
| |
| hwrm_cfa_adv_qcaps_exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int __bnxt_alloc_fw_health(struct bnxt *bp) |
| { |
| if (bp->fw_health) |
| return 0; |
| |
| bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); |
| if (!bp->fw_health) |
| return -ENOMEM; |
| |
| mutex_init(&bp->fw_health->lock); |
| return 0; |
| } |
| |
| static int bnxt_alloc_fw_health(struct bnxt *bp) |
| { |
| int rc; |
| |
| if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && |
| !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) |
| return 0; |
| |
| rc = __bnxt_alloc_fw_health(bp); |
| if (rc) { |
| bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; |
| bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) |
| { |
| writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + |
| BNXT_GRCPF_REG_WINDOW_BASE_OUT + |
| BNXT_FW_HEALTH_WIN_MAP_OFF); |
| } |
| |
| static void bnxt_inv_fw_health_reg(struct bnxt *bp) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| u32 reg_type; |
| |
| if (!fw_health) |
| return; |
| |
| reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); |
| if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) |
| fw_health->status_reliable = false; |
| |
| reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); |
| if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) |
| fw_health->resets_reliable = false; |
| } |
| |
| static void bnxt_try_map_fw_health_reg(struct bnxt *bp) |
| { |
| void __iomem *hs; |
| u32 status_loc; |
| u32 reg_type; |
| u32 sig; |
| |
| if (bp->fw_health) |
| bp->fw_health->status_reliable = false; |
| |
| __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); |
| hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); |
| |
| sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); |
| if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { |
| if (!bp->chip_num) { |
| __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); |
| bp->chip_num = readl(bp->bar0 + |
| BNXT_FW_HEALTH_WIN_BASE + |
| BNXT_GRC_REG_CHIP_NUM); |
| } |
| if (!BNXT_CHIP_P5(bp)) |
| return; |
| |
| status_loc = BNXT_GRC_REG_STATUS_P5 | |
| BNXT_FW_HEALTH_REG_TYPE_BAR0; |
| } else { |
| status_loc = readl(hs + offsetof(struct hcomm_status, |
| fw_status_loc)); |
| } |
| |
| if (__bnxt_alloc_fw_health(bp)) { |
| netdev_warn(bp->dev, "no memory for firmware status checks\n"); |
| return; |
| } |
| |
| bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; |
| reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); |
| if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { |
| __bnxt_map_fw_health_reg(bp, status_loc); |
| bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = |
| BNXT_FW_HEALTH_WIN_OFF(status_loc); |
| } |
| |
| bp->fw_health->status_reliable = true; |
| } |
| |
| static int bnxt_map_fw_health_regs(struct bnxt *bp) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| u32 reg_base = 0xffffffff; |
| int i; |
| |
| bp->fw_health->status_reliable = false; |
| bp->fw_health->resets_reliable = false; |
| /* Only pre-map the monitoring GRC registers using window 3 */ |
| for (i = 0; i < 4; i++) { |
| u32 reg = fw_health->regs[i]; |
| |
| if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) |
| continue; |
| if (reg_base == 0xffffffff) |
| reg_base = reg & BNXT_GRC_BASE_MASK; |
| if ((reg & BNXT_GRC_BASE_MASK) != reg_base) |
| return -ERANGE; |
| fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); |
| } |
| bp->fw_health->status_reliable = true; |
| bp->fw_health->resets_reliable = true; |
| if (reg_base == 0xffffffff) |
| return 0; |
| |
| __bnxt_map_fw_health_reg(bp, reg_base); |
| return 0; |
| } |
| |
| static void bnxt_remap_fw_health_regs(struct bnxt *bp) |
| { |
| if (!bp->fw_health) |
| return; |
| |
| if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { |
| bp->fw_health->status_reliable = true; |
| bp->fw_health->resets_reliable = true; |
| } else { |
| bnxt_try_map_fw_health_reg(bp); |
| } |
| } |
| |
| static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| struct hwrm_error_recovery_qcfg_output *resp; |
| struct hwrm_error_recovery_qcfg_input *req; |
| int rc, i; |
| |
| if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto err_recovery_out; |
| fw_health->flags = le32_to_cpu(resp->flags); |
| if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && |
| !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { |
| rc = -EINVAL; |
| goto err_recovery_out; |
| } |
| fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); |
| fw_health->master_func_wait_dsecs = |
| le32_to_cpu(resp->master_func_wait_period); |
| fw_health->normal_func_wait_dsecs = |
| le32_to_cpu(resp->normal_func_wait_period); |
| fw_health->post_reset_wait_dsecs = |
| le32_to_cpu(resp->master_func_wait_period_after_reset); |
| fw_health->post_reset_max_wait_dsecs = |
| le32_to_cpu(resp->max_bailout_time_after_reset); |
| fw_health->regs[BNXT_FW_HEALTH_REG] = |
| le32_to_cpu(resp->fw_health_status_reg); |
| fw_health->regs[BNXT_FW_HEARTBEAT_REG] = |
| le32_to_cpu(resp->fw_heartbeat_reg); |
| fw_health->regs[BNXT_FW_RESET_CNT_REG] = |
| le32_to_cpu(resp->fw_reset_cnt_reg); |
| fw_health->regs[BNXT_FW_RESET_INPROG_REG] = |
| le32_to_cpu(resp->reset_inprogress_reg); |
| fw_health->fw_reset_inprog_reg_mask = |
| le32_to_cpu(resp->reset_inprogress_reg_mask); |
| fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; |
| if (fw_health->fw_reset_seq_cnt >= 16) { |
| rc = -EINVAL; |
| goto err_recovery_out; |
| } |
| for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { |
| fw_health->fw_reset_seq_regs[i] = |
| le32_to_cpu(resp->reset_reg[i]); |
| fw_health->fw_reset_seq_vals[i] = |
| le32_to_cpu(resp->reset_reg_val[i]); |
| fw_health->fw_reset_seq_delay_msec[i] = |
| resp->delay_after_reset[i]; |
| } |
| err_recovery_out: |
| hwrm_req_drop(bp, req); |
| if (!rc) |
| rc = bnxt_map_fw_health_regs(bp); |
| if (rc) |
| bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; |
| return rc; |
| } |
| |
| static int bnxt_hwrm_func_reset(struct bnxt *bp) |
| { |
| struct hwrm_func_reset_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); |
| if (rc) |
| return rc; |
| |
| req->enables = 0; |
| hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); |
| return hwrm_req_send(bp, req); |
| } |
| |
| static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) |
| { |
| struct hwrm_nvm_get_dev_info_output nvm_info; |
| |
| if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) |
| snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", |
| nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, |
| nvm_info.nvm_cfg_ver_upd); |
| } |
| |
| static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) |
| { |
| struct hwrm_queue_qportcfg_output *resp; |
| struct hwrm_queue_qportcfg_input *req; |
| u8 i, j, *qptr; |
| bool no_rdma; |
| int rc = 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto qportcfg_exit; |
| |
| if (!resp->max_configurable_queues) { |
| rc = -EINVAL; |
| goto qportcfg_exit; |
| } |
| bp->max_tc = resp->max_configurable_queues; |
| bp->max_lltc = resp->max_configurable_lossless_queues; |
| if (bp->max_tc > BNXT_MAX_QUEUE) |
| bp->max_tc = BNXT_MAX_QUEUE; |
| |
| no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); |
| qptr = &resp->queue_id0; |
| for (i = 0, j = 0; i < bp->max_tc; i++) { |
| bp->q_info[j].queue_id = *qptr; |
| bp->q_ids[i] = *qptr++; |
| bp->q_info[j].queue_profile = *qptr++; |
| bp->tc_to_qidx[j] = j; |
| if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || |
| (no_rdma && BNXT_PF(bp))) |
| j++; |
| } |
| bp->max_q = bp->max_tc; |
| bp->max_tc = max_t(u8, j, 1); |
| |
| if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) |
| bp->max_tc = 1; |
| |
| if (bp->max_lltc > bp->max_tc) |
| bp->max_lltc = bp->max_tc; |
| |
| qportcfg_exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_poll(struct bnxt *bp) |
| { |
| struct hwrm_ver_get_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VER_GET); |
| if (rc) |
| return rc; |
| |
| req->hwrm_intf_maj = HWRM_VERSION_MAJOR; |
| req->hwrm_intf_min = HWRM_VERSION_MINOR; |
| req->hwrm_intf_upd = HWRM_VERSION_UPDATE; |
| |
| hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); |
| rc = hwrm_req_send(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_ver_get(struct bnxt *bp) |
| { |
| struct hwrm_ver_get_output *resp; |
| struct hwrm_ver_get_input *req; |
| u16 fw_maj, fw_min, fw_bld, fw_rsv; |
| u32 dev_caps_cfg, hwrm_ver; |
| int rc, len; |
| |
| rc = hwrm_req_init(bp, req, HWRM_VER_GET); |
| if (rc) |
| return rc; |
| |
| hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); |
| bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; |
| req->hwrm_intf_maj = HWRM_VERSION_MAJOR; |
| req->hwrm_intf_min = HWRM_VERSION_MINOR; |
| req->hwrm_intf_upd = HWRM_VERSION_UPDATE; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto hwrm_ver_get_exit; |
| |
| memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); |
| |
| bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | |
| resp->hwrm_intf_min_8b << 8 | |
| resp->hwrm_intf_upd_8b; |
| if (resp->hwrm_intf_maj_8b < 1) { |
| netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", |
| resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, |
| resp->hwrm_intf_upd_8b); |
| netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); |
| } |
| |
| hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | |
| HWRM_VERSION_UPDATE; |
| |
| if (bp->hwrm_spec_code > hwrm_ver) |
| snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", |
| HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, |
| HWRM_VERSION_UPDATE); |
| else |
| snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", |
| resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, |
| resp->hwrm_intf_upd_8b); |
| |
| fw_maj = le16_to_cpu(resp->hwrm_fw_major); |
| if (bp->hwrm_spec_code > 0x10803 && fw_maj) { |
| fw_min = le16_to_cpu(resp->hwrm_fw_minor); |
| fw_bld = le16_to_cpu(resp->hwrm_fw_build); |
| fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); |
| len = FW_VER_STR_LEN; |
| } else { |
| fw_maj = resp->hwrm_fw_maj_8b; |
| fw_min = resp->hwrm_fw_min_8b; |
| fw_bld = resp->hwrm_fw_bld_8b; |
| fw_rsv = resp->hwrm_fw_rsvd_8b; |
| len = BC_HWRM_STR_LEN; |
| } |
| bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); |
| snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, |
| fw_rsv); |
| |
| if (strlen(resp->active_pkg_name)) { |
| int fw_ver_len = strlen(bp->fw_ver_str); |
| |
| snprintf(bp->fw_ver_str + fw_ver_len, |
| FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", |
| resp->active_pkg_name); |
| bp->fw_cap |= BNXT_FW_CAP_PKG_VER; |
| } |
| |
| bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); |
| if (!bp->hwrm_cmd_timeout) |
| bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; |
| bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; |
| if (!bp->hwrm_cmd_max_timeout) |
| bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; |
| else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) |
| netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", |
| bp->hwrm_cmd_max_timeout / 1000); |
| |
| if (resp->hwrm_intf_maj_8b >= 1) { |
| bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); |
| bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); |
| } |
| if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) |
| bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; |
| |
| bp->chip_num = le16_to_cpu(resp->chip_num); |
| bp->chip_rev = resp->chip_rev; |
| if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && |
| !resp->chip_metal) |
| bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; |
| |
| dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); |
| if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && |
| (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) |
| bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; |
| |
| if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; |
| |
| if (dev_caps_cfg & |
| VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; |
| |
| if (dev_caps_cfg & |
| VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; |
| |
| if (dev_caps_cfg & |
| VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) |
| bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; |
| |
| hwrm_ver_get_exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| int bnxt_hwrm_fw_set_time(struct bnxt *bp) |
| { |
| struct hwrm_fw_set_time_input *req; |
| struct tm tm; |
| time64_t now = ktime_get_real_seconds(); |
| int rc; |
| |
| if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || |
| bp->hwrm_spec_code < 0x10400) |
| return -EOPNOTSUPP; |
| |
| time64_to_tm(now, 0, &tm); |
| rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); |
| if (rc) |
| return rc; |
| |
| req->year = cpu_to_le16(1900 + tm.tm_year); |
| req->month = 1 + tm.tm_mon; |
| req->day = tm.tm_mday; |
| req->hour = tm.tm_hour; |
| req->minute = tm.tm_min; |
| req->second = tm.tm_sec; |
| return hwrm_req_send(bp, req); |
| } |
| |
| static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) |
| { |
| u64 sw_tmp; |
| |
| hw &= mask; |
| sw_tmp = (*sw & ~mask) | hw; |
| if (hw < (*sw & mask)) |
| sw_tmp += mask + 1; |
| WRITE_ONCE(*sw, sw_tmp); |
| } |
| |
| static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, |
| int count, bool ignore_zero) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) { |
| u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); |
| |
| if (ignore_zero && !hw) |
| continue; |
| |
| if (masks[i] == -1ULL) |
| sw_stats[i] = hw; |
| else |
| bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); |
| } |
| } |
| |
| static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) |
| { |
| if (!stats->hw_stats) |
| return; |
| |
| __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, |
| stats->hw_masks, stats->len / 8, false); |
| } |
| |
| static void bnxt_accumulate_all_stats(struct bnxt *bp) |
| { |
| struct bnxt_stats_mem *ring0_stats; |
| bool ignore_zero = false; |
| int i; |
| |
| /* Chip bug. Counter intermittently becomes 0. */ |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| ignore_zero = true; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| struct bnxt_stats_mem *stats; |
| |
| cpr = &bnapi->cp_ring; |
| stats = &cpr->stats; |
| if (!i) |
| ring0_stats = stats; |
| __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, |
| ring0_stats->hw_masks, |
| ring0_stats->len / 8, ignore_zero); |
| } |
| if (bp->flags & BNXT_FLAG_PORT_STATS) { |
| struct bnxt_stats_mem *stats = &bp->port_stats; |
| __le64 *hw_stats = stats->hw_stats; |
| u64 *sw_stats = stats->sw_stats; |
| u64 *masks = stats->hw_masks; |
| int cnt; |
| |
| cnt = sizeof(struct rx_port_stats) / 8; |
| __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); |
| |
| hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; |
| sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; |
| masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; |
| cnt = sizeof(struct tx_port_stats) / 8; |
| __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); |
| } |
| if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { |
| bnxt_accumulate_stats(&bp->rx_port_stats_ext); |
| bnxt_accumulate_stats(&bp->tx_port_stats_ext); |
| } |
| } |
| |
| static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) |
| { |
| struct hwrm_port_qstats_input *req; |
| struct bnxt_pf_info *pf = &bp->pf; |
| int rc; |
| |
| if (!(bp->flags & BNXT_FLAG_PORT_STATS)) |
| return 0; |
| |
| if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) |
| return -EOPNOTSUPP; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); |
| if (rc) |
| return rc; |
| |
| req->flags = flags; |
| req->port_id = cpu_to_le16(pf->port_id); |
| req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + |
| BNXT_TX_PORT_STATS_BYTE_OFFSET); |
| req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); |
| return hwrm_req_send(bp, req); |
| } |
| |
| static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) |
| { |
| struct hwrm_queue_pri2cos_qcfg_output *resp_qc; |
| struct hwrm_queue_pri2cos_qcfg_input *req_qc; |
| struct hwrm_port_qstats_ext_output *resp_qs; |
| struct hwrm_port_qstats_ext_input *req_qs; |
| struct bnxt_pf_info *pf = &bp->pf; |
| u32 tx_stat_size; |
| int rc; |
| |
| if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) |
| return 0; |
| |
| if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) |
| return -EOPNOTSUPP; |
| |
| rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); |
| if (rc) |
| return rc; |
| |
| req_qs->flags = flags; |
| req_qs->port_id = cpu_to_le16(pf->port_id); |
| req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); |
| req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); |
| tx_stat_size = bp->tx_port_stats_ext.hw_stats ? |
| sizeof(struct tx_port_stats_ext) : 0; |
| req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); |
| req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); |
| resp_qs = hwrm_req_hold(bp, req_qs); |
| rc = hwrm_req_send(bp, req_qs); |
| if (!rc) { |
| bp->fw_rx_stats_ext_size = |
| le16_to_cpu(resp_qs->rx_stat_size) / 8; |
| if (BNXT_FW_MAJ(bp) < 220 && |
| bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) |
| bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; |
| |
| bp->fw_tx_stats_ext_size = tx_stat_size ? |
| le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; |
| } else { |
| bp->fw_rx_stats_ext_size = 0; |
| bp->fw_tx_stats_ext_size = 0; |
| } |
| hwrm_req_drop(bp, req_qs); |
| |
| if (flags) |
| return rc; |
| |
| if (bp->fw_tx_stats_ext_size <= |
| offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { |
| bp->pri2cos_valid = 0; |
| return rc; |
| } |
| |
| rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); |
| if (rc) |
| return rc; |
| |
| req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); |
| |
| resp_qc = hwrm_req_hold(bp, req_qc); |
| rc = hwrm_req_send(bp, req_qc); |
| if (!rc) { |
| u8 *pri2cos; |
| int i, j; |
| |
| pri2cos = &resp_qc->pri0_cos_queue_id; |
| for (i = 0; i < 8; i++) { |
| u8 queue_id = pri2cos[i]; |
| u8 queue_idx; |
| |
| /* Per port queue IDs start from 0, 10, 20, etc */ |
| queue_idx = queue_id % 10; |
| if (queue_idx > BNXT_MAX_QUEUE) { |
| bp->pri2cos_valid = false; |
| hwrm_req_drop(bp, req_qc); |
| return rc; |
| } |
| for (j = 0; j < bp->max_q; j++) { |
| if (bp->q_ids[j] == queue_id) |
| bp->pri2cos_idx[i] = queue_idx; |
| } |
| } |
| bp->pri2cos_valid = true; |
| } |
| hwrm_req_drop(bp, req_qc); |
| |
| return rc; |
| } |
| |
| static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) |
| { |
| bnxt_hwrm_tunnel_dst_port_free(bp, |
| TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); |
| bnxt_hwrm_tunnel_dst_port_free(bp, |
| TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); |
| } |
| |
| static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) |
| { |
| int rc, i; |
| u32 tpa_flags = 0; |
| |
| if (set_tpa) |
| tpa_flags = bp->flags & BNXT_FLAG_TPA; |
| else if (BNXT_NO_FW_ACCESS(bp)) |
| return 0; |
| for (i = 0; i < bp->nr_vnics; i++) { |
| rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", |
| i, rc); |
| return rc; |
| } |
| } |
| return 0; |
| } |
| |
| static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->nr_vnics; i++) |
| bnxt_hwrm_vnic_set_rss(bp, i, false); |
| } |
| |
| static void bnxt_clear_vnic(struct bnxt *bp) |
| { |
| if (!bp->vnic_info) |
| return; |
| |
| bnxt_hwrm_clear_vnic_filter(bp); |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { |
| /* clear all RSS setting before free vnic ctx */ |
| bnxt_hwrm_clear_vnic_rss(bp); |
| bnxt_hwrm_vnic_ctx_free(bp); |
| } |
| /* before free the vnic, undo the vnic tpa settings */ |
| if (bp->flags & BNXT_FLAG_TPA) |
| bnxt_set_tpa(bp, false); |
| bnxt_hwrm_vnic_free(bp); |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| bnxt_hwrm_vnic_ctx_free(bp); |
| } |
| |
| static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, |
| bool irq_re_init) |
| { |
| bnxt_clear_vnic(bp); |
| bnxt_hwrm_ring_free(bp, close_path); |
| bnxt_hwrm_ring_grp_free(bp); |
| if (irq_re_init) { |
| bnxt_hwrm_stat_ctx_free(bp); |
| bnxt_hwrm_free_tunnel_ports(bp); |
| } |
| } |
| |
| static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) |
| { |
| struct hwrm_func_cfg_input *req; |
| u8 evb_mode; |
| int rc; |
| |
| if (br_mode == BRIDGE_MODE_VEB) |
| evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; |
| else if (br_mode == BRIDGE_MODE_VEPA) |
| evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; |
| else |
| return -EINVAL; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(0xffff); |
| req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); |
| req->evb_mode = evb_mode; |
| return hwrm_req_send(bp, req); |
| } |
| |
| static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) |
| { |
| struct hwrm_func_cfg_input *req; |
| int rc; |
| |
| if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); |
| if (rc) |
| return rc; |
| |
| req->fid = cpu_to_le16(0xffff); |
| req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); |
| req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; |
| if (size == 128) |
| req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; |
| |
| return hwrm_req_send(bp, req); |
| } |
| |
| static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; |
| int rc; |
| |
| if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) |
| goto skip_rss_ctx; |
| |
| /* allocate context for vnic */ |
| rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", |
| vnic_id, rc); |
| goto vnic_setup_err; |
| } |
| bp->rsscos_nr_ctxs++; |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", |
| vnic_id, rc); |
| goto vnic_setup_err; |
| } |
| bp->rsscos_nr_ctxs++; |
| } |
| |
| skip_rss_ctx: |
| /* configure default vnic, ring grp */ |
| rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", |
| vnic_id, rc); |
| goto vnic_setup_err; |
| } |
| |
| /* Enable RSS hashing on vnic */ |
| rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", |
| vnic_id, rc); |
| goto vnic_setup_err; |
| } |
| |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) { |
| rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", |
| vnic_id, rc); |
| } |
| } |
| |
| vnic_setup_err: |
| return rc; |
| } |
| |
| static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) |
| { |
| int rc, i, nr_ctxs; |
| |
| nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); |
| for (i = 0; i < nr_ctxs; i++) { |
| rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", |
| vnic_id, i, rc); |
| break; |
| } |
| bp->rsscos_nr_ctxs++; |
| } |
| if (i < nr_ctxs) |
| return -ENOMEM; |
| |
| rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", |
| vnic_id, rc); |
| return rc; |
| } |
| rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", |
| vnic_id, rc); |
| return rc; |
| } |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) { |
| rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", |
| vnic_id, rc); |
| } |
| } |
| return rc; |
| } |
| |
| static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| return __bnxt_setup_vnic_p5(bp, vnic_id); |
| else |
| return __bnxt_setup_vnic(bp, vnic_id); |
| } |
| |
| static int bnxt_alloc_rfs_vnics(struct bnxt *bp) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| int i, rc = 0; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| return 0; |
| |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_vnic_info *vnic; |
| u16 vnic_id = i + 1; |
| u16 ring_id = i; |
| |
| if (vnic_id >= bp->nr_vnics) |
| break; |
| |
| vnic = &bp->vnic_info[vnic_id]; |
| vnic->flags |= BNXT_VNIC_RFS_FLAG; |
| if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) |
| vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; |
| rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", |
| vnic_id, rc); |
| break; |
| } |
| rc = bnxt_setup_vnic(bp, vnic_id); |
| if (rc) |
| break; |
| } |
| return rc; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ |
| static bool bnxt_promisc_ok(struct bnxt *bp) |
| { |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) |
| return false; |
| #endif |
| return true; |
| } |
| |
| static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) |
| { |
| unsigned int rc = 0; |
| |
| rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); |
| if (rc) { |
| netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", |
| rc); |
| return rc; |
| } |
| |
| rc = bnxt_hwrm_vnic_cfg(bp, 1); |
| if (rc) { |
| netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", |
| rc); |
| return rc; |
| } |
| return rc; |
| } |
| |
| static int bnxt_cfg_rx_mode(struct bnxt *); |
| static bool bnxt_mc_list_updated(struct bnxt *, u32 *); |
| |
| static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) |
| { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| int rc = 0; |
| unsigned int rx_nr_rings = bp->rx_nr_rings; |
| |
| if (irq_re_init) { |
| rc = bnxt_hwrm_stat_ctx_alloc(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", |
| rc); |
| goto err_out; |
| } |
| } |
| |
| rc = bnxt_hwrm_ring_alloc(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); |
| goto err_out; |
| } |
| |
| rc = bnxt_hwrm_ring_grp_alloc(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); |
| goto err_out; |
| } |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| rx_nr_rings--; |
| |
| /* default vnic 0 */ |
| rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); |
| goto err_out; |
| } |
| |
| rc = bnxt_setup_vnic(bp, 0); |
| if (rc) |
| goto err_out; |
| |
| if (bp->flags & BNXT_FLAG_RFS) { |
| rc = bnxt_alloc_rfs_vnics(bp); |
| if (rc) |
| goto err_out; |
| } |
| |
| if (bp->flags & BNXT_FLAG_TPA) { |
| rc = bnxt_set_tpa(bp, true); |
| if (rc) |
| goto err_out; |
| } |
| |
| if (BNXT_VF(bp)) |
| bnxt_update_vf_mac(bp); |
| |
| /* Filter for default vnic 0 */ |
| rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); |
| if (rc) { |
| if (BNXT_VF(bp) && rc == -ENODEV) |
| netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); |
| else |
| netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); |
| goto err_out; |
| } |
| vnic->uc_filter_count = 1; |
| |
| vnic->rx_mask = 0; |
| if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) |
| goto skip_rx_mask; |
| |
| if (bp->dev->flags & IFF_BROADCAST) |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; |
| |
| if (bp->dev->flags & IFF_PROMISC) |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; |
| |
| if (bp->dev->flags & IFF_ALLMULTI) { |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; |
| vnic->mc_list_count = 0; |
| } else if (bp->dev->flags & IFF_MULTICAST) { |
| u32 mask = 0; |
| |
| bnxt_mc_list_updated(bp, &mask); |
| vnic->rx_mask |= mask; |
| } |
| |
| rc = bnxt_cfg_rx_mode(bp); |
| if (rc) |
| goto err_out; |
| |
| skip_rx_mask: |
| rc = bnxt_hwrm_set_coal(bp); |
| if (rc) |
| netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", |
| rc); |
| |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| rc = bnxt_setup_nitroa0_vnic(bp); |
| if (rc) |
| netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", |
| rc); |
| } |
| |
| if (BNXT_VF(bp)) { |
| bnxt_hwrm_func_qcfg(bp); |
| netdev_update_features(bp->dev); |
| } |
| |
| return 0; |
| |
| err_out: |
| bnxt_hwrm_resource_free(bp, 0, true); |
| |
| return rc; |
| } |
| |
| static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) |
| { |
| bnxt_hwrm_resource_free(bp, 1, irq_re_init); |
| return 0; |
| } |
| |
| static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) |
| { |
| bnxt_init_cp_rings(bp); |
| bnxt_init_rx_rings(bp); |
| bnxt_init_tx_rings(bp); |
| bnxt_init_ring_grps(bp, irq_re_init); |
| bnxt_init_vnics(bp); |
| |
| return bnxt_init_chip(bp, irq_re_init); |
| } |
| |
| static int bnxt_set_real_num_queues(struct bnxt *bp) |
| { |
| int rc; |
| struct net_device *dev = bp->dev; |
| |
| rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - |
| bp->tx_nr_rings_xdp); |
| if (rc) |
| return rc; |
| |
| rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); |
| if (rc) |
| return rc; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| if (bp->flags & BNXT_FLAG_RFS) |
| dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); |
| #endif |
| |
| return rc; |
| } |
| |
| static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, |
| bool shared) |
| { |
| int _rx = *rx, _tx = *tx; |
| |
| if (shared) { |
| *rx = min_t(int, _rx, max); |
| *tx = min_t(int, _tx, max); |
| } else { |
| if (max < 2) |
| return -ENOMEM; |
| |
| while (_rx + _tx > max) { |
| if (_rx > _tx && _rx > 1) |
| _rx--; |
| else if (_tx > 1) |
| _tx--; |
| } |
| *rx = _rx; |
| *tx = _tx; |
| } |
| return 0; |
| } |
| |
| static void bnxt_setup_msix(struct bnxt *bp) |
| { |
| const int len = sizeof(bp->irq_tbl[0].name); |
| struct net_device *dev = bp->dev; |
| int tcs, i; |
| |
| tcs = netdev_get_num_tc(dev); |
| if (tcs) { |
| int i, off, count; |
| |
| for (i = 0; i < tcs; i++) { |
| count = bp->tx_nr_rings_per_tc; |
| off = i * count; |
| netdev_set_tc_queue(dev, i, count, off); |
| } |
| } |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| int map_idx = bnxt_cp_num_to_irq_num(bp, i); |
| char *attr; |
| |
| if (bp->flags & BNXT_FLAG_SHARED_RINGS) |
| attr = "TxRx"; |
| else if (i < bp->rx_nr_rings) |
| attr = "rx"; |
| else |
| attr = "tx"; |
| |
| snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, |
| attr, i); |
| bp->irq_tbl[map_idx].handler = bnxt_msix; |
| } |
| } |
| |
| static void bnxt_setup_inta(struct bnxt *bp) |
| { |
| const int len = sizeof(bp->irq_tbl[0].name); |
| |
| if (netdev_get_num_tc(bp->dev)) |
| netdev_reset_tc(bp->dev); |
| |
| snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", |
| 0); |
| bp->irq_tbl[0].handler = bnxt_inta; |
| } |
| |
| static int bnxt_init_int_mode(struct bnxt *bp); |
| |
| static int bnxt_setup_int_mode(struct bnxt *bp) |
| { |
| int rc; |
| |
| if (!bp->irq_tbl) { |
| rc = bnxt_init_int_mode(bp); |
| if (rc || !bp->irq_tbl) |
| return rc ?: -ENODEV; |
| } |
| |
| if (bp->flags & BNXT_FLAG_USING_MSIX) |
| bnxt_setup_msix(bp); |
| else |
| bnxt_setup_inta(bp); |
| |
| rc = bnxt_set_real_num_queues(bp); |
| return rc; |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) |
| { |
| return bp->hw_resc.max_rsscos_ctxs; |
| } |
| |
| static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) |
| { |
| return bp->hw_resc.max_vnics; |
| } |
| #endif |
| |
| unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) |
| { |
| return bp->hw_resc.max_stat_ctxs; |
| } |
| |
| unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) |
| { |
| return bp->hw_resc.max_cp_rings; |
| } |
| |
| static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) |
| { |
| unsigned int cp = bp->hw_resc.max_cp_rings; |
| |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| cp -= bnxt_get_ulp_msix_num(bp); |
| |
| return cp; |
| } |
| |
| static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) |
| { |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); |
| |
| return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); |
| } |
| |
| static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) |
| { |
| bp->hw_resc.max_irqs = max_irqs; |
| } |
| |
| unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) |
| { |
| unsigned int cp; |
| |
| cp = bnxt_get_max_func_cp_rings_for_en(bp); |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| return cp - bp->rx_nr_rings - bp->tx_nr_rings; |
| else |
| return cp - bp->cp_nr_rings; |
| } |
| |
| unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) |
| { |
| return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); |
| } |
| |
| int bnxt_get_avail_msix(struct bnxt *bp, int num) |
| { |
| int max_cp = bnxt_get_max_func_cp_rings(bp); |
| int max_irq = bnxt_get_max_func_irqs(bp); |
| int total_req = bp->cp_nr_rings + num; |
| int max_idx, avail_msix; |
| |
| max_idx = bp->total_irqs; |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| max_idx = min_t(int, bp->total_irqs, max_cp); |
| avail_msix = max_idx - bp->cp_nr_rings; |
| if (!BNXT_NEW_RM(bp) || avail_msix >= num) |
| return avail_msix; |
| |
| if (max_irq < total_req) { |
| num = max_irq - bp->cp_nr_rings; |
| if (num <= 0) |
| return 0; |
| } |
| return num; |
| } |
| |
| static int bnxt_get_num_msix(struct bnxt *bp) |
| { |
| if (!BNXT_NEW_RM(bp)) |
| return bnxt_get_max_func_irqs(bp); |
| |
| return bnxt_nq_rings_in_use(bp); |
| } |
| |
| static int bnxt_init_msix(struct bnxt *bp) |
| { |
| int i, total_vecs, max, rc = 0, min = 1, ulp_msix; |
| struct msix_entry *msix_ent; |
| |
| total_vecs = bnxt_get_num_msix(bp); |
| max = bnxt_get_max_func_irqs(bp); |
| if (total_vecs > max) |
| total_vecs = max; |
| |
| if (!total_vecs) |
| return 0; |
| |
| msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); |
| if (!msix_ent) |
| return -ENOMEM; |
| |
| for (i = 0; i < total_vecs; i++) { |
| msix_ent[i].entry = i; |
| msix_ent[i].vector = 0; |
| } |
| |
| if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) |
| min = 2; |
| |
| total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); |
| ulp_msix = bnxt_get_ulp_msix_num(bp); |
| if (total_vecs < 0 || total_vecs < ulp_msix) { |
| rc = -ENODEV; |
| goto msix_setup_exit; |
| } |
| |
| bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); |
| if (bp->irq_tbl) { |
| for (i = 0; i < total_vecs; i++) |
| bp->irq_tbl[i].vector = msix_ent[i].vector; |
| |
| bp->total_irqs = total_vecs; |
| /* Trim rings based upon num of vectors allocated */ |
| rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, |
| total_vecs - ulp_msix, min == 1); |
| if (rc) |
| goto msix_setup_exit; |
| |
| bp->cp_nr_rings = (min == 1) ? |
| max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : |
| bp->tx_nr_rings + bp->rx_nr_rings; |
| |
| } else { |
| rc = -ENOMEM; |
| goto msix_setup_exit; |
| } |
| bp->flags |= BNXT_FLAG_USING_MSIX; |
| kfree(msix_ent); |
| return 0; |
| |
| msix_setup_exit: |
| netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); |
| kfree(bp->irq_tbl); |
| bp->irq_tbl = NULL; |
| pci_disable_msix(bp->pdev); |
| kfree(msix_ent); |
| return rc; |
| } |
| |
| static int bnxt_init_inta(struct bnxt *bp) |
| { |
| bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); |
| if (!bp->irq_tbl) |
| return -ENOMEM; |
| |
| bp->total_irqs = 1; |
| bp->rx_nr_rings = 1; |
| bp->tx_nr_rings = 1; |
| bp->cp_nr_rings = 1; |
| bp->flags |= BNXT_FLAG_SHARED_RINGS; |
| bp->irq_tbl[0].vector = bp->pdev->irq; |
| return 0; |
| } |
| |
| static int bnxt_init_int_mode(struct bnxt *bp) |
| { |
| int rc = -ENODEV; |
| |
| if (bp->flags & BNXT_FLAG_MSIX_CAP) |
| rc = bnxt_init_msix(bp); |
| |
| if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { |
| /* fallback to INTA */ |
| rc = bnxt_init_inta(bp); |
| } |
| return rc; |
| } |
| |
| static void bnxt_clear_int_mode(struct bnxt *bp) |
| { |
| if (bp->flags & BNXT_FLAG_USING_MSIX) |
| pci_disable_msix(bp->pdev); |
| |
| kfree(bp->irq_tbl); |
| bp->irq_tbl = NULL; |
| bp->flags &= ~BNXT_FLAG_USING_MSIX; |
| } |
| |
| int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) |
| { |
| int tcs = netdev_get_num_tc(bp->dev); |
| bool irq_cleared = false; |
| int rc; |
| |
| if (!bnxt_need_reserve_rings(bp)) |
| return 0; |
| |
| if (irq_re_init && BNXT_NEW_RM(bp) && |
| bnxt_get_num_msix(bp) != bp->total_irqs) { |
| bnxt_ulp_irq_stop(bp); |
| bnxt_clear_int_mode(bp); |
| irq_cleared = true; |
| } |
| rc = __bnxt_reserve_rings(bp); |
| if (irq_cleared) { |
| if (!rc) |
| rc = bnxt_init_int_mode(bp); |
| bnxt_ulp_irq_restart(bp, rc); |
| } |
| if (rc) { |
| netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); |
| return rc; |
| } |
| if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { |
| netdev_err(bp->dev, "tx ring reservation failure\n"); |
| netdev_reset_tc(bp->dev); |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings; |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void bnxt_free_irq(struct bnxt *bp) |
| { |
| struct bnxt_irq *irq; |
| int i; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); |
| bp->dev->rx_cpu_rmap = NULL; |
| #endif |
| if (!bp->irq_tbl || !bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| int map_idx = bnxt_cp_num_to_irq_num(bp, i); |
| |
| irq = &bp->irq_tbl[map_idx]; |
| if (irq->requested) { |
| if (irq->have_cpumask) { |
| irq_set_affinity_hint(irq->vector, NULL); |
| free_cpumask_var(irq->cpu_mask); |
| irq->have_cpumask = 0; |
| } |
| free_irq(irq->vector, bp->bnapi[i]); |
| } |
| |
| irq->requested = 0; |
| } |
| } |
| |
| static int bnxt_request_irq(struct bnxt *bp) |
| { |
| int i, j, rc = 0; |
| unsigned long flags = 0; |
| #ifdef CONFIG_RFS_ACCEL |
| struct cpu_rmap *rmap; |
| #endif |
| |
| rc = bnxt_setup_int_mode(bp); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", |
| rc); |
| return rc; |
| } |
| #ifdef CONFIG_RFS_ACCEL |
| rmap = bp->dev->rx_cpu_rmap; |
| #endif |
| if (!(bp->flags & BNXT_FLAG_USING_MSIX)) |
| flags = IRQF_SHARED; |
| |
| for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { |
| int map_idx = bnxt_cp_num_to_irq_num(bp, i); |
| struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| if (rmap && bp->bnapi[i]->rx_ring) { |
| rc = irq_cpu_rmap_add(rmap, irq->vector); |
| if (rc) |
| netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", |
| j); |
| j++; |
| } |
| #endif |
| rc = request_irq(irq->vector, irq->handler, flags, irq->name, |
| bp->bnapi[i]); |
| if (rc) |
| break; |
| |
| irq->requested = 1; |
| |
| if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { |
| int numa_node = dev_to_node(&bp->pdev->dev); |
| |
| irq->have_cpumask = 1; |
| cpumask_set_cpu(cpumask_local_spread(i, numa_node), |
| irq->cpu_mask); |
| rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); |
| if (rc) { |
| netdev_warn(bp->dev, |
| "Set affinity failed, IRQ = %d\n", |
| irq->vector); |
| break; |
| } |
| } |
| } |
| return rc; |
| } |
| |
| static void bnxt_del_napi(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| |
| __netif_napi_del(&bnapi->napi); |
| } |
| /* We called __netif_napi_del(), we need |
| * to respect an RCU grace period before freeing napi structures. |
| */ |
| synchronize_net(); |
| } |
| |
| static void bnxt_init_napi(struct bnxt *bp) |
| { |
| int i; |
| unsigned int cp_nr_rings = bp->cp_nr_rings; |
| struct bnxt_napi *bnapi; |
| |
| if (bp->flags & BNXT_FLAG_USING_MSIX) { |
| int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| poll_fn = bnxt_poll_p5; |
| else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| cp_nr_rings--; |
| for (i = 0; i < cp_nr_rings; i++) { |
| bnapi = bp->bnapi[i]; |
| netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); |
| } |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| bnapi = bp->bnapi[cp_nr_rings]; |
| netif_napi_add(bp->dev, &bnapi->napi, |
| bnxt_poll_nitroa0, 64); |
| } |
| } else { |
| bnapi = bp->bnapi[0]; |
| netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); |
| } |
| } |
| |
| static void bnxt_disable_napi(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!bp->bnapi || |
| test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; |
| |
| napi_disable(&bp->bnapi[i]->napi); |
| if (bp->bnapi[i]->rx_ring) |
| cancel_work_sync(&cpr->dim.work); |
| } |
| } |
| |
| static void bnxt_enable_napi(struct bnxt *bp) |
| { |
| int i; |
| |
| clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| |
| cpr = &bnapi->cp_ring; |
| if (bnapi->in_reset) |
| cpr->sw_stats.rx.rx_resets++; |
| bnapi->in_reset = false; |
| |
| if (bnapi->rx_ring) { |
| INIT_WORK(&cpr->dim.work, bnxt_dim_work); |
| cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; |
| } |
| napi_enable(&bnapi->napi); |
| } |
| } |
| |
| void bnxt_tx_disable(struct bnxt *bp) |
| { |
| int i; |
| struct bnxt_tx_ring_info *txr; |
| |
| if (bp->tx_ring) { |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| txr = &bp->tx_ring[i]; |
| WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); |
| } |
| } |
| /* Make sure napi polls see @dev_state change */ |
| synchronize_net(); |
| /* Drop carrier first to prevent TX timeout */ |
| netif_carrier_off(bp->dev); |
| /* Stop all TX queues */ |
| netif_tx_disable(bp->dev); |
| } |
| |
| void bnxt_tx_enable(struct bnxt *bp) |
| { |
| int i; |
| struct bnxt_tx_ring_info *txr; |
| |
| for (i = 0; i < bp->tx_nr_rings; i++) { |
| txr = &bp->tx_ring[i]; |
| WRITE_ONCE(txr->dev_state, 0); |
| } |
| /* Make sure napi polls see @dev_state change */ |
| synchronize_net(); |
| netif_tx_wake_all_queues(bp->dev); |
| if (BNXT_LINK_IS_UP(bp)) |
| netif_carrier_on(bp->dev); |
| } |
| |
| static char *bnxt_report_fec(struct bnxt_link_info *link_info) |
| { |
| u8 active_fec = link_info->active_fec_sig_mode & |
| PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; |
| |
| switch (active_fec) { |
| default: |
| case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: |
| return "None"; |
| case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: |
| return "Clause 74 BaseR"; |
| case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: |
| return "Clause 91 RS(528,514)"; |
| case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: |
| return "Clause 91 RS544_1XN"; |
| case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: |
| return "Clause 91 RS(544,514)"; |
| case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: |
| return "Clause 91 RS272_1XN"; |
| case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: |
| return "Clause 91 RS(272,257)"; |
| } |
| } |
| |
| void bnxt_report_link(struct bnxt *bp) |
| { |
| if (BNXT_LINK_IS_UP(bp)) { |
| const char *signal = ""; |
| const char *flow_ctrl; |
| const char *duplex; |
| u32 speed; |
| u16 fec; |
| |
| netif_carrier_on(bp->dev); |
| speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); |
| if (speed == SPEED_UNKNOWN) { |
| netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); |
| return; |
| } |
| if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) |
| duplex = "full"; |
| else |
| duplex = "half"; |
| if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) |
| flow_ctrl = "ON - receive & transmit"; |
| else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) |
| flow_ctrl = "ON - transmit"; |
| else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) |
| flow_ctrl = "ON - receive"; |
| else |
| flow_ctrl = "none"; |
| if (bp->link_info.phy_qcfg_resp.option_flags & |
| PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { |
| u8 sig_mode = bp->link_info.active_fec_sig_mode & |
| PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; |
| switch (sig_mode) { |
| case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: |
| signal = "(NRZ) "; |
| break; |
| case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: |
| signal = "(PAM4) "; |
| break; |
| default: |
| break; |
| } |
| } |
| netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", |
| speed, signal, duplex, flow_ctrl); |
| if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) |
| netdev_info(bp->dev, "EEE is %s\n", |
| bp->eee.eee_active ? "active" : |
| "not active"); |
| fec = bp->link_info.fec_cfg; |
| if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) |
| netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", |
| (fec & BNXT_FEC_AUTONEG) ? "on" : "off", |
| bnxt_report_fec(&bp->link_info)); |
| } else { |
| netif_carrier_off(bp->dev); |
| netdev_err(bp->dev, "NIC Link is Down\n"); |
| } |
| } |
| |
| static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) |
| { |
| if (!resp->supported_speeds_auto_mode && |
| !resp->supported_speeds_force_mode && |
| !resp->supported_pam4_speeds_auto_mode && |
| !resp->supported_pam4_speeds_force_mode) |
| return true; |
| return false; |
| } |
| |
| static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) |
| { |
| struct bnxt_link_info *link_info = &bp->link_info; |
| struct hwrm_port_phy_qcaps_output *resp; |
| struct hwrm_port_phy_qcaps_input *req; |
| int rc = 0; |
| |
| if (bp->hwrm_spec_code < 0x10201) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) |
| goto hwrm_phy_qcaps_exit; |
| |
| bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); |
| if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { |
| struct ethtool_eee *eee = &bp->eee; |
| u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); |
| |
| eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); |
| bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & |
| PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; |
| bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & |
| PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; |
| } |
| |
| if (bp->hwrm_spec_code >= 0x10a01) { |
| if (bnxt_phy_qcaps_no_speed(resp)) { |
| link_info->phy_state = BNXT_PHY_STATE_DISABLED; |
| netdev_warn(bp->dev, "Ethernet link disabled\n"); |
| } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { |
| link_info->phy_state = BNXT_PHY_STATE_ENABLED; |
| netdev_info(bp->dev, "Ethernet link enabled\n"); |
| /* Phy re-enabled, reprobe the speeds */ |
| link_info->support_auto_speeds = 0; |
| link_info->support_pam4_auto_speeds = 0; |
| } |
| } |
| if (resp->supported_speeds_auto_mode) |
| link_info->support_auto_speeds = |
| le16_to_cpu(resp->supported_speeds_auto_mode); |
| if (resp->supported_pam4_speeds_auto_mode) |
| link_info->support_pam4_auto_speeds = |
| le16_to_cpu(resp->supported_pam4_speeds_auto_mode); |
| |
| bp->port_count = resp->port_cnt; |
| |
| hwrm_phy_qcaps_exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static bool bnxt_support_dropped(u16 advertising, u16 supported) |
| { |
| u16 diff = advertising ^ supported; |
| |
| return ((supported | diff) != supported); |
| } |
| |
| int bnxt_update_link(struct bnxt *bp, bool chng_link_state) |
| { |
| struct bnxt_link_info *link_info = &bp->link_info; |
| struct hwrm_port_phy_qcfg_output *resp; |
| struct hwrm_port_phy_qcfg_input *req; |
| u8 link_state = link_info->link_state; |
| bool support_changed = false; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); |
| if (rc) |
| return rc; |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) { |
| hwrm_req_drop(bp, req); |
| if (BNXT_VF(bp) && rc == -ENODEV) { |
| netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); |
| rc = 0; |
| } |
| return rc; |
| } |
| |
| memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); |
| link_info->phy_link_status = resp->link; |
| link_info->duplex = resp->duplex_cfg; |
| if (bp->hwrm_spec_code >= 0x10800) |
| link_info->duplex = resp->duplex_state; |
| link_info->pause = resp->pause; |
| link_info->auto_mode = resp->auto_mode; |
| link_info->auto_pause_setting = resp->auto_pause; |
| link_info->lp_pause = resp->link_partner_adv_pause; |
| link_info->force_pause_setting = resp->force_pause; |
| link_info->duplex_setting = resp->duplex_cfg; |
| if (link_info->phy_link_status == BNXT_LINK_LINK) |
| link_info->link_speed = le16_to_cpu(resp->link_speed); |
| else |
| link_info->link_speed = 0; |
| link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); |
| link_info->force_pam4_link_speed = |
| le16_to_cpu(resp->force_pam4_link_speed); |
| link_info->support_speeds = le16_to_cpu(resp->support_speeds); |
| link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); |
| link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); |
| link_info->auto_pam4_link_speeds = |
| le16_to_cpu(resp->auto_pam4_link_speed_mask); |
| link_info->lp_auto_link_speeds = |
| le16_to_cpu(resp->link_partner_adv_speeds); |
| link_info->lp_auto_pam4_link_speeds = |
| resp->link_partner_pam4_adv_speeds; |
| link_info->preemphasis = le32_to_cpu(resp->preemphasis); |
| link_info->phy_ver[0] = resp->phy_maj; |
| link_info->phy_ver[1] = resp->phy_min; |
| link_info->phy_ver[2] = resp->phy_bld; |
| link_info->media_type = resp->media_type; |
| link_info->phy_type = resp->phy_type; |
| link_info->transceiver = resp->xcvr_pkg_type; |
| link_info->phy_addr = resp->eee_config_phy_addr & |
| PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; |
| link_info->module_status = resp->module_status; |
| |
| if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { |
| struct ethtool_eee *eee = &bp->eee; |
| u16 fw_speeds; |
| |
| eee->eee_active = 0; |
| if (resp->eee_config_phy_addr & |
| PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { |
| eee->eee_active = 1; |
| fw_speeds = le16_to_cpu( |
| resp->link_partner_adv_eee_link_speed_mask); |
| eee->lp_advertised = |
| _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); |
| } |
| |
| /* Pull initial EEE config */ |
| if (!chng_link_state) { |
| if (resp->eee_config_phy_addr & |
| PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) |
| eee->eee_enabled = 1; |
| |
| fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); |
| eee->advertised = |
| _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); |
| |
| if (resp->eee_config_phy_addr & |
| PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { |
| __le32 tmr; |
| |
| eee->tx_lpi_enabled = 1; |
| tmr = resp->xcvr_identifier_type_tx_lpi_timer; |
| eee->tx_lpi_timer = le32_to_cpu(tmr) & |
| PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; |
| } |
| } |
| } |
| |
| link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; |
| if (bp->hwrm_spec_code >= 0x10504) { |
| link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); |
| link_info->active_fec_sig_mode = resp->active_fec_signal_mode; |
| } |
| /* TODO: need to add more logic to report VF link */ |
| if (chng_link_state) { |
| if (link_info->phy_link_status == BNXT_LINK_LINK) |
| link_info->link_state = BNXT_LINK_STATE_UP; |
| else |
| link_info->link_state = BNXT_LINK_STATE_DOWN; |
| if (link_state != link_info->link_state) |
| bnxt_report_link(bp); |
| } else { |
| /* always link down if not require to update link state */ |
| link_info->link_state = BNXT_LINK_STATE_DOWN; |
| } |
| hwrm_req_drop(bp, req); |
| |
| if (!BNXT_PHY_CFG_ABLE(bp)) |
| return 0; |
| |
| /* Check if any advertised speeds are no longer supported. The caller |
| * holds the link_lock mutex, so we can modify link_info settings. |
| */ |
| if (bnxt_support_dropped(link_info->advertising, |
| link_info->support_auto_speeds)) { |
| link_info->advertising = link_info->support_auto_speeds; |
| support_changed = true; |
| } |
| if (bnxt_support_dropped(link_info->advertising_pam4, |
| link_info->support_pam4_auto_speeds)) { |
| link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; |
| support_changed = true; |
| } |
| if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) |
| bnxt_hwrm_set_link_setting(bp, true, false); |
| return 0; |
| } |
| |
| static void bnxt_get_port_module_status(struct bnxt *bp) |
| { |
| struct bnxt_link_info *link_info = &bp->link_info; |
| struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; |
| u8 module_status; |
| |
| if (bnxt_update_link(bp, true)) |
| return; |
| |
| module_status = link_info->module_status; |
| switch (module_status) { |
| case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: |
| case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: |
| case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: |
| netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", |
| bp->pf.port_id); |
| if (bp->hwrm_spec_code >= 0x10201) { |
| netdev_warn(bp->dev, "Module part number %s\n", |
| resp->phy_vendor_partnumber); |
| } |
| if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) |
| netdev_warn(bp->dev, "TX is disabled\n"); |
| if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) |
| netdev_warn(bp->dev, "SFP+ module is shutdown\n"); |
| } |
| } |
| |
| static void |
| bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) |
| { |
| if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { |
| if (bp->hwrm_spec_code >= 0x10201) |
| req->auto_pause = |
| PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; |
| if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) |
| req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; |
| if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) |
| req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; |
| req->enables |= |
| cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); |
| } else { |
| if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) |
| req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; |
| if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) |
| req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; |
| req->enables |= |
| cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); |
| if (bp->hwrm_spec_code >= 0x10201) { |
| req->auto_pause = req->force_pause; |
| req->enables |= cpu_to_le32( |
| PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); |
| } |
| } |
| } |
| |
| static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) |
| { |
| if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { |
| req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; |
| if (bp->link_info.advertising) { |
| req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); |
| req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); |
| } |
| if (bp->link_info.advertising_pam4) { |
| req->enables |= |
| cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); |
| req->auto_link_pam4_speed_mask = |
| cpu_to_le16(bp->link_info.advertising_pam4); |
| } |
| req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); |
| req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); |
| } else { |
| req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); |
| if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { |
| req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); |
| req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); |
| } else { |
| req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); |
| } |
| } |
| |
| /* tell chimp that the setting takes effect immediately */ |
| req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); |
| } |
| |
| int bnxt_hwrm_set_pause(struct bnxt *bp) |
| { |
| struct hwrm_port_phy_cfg_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); |
| if (rc) |
| return rc; |
| |
| bnxt_hwrm_set_pause_common(bp, req); |
| |
| if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || |
| bp->link_info.force_link_chng) |
| bnxt_hwrm_set_link_common(bp, req); |
| |
| rc = hwrm_req_send(bp, req); |
| if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { |
| /* since changing of pause setting doesn't trigger any link |
| * change event, the driver needs to update the current pause |
| * result upon successfully return of the phy_cfg command |
| */ |
| bp->link_info.pause = |
| bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; |
| bp->link_info.auto_pause_setting = 0; |
| if (!bp->link_info.force_link_chng) |
| bnxt_report_link(bp); |
| } |
| bp->link_info.force_link_chng = false; |
| return rc; |
| } |
| |
| static void bnxt_hwrm_set_eee(struct bnxt *bp, |
| struct hwrm_port_phy_cfg_input *req) |
| { |
| struct ethtool_eee *eee = &bp->eee; |
| |
| if (eee->eee_enabled) { |
| u16 eee_speeds; |
| u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; |
| |
| if (eee->tx_lpi_enabled) |
| flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; |
| else |
| flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; |
| |
| req->flags |= cpu_to_le32(flags); |
| eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); |
| req->eee_link_speed_mask = cpu_to_le16(eee_speeds); |
| req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); |
| } else { |
| req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); |
| } |
| } |
| |
| int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) |
| { |
| struct hwrm_port_phy_cfg_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); |
| if (rc) |
| return rc; |
| |
| if (set_pause) |
| bnxt_hwrm_set_pause_common(bp, req); |
| |
| bnxt_hwrm_set_link_common(bp, req); |
| |
| if (set_eee) |
| bnxt_hwrm_set_eee(bp, req); |
| return hwrm_req_send(bp, req); |
| } |
| |
| static int bnxt_hwrm_shutdown_link(struct bnxt *bp) |
| { |
| struct hwrm_port_phy_cfg_input *req; |
| int rc; |
| |
| if (!BNXT_SINGLE_PF(bp)) |
| return 0; |
| |
| if (pci_num_vf(bp->pdev) && |
| !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); |
| if (rc) |
| return rc; |
| |
| req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) { |
| mutex_lock(&bp->link_lock); |
| /* Device is not obliged link down in certain scenarios, even |
| * when forced. Setting the state unknown is consistent with |
| * driver startup and will force link state to be reported |
| * during subsequent open based on PORT_PHY_QCFG. |
| */ |
| bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; |
| mutex_unlock(&bp->link_lock); |
| } |
| return rc; |
| } |
| |
| static int bnxt_fw_reset_via_optee(struct bnxt *bp) |
| { |
| #ifdef CONFIG_TEE_BNXT_FW |
| int rc = tee_bnxt_fw_load(); |
| |
| if (rc) |
| netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); |
| |
| return rc; |
| #else |
| netdev_err(bp->dev, "OP-TEE not supported\n"); |
| return -ENODEV; |
| #endif |
| } |
| |
| static int bnxt_try_recover_fw(struct bnxt *bp) |
| { |
| if (bp->fw_health && bp->fw_health->status_reliable) { |
| int retry = 0, rc; |
| u32 sts; |
| |
| do { |
| sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); |
| rc = bnxt_hwrm_poll(bp); |
| if (!BNXT_FW_IS_BOOTING(sts) && |
| !BNXT_FW_IS_RECOVERING(sts)) |
| break; |
| retry++; |
| } while (rc == -EBUSY && retry < BNXT_FW_RETRY); |
| |
| if (!BNXT_FW_IS_HEALTHY(sts)) { |
| netdev_err(bp->dev, |
| "Firmware not responding, status: 0x%x\n", |
| sts); |
| rc = -ENODEV; |
| } |
| if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { |
| netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); |
| return bnxt_fw_reset_via_optee(bp); |
| } |
| return rc; |
| } |
| |
| return -ENODEV; |
| } |
| |
| int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) |
| { |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| int rc; |
| |
| if (!BNXT_NEW_RM(bp)) |
| return 0; /* no resource reservations required */ |
| |
| rc = bnxt_hwrm_func_resc_qcaps(bp, true); |
| if (rc) |
| netdev_err(bp->dev, "resc_qcaps failed\n"); |
| |
| hw_resc->resv_cp_rings = 0; |
| hw_resc->resv_stat_ctxs = 0; |
| hw_resc->resv_irqs = 0; |
| hw_resc->resv_tx_rings = 0; |
| hw_resc->resv_rx_rings = 0; |
| hw_resc->resv_hw_ring_grps = 0; |
| hw_resc->resv_vnics = 0; |
| if (!fw_reset) { |
| bp->tx_nr_rings = 0; |
| bp->rx_nr_rings = 0; |
| } |
| |
| return rc; |
| } |
| |
| static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) |
| { |
| struct hwrm_func_drv_if_change_output *resp; |
| struct hwrm_func_drv_if_change_input *req; |
| bool fw_reset = !bp->irq_tbl; |
| bool resc_reinit = false; |
| int rc, retry = 0; |
| u32 flags = 0; |
| |
| if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); |
| if (rc) |
| return rc; |
| |
| if (up) |
| req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); |
| resp = hwrm_req_hold(bp, req); |
| |
| hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); |
| while (retry < BNXT_FW_IF_RETRY) { |
| rc = hwrm_req_send(bp, req); |
| if (rc != -EAGAIN) |
| break; |
| |
| msleep(50); |
| retry++; |
| } |
| |
| if (rc == -EAGAIN) { |
| hwrm_req_drop(bp, req); |
| return rc; |
| } else if (!rc) { |
| flags = le32_to_cpu(resp->flags); |
| } else if (up) { |
| rc = bnxt_try_recover_fw(bp); |
| fw_reset = true; |
| } |
| hwrm_req_drop(bp, req); |
| if (rc) |
| return rc; |
| |
| if (!up) { |
| bnxt_inv_fw_health_reg(bp); |
| return 0; |
| } |
| |
| if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) |
| resc_reinit = true; |
| if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || |
| test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) |
| fw_reset = true; |
| else |
| bnxt_remap_fw_health_regs(bp); |
| |
| if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { |
| netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); |
| set_bit(BNXT_STATE_ABORT_ERR, &bp->state); |
| return -ENODEV; |
| } |
| if (resc_reinit || fw_reset) { |
| if (fw_reset) { |
| set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); |
| if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) |
| bnxt_ulp_stop(bp); |
| bnxt_free_ctx_mem(bp); |
| kfree(bp->ctx); |
| bp->ctx = NULL; |
| bnxt_dcb_free(bp); |
| rc = bnxt_fw_init_one(bp); |
| if (rc) { |
| clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); |
| set_bit(BNXT_STATE_ABORT_ERR, &bp->state); |
| return rc; |
| } |
| bnxt_clear_int_mode(bp); |
| rc = bnxt_init_int_mode(bp); |
| if (rc) { |
| clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); |
| netdev_err(bp->dev, "init int mode failed\n"); |
| return rc; |
| } |
| } |
| rc = bnxt_cancel_reservations(bp, fw_reset); |
| } |
| return rc; |
| } |
| |
| static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) |
| { |
| struct hwrm_port_led_qcaps_output *resp; |
| struct hwrm_port_led_qcaps_input *req; |
| struct bnxt_pf_info *pf = &bp->pf; |
| int rc; |
| |
| bp->num_leds = 0; |
| if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) |
| return 0; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); |
| if (rc) |
| return rc; |
| |
| req->port_id = cpu_to_le16(pf->port_id); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (rc) { |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { |
| int i; |
| |
| bp->num_leds = resp->num_leds; |
| memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * |
| bp->num_leds); |
| for (i = 0; i < bp->num_leds; i++) { |
| struct bnxt_led_info *led = &bp->leds[i]; |
| __le16 caps = led->led_state_caps; |
| |
| if (!led->led_group_id || |
| !BNXT_LED_ALT_BLINK_CAP(caps)) { |
| bp->num_leds = 0; |
| break; |
| } |
| } |
| } |
| hwrm_req_drop(bp, req); |
| return 0; |
| } |
| |
| int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) |
| { |
| struct hwrm_wol_filter_alloc_output *resp; |
| struct hwrm_wol_filter_alloc_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); |
| if (rc) |
| return rc; |
| |
| req->port_id = cpu_to_le16(bp->pf.port_id); |
| req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; |
| req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); |
| memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) |
| bp->wol_filter_id = resp->wol_filter_id; |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) |
| { |
| struct hwrm_wol_filter_free_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); |
| if (rc) |
| return rc; |
| |
| req->port_id = cpu_to_le16(bp->pf.port_id); |
| req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); |
| req->wol_filter_id = bp->wol_filter_id; |
| |
| return hwrm_req_send(bp, req); |
| } |
| |
| static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) |
| { |
| struct hwrm_wol_filter_qcfg_output *resp; |
| struct hwrm_wol_filter_qcfg_input *req; |
| u16 next_handle = 0; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); |
| if (rc) |
| return rc; |
| |
| req->port_id = cpu_to_le16(bp->pf.port_id); |
| req->handle = cpu_to_le16(handle); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) { |
| next_handle = le16_to_cpu(resp->next_handle); |
| if (next_handle != 0) { |
| if (resp->wol_type == |
| WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { |
| bp->wol = 1; |
| bp->wol_filter_id = resp->wol_filter_id; |
| } |
| } |
| } |
| hwrm_req_drop(bp, req); |
| return next_handle; |
| } |
| |
| static void bnxt_get_wol_settings(struct bnxt *bp) |
| { |
| u16 handle = 0; |
| |
| bp->wol = 0; |
| if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) |
| return; |
| |
| do { |
| handle = bnxt_hwrm_get_wol_fltrs(bp, handle); |
| } while (handle && handle != 0xffff); |
| } |
| |
| #ifdef CONFIG_BNXT_HWMON |
| static ssize_t bnxt_show_temp(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct hwrm_temp_monitor_query_output *resp; |
| struct hwrm_temp_monitor_query_input *req; |
| struct bnxt *bp = dev_get_drvdata(dev); |
| u32 len = 0; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); |
| if (rc) |
| return rc; |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) |
| len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ |
| hwrm_req_drop(bp, req); |
| if (rc) |
| return rc; |
| return len; |
| } |
| static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); |
| |
| static struct attribute *bnxt_attrs[] = { |
| &sensor_dev_attr_temp1_input.dev_attr.attr, |
| NULL |
| }; |
| ATTRIBUTE_GROUPS(bnxt); |
| |
| static void bnxt_hwmon_close(struct bnxt *bp) |
| { |
| if (bp->hwmon_dev) { |
| hwmon_device_unregister(bp->hwmon_dev); |
| bp->hwmon_dev = NULL; |
| } |
| } |
| |
| static void bnxt_hwmon_open(struct bnxt *bp) |
| { |
| struct hwrm_temp_monitor_query_input *req; |
| struct pci_dev *pdev = bp->pdev; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); |
| if (!rc) |
| rc = hwrm_req_send_silent(bp, req); |
| if (rc == -EACCES || rc == -EOPNOTSUPP) { |
| bnxt_hwmon_close(bp); |
| return; |
| } |
| |
| if (bp->hwmon_dev) |
| return; |
| |
| bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, |
| DRV_MODULE_NAME, bp, |
| bnxt_groups); |
| if (IS_ERR(bp->hwmon_dev)) { |
| bp->hwmon_dev = NULL; |
| dev_warn(&pdev->dev, "Cannot register hwmon device\n"); |
| } |
| } |
| #else |
| static void bnxt_hwmon_close(struct bnxt *bp) |
| { |
| } |
| |
| static void bnxt_hwmon_open(struct bnxt *bp) |
| { |
| } |
| #endif |
| |
| static bool bnxt_eee_config_ok(struct bnxt *bp) |
| { |
| struct ethtool_eee *eee = &bp->eee; |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) |
| return true; |
| |
| if (eee->eee_enabled) { |
| u32 advertising = |
| _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); |
| |
| if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { |
| eee->eee_enabled = 0; |
| return false; |
| } |
| if (eee->advertised & ~advertising) { |
| eee->advertised = advertising & eee->supported; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static int bnxt_update_phy_setting(struct bnxt *bp) |
| { |
| int rc; |
| bool update_link = false; |
| bool update_pause = false; |
| bool update_eee = false; |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| rc = bnxt_update_link(bp, true); |
| if (rc) { |
| netdev_err(bp->dev, "failed to update link (rc: %x)\n", |
| rc); |
| return rc; |
| } |
| if (!BNXT_SINGLE_PF(bp)) |
| return 0; |
| |
| if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && |
| (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != |
| link_info->req_flow_ctrl) |
| update_pause = true; |
| if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && |
| link_info->force_pause_setting != link_info->req_flow_ctrl) |
| update_pause = true; |
| if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { |
| if (BNXT_AUTO_MODE(link_info->auto_mode)) |
| update_link = true; |
| if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && |
| link_info->req_link_speed != link_info->force_link_speed) |
| update_link = true; |
| else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && |
| link_info->req_link_speed != link_info->force_pam4_link_speed) |
| update_link = true; |
| if (link_info->req_duplex != link_info->duplex_setting) |
| update_link = true; |
| } else { |
| if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) |
| update_link = true; |
| if (link_info->advertising != link_info->auto_link_speeds || |
| link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) |
| update_link = true; |
| } |
| |
| /* The last close may have shutdown the link, so need to call |
| * PHY_CFG to bring it back up. |
| */ |
| if (!BNXT_LINK_IS_UP(bp)) |
| update_link = true; |
| |
| if (!bnxt_eee_config_ok(bp)) |
| update_eee = true; |
| |
| if (update_link) |
| rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); |
| else if (update_pause) |
| rc = bnxt_hwrm_set_pause(bp); |
| if (rc) { |
| netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", |
| rc); |
| return rc; |
| } |
| |
| return rc; |
| } |
| |
| /* Common routine to pre-map certain register block to different GRC window. |
| * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows |
| * in PF and 3 windows in VF that can be customized to map in different |
| * register blocks. |
| */ |
| static void bnxt_preset_reg_win(struct bnxt *bp) |
| { |
| if (BNXT_PF(bp)) { |
| /* CAG registers map to GRC window #4 */ |
| writel(BNXT_CAG_REG_BASE, |
| bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); |
| } |
| } |
| |
| static int bnxt_init_dflt_ring_mode(struct bnxt *bp); |
| |
| static int bnxt_reinit_after_abort(struct bnxt *bp) |
| { |
| int rc; |
| |
| if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) |
| return -EBUSY; |
| |
| if (bp->dev->reg_state == NETREG_UNREGISTERED) |
| return -ENODEV; |
| |
| rc = bnxt_fw_init_one(bp); |
| if (!rc) { |
| bnxt_clear_int_mode(bp); |
| rc = bnxt_init_int_mode(bp); |
| if (!rc) { |
| clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); |
| set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); |
| } |
| } |
| return rc; |
| } |
| |
| static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) |
| { |
| int rc = 0; |
| |
| bnxt_preset_reg_win(bp); |
| netif_carrier_off(bp->dev); |
| if (irq_re_init) { |
| /* Reserve rings now if none were reserved at driver probe. */ |
| rc = bnxt_init_dflt_ring_mode(bp); |
| if (rc) { |
| netdev_err(bp->dev, "Failed to reserve default rings at open\n"); |
| return rc; |
| } |
| } |
| rc = bnxt_reserve_rings(bp, irq_re_init); |
| if (rc) |
| return rc; |
| if ((bp->flags & BNXT_FLAG_RFS) && |
| !(bp->flags & BNXT_FLAG_USING_MSIX)) { |
| /* disable RFS if falling back to INTA */ |
| bp->dev->hw_features &= ~NETIF_F_NTUPLE; |
| bp->flags &= ~BNXT_FLAG_RFS; |
| } |
| |
| rc = bnxt_alloc_mem(bp, irq_re_init); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); |
| goto open_err_free_mem; |
| } |
| |
| if (irq_re_init) { |
| bnxt_init_napi(bp); |
| rc = bnxt_request_irq(bp); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); |
| goto open_err_irq; |
| } |
| } |
| |
| rc = bnxt_init_nic(bp, irq_re_init); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); |
| goto open_err_irq; |
| } |
| |
| bnxt_enable_napi(bp); |
| bnxt_debug_dev_init(bp); |
| |
| if (link_re_init) { |
| mutex_lock(&bp->link_lock); |
| rc = bnxt_update_phy_setting(bp); |
| mutex_unlock(&bp->link_lock); |
| if (rc) { |
| netdev_warn(bp->dev, "failed to update phy settings\n"); |
| if (BNXT_SINGLE_PF(bp)) { |
| bp->link_info.phy_retry = true; |
| bp->link_info.phy_retry_expires = |
| jiffies + 5 * HZ; |
| } |
| } |
| } |
| |
| if (irq_re_init) |
| udp_tunnel_nic_reset_ntf(bp->dev); |
| |
| if (bp->tx_nr_rings_xdp < num_possible_cpus()) { |
| if (!static_key_enabled(&bnxt_xdp_locking_key)) |
| static_branch_enable(&bnxt_xdp_locking_key); |
| } else if (static_key_enabled(&bnxt_xdp_locking_key)) { |
| static_branch_disable(&bnxt_xdp_locking_key); |
| } |
| set_bit(BNXT_STATE_OPEN, &bp->state); |
| bnxt_enable_int(bp); |
| /* Enable TX queues */ |
| bnxt_tx_enable(bp); |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| /* Poll link status and check for SFP+ module status */ |
| mutex_lock(&bp->link_lock); |
| bnxt_get_port_module_status(bp); |
| mutex_unlock(&bp->link_lock); |
| |
| /* VF-reps may need to be re-opened after the PF is re-opened */ |
| if (BNXT_PF(bp)) |
| bnxt_vf_reps_open(bp); |
| bnxt_ptp_init_rtc(bp, true); |
| bnxt_ptp_cfg_tstamp_filters(bp); |
| return 0; |
| |
| open_err_irq: |
| bnxt_del_napi(bp); |
| |
| open_err_free_mem: |
| bnxt_free_skbs(bp); |
| bnxt_free_irq(bp); |
| bnxt_free_mem(bp, true); |
| return rc; |
| } |
| |
| /* rtnl_lock held */ |
| int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) |
| { |
| int rc = 0; |
| |
| if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) |
| rc = -EIO; |
| if (!rc) |
| rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); |
| if (rc) { |
| netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); |
| dev_close(bp->dev); |
| } |
| return rc; |
| } |
| |
| /* rtnl_lock held, open the NIC half way by allocating all resources, but |
| * NAPI, IRQ, and TX are not enabled. This is mainly used for offline |
| * self tests. |
| */ |
| int bnxt_half_open_nic(struct bnxt *bp) |
| { |
| int rc = 0; |
| |
| if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { |
| netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); |
| rc = -ENODEV; |
| goto half_open_err; |
| } |
| |
| rc = bnxt_alloc_mem(bp, true); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); |
| goto half_open_err; |
| } |
| set_bit(BNXT_STATE_HALF_OPEN, &bp->state); |
| rc = bnxt_init_nic(bp, true); |
| if (rc) { |
| clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); |
| netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); |
| goto half_open_err; |
| } |
| return 0; |
| |
| half_open_err: |
| bnxt_free_skbs(bp); |
| bnxt_free_mem(bp, true); |
| dev_close(bp->dev); |
| return rc; |
| } |
| |
| /* rtnl_lock held, this call can only be made after a previous successful |
| * call to bnxt_half_open_nic(). |
| */ |
| void bnxt_half_close_nic(struct bnxt *bp) |
| { |
| bnxt_hwrm_resource_free(bp, false, true); |
| bnxt_free_skbs(bp); |
| bnxt_free_mem(bp, true); |
| clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); |
| } |
| |
| void bnxt_reenable_sriov(struct bnxt *bp) |
| { |
| if (BNXT_PF(bp)) { |
| struct bnxt_pf_info *pf = &bp->pf; |
| int n = pf->active_vfs; |
| |
| if (n) |
| bnxt_cfg_hw_sriov(bp, &n, true); |
| } |
| } |
| |
| static int bnxt_open(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| int rc; |
| |
| if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { |
| rc = bnxt_reinit_after_abort(bp); |
| if (rc) { |
| if (rc == -EBUSY) |
| netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); |
| else |
| netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); |
| return -ENODEV; |
| } |
| } |
| |
| rc = bnxt_hwrm_if_change(bp, true); |
| if (rc) |
| return rc; |
| |
| rc = __bnxt_open_nic(bp, true, true); |
| if (rc) { |
| bnxt_hwrm_if_change(bp, false); |
| } else { |
| if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { |
| if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { |
| bnxt_ulp_start(bp, 0); |
| bnxt_reenable_sriov(bp); |
| } |
| } |
| bnxt_hwmon_open(bp); |
| } |
| |
| return rc; |
| } |
| |
| static bool bnxt_drv_busy(struct bnxt *bp) |
| { |
| return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || |
| test_bit(BNXT_STATE_READ_STATS, &bp->state)); |
| } |
| |
| static void bnxt_get_ring_stats(struct bnxt *bp, |
| struct rtnl_link_stats64 *stats); |
| |
| static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, |
| bool link_re_init) |
| { |
| /* Close the VF-reps before closing PF */ |
| if (BNXT_PF(bp)) |
| bnxt_vf_reps_close(bp); |
| |
| /* Change device state to avoid TX queue wake up's */ |
| bnxt_tx_disable(bp); |
| |
| clear_bit(BNXT_STATE_OPEN, &bp->state); |
| smp_mb__after_atomic(); |
| while (bnxt_drv_busy(bp)) |
| msleep(20); |
| |
| /* Flush rings and and disable interrupts */ |
| bnxt_shutdown_nic(bp, irq_re_init); |
| |
| /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ |
| |
| bnxt_debug_dev_exit(bp); |
| bnxt_disable_napi(bp); |
| del_timer_sync(&bp->timer); |
| bnxt_free_skbs(bp); |
| |
| /* Save ring stats before shutdown */ |
| if (bp->bnapi && irq_re_init) |
| bnxt_get_ring_stats(bp, &bp->net_stats_prev); |
| if (irq_re_init) { |
| bnxt_free_irq(bp); |
| bnxt_del_napi(bp); |
| } |
| bnxt_free_mem(bp, irq_re_init); |
| } |
| |
| int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) |
| { |
| int rc = 0; |
| |
| if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { |
| /* If we get here, it means firmware reset is in progress |
| * while we are trying to close. We can safely proceed with |
| * the close because we are holding rtnl_lock(). Some firmware |
| * messages may fail as we proceed to close. We set the |
| * ABORT_ERR flag here so that the FW reset thread will later |
| * abort when it gets the rtnl_lock() and sees the flag. |
| */ |
| netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); |
| set_bit(BNXT_STATE_ABORT_ERR, &bp->state); |
| } |
| |
| #ifdef CONFIG_BNXT_SRIOV |
| if (bp->sriov_cfg) { |
| rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, |
| !bp->sriov_cfg, |
| BNXT_SRIOV_CFG_WAIT_TMO); |
| if (rc) |
| netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); |
| } |
| #endif |
| __bnxt_close_nic(bp, irq_re_init, link_re_init); |
| return rc; |
| } |
| |
| static int bnxt_close(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| bnxt_hwmon_close(bp); |
| bnxt_close_nic(bp, true, true); |
| bnxt_hwrm_shutdown_link(bp); |
| bnxt_hwrm_if_change(bp, false); |
| return 0; |
| } |
| |
| static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, |
| u16 *val) |
| { |
| struct hwrm_port_phy_mdio_read_output *resp; |
| struct hwrm_port_phy_mdio_read_input *req; |
| int rc; |
| |
| if (bp->hwrm_spec_code < 0x10a00) |
| return -EOPNOTSUPP; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); |
| if (rc) |
| return rc; |
| |
| req->port_id = cpu_to_le16(bp->pf.port_id); |
| req->phy_addr = phy_addr; |
| req->reg_addr = cpu_to_le16(reg & 0x1f); |
| if (mdio_phy_id_is_c45(phy_addr)) { |
| req->cl45_mdio = 1; |
| req->phy_addr = mdio_phy_id_prtad(phy_addr); |
| req->dev_addr = mdio_phy_id_devad(phy_addr); |
| req->reg_addr = cpu_to_le16(reg); |
| } |
| |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) |
| *val = le16_to_cpu(resp->reg_data); |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, |
| u16 val) |
| { |
| struct hwrm_port_phy_mdio_write_input *req; |
| int rc; |
| |
| if (bp->hwrm_spec_code < 0x10a00) |
| return -EOPNOTSUPP; |
| |
| rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); |
| if (rc) |
| return rc; |
| |
| req->port_id = cpu_to_le16(bp->pf.port_id); |
| req->phy_addr = phy_addr; |
| req->reg_addr = cpu_to_le16(reg & 0x1f); |
| if (mdio_phy_id_is_c45(phy_addr)) { |
| req->cl45_mdio = 1; |
| req->phy_addr = mdio_phy_id_prtad(phy_addr); |
| req->dev_addr = mdio_phy_id_devad(phy_addr); |
| req->reg_addr = cpu_to_le16(reg); |
| } |
| req->reg_data = cpu_to_le16(val); |
| |
| return hwrm_req_send(bp, req); |
| } |
| |
| /* rtnl_lock held */ |
| static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct mii_ioctl_data *mdio = if_mii(ifr); |
| struct bnxt *bp = netdev_priv(dev); |
| int rc; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| mdio->phy_id = bp->link_info.phy_addr; |
| |
| fallthrough; |
| case SIOCGMIIREG: { |
| u16 mii_regval = 0; |
| |
| if (!netif_running(dev)) |
| return -EAGAIN; |
| |
| rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, |
| &mii_regval); |
| mdio->val_out = mii_regval; |
| return rc; |
| } |
| |
| case SIOCSMIIREG: |
| if (!netif_running(dev)) |
| return -EAGAIN; |
| |
| return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, |
| mdio->val_in); |
| |
| case SIOCSHWTSTAMP: |
| return bnxt_hwtstamp_set(dev, ifr); |
| |
| case SIOCGHWTSTAMP: |
| return bnxt_hwtstamp_get(dev, ifr); |
| |
| default: |
| /* do nothing */ |
| break; |
| } |
| return -EOPNOTSUPP; |
| } |
| |
| static void bnxt_get_ring_stats(struct bnxt *bp, |
| struct rtnl_link_stats64 *stats) |
| { |
| int i; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| u64 *sw = cpr->stats.sw_stats; |
| |
| stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); |
| stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); |
| stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); |
| |
| stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); |
| stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); |
| stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); |
| |
| stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); |
| stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); |
| stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); |
| |
| stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); |
| stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); |
| stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); |
| |
| stats->rx_missed_errors += |
| BNXT_GET_RING_STATS64(sw, rx_discard_pkts); |
| |
| stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); |
| |
| stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); |
| |
| stats->rx_dropped += |
| cpr->sw_stats.rx.rx_netpoll_discards + |
| cpr->sw_stats.rx.rx_oom_discards; |
| } |
| } |
| |
| static void bnxt_add_prev_stats(struct bnxt *bp, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; |
| |
| stats->rx_packets += prev_stats->rx_packets; |
| stats->tx_packets += prev_stats->tx_packets; |
| stats->rx_bytes += prev_stats->rx_bytes; |
| stats->tx_bytes += prev_stats->tx_bytes; |
| stats->rx_missed_errors += prev_stats->rx_missed_errors; |
| stats->multicast += prev_stats->multicast; |
| stats->rx_dropped += prev_stats->rx_dropped; |
| stats->tx_dropped += prev_stats->tx_dropped; |
| } |
| |
| static void |
| bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| set_bit(BNXT_STATE_READ_STATS, &bp->state); |
| /* Make sure bnxt_close_nic() sees that we are reading stats before |
| * we check the BNXT_STATE_OPEN flag. |
| */ |
| smp_mb__after_atomic(); |
| if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { |
| clear_bit(BNXT_STATE_READ_STATS, &bp->state); |
| *stats = bp->net_stats_prev; |
| return; |
| } |
| |
| bnxt_get_ring_stats(bp, stats); |
| bnxt_add_prev_stats(bp, stats); |
| |
| if (bp->flags & BNXT_FLAG_PORT_STATS) { |
| u64 *rx = bp->port_stats.sw_stats; |
| u64 *tx = bp->port_stats.sw_stats + |
| BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; |
| |
| stats->rx_crc_errors = |
| BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); |
| stats->rx_frame_errors = |
| BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); |
| stats->rx_length_errors = |
| BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + |
| BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + |
| BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); |
| stats->rx_errors = |
| BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + |
| BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); |
| stats->collisions = |
| BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); |
| stats->tx_fifo_errors = |
| BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); |
| stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); |
| } |
| clear_bit(BNXT_STATE_READ_STATS, &bp->state); |
| } |
| |
| static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) |
| { |
| struct net_device *dev = bp->dev; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| struct netdev_hw_addr *ha; |
| u8 *haddr; |
| int mc_count = 0; |
| bool update = false; |
| int off = 0; |
| |
| netdev_for_each_mc_addr(ha, dev) { |
| if (mc_count >= BNXT_MAX_MC_ADDRS) { |
| *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; |
| vnic->mc_list_count = 0; |
| return false; |
| } |
| haddr = ha->addr; |
| if (!ether_addr_equal(haddr, vnic->mc_list + off)) { |
| memcpy(vnic->mc_list + off, haddr, ETH_ALEN); |
| update = true; |
| } |
| off += ETH_ALEN; |
| mc_count++; |
| } |
| if (mc_count) |
| *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; |
| |
| if (mc_count != vnic->mc_list_count) { |
| vnic->mc_list_count = mc_count; |
| update = true; |
| } |
| return update; |
| } |
| |
| static bool bnxt_uc_list_updated(struct bnxt *bp) |
| { |
| struct net_device *dev = bp->dev; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| struct netdev_hw_addr *ha; |
| int off = 0; |
| |
| if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) |
| return true; |
| |
| netdev_for_each_uc_addr(ha, dev) { |
| if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) |
| return true; |
| |
| off += ETH_ALEN; |
| } |
| return false; |
| } |
| |
| static void bnxt_set_rx_mode(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| struct bnxt_vnic_info *vnic; |
| bool mc_update = false; |
| bool uc_update; |
| u32 mask; |
| |
| if (!test_bit(BNXT_STATE_OPEN, &bp->state)) |
| return; |
| |
| vnic = &bp->vnic_info[0]; |
| mask = vnic->rx_mask; |
| mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | |
| CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | |
| CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | |
| CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); |
| |
| if (dev->flags & IFF_PROMISC) |
| mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; |
| |
| uc_update = bnxt_uc_list_updated(bp); |
| |
| if (dev->flags & IFF_BROADCAST) |
| mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; |
| if (dev->flags & IFF_ALLMULTI) { |
| mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; |
| vnic->mc_list_count = 0; |
| } else if (dev->flags & IFF_MULTICAST) { |
| mc_update = bnxt_mc_list_updated(bp, &mask); |
| } |
| |
| if (mask != vnic->rx_mask || uc_update || mc_update) { |
| vnic->rx_mask = mask; |
| |
| set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| } |
| |
| static int bnxt_cfg_rx_mode(struct bnxt *bp) |
| { |
| struct net_device *dev = bp->dev; |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| struct hwrm_cfa_l2_filter_free_input *req; |
| struct netdev_hw_addr *ha; |
| int i, off = 0, rc; |
| bool uc_update; |
| |
| netif_addr_lock_bh(dev); |
| uc_update = bnxt_uc_list_updated(bp); |
| netif_addr_unlock_bh(dev); |
| |
| if (!uc_update) |
| goto skip_uc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); |
| if (rc) |
| return rc; |
| hwrm_req_hold(bp, req); |
| for (i = 1; i < vnic->uc_filter_count; i++) { |
| req->l2_filter_id = vnic->fw_l2_filter_id[i]; |
| |
| rc = hwrm_req_send(bp, req); |
| } |
| hwrm_req_drop(bp, req); |
| |
| vnic->uc_filter_count = 1; |
| |
| netif_addr_lock_bh(dev); |
| if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; |
| } else { |
| netdev_for_each_uc_addr(ha, dev) { |
| memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); |
| off += ETH_ALEN; |
| vnic->uc_filter_count++; |
| } |
| } |
| netif_addr_unlock_bh(dev); |
| |
| for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { |
| rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); |
| if (rc) { |
| if (BNXT_VF(bp) && rc == -ENODEV) { |
| if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) |
| netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); |
| else |
| netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); |
| rc = 0; |
| } else { |
| netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); |
| } |
| vnic->uc_filter_count = i; |
| return rc; |
| } |
| } |
| if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) |
| netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); |
| |
| skip_uc: |
| if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && |
| !bnxt_promisc_ok(bp)) |
| vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; |
| rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); |
| if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { |
| netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", |
| rc); |
| vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; |
| vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; |
| vnic->mc_list_count = 0; |
| rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); |
| } |
| if (rc) |
| netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", |
| rc); |
| |
| return rc; |
| } |
| |
| static bool bnxt_can_reserve_rings(struct bnxt *bp) |
| { |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| |
| /* No minimum rings were provisioned by the PF. Don't |
| * reserve rings by default when device is down. |
| */ |
| if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) |
| return true; |
| |
| if (!netif_running(bp->dev)) |
| return false; |
| } |
| #endif |
| return true; |
| } |
| |
| /* If the chip and firmware supports RFS */ |
| static bool bnxt_rfs_supported(struct bnxt *bp) |
| { |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) |
| return true; |
| return false; |
| } |
| /* 212 firmware is broken for aRFS */ |
| if (BNXT_FW_MAJ(bp) == 212) |
| return false; |
| if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) |
| return true; |
| if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) |
| return true; |
| return false; |
| } |
| |
| /* If runtime conditions support RFS */ |
| static bool bnxt_rfs_capable(struct bnxt *bp) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| int vnics, max_vnics, max_rss_ctxs; |
| |
| if (bp->flags & BNXT_FLAG_CHIP_P5) |
| return bnxt_rfs_supported(bp); |
| if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) |
| return false; |
| |
| vnics = 1 + bp->rx_nr_rings; |
| max_vnics = bnxt_get_max_func_vnics(bp); |
| max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); |
| |
| /* RSS contexts not a limiting factor */ |
| if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) |
| max_rss_ctxs = max_vnics; |
| if (vnics > max_vnics || vnics > max_rss_ctxs) { |
| if (bp->rx_nr_rings > 1) |
| netdev_warn(bp->dev, |
| "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", |
| min(max_rss_ctxs - 1, max_vnics - 1)); |
| return false; |
| } |
| |
| if (!BNXT_NEW_RM(bp)) |
| return true; |
| |
| if (vnics == bp->hw_resc.resv_vnics) |
| return true; |
| |
| bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); |
| if (vnics <= bp->hw_resc.resv_vnics) |
| return true; |
| |
| netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); |
| bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); |
| return false; |
| #else |
| return false; |
| #endif |
| } |
| |
| static netdev_features_t bnxt_fix_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| netdev_features_t vlan_features; |
| |
| if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) |
| features &= ~NETIF_F_NTUPLE; |
| |
| if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) |
| features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); |
| |
| if (!(bp->flags & BNXT_FLAG_TPA)) |
| features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); |
| |
| if (!(features & NETIF_F_GRO)) |
| features &= ~NETIF_F_GRO_HW; |
| |
| if (features & NETIF_F_GRO_HW) |
| features &= ~NETIF_F_LRO; |
| |
| /* Both CTAG and STAG VLAN accelaration on the RX side have to be |
| * turned on or off together. |
| */ |
| vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; |
| if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { |
| if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) |
| features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; |
| else if (vlan_features) |
| features |= BNXT_HW_FEATURE_VLAN_ALL_RX; |
| } |
| #ifdef CONFIG_BNXT_SRIOV |
| if (BNXT_VF(bp) && bp->vf.vlan) |
| features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; |
| #endif |
| return features; |
| } |
| |
| static int bnxt_set_features(struct net_device *dev, netdev_features_t features) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| u32 flags = bp->flags; |
| u32 changes; |
| int rc = 0; |
| bool re_init = false; |
| bool update_tpa = false; |
| |
| flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; |
| if (features & NETIF_F_GRO_HW) |
| flags |= BNXT_FLAG_GRO; |
| else if (features & NETIF_F_LRO) |
| flags |= BNXT_FLAG_LRO; |
| |
| if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) |
| flags &= ~BNXT_FLAG_TPA; |
| |
| if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) |
| flags |= BNXT_FLAG_STRIP_VLAN; |
| |
| if (features & NETIF_F_NTUPLE) |
| flags |= BNXT_FLAG_RFS; |
| |
| changes = flags ^ bp->flags; |
| if (changes & BNXT_FLAG_TPA) { |
| update_tpa = true; |
| if ((bp->flags & BNXT_FLAG_TPA) == 0 || |
| (flags & BNXT_FLAG_TPA) == 0 || |
| (bp->flags & BNXT_FLAG_CHIP_P5)) |
| re_init = true; |
| } |
| |
| if (changes & ~BNXT_FLAG_TPA) |
| re_init = true; |
| |
| if (flags != bp->flags) { |
| u32 old_flags = bp->flags; |
| |
| if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { |
| bp->flags = flags; |
| if (update_tpa) |
| bnxt_set_ring_params(bp); |
| return rc; |
| } |
| |
| if (re_init) { |
| bnxt_close_nic(bp, false, false); |
| bp->flags = flags; |
| if (update_tpa) |
| bnxt_set_ring_params(bp); |
| |
| return bnxt_open_nic(bp, false, false); |
| } |
| if (update_tpa) { |
| bp->flags = flags; |
| rc = bnxt_set_tpa(bp, |
| (flags & BNXT_FLAG_TPA) ? |
| true : false); |
| if (rc) |
| bp->flags = old_flags; |
| } |
| } |
| return rc; |
| } |
| |
| static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, |
| u8 **nextp) |
| { |
| struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); |
| int hdr_count = 0; |
| u8 *nexthdr; |
| int start; |
| |
| /* Check that there are at most 2 IPv6 extension headers, no |
| * fragment header, and each is <= 64 bytes. |
| */ |
| start = nw_off + sizeof(*ip6h); |
| nexthdr = &ip6h->nexthdr; |
| while (ipv6_ext_hdr(*nexthdr)) { |
| struct ipv6_opt_hdr *hp; |
| int hdrlen; |
| |
| if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || |
| *nexthdr == NEXTHDR_FRAGMENT) |
| return false; |
| hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, |
| skb_headlen(skb), NULL); |
| if (!hp) |
| return false; |
| if (*nexthdr == NEXTHDR_AUTH) |
| hdrlen = ipv6_authlen(hp); |
| else |
| hdrlen = ipv6_optlen(hp); |
| |
| if (hdrlen > 64) |
| return false; |
| nexthdr = &hp->nexthdr; |
| start += hdrlen; |
| hdr_count++; |
| } |
| if (nextp) { |
| /* Caller will check inner protocol */ |
| if (skb->encapsulation) { |
| *nextp = nexthdr; |
| return true; |
| } |
| *nextp = NULL; |
| } |
| /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ |
| return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; |
| } |
| |
| /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ |
| static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) |
| { |
| struct udphdr *uh = udp_hdr(skb); |
| __be16 udp_port = uh->dest; |
| |
| if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) |
| return false; |
| if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { |
| struct ethhdr *eh = inner_eth_hdr(skb); |
| |
| switch (eh->h_proto) { |
| case htons(ETH_P_IP): |
| return true; |
| case htons(ETH_P_IPV6): |
| return bnxt_exthdr_check(bp, skb, |
| skb_inner_network_offset(skb), |
| NULL); |
| } |
| } |
| return false; |
| } |
| |
| static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) |
| { |
| switch (l4_proto) { |
| case IPPROTO_UDP: |
| return bnxt_udp_tunl_check(bp, skb); |
| case IPPROTO_IPIP: |
| return true; |
| case IPPROTO_GRE: { |
| switch (skb->inner_protocol) { |
| default: |
| return false; |
| case htons(ETH_P_IP): |
| return true; |
| case htons(ETH_P_IPV6): |
| fallthrough; |
| } |
| } |
| case IPPROTO_IPV6: |
| /* Check ext headers of inner ipv6 */ |
| return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), |
| NULL); |
| } |
| return false; |
| } |
| |
| static netdev_features_t bnxt_features_check(struct sk_buff *skb, |
| struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| u8 *l4_proto; |
| |
| features = vlan_features_check(skb, features); |
| switch (vlan_get_protocol(skb)) { |
| case htons(ETH_P_IP): |
| if (!skb->encapsulation) |
| return features; |
| l4_proto = &ip_hdr(skb)->protocol; |
| if (bnxt_tunl_check(bp, skb, *l4_proto)) |
| return features; |
| break; |
| case htons(ETH_P_IPV6): |
| if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), |
| &l4_proto)) |
| break; |
| if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) |
| return features; |
| break; |
| } |
| return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| } |
| |
| int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, |
| u32 *reg_buf) |
| { |
| struct hwrm_dbg_read_direct_output *resp; |
| struct hwrm_dbg_read_direct_input *req; |
| __le32 *dbg_reg_buf; |
| dma_addr_t mapping; |
| int rc, i; |
| |
| rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); |
| if (rc) |
| return rc; |
| |
| dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, |
| &mapping); |
| if (!dbg_reg_buf) { |
| rc = -ENOMEM; |
| goto dbg_rd_reg_exit; |
| } |
| |
| req->host_dest_addr = cpu_to_le64(mapping); |
| |
| resp = hwrm_req_hold(bp, req); |
| req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); |
| req->read_len32 = cpu_to_le32(num_words); |
| |
| rc = hwrm_req_send(bp, req); |
| if (rc || resp->error_code) { |
| rc = -EIO; |
| goto dbg_rd_reg_exit; |
| } |
| for (i = 0; i < num_words; i++) |
| reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); |
| |
| dbg_rd_reg_exit: |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, |
| u32 ring_id, u32 *prod, u32 *cons) |
| { |
| struct hwrm_dbg_ring_info_get_output *resp; |
| struct hwrm_dbg_ring_info_get_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); |
| if (rc) |
| return rc; |
| |
| req->ring_type = ring_type; |
| req->fw_ring_id = cpu_to_le32(ring_id); |
| resp = hwrm_req_hold(bp, req); |
| rc = hwrm_req_send(bp, req); |
| if (!rc) { |
| *prod = le32_to_cpu(resp->producer_index); |
| *cons = le32_to_cpu(resp->consumer_index); |
| } |
| hwrm_req_drop(bp, req); |
| return rc; |
| } |
| |
| static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) |
| { |
| struct bnxt_tx_ring_info *txr = bnapi->tx_ring; |
| int i = bnapi->index; |
| |
| if (!txr) |
| return; |
| |
| netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", |
| i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, |
| txr->tx_cons); |
| } |
| |
| static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) |
| { |
| struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; |
| int i = bnapi->index; |
| |
| if (!rxr) |
| return; |
| |
| netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", |
| i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, |
| rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, |
| rxr->rx_sw_agg_prod); |
| } |
| |
| static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) |
| { |
| struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; |
| int i = bnapi->index; |
| |
| netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", |
| i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); |
| } |
| |
| static void bnxt_dbg_dump_states(struct bnxt *bp) |
| { |
| int i; |
| struct bnxt_napi *bnapi; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| bnapi = bp->bnapi[i]; |
| if (netif_msg_drv(bp)) { |
| bnxt_dump_tx_sw_state(bnapi); |
| bnxt_dump_rx_sw_state(bnapi); |
| bnxt_dump_cp_sw_state(bnapi); |
| } |
| } |
| } |
| |
| static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) |
| { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; |
| struct hwrm_ring_reset_input *req; |
| struct bnxt_napi *bnapi = rxr->bnapi; |
| struct bnxt_cp_ring_info *cpr; |
| u16 cp_ring_id; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_RING_RESET); |
| if (rc) |
| return rc; |
| |
| cpr = &bnapi->cp_ring; |
| cp_ring_id = cpr->cp_ring_struct.fw_ring_id; |
| req->cmpl_ring = cpu_to_le16(cp_ring_id); |
| req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; |
| req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); |
| return hwrm_req_send_silent(bp, req); |
| } |
| |
| static void bnxt_reset_task(struct bnxt *bp, bool silent) |
| { |
| if (!silent) |
| bnxt_dbg_dump_states(bp); |
| if (netif_running(bp->dev)) { |
| int rc; |
| |
| if (silent) { |
| bnxt_close_nic(bp, false, false); |
| bnxt_open_nic(bp, false, false); |
| } else { |
| bnxt_ulp_stop(bp); |
| bnxt_close_nic(bp, true, false); |
| rc = bnxt_open_nic(bp, true, false); |
| bnxt_ulp_start(bp, rc); |
| } |
| } |
| } |
| |
| static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); |
| set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| |
| static void bnxt_fw_health_check(struct bnxt *bp) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| u32 val; |
| |
| if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) |
| return; |
| |
| /* Make sure it is enabled before checking the tmr_counter. */ |
| smp_rmb(); |
| if (fw_health->tmr_counter) { |
| fw_health->tmr_counter--; |
| return; |
| } |
| |
| val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); |
| if (val == fw_health->last_fw_heartbeat) { |
| fw_health->arrests++; |
| goto fw_reset; |
| } |
| |
| fw_health->last_fw_heartbeat = val; |
| |
| val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); |
| if (val != fw_health->last_fw_reset_cnt) { |
| fw_health->discoveries++; |
| goto fw_reset; |
| } |
| |
| fw_health->tmr_counter = fw_health->tmr_multiplier; |
| return; |
| |
| fw_reset: |
| set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| |
| static void bnxt_timer(struct timer_list *t) |
| { |
| struct bnxt *bp = from_timer(bp, t, timer); |
| struct net_device *dev = bp->dev; |
| |
| if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) |
| return; |
| |
| if (atomic_read(&bp->intr_sem) != 0) |
| goto bnxt_restart_timer; |
| |
| if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) |
| bnxt_fw_health_check(bp); |
| |
| if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) { |
| set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| |
| if (bnxt_tc_flower_enabled(bp)) { |
| set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { |
| set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| #endif /*CONFIG_RFS_ACCEL*/ |
| |
| if (bp->link_info.phy_retry) { |
| if (time_after(jiffies, bp->link_info.phy_retry_expires)) { |
| bp->link_info.phy_retry = false; |
| netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); |
| } else { |
| set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| } |
| |
| if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) { |
| set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| |
| if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && |
| netif_carrier_ok(dev)) { |
| set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| } |
| bnxt_restart_timer: |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| } |
| |
| static void bnxt_rtnl_lock_sp(struct bnxt *bp) |
| { |
| /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK |
| * set. If the device is being closed, bnxt_close() may be holding |
| * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we |
| * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). |
| */ |
| clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| rtnl_lock(); |
| } |
| |
| static void bnxt_rtnl_unlock_sp(struct bnxt *bp) |
| { |
| set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| rtnl_unlock(); |
| } |
| |
| /* Only called from bnxt_sp_task() */ |
| static void bnxt_reset(struct bnxt *bp, bool silent) |
| { |
| bnxt_rtnl_lock_sp(bp); |
| if (test_bit(BNXT_STATE_OPEN, &bp->state)) |
| bnxt_reset_task(bp, silent); |
| bnxt_rtnl_unlock_sp(bp); |
| } |
| |
| /* Only called from bnxt_sp_task() */ |
| static void bnxt_rx_ring_reset(struct bnxt *bp) |
| { |
| int i; |
| |
| bnxt_rtnl_lock_sp(bp); |
| if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { |
| bnxt_rtnl_unlock_sp(bp); |
| return; |
| } |
| /* Disable and flush TPA before resetting the RX ring */ |
| if (bp->flags & BNXT_FLAG_TPA) |
| bnxt_set_tpa(bp, false); |
| for (i = 0; i < bp->rx_nr_rings; i++) { |
| struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; |
| struct bnxt_cp_ring_info *cpr; |
| int rc; |
| |
| if (!rxr->bnapi->in_reset) |
| continue; |
| |
| rc = bnxt_hwrm_rx_ring_reset(bp, i); |
| if (rc) { |
| if (rc == -EINVAL || rc == -EOPNOTSUPP) |
| netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); |
| else |
| netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", |
| rc); |
| bnxt_reset_task(bp, true); |
| break; |
| } |
| bnxt_free_one_rx_ring_skbs(bp, i); |
| rxr->rx_prod = 0; |
| rxr->rx_agg_prod = 0; |
| rxr->rx_sw_agg_prod = 0; |
| rxr->rx_next_cons = 0; |
| rxr->bnapi->in_reset = false; |
| bnxt_alloc_one_rx_ring(bp, i); |
| cpr = &rxr->bnapi->cp_ring; |
| cpr->sw_stats.rx.rx_resets++; |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); |
| bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); |
| } |
| if (bp->flags & BNXT_FLAG_TPA) |
| bnxt_set_tpa(bp, true); |
| bnxt_rtnl_unlock_sp(bp); |
| } |
| |
| static void bnxt_fw_reset_close(struct bnxt *bp) |
| { |
| bnxt_ulp_stop(bp); |
| /* When firmware is in fatal state, quiesce device and disable |
| * bus master to prevent any potential bad DMAs before freeing |
| * kernel memory. |
| */ |
| if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { |
| u16 val = 0; |
| |
| pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); |
| if (val == 0xffff) |
| bp->fw_reset_min_dsecs = 0; |
| bnxt_tx_disable(bp); |
| bnxt_disable_napi(bp); |
| bnxt_disable_int_sync(bp); |
| bnxt_free_irq(bp); |
| bnxt_clear_int_mode(bp); |
| pci_disable_device(bp->pdev); |
| } |
| __bnxt_close_nic(bp, true, false); |
| bnxt_vf_reps_free(bp); |
| bnxt_clear_int_mode(bp); |
| bnxt_hwrm_func_drv_unrgtr(bp); |
| if (pci_is_enabled(bp->pdev)) |
| pci_disable_device(bp->pdev); |
| bnxt_free_ctx_mem(bp); |
| kfree(bp->ctx); |
| bp->ctx = NULL; |
| } |
| |
| static bool is_bnxt_fw_ok(struct bnxt *bp) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| bool no_heartbeat = false, has_reset = false; |
| u32 val; |
| |
| val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); |
| if (val == fw_health->last_fw_heartbeat) |
| no_heartbeat = true; |
| |
| val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); |
| if (val != fw_health->last_fw_reset_cnt) |
| has_reset = true; |
| |
| if (!no_heartbeat && has_reset) |
| return true; |
| |
| return false; |
| } |
| |
| /* rtnl_lock is acquired before calling this function */ |
| static void bnxt_force_fw_reset(struct bnxt *bp) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; |
| u32 wait_dsecs; |
| |
| if (!test_bit(BNXT_STATE_OPEN, &bp->state) || |
| test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) |
| return; |
| |
| if (ptp) { |
| spin_lock_bh(&ptp->ptp_lock); |
| set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| spin_unlock_bh(&ptp->ptp_lock); |
| } else { |
| set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| } |
| bnxt_fw_reset_close(bp); |
| wait_dsecs = fw_health->master_func_wait_dsecs; |
| if (fw_health->primary) { |
| if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) |
| wait_dsecs = 0; |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; |
| } else { |
| bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; |
| wait_dsecs = fw_health->normal_func_wait_dsecs; |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; |
| } |
| |
| bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; |
| bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; |
| bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); |
| } |
| |
| void bnxt_fw_exception(struct bnxt *bp) |
| { |
| netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); |
| set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); |
| bnxt_rtnl_lock_sp(bp); |
| bnxt_force_fw_reset(bp); |
| bnxt_rtnl_unlock_sp(bp); |
| } |
| |
| /* Returns the number of registered VFs, or 1 if VF configuration is pending, or |
| * < 0 on error. |
| */ |
| static int bnxt_get_registered_vfs(struct bnxt *bp) |
| { |
| #ifdef CONFIG_BNXT_SRIOV |
| int rc; |
| |
| if (!BNXT_PF(bp)) |
| return 0; |
| |
| rc = bnxt_hwrm_func_qcfg(bp); |
| if (rc) { |
| netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); |
| return rc; |
| } |
| if (bp->pf.registered_vfs) |
| return bp->pf.registered_vfs; |
| if (bp->sriov_cfg) |
| return 1; |
| #endif |
| return 0; |
| } |
| |
| void bnxt_fw_reset(struct bnxt *bp) |
| { |
| bnxt_rtnl_lock_sp(bp); |
| if (test_bit(BNXT_STATE_OPEN, &bp->state) && |
| !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { |
| struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; |
| int n = 0, tmo; |
| |
| if (ptp) { |
| spin_lock_bh(&ptp->ptp_lock); |
| set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| spin_unlock_bh(&ptp->ptp_lock); |
| } else { |
| set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| } |
| if (bp->pf.active_vfs && |
| !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) |
| n = bnxt_get_registered_vfs(bp); |
| if (n < 0) { |
| netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", |
| n); |
| clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| dev_close(bp->dev); |
| goto fw_reset_exit; |
| } else if (n > 0) { |
| u16 vf_tmo_dsecs = n * 10; |
| |
| if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) |
| bp->fw_reset_max_dsecs = vf_tmo_dsecs; |
| bp->fw_reset_state = |
| BNXT_FW_RESET_STATE_POLL_VF; |
| bnxt_queue_fw_reset_work(bp, HZ / 10); |
| goto fw_reset_exit; |
| } |
| bnxt_fw_reset_close(bp); |
| if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; |
| tmo = HZ / 10; |
| } else { |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; |
| tmo = bp->fw_reset_min_dsecs * HZ / 10; |
| } |
| bnxt_queue_fw_reset_work(bp, tmo); |
| } |
| fw_reset_exit: |
| bnxt_rtnl_unlock_sp(bp); |
| } |
| |
| static void bnxt_chk_missed_irq(struct bnxt *bp) |
| { |
| int i; |
| |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| return; |
| |
| for (i = 0; i < bp->cp_nr_rings; i++) { |
| struct bnxt_napi *bnapi = bp->bnapi[i]; |
| struct bnxt_cp_ring_info *cpr; |
| u32 fw_ring_id; |
| int j; |
| |
| if (!bnapi) |
| continue; |
| |
| cpr = &bnapi->cp_ring; |
| for (j = 0; j < 2; j++) { |
| struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; |
| u32 val[2]; |
| |
| if (!cpr2 || cpr2->has_more_work || |
| !bnxt_has_work(bp, cpr2)) |
| continue; |
| |
| if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { |
| cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; |
| continue; |
| } |
| fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; |
| bnxt_dbg_hwrm_ring_info_get(bp, |
| DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, |
| fw_ring_id, &val[0], &val[1]); |
| cpr->sw_stats.cmn.missed_irqs++; |
| } |
| } |
| } |
| |
| static void bnxt_cfg_ntp_filters(struct bnxt *); |
| |
| static void bnxt_init_ethtool_link_settings(struct bnxt *bp) |
| { |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| if (BNXT_AUTO_MODE(link_info->auto_mode)) { |
| link_info->autoneg = BNXT_AUTONEG_SPEED; |
| if (bp->hwrm_spec_code >= 0x10201) { |
| if (link_info->auto_pause_setting & |
| PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) |
| link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; |
| } else { |
| link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; |
| } |
| link_info->advertising = link_info->auto_link_speeds; |
| link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; |
| } else { |
| link_info->req_link_speed = link_info->force_link_speed; |
| link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; |
| if (link_info->force_pam4_link_speed) { |
| link_info->req_link_speed = |
| link_info->force_pam4_link_speed; |
| link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; |
| } |
| link_info->req_duplex = link_info->duplex_setting; |
| } |
| if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) |
| link_info->req_flow_ctrl = |
| link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; |
| else |
| link_info->req_flow_ctrl = link_info->force_pause_setting; |
| } |
| |
| static void bnxt_fw_echo_reply(struct bnxt *bp) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| struct hwrm_func_echo_response_input *req; |
| int rc; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); |
| if (rc) |
| return; |
| req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); |
| req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); |
| hwrm_req_send(bp, req); |
| } |
| |
| static void bnxt_sp_task(struct work_struct *work) |
| { |
| struct bnxt *bp = container_of(work, struct bnxt, sp_task); |
| |
| set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| smp_mb__after_atomic(); |
| if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { |
| clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| return; |
| } |
| |
| if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) |
| bnxt_cfg_rx_mode(bp); |
| |
| if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) |
| bnxt_cfg_ntp_filters(bp); |
| if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) |
| bnxt_hwrm_exec_fwd_req(bp); |
| if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { |
| bnxt_hwrm_port_qstats(bp, 0); |
| bnxt_hwrm_port_qstats_ext(bp, 0); |
| bnxt_accumulate_all_stats(bp); |
| } |
| |
| if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { |
| int rc; |
| |
| mutex_lock(&bp->link_lock); |
| if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, |
| &bp->sp_event)) |
| bnxt_hwrm_phy_qcaps(bp); |
| |
| rc = bnxt_update_link(bp, true); |
| if (rc) |
| netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", |
| rc); |
| |
| if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, |
| &bp->sp_event)) |
| bnxt_init_ethtool_link_settings(bp); |
| mutex_unlock(&bp->link_lock); |
| } |
| if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { |
| int rc; |
| |
| mutex_lock(&bp->link_lock); |
| rc = bnxt_update_phy_setting(bp); |
| mutex_unlock(&bp->link_lock); |
| if (rc) { |
| netdev_warn(bp->dev, "update phy settings retry failed\n"); |
| } else { |
| bp->link_info.phy_retry = false; |
| netdev_info(bp->dev, "update phy settings retry succeeded\n"); |
| } |
| } |
| if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { |
| mutex_lock(&bp->link_lock); |
| bnxt_get_port_module_status(bp); |
| mutex_unlock(&bp->link_lock); |
| } |
| |
| if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) |
| bnxt_tc_flow_stats_work(bp); |
| |
| if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) |
| bnxt_chk_missed_irq(bp); |
| |
| if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) |
| bnxt_fw_echo_reply(bp); |
| |
| /* These functions below will clear BNXT_STATE_IN_SP_TASK. They |
| * must be the last functions to be called before exiting. |
| */ |
| if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) |
| bnxt_reset(bp, false); |
| |
| if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) |
| bnxt_reset(bp, true); |
| |
| if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) |
| bnxt_rx_ring_reset(bp); |
| |
| if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { |
| if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || |
| test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) |
| bnxt_devlink_health_fw_report(bp); |
| else |
| bnxt_fw_reset(bp); |
| } |
| |
| if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { |
| if (!is_bnxt_fw_ok(bp)) |
| bnxt_devlink_health_fw_report(bp); |
| } |
| |
| smp_mb__before_atomic(); |
| clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); |
| } |
| |
| /* Under rtnl_lock */ |
| int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, |
| int tx_xdp) |
| { |
| int max_rx, max_tx, tx_sets = 1; |
| int tx_rings_needed, stats; |
| int rx_rings = rx; |
| int cp, vnics, rc; |
| |
| if (tcs) |
| tx_sets = tcs; |
| |
| rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); |
| if (rc) |
| return rc; |
| |
| if (max_rx < rx) |
| return -ENOMEM; |
| |
| tx_rings_needed = tx * tx_sets + tx_xdp; |
| if (max_tx < tx_rings_needed) |
| return -ENOMEM; |
| |
| vnics = 1; |
| if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) |
| vnics += rx_rings; |
| |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| rx_rings <<= 1; |
| cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; |
| stats = cp; |
| if (BNXT_NEW_RM(bp)) { |
| cp += bnxt_get_ulp_msix_num(bp); |
| stats += bnxt_get_ulp_stat_ctxs(bp); |
| } |
| return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, |
| stats, vnics); |
| } |
| |
| static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) |
| { |
| if (bp->bar2) { |
| pci_iounmap(pdev, bp->bar2); |
| bp->bar2 = NULL; |
| } |
| |
| if (bp->bar1) { |
| pci_iounmap(pdev, bp->bar1); |
| bp->bar1 = NULL; |
| } |
| |
| if (bp->bar0) { |
| pci_iounmap(pdev, bp->bar0); |
| bp->bar0 = NULL; |
| } |
| } |
| |
| static void bnxt_cleanup_pci(struct bnxt *bp) |
| { |
| bnxt_unmap_bars(bp, bp->pdev); |
| pci_release_regions(bp->pdev); |
| if (pci_is_enabled(bp->pdev)) |
| pci_disable_device(bp->pdev); |
| } |
| |
| static void bnxt_init_dflt_coal(struct bnxt *bp) |
| { |
| struct bnxt_coal_cap *coal_cap = &bp->coal_cap; |
| struct bnxt_coal *coal; |
| u16 flags = 0; |
| |
| if (coal_cap->cmpl_params & |
| RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) |
| flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; |
| |
| /* Tick values in micro seconds. |
| * 1 coal_buf x bufs_per_record = 1 completion record. |
| */ |
| coal = &bp->rx_coal; |
| coal->coal_ticks = 10; |
| coal->coal_bufs = 30; |
| coal->coal_ticks_irq = 1; |
| coal->coal_bufs_irq = 2; |
| coal->idle_thresh = 50; |
| coal->bufs_per_record = 2; |
| coal->budget = 64; /* NAPI budget */ |
| coal->flags = flags; |
| |
| coal = &bp->tx_coal; |
| coal->coal_ticks = 28; |
| coal->coal_bufs = 30; |
| coal->coal_ticks_irq = 2; |
| coal->coal_bufs_irq = 2; |
| coal->bufs_per_record = 1; |
| coal->flags = flags; |
| |
| bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; |
| } |
| |
| static int bnxt_fw_init_one_p1(struct bnxt *bp) |
| { |
| int rc; |
| |
| bp->fw_cap = 0; |
| rc = bnxt_hwrm_ver_get(bp); |
| bnxt_try_map_fw_health_reg(bp); |
| if (rc) { |
| rc = bnxt_try_recover_fw(bp); |
| if (rc) |
| return rc; |
| rc = bnxt_hwrm_ver_get(bp); |
| if (rc) |
| return rc; |
| } |
| |
| bnxt_nvm_cfg_ver_get(bp); |
| |
| rc = bnxt_hwrm_func_reset(bp); |
| if (rc) |
| return -ENODEV; |
| |
| bnxt_hwrm_fw_set_time(bp); |
| return 0; |
| } |
| |
| static int bnxt_fw_init_one_p2(struct bnxt *bp) |
| { |
| int rc; |
| |
| /* Get the MAX capabilities for this function */ |
| rc = bnxt_hwrm_func_qcaps(bp); |
| if (rc) { |
| netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", |
| rc); |
| return -ENODEV; |
| } |
| |
| rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); |
| if (rc) |
| netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", |
| rc); |
| |
| if (bnxt_alloc_fw_health(bp)) { |
| netdev_warn(bp->dev, "no memory for firmware error recovery\n"); |
| } else { |
| rc = bnxt_hwrm_error_recovery_qcfg(bp); |
| if (rc) |
| netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", |
| rc); |
| } |
| |
| rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); |
| if (rc) |
| return -ENODEV; |
| |
| bnxt_hwrm_func_qcfg(bp); |
| bnxt_hwrm_vnic_qcaps(bp); |
| bnxt_hwrm_port_led_qcaps(bp); |
| bnxt_ethtool_init(bp); |
| bnxt_dcb_init(bp); |
| return 0; |
| } |
| |
| static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) |
| { |
| bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; |
| bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | |
| VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | |
| VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | |
| VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; |
| if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { |
| bp->flags |= BNXT_FLAG_UDP_RSS_CAP; |
| bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | |
| VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; |
| } |
| } |
| |
| static void bnxt_set_dflt_rfs(struct bnxt *bp) |
| { |
| struct net_device *dev = bp->dev; |
| |
| dev->hw_features &= ~NETIF_F_NTUPLE; |
| dev->features &= ~NETIF_F_NTUPLE; |
| bp->flags &= ~BNXT_FLAG_RFS; |
| if (bnxt_rfs_supported(bp)) { |
| dev->hw_features |= NETIF_F_NTUPLE; |
| if (bnxt_rfs_capable(bp)) { |
| bp->flags |= BNXT_FLAG_RFS; |
| dev->features |= NETIF_F_NTUPLE; |
| } |
| } |
| } |
| |
| static void bnxt_fw_init_one_p3(struct bnxt *bp) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| |
| bnxt_set_dflt_rss_hash_type(bp); |
| bnxt_set_dflt_rfs(bp); |
| |
| bnxt_get_wol_settings(bp); |
| if (bp->flags & BNXT_FLAG_WOL_CAP) |
| device_set_wakeup_enable(&pdev->dev, bp->wol); |
| else |
| device_set_wakeup_capable(&pdev->dev, false); |
| |
| bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); |
| bnxt_hwrm_coal_params_qcaps(bp); |
| } |
| |
| static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); |
| |
| int bnxt_fw_init_one(struct bnxt *bp) |
| { |
| int rc; |
| |
| rc = bnxt_fw_init_one_p1(bp); |
| if (rc) { |
| netdev_err(bp->dev, "Firmware init phase 1 failed\n"); |
| return rc; |
| } |
| rc = bnxt_fw_init_one_p2(bp); |
| if (rc) { |
| netdev_err(bp->dev, "Firmware init phase 2 failed\n"); |
| return rc; |
| } |
| rc = bnxt_probe_phy(bp, false); |
| if (rc) |
| return rc; |
| rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); |
| if (rc) |
| return rc; |
| |
| bnxt_fw_init_one_p3(bp); |
| return 0; |
| } |
| |
| static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; |
| u32 val = fw_health->fw_reset_seq_vals[reg_idx]; |
| u32 reg_type, reg_off, delay_msecs; |
| |
| delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; |
| reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); |
| reg_off = BNXT_FW_HEALTH_REG_OFF(reg); |
| switch (reg_type) { |
| case BNXT_FW_HEALTH_REG_TYPE_CFG: |
| pci_write_config_dword(bp->pdev, reg_off, val); |
| break; |
| case BNXT_FW_HEALTH_REG_TYPE_GRC: |
| writel(reg_off & BNXT_GRC_BASE_MASK, |
| bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); |
| reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; |
| fallthrough; |
| case BNXT_FW_HEALTH_REG_TYPE_BAR0: |
| writel(val, bp->bar0 + reg_off); |
| break; |
| case BNXT_FW_HEALTH_REG_TYPE_BAR1: |
| writel(val, bp->bar1 + reg_off); |
| break; |
| } |
| if (delay_msecs) { |
| pci_read_config_dword(bp->pdev, 0, &val); |
| msleep(delay_msecs); |
| } |
| } |
| |
| bool bnxt_hwrm_reset_permitted(struct bnxt *bp) |
| { |
| struct hwrm_func_qcfg_output *resp; |
| struct hwrm_func_qcfg_input *req; |
| bool result = true; /* firmware will enforce if unknown */ |
| |
| if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) |
| return result; |
| |
| if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) |
| return result; |
| |
| req->fid = cpu_to_le16(0xffff); |
| resp = hwrm_req_hold(bp, req); |
| if (!hwrm_req_send(bp, req)) |
| result = !!(le16_to_cpu(resp->flags) & |
| FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); |
| hwrm_req_drop(bp, req); |
| return result; |
| } |
| |
| static void bnxt_reset_all(struct bnxt *bp) |
| { |
| struct bnxt_fw_health *fw_health = bp->fw_health; |
| int i, rc; |
| |
| if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { |
| bnxt_fw_reset_via_optee(bp); |
| bp->fw_reset_timestamp = jiffies; |
| return; |
| } |
| |
| if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { |
| for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) |
| bnxt_fw_reset_writel(bp, i); |
| } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { |
| struct hwrm_fw_reset_input *req; |
| |
| rc = hwrm_req_init(bp, req, HWRM_FW_RESET); |
| if (!rc) { |
| req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); |
| req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; |
| req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; |
| req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; |
| rc = hwrm_req_send(bp, req); |
| } |
| if (rc != -ENODEV) |
| netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); |
| } |
| bp->fw_reset_timestamp = jiffies; |
| } |
| |
| static bool bnxt_fw_reset_timeout(struct bnxt *bp) |
| { |
| return time_after(jiffies, bp->fw_reset_timestamp + |
| (bp->fw_reset_max_dsecs * HZ / 10)); |
| } |
| |
| static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) |
| { |
| clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { |
| bnxt_ulp_start(bp, rc); |
| bnxt_dl_health_fw_status_update(bp, false); |
| } |
| bp->fw_reset_state = 0; |
| dev_close(bp->dev); |
| } |
| |
| static void bnxt_fw_reset_task(struct work_struct *work) |
| { |
| struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); |
| int rc = 0; |
| |
| if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { |
| netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); |
| return; |
| } |
| |
| switch (bp->fw_reset_state) { |
| case BNXT_FW_RESET_STATE_POLL_VF: { |
| int n = bnxt_get_registered_vfs(bp); |
| int tmo; |
| |
| if (n < 0) { |
| netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", |
| n, jiffies_to_msecs(jiffies - |
| bp->fw_reset_timestamp)); |
| goto fw_reset_abort; |
| } else if (n > 0) { |
| if (bnxt_fw_reset_timeout(bp)) { |
| clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| bp->fw_reset_state = 0; |
| netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", |
| n); |
| return; |
| } |
| bnxt_queue_fw_reset_work(bp, HZ / 10); |
| return; |
| } |
| bp->fw_reset_timestamp = jiffies; |
| rtnl_lock(); |
| if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { |
| bnxt_fw_reset_abort(bp, rc); |
| rtnl_unlock(); |
| return; |
| } |
| bnxt_fw_reset_close(bp); |
| if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; |
| tmo = HZ / 10; |
| } else { |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; |
| tmo = bp->fw_reset_min_dsecs * HZ / 10; |
| } |
| rtnl_unlock(); |
| bnxt_queue_fw_reset_work(bp, tmo); |
| return; |
| } |
| case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { |
| u32 val; |
| |
| val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); |
| if (!(val & BNXT_FW_STATUS_SHUTDOWN) && |
| !bnxt_fw_reset_timeout(bp)) { |
| bnxt_queue_fw_reset_work(bp, HZ / 5); |
| return; |
| } |
| |
| if (!bp->fw_health->primary) { |
| u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; |
| |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; |
| bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); |
| return; |
| } |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; |
| } |
| fallthrough; |
| case BNXT_FW_RESET_STATE_RESET_FW: |
| bnxt_reset_all(bp); |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; |
| bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); |
| return; |
| case BNXT_FW_RESET_STATE_ENABLE_DEV: |
| bnxt_inv_fw_health_reg(bp); |
| if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && |
| !bp->fw_reset_min_dsecs) { |
| u16 val; |
| |
| pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); |
| if (val == 0xffff) { |
| if (bnxt_fw_reset_timeout(bp)) { |
| netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); |
| rc = -ETIMEDOUT; |
| goto fw_reset_abort; |
| } |
| bnxt_queue_fw_reset_work(bp, HZ / 1000); |
| return; |
| } |
| } |
| clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); |
| clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); |
| if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && |
| !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) |
| bnxt_dl_remote_reload(bp); |
| if (pci_enable_device(bp->pdev)) { |
| netdev_err(bp->dev, "Cannot re-enable PCI device\n"); |
| rc = -ENODEV; |
| goto fw_reset_abort; |
| } |
| pci_set_master(bp->pdev); |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; |
| fallthrough; |
| case BNXT_FW_RESET_STATE_POLL_FW: |
| bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; |
| rc = bnxt_hwrm_poll(bp); |
| if (rc) { |
| if (bnxt_fw_reset_timeout(bp)) { |
| netdev_err(bp->dev, "Firmware reset aborted\n"); |
| goto fw_reset_abort_status; |
| } |
| bnxt_queue_fw_reset_work(bp, HZ / 5); |
| return; |
| } |
| bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; |
| bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; |
| fallthrough; |
| case BNXT_FW_RESET_STATE_OPENING: |
| while (!rtnl_trylock()) { |
| bnxt_queue_fw_reset_work(bp, HZ / 10); |
| return; |
| } |
| rc = bnxt_open(bp->dev); |
| if (rc) { |
| netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); |
| bnxt_fw_reset_abort(bp, rc); |
| rtnl_unlock(); |
| return; |
| } |
| |
| if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && |
| bp->fw_health->enabled) { |
| bp->fw_health->last_fw_reset_cnt = |
| bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); |
| } |
| bp->fw_reset_state = 0; |
| /* Make sure fw_reset_state is 0 before clearing the flag */ |
| smp_mb__before_atomic(); |
| clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| bnxt_ulp_start(bp, 0); |
| bnxt_reenable_sriov(bp); |
| bnxt_vf_reps_alloc(bp); |
| bnxt_vf_reps_open(bp); |
| bnxt_ptp_reapply_pps(bp); |
| clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); |
| if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { |
| bnxt_dl_health_fw_recovery_done(bp); |
| bnxt_dl_health_fw_status_update(bp, true); |
| } |
| rtnl_unlock(); |
| break; |
| } |
| return; |
| |
| fw_reset_abort_status: |
| if (bp->fw_health->status_reliable || |
| (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { |
| u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); |
| |
| netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); |
| } |
| fw_reset_abort: |
| rtnl_lock(); |
| bnxt_fw_reset_abort(bp, rc); |
| rtnl_unlock(); |
| } |
| |
| static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) |
| { |
| int rc; |
| struct bnxt *bp = netdev_priv(dev); |
| |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| /* enable device (incl. PCI PM wakeup), and bus-mastering */ |
| rc = pci_enable_device(pdev); |
| if (rc) { |
| dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); |
| goto init_err; |
| } |
| |
| if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
| dev_err(&pdev->dev, |
| "Cannot find PCI device base address, aborting\n"); |
| rc = -ENODEV; |
| goto init_err_disable; |
| } |
| |
| rc = pci_request_regions(pdev, DRV_MODULE_NAME); |
| if (rc) { |
| dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); |
| goto init_err_disable; |
| } |
| |
| if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && |
| dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { |
| dev_err(&pdev->dev, "System does not support DMA, aborting\n"); |
| rc = -EIO; |
| goto init_err_release; |
| } |
| |
| pci_set_master(pdev); |
| |
| bp->dev = dev; |
| bp->pdev = pdev; |
| |
| /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() |
| * determines the BAR size. |
| */ |
| bp->bar0 = pci_ioremap_bar(pdev, 0); |
| if (!bp->bar0) { |
| dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); |
| rc = -ENOMEM; |
| goto init_err_release; |
| } |
| |
| bp->bar2 = pci_ioremap_bar(pdev, 4); |
| if (!bp->bar2) { |
| dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); |
| rc = -ENOMEM; |
| goto init_err_release; |
| } |
| |
| pci_enable_pcie_error_reporting(pdev); |
| |
| INIT_WORK(&bp->sp_task, bnxt_sp_task); |
| INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); |
| |
| spin_lock_init(&bp->ntp_fltr_lock); |
| #if BITS_PER_LONG == 32 |
| spin_lock_init(&bp->db_lock); |
| #endif |
| |
| bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; |
| bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; |
| |
| timer_setup(&bp->timer, bnxt_timer, 0); |
| bp->current_interval = BNXT_TIMER_INTERVAL; |
| |
| bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; |
| bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; |
| |
| clear_bit(BNXT_STATE_OPEN, &bp->state); |
| return 0; |
| |
| init_err_release: |
| bnxt_unmap_bars(bp, pdev); |
| pci_release_regions(pdev); |
| |
| init_err_disable: |
| pci_disable_device(pdev); |
| |
| init_err: |
| return rc; |
| } |
| |
| /* rtnl_lock held */ |
| static int bnxt_change_mac_addr(struct net_device *dev, void *p) |
| { |
| struct sockaddr *addr = p; |
| struct bnxt *bp = netdev_priv(dev); |
| int rc = 0; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| if (ether_addr_equal(addr->sa_data, dev->dev_addr)) |
| return 0; |
| |
| rc = bnxt_approve_mac(bp, addr->sa_data, true); |
| if (rc) |
| return rc; |
| |
| eth_hw_addr_set(dev, addr->sa_data); |
| if (netif_running(dev)) { |
| bnxt_close_nic(bp, false, false); |
| rc = bnxt_open_nic(bp, false, false); |
| } |
| |
| return rc; |
| } |
| |
| /* rtnl_lock held */ |
| static int bnxt_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| if (netif_running(dev)) |
| bnxt_close_nic(bp, true, false); |
| |
| dev->mtu = new_mtu; |
| bnxt_set_ring_params(bp); |
| |
| if (netif_running(dev)) |
| return bnxt_open_nic(bp, true, false); |
| |
| return 0; |
| } |
| |
| int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| bool sh = false; |
| int rc; |
| |
| if (tc > bp->max_tc) { |
| netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", |
| tc, bp->max_tc); |
| return -EINVAL; |
| } |
| |
| if (netdev_get_num_tc(dev) == tc) |
| return 0; |
| |
| if (bp->flags & BNXT_FLAG_SHARED_RINGS) |
| sh = true; |
| |
| rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, |
| sh, tc, bp->tx_nr_rings_xdp); |
| if (rc) |
| return rc; |
| |
| /* Needs to close the device and do hw resource re-allocations */ |
| if (netif_running(bp->dev)) |
| bnxt_close_nic(bp, true, false); |
| |
| if (tc) { |
| bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; |
| netdev_set_num_tc(dev, tc); |
| } else { |
| bp->tx_nr_rings = bp->tx_nr_rings_per_tc; |
| netdev_reset_tc(dev); |
| } |
| bp->tx_nr_rings += bp->tx_nr_rings_xdp; |
| bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : |
| bp->tx_nr_rings + bp->rx_nr_rings; |
| |
| if (netif_running(bp->dev)) |
| return bnxt_open_nic(bp, true, false); |
| |
| return 0; |
| } |
| |
| static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, |
| void *cb_priv) |
| { |
| struct bnxt *bp = cb_priv; |
| |
| if (!bnxt_tc_flower_enabled(bp) || |
| !tc_cls_can_offload_and_chain0(bp->dev, type_data)) |
| return -EOPNOTSUPP; |
| |
| switch (type) { |
| case TC_SETUP_CLSFLOWER: |
| return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| LIST_HEAD(bnxt_block_cb_list); |
| |
| static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, |
| void *type_data) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| switch (type) { |
| case TC_SETUP_BLOCK: |
| return flow_block_cb_setup_simple(type_data, |
| &bnxt_block_cb_list, |
| bnxt_setup_tc_block_cb, |
| bp, bp, true); |
| case TC_SETUP_QDISC_MQPRIO: { |
| struct tc_mqprio_qopt *mqprio = type_data; |
| |
| mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; |
| |
| return bnxt_setup_mq_tc(dev, mqprio->num_tc); |
| } |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, |
| struct bnxt_ntuple_filter *f2) |
| { |
| struct flow_keys *keys1 = &f1->fkeys; |
| struct flow_keys *keys2 = &f2->fkeys; |
| |
| if (keys1->basic.n_proto != keys2->basic.n_proto || |
| keys1->basic.ip_proto != keys2->basic.ip_proto) |
| return false; |
| |
| if (keys1->basic.n_proto == htons(ETH_P_IP)) { |
| if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || |
| keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) |
| return false; |
| } else { |
| if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, |
| sizeof(keys1->addrs.v6addrs.src)) || |
| memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, |
| sizeof(keys1->addrs.v6addrs.dst))) |
| return false; |
| } |
| |
| if (keys1->ports.ports == keys2->ports.ports && |
| keys1->control.flags == keys2->control.flags && |
| ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && |
| ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) |
| return true; |
| |
| return false; |
| } |
| |
| static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, |
| u16 rxq_index, u32 flow_id) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| struct bnxt_ntuple_filter *fltr, *new_fltr; |
| struct flow_keys *fkeys; |
| struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); |
| int rc = 0, idx, bit_id, l2_idx = 0; |
| struct hlist_head *head; |
| u32 flags; |
| |
| if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { |
| struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; |
| int off = 0, j; |
| |
| netif_addr_lock_bh(dev); |
| for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { |
| if (ether_addr_equal(eth->h_dest, |
| vnic->uc_list + off)) { |
| l2_idx = j + 1; |
| break; |
| } |
| } |
| netif_addr_unlock_bh(dev); |
| if (!l2_idx) |
| return -EINVAL; |
| } |
| new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); |
| if (!new_fltr) |
| return -ENOMEM; |
| |
| fkeys = &new_fltr->fkeys; |
| if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { |
| rc = -EPROTONOSUPPORT; |
| goto err_free; |
| } |
| |
| if ((fkeys->basic.n_proto != htons(ETH_P_IP) && |
| fkeys->basic.n_proto != htons(ETH_P_IPV6)) || |
| ((fkeys->basic.ip_proto != IPPROTO_TCP) && |
| (fkeys->basic.ip_proto != IPPROTO_UDP))) { |
| rc = -EPROTONOSUPPORT; |
| goto err_free; |
| } |
| if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && |
| bp->hwrm_spec_code < 0x10601) { |
| rc = -EPROTONOSUPPORT; |
| goto err_free; |
| } |
| flags = fkeys->control.flags; |
| if (((flags & FLOW_DIS_ENCAPSULATION) && |
| bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { |
| rc = -EPROTONOSUPPORT; |
| goto err_free; |
| } |
| |
| memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); |
| memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); |
| |
| idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; |
| head = &bp->ntp_fltr_hash_tbl[idx]; |
| rcu_read_lock(); |
| hlist_for_each_entry_rcu(fltr, head, hash) { |
| if (bnxt_fltr_match(fltr, new_fltr)) { |
| rcu_read_unlock(); |
| rc = 0; |
| goto err_free; |
| } |
| } |
| rcu_read_unlock(); |
| |
| spin_lock_bh(&bp->ntp_fltr_lock); |
| bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, |
| BNXT_NTP_FLTR_MAX_FLTR, 0); |
| if (bit_id < 0) { |
| spin_unlock_bh(&bp->ntp_fltr_lock); |
| rc = -ENOMEM; |
| goto err_free; |
| } |
| |
| new_fltr->sw_id = (u16)bit_id; |
| new_fltr->flow_id = flow_id; |
| new_fltr->l2_fltr_idx = l2_idx; |
| new_fltr->rxq = rxq_index; |
| hlist_add_head_rcu(&new_fltr->hash, head); |
| bp->ntp_fltr_count++; |
| spin_unlock_bh(&bp->ntp_fltr_lock); |
| |
| set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); |
| bnxt_queue_sp_work(bp); |
| |
| return new_fltr->sw_id; |
| |
| err_free: |
| kfree(new_fltr); |
| return rc; |
| } |
| |
| static void bnxt_cfg_ntp_filters(struct bnxt *bp) |
| { |
| int i; |
| |
| for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { |
| struct hlist_head *head; |
| struct hlist_node *tmp; |
| struct bnxt_ntuple_filter *fltr; |
| int rc; |
| |
| head = &bp->ntp_fltr_hash_tbl[i]; |
| hlist_for_each_entry_safe(fltr, tmp, head, hash) { |
| bool del = false; |
| |
| if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { |
| if (rps_may_expire_flow(bp->dev, fltr->rxq, |
| fltr->flow_id, |
| fltr->sw_id)) { |
| bnxt_hwrm_cfa_ntuple_filter_free(bp, |
| fltr); |
| del = true; |
| } |
| } else { |
| rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, |
| fltr); |
| if (rc) |
| del = true; |
| else |
| set_bit(BNXT_FLTR_VALID, &fltr->state); |
| } |
| |
| if (del) { |
| spin_lock_bh(&bp->ntp_fltr_lock); |
| hlist_del_rcu(&fltr->hash); |
| bp->ntp_fltr_count--; |
| spin_unlock_bh(&bp->ntp_fltr_lock); |
| synchronize_rcu(); |
| clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); |
| kfree(fltr); |
| } |
| } |
| } |
| if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) |
| netdev_info(bp->dev, "Receive PF driver unload event!\n"); |
| } |
| |
| #else |
| |
| static void bnxt_cfg_ntp_filters(struct bnxt *bp) |
| { |
| } |
| |
| #endif /* CONFIG_RFS_ACCEL */ |
| |
| static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) |
| { |
| struct bnxt *bp = netdev_priv(netdev); |
| struct udp_tunnel_info ti; |
| unsigned int cmd; |
| |
| udp_tunnel_nic_get_port(netdev, table, 0, &ti); |
| if (ti.type == UDP_TUNNEL_TYPE_VXLAN) |
| cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; |
| else |
| cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; |
| |
| if (ti.port) |
| return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); |
| |
| return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); |
| } |
| |
| static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { |
| .sync_table = bnxt_udp_tunnel_sync, |
| .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | |
| UDP_TUNNEL_NIC_INFO_OPEN_ONLY, |
| .tables = { |
| { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, |
| { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, |
| }, |
| }; |
| |
| static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, |
| struct net_device *dev, u32 filter_mask, |
| int nlflags) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, |
| nlflags, filter_mask, NULL); |
| } |
| |
| static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, |
| u16 flags, struct netlink_ext_ack *extack) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| struct nlattr *attr, *br_spec; |
| int rem, rc = 0; |
| |
| if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) |
| return -EOPNOTSUPP; |
| |
| br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); |
| if (!br_spec) |
| return -EINVAL; |
| |
| nla_for_each_nested(attr, br_spec, rem) { |
| u16 mode; |
| |
| if (nla_type(attr) != IFLA_BRIDGE_MODE) |
| continue; |
| |
| if (nla_len(attr) < sizeof(mode)) |
| return -EINVAL; |
| |
| mode = nla_get_u16(attr); |
| if (mode == bp->br_mode) |
| break; |
| |
| rc = bnxt_hwrm_set_br_mode(bp, mode); |
| if (!rc) |
| bp->br_mode = mode; |
| break; |
| } |
| return rc; |
| } |
| |
| int bnxt_get_port_parent_id(struct net_device *dev, |
| struct netdev_phys_item_id *ppid) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) |
| return -EOPNOTSUPP; |
| |
| /* The PF and it's VF-reps only support the switchdev framework */ |
| if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) |
| return -EOPNOTSUPP; |
| |
| ppid->id_len = sizeof(bp->dsn); |
| memcpy(ppid->id, bp->dsn, ppid->id_len); |
| |
| return 0; |
| } |
| |
| static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) |
| { |
| struct bnxt *bp = netdev_priv(dev); |
| |
| return &bp->dl_port; |
| } |
| |
| static const struct net_device_ops bnxt_netdev_ops = { |
| .ndo_open = bnxt_open, |
| .ndo_start_xmit = bnxt_start_xmit, |
| .ndo_stop = bnxt_close, |
| .ndo_get_stats64 = bnxt_get_stats64, |
| .ndo_set_rx_mode = bnxt_set_rx_mode, |
| .ndo_eth_ioctl = bnxt_ioctl, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = bnxt_change_mac_addr, |
| .ndo_change_mtu = bnxt_change_mtu, |
| .ndo_fix_features = bnxt_fix_features, |
| .ndo_set_features = bnxt_set_features, |
| .ndo_features_check = bnxt_features_check, |
| .ndo_tx_timeout = bnxt_tx_timeout, |
| #ifdef CONFIG_BNXT_SRIOV |
| .ndo_get_vf_config = bnxt_get_vf_config, |
| .ndo_set_vf_mac = bnxt_set_vf_mac, |
| .ndo_set_vf_vlan = bnxt_set_vf_vlan, |
| .ndo_set_vf_rate = bnxt_set_vf_bw, |
| .ndo_set_vf_link_state = bnxt_set_vf_link_state, |
| .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, |
| .ndo_set_vf_trust = bnxt_set_vf_trust, |
| #endif |
| .ndo_setup_tc = bnxt_setup_tc, |
| #ifdef CONFIG_RFS_ACCEL |
| .ndo_rx_flow_steer = bnxt_rx_flow_steer, |
| #endif |
| .ndo_bpf = bnxt_xdp, |
| .ndo_xdp_xmit = bnxt_xdp_xmit, |
| .ndo_bridge_getlink = bnxt_bridge_getlink, |
| .ndo_bridge_setlink = bnxt_bridge_setlink, |
| .ndo_get_devlink_port = bnxt_get_devlink_port, |
| }; |
| |
| static void bnxt_remove_one(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnxt *bp = netdev_priv(dev); |
| |
| if (BNXT_PF(bp)) |
| bnxt_sriov_disable(bp); |
| |
| if (BNXT_PF(bp)) |
| devlink_port_type_clear(&bp->dl_port); |
| |
| bnxt_ptp_clear(bp); |
| pci_disable_pcie_error_reporting(pdev); |
| unregister_netdev(dev); |
| clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); |
| /* Flush any pending tasks */ |
| cancel_work_sync(&bp->sp_task); |
| cancel_delayed_work_sync(&bp->fw_reset_task); |
| bp->sp_event = 0; |
| |
| bnxt_dl_fw_reporters_destroy(bp); |
| bnxt_dl_unregister(bp); |
| bnxt_shutdown_tc(bp); |
| |
| bnxt_clear_int_mode(bp); |
| bnxt_hwrm_func_drv_unrgtr(bp); |
| bnxt_free_hwrm_resources(bp); |
| bnxt_ethtool_free(bp); |
| bnxt_dcb_free(bp); |
| kfree(bp->edev); |
| bp->edev = NULL; |
| kfree(bp->ptp_cfg); |
| bp->ptp_cfg = NULL; |
| kfree(bp->fw_health); |
| bp->fw_health = NULL; |
| bnxt_cleanup_pci(bp); |
| bnxt_free_ctx_mem(bp); |
| kfree(bp->ctx); |
| bp->ctx = NULL; |
| kfree(bp->rss_indir_tbl); |
| bp->rss_indir_tbl = NULL; |
| bnxt_free_port_stats(bp); |
| free_netdev(dev); |
| } |
| |
| static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) |
| { |
| int rc = 0; |
| struct bnxt_link_info *link_info = &bp->link_info; |
| |
| bp->phy_flags = 0; |
| rc = bnxt_hwrm_phy_qcaps(bp); |
| if (rc) { |
| netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", |
| rc); |
| return rc; |
| } |
| if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) |
| bp->dev->priv_flags |= IFF_SUPP_NOFCS; |
| else |
| bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; |
| if (!fw_dflt) |
| return 0; |
| |
| mutex_lock(&bp->link_lock); |
| rc = bnxt_update_link(bp, false); |
| if (rc) { |
| mutex_unlock(&bp->link_lock); |
| netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", |
| rc); |
| return rc; |
| } |
| |
| /* Older firmware does not have supported_auto_speeds, so assume |
| * that all supported speeds can be autonegotiated. |
| */ |
| if (link_info->auto_link_speeds && !link_info->support_auto_speeds) |
| link_info->support_auto_speeds = link_info->support_speeds; |
| |
| bnxt_init_ethtool_link_settings(bp); |
| mutex_unlock(&bp->link_lock); |
| return 0; |
| } |
| |
| static int bnxt_get_max_irq(struct pci_dev *pdev) |
| { |
| u16 ctrl; |
| |
| if (!pdev->msix_cap) |
| return 1; |
| |
| pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); |
| return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; |
| } |
| |
| static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, |
| int *max_cp) |
| { |
| struct bnxt_hw_resc *hw_resc = &bp->hw_resc; |
| int max_ring_grps = 0, max_irq; |
| |
| *max_tx = hw_resc->max_tx_rings; |
| *max_rx = hw_resc->max_rx_rings; |
| *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); |
| max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - |
| bnxt_get_ulp_msix_num(bp), |
| hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); |
| if (!(bp->flags & BNXT_FLAG_CHIP_P5)) |
| *max_cp = min_t(int, *max_cp, max_irq); |
| max_ring_grps = hw_resc->max_hw_ring_grps; |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { |
| *max_cp -= 1; |
| *max_rx -= 2; |
| } |
| if (bp->flags & BNXT_FLAG_AGG_RINGS) |
| *max_rx >>= 1; |
| if (bp->flags & BNXT_FLAG_CHIP_P5) { |
| bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); |
| /* On P5 chips, max_cp output param should be available NQs */ |
| *max_cp = max_irq; |
| } |
| *max_rx = min_t(int, *max_rx, max_ring_grps); |
| } |
| |
| int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) |
| { |
| int rx, tx, cp; |
| |
| _bnxt_get_max_rings(bp, &rx, &tx, &cp); |
| *max_rx = rx; |
| *max_tx = tx; |
| if (!rx || !tx || !cp) |
| return -ENOMEM; |
| |
| return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); |
| } |
| |
| static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, |
| bool shared) |
| { |
| int rc; |
| |
| rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); |
| if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { |
| /* Not enough rings, try disabling agg rings. */ |
| bp->flags &= ~BNXT_FLAG_AGG_RINGS; |
| rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); |
| if (rc) { |
| /* set BNXT_FLAG_AGG_RINGS back for consistency */ |
| bp->flags |= BNXT_FLAG_AGG_RINGS; |
| return rc; |
| } |
| bp->flags |= BNXT_FLAG_NO_AGG_RINGS; |
| bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); |
| bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); |
| bnxt_set_ring_params(bp); |
| } |
| |
| if (bp->flags & BNXT_FLAG_ROCE_CAP) { |
| int max_cp, max_stat, max_irq; |
| |
| /* Reserve minimum resources for RoCE */ |
| max_cp = bnxt_get_max_func_cp_rings(bp); |
| max_stat = bnxt_get_max_func_stat_ctxs(bp); |
| max_irq = bnxt_get_max_func_irqs(bp); |
| if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || |
| max_irq <= BNXT_MIN_ROCE_CP_RINGS || |
| max_stat <= BNXT_MIN_ROCE_STAT_CTXS) |
| return 0; |
| |
| max_cp -= BNXT_MIN_ROCE_CP_RINGS; |
| max_irq -= BNXT_MIN_ROCE_CP_RINGS; |
| max_stat -= BNXT_MIN_ROCE_STAT_CTXS; |
| max_cp = min_t(int, max_cp, max_irq); |
| max_cp = min_t(int, max_cp, max_stat); |
| rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); |
| if (rc) |
| rc = 0; |
| } |
| return rc; |
| } |
| |
| /* In initial default shared ring setting, each shared ring must have a |
| * RX/TX ring pair. |
| */ |
| static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) |
| { |
| bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); |
| bp->rx_nr_rings = bp->cp_nr_rings; |
| bp->tx_nr_rings_per_tc = bp->cp_nr_rings; |
| bp->tx_nr_rings = bp->tx_nr_rings_per_tc; |
| } |
| |
| static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) |
| { |
| int dflt_rings, max_rx_rings, max_tx_rings, rc; |
| |
| if (!bnxt_can_reserve_rings(bp)) |
| return 0; |
| |
| if (sh) |
| bp->flags |= BNXT_FLAG_SHARED_RINGS; |
| dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); |
| /* Reduce default rings on multi-port cards so that total default |
| * rings do not exceed CPU count. |
| */ |
| if (bp->port_count > 1) { |
| int max_rings = |
| max_t(int, num_online_cpus() / bp->port_count, 1); |
| |
| dflt_rings = min_t(int, dflt_rings, max_rings); |
| } |
| rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); |
| if (rc) |
| return rc; |
| bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); |
| bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); |
| if (sh) |
| bnxt_trim_dflt_sh_rings(bp); |
| else |
| bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; |
| bp->tx_nr_rings = bp->tx_nr_rings_per_tc; |
| |
| rc = __bnxt_reserve_rings(bp); |
| if (rc && rc != -ENODEV) |
| netdev_warn(bp->dev, "Unable to reserve tx rings\n"); |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings; |
| if (sh) |
| bnxt_trim_dflt_sh_rings(bp); |
| |
| /* Rings may have been trimmed, re-reserve the trimmed rings. */ |
| if (bnxt_need_reserve_rings(bp)) { |
| rc = __bnxt_reserve_rings(bp); |
| if (rc && rc != -ENODEV) |
| netdev_warn(bp->dev, "2nd rings reservation failed.\n"); |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings; |
| } |
| if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { |
| bp->rx_nr_rings++; |
| bp->cp_nr_rings++; |
| } |
| if (rc) { |
| bp->tx_nr_rings = 0; |
| bp->rx_nr_rings = 0; |
| } |
| return rc; |
| } |
| |
| static int bnxt_init_dflt_ring_mode(struct bnxt *bp) |
| { |
| int rc; |
| |
| if (bp->tx_nr_rings) |
| return 0; |
| |
| bnxt_ulp_irq_stop(bp); |
| bnxt_clear_int_mode(bp); |
| rc = bnxt_set_dflt_rings(bp, true); |
| if (rc) { |
| if (BNXT_VF(bp) && rc == -ENODEV) |
| netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); |
| else |
| netdev_err(bp->dev, "Not enough rings available.\n"); |
| goto init_dflt_ring_err; |
| } |
| rc = bnxt_init_int_mode(bp); |
| if (rc) |
| goto init_dflt_ring_err; |
| |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings; |
| |
| bnxt_set_dflt_rfs(bp); |
| |
| init_dflt_ring_err: |
| bnxt_ulp_irq_restart(bp, rc); |
| return rc; |
| } |
| |
| int bnxt_restore_pf_fw_resources(struct bnxt *bp) |
| { |
| int rc; |
| |
| ASSERT_RTNL(); |
| bnxt_hwrm_func_qcaps(bp); |
| |
| if (netif_running(bp->dev)) |
| __bnxt_close_nic(bp, true, false); |
| |
| bnxt_ulp_irq_stop(bp); |
| bnxt_clear_int_mode(bp); |
| rc = bnxt_init_int_mode(bp); |
| bnxt_ulp_irq_restart(bp, rc); |
| |
| if (netif_running(bp->dev)) { |
| if (rc) |
| dev_close(bp->dev); |
| else |
| rc = bnxt_open_nic(bp, true, false); |
| } |
| |
| return rc; |
| } |
| |
| static int bnxt_init_mac_addr(struct bnxt *bp) |
| { |
| int rc = 0; |
| |
| if (BNXT_PF(bp)) { |
| eth_hw_addr_set(bp->dev, bp->pf.mac_addr); |
| } else { |
| #ifdef CONFIG_BNXT_SRIOV |
| struct bnxt_vf_info *vf = &bp->vf; |
| bool strict_approval = true; |
| |
| if (is_valid_ether_addr(vf->mac_addr)) { |
| /* overwrite netdev dev_addr with admin VF MAC */ |
| eth_hw_addr_set(bp->dev, vf->mac_addr); |
| /* Older PF driver or firmware may not approve this |
| * correctly. |
| */ |
| strict_approval = false; |
| } else { |
| eth_hw_addr_random(bp->dev); |
| } |
| rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); |
| #endif |
| } |
| return rc; |
| } |
| |
| static void bnxt_vpd_read_info(struct bnxt *bp) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| unsigned int vpd_size, kw_len; |
| int pos, size; |
| u8 *vpd_data; |
| |
| vpd_data = pci_vpd_alloc(pdev, &vpd_size); |
| if (IS_ERR(vpd_data)) { |
| pci_warn(pdev, "Unable to read VPD\n"); |
| return; |
| } |
| |
| pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, |
| PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); |
| if (pos < 0) |
| goto read_sn; |
| |
| size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); |
| memcpy(bp->board_partno, &vpd_data[pos], size); |
| |
| read_sn: |
| pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, |
| PCI_VPD_RO_KEYWORD_SERIALNO, |
| &kw_len); |
| if (pos < 0) |
| goto exit; |
| |
| size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); |
| memcpy(bp->board_serialno, &vpd_data[pos], size); |
| exit: |
| kfree(vpd_data); |
| } |
| |
| static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) |
| { |
| struct pci_dev *pdev = bp->pdev; |
| u64 qword; |
| |
| qword = pci_get_dsn(pdev); |
| if (!qword) { |
| netdev_info(bp->dev, "Unable to read adapter's DSN\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| put_unaligned_le64(qword, dsn); |
| |
| bp->flags |= BNXT_FLAG_DSN_VALID; |
| return 0; |
| } |
| |
| static int bnxt_map_db_bar(struct bnxt *bp) |
| { |
| if (!bp->db_size) |
| return -ENODEV; |
| bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); |
| if (!bp->bar1) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void bnxt_print_device_info(struct bnxt *bp) |
| { |
| netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", |
| board_info[bp->board_idx].name, |
| (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); |
| |
| pcie_print_link_status(bp->pdev); |
| } |
| |
| static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *dev; |
| struct bnxt *bp; |
| int rc, max_irqs; |
| |
| if (pci_is_bridge(pdev)) |
| return -ENODEV; |
| |
| /* Clear any pending DMA transactions from crash kernel |
| * while loading driver in capture kernel. |
| */ |
| if (is_kdump_kernel()) { |
| pci_clear_master(pdev); |
| pcie_flr(pdev); |
| } |
| |
| max_irqs = bnxt_get_max_irq(pdev); |
| dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); |
| if (!dev) |
| return -ENOMEM; |
| |
| bp = netdev_priv(dev); |
| bp->board_idx = ent->driver_data; |
| bp->msg_enable = BNXT_DEF_MSG_ENABLE; |
| bnxt_set_max_func_irqs(bp, max_irqs); |
| |
| if (bnxt_vf_pciid(bp->board_idx)) |
| bp->flags |= BNXT_FLAG_VF; |
| |
| if (pdev->msix_cap) |
| bp->flags |= BNXT_FLAG_MSIX_CAP; |
| |
| rc = bnxt_init_board(pdev, dev); |
| if (rc < 0) |
| goto init_err_free; |
| |
| dev->netdev_ops = &bnxt_netdev_ops; |
| dev->watchdog_timeo = BNXT_TX_TIMEOUT; |
| dev->ethtool_ops = &bnxt_ethtool_ops; |
| pci_set_drvdata(pdev, dev); |
| |
| rc = bnxt_alloc_hwrm_resources(bp); |
| if (rc) |
| goto init_err_pci_clean; |
| |
| mutex_init(&bp->hwrm_cmd_lock); |
| mutex_init(&bp->link_lock); |
| |
| rc = bnxt_fw_init_one_p1(bp); |
| if (rc) |
| goto init_err_pci_clean; |
| |
| if (BNXT_PF(bp)) |
| bnxt_vpd_read_info(bp); |
| |
| if (BNXT_CHIP_P5(bp)) { |
| bp->flags |= BNXT_FLAG_CHIP_P5; |
| if (BNXT_CHIP_SR2(bp)) |
| bp->flags |= BNXT_FLAG_CHIP_SR2; |
| } |
| |
| rc = bnxt_alloc_rss_indir_tbl(bp); |
| if (rc) |
| goto init_err_pci_clean; |
| |
| rc = bnxt_fw_init_one_p2(bp); |
| if (rc) |
| goto init_err_pci_clean; |
| |
| rc = bnxt_map_db_bar(bp); |
| if (rc) { |
| dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", |
| rc); |
| goto init_err_pci_clean; |
| } |
| |
| dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | |
| NETIF_F_TSO | NETIF_F_TSO6 | |
| NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | |
| NETIF_F_GSO_IPXIP4 | |
| NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | |
| NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | |
| NETIF_F_RXCSUM | NETIF_F_GRO; |
| |
| if (BNXT_SUPPORTS_TPA(bp)) |
| dev->hw_features |= NETIF_F_LRO; |
| |
| dev->hw_enc_features = |
| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | |
| NETIF_F_TSO | NETIF_F_TSO6 | |
| NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | |
| NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | |
| NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; |
| dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; |
| |
| dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | |
| NETIF_F_GSO_GRE_CSUM; |
| dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; |
| if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) |
| dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; |
| if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) |
| dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; |
| if (BNXT_SUPPORTS_TPA(bp)) |
| dev->hw_features |= NETIF_F_GRO_HW; |
| dev->features |= dev->hw_features | NETIF_F_HIGHDMA; |
| if (dev->features & NETIF_F_GRO_HW) |
| dev->features &= ~NETIF_F_LRO; |
| dev->priv_flags |= IFF_UNICAST_FLT; |
| |
| #ifdef CONFIG_BNXT_SRIOV |
| init_waitqueue_head(&bp->sriov_cfg_wait); |
| #endif |
| if (BNXT_SUPPORTS_TPA(bp)) { |
| bp->gro_func = bnxt_gro_func_5730x; |
| if (BNXT_CHIP_P4(bp)) |
| bp->gro_func = bnxt_gro_func_5731x; |
| else if (BNXT_CHIP_P5(bp)) |
| bp->gro_func = bnxt_gro_func_5750x; |
| } |
| if (!BNXT_CHIP_P4_PLUS(bp)) |
| bp->flags |= BNXT_FLAG_DOUBLE_DB; |
| |
| rc = bnxt_init_mac_addr(bp); |
| if (rc) { |
| dev_err(&pdev->dev, "Unable to initialize mac address.\n"); |
| rc = -EADDRNOTAVAIL; |
| goto init_err_pci_clean; |
| } |
| |
| if (BNXT_PF(bp)) { |
| /* Read the adapter's DSN to use as the eswitch switch_id */ |
| rc = bnxt_pcie_dsn_get(bp, bp->dsn); |
| } |
| |
| /* MTU range: 60 - FW defined max */ |
| dev->min_mtu = ETH_ZLEN; |
| dev->max_mtu = bp->max_mtu; |
| |
| rc = bnxt_probe_phy(bp, true); |
| if (rc) |
| goto init_err_pci_clean; |
| |
| bnxt_set_rx_skb_mode(bp, false); |
| bnxt_set_tpa_flags(bp); |
| bnxt_set_ring_params(bp); |
| rc = bnxt_set_dflt_rings(bp, true); |
| if (rc) { |
| if (BNXT_VF(bp) && rc == -ENODEV) { |
| netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); |
| } else { |
| netdev_err(bp->dev, "Not enough rings available.\n"); |
| rc = -ENOMEM; |
| } |
| goto init_err_pci_clean; |
| } |
| |
| bnxt_fw_init_one_p3(bp); |
| |
| bnxt_init_dflt_coal(bp); |
| |
| if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) |
| bp->flags |= BNXT_FLAG_STRIP_VLAN; |
| |
| rc = bnxt_init_int_mode(bp); |
| if (rc) |
| goto init_err_pci_clean; |
| |
| /* No TC has been set yet and rings may have been trimmed due to |
| * limited MSIX, so we re-initialize the TX rings per TC. |
| */ |
| bp->tx_nr_rings_per_tc = bp->tx_nr_rings; |
| |
| if (BNXT_PF(bp)) { |
| if (!bnxt_pf_wq) { |
| bnxt_pf_wq = |
| create_singlethread_workqueue("bnxt_pf_wq"); |
| if (!bnxt_pf_wq) { |
| dev_err(&pdev->dev, "Unable to create workqueue.\n"); |
| rc = -ENOMEM; |
| goto init_err_pci_clean; |
| } |
| } |
| rc = bnxt_init_tc(bp); |
| if (rc) |
| netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", |
| rc); |
| } |
| |
| bnxt_inv_fw_health_reg(bp); |
| rc = bnxt_dl_register(bp); |
| if (rc) |
| goto init_err_dl; |
| |
| rc = register_netdev(dev); |
| if (rc) |
| goto init_err_cleanup; |
| |
| if (BNXT_PF(bp)) |
| devlink_port_type_eth_set(&bp->dl_port, bp->dev); |
| bnxt_dl_fw_reporters_create(bp); |
| |
| bnxt_print_device_info(bp); |
| |
| pci_save_state(pdev); |
| return 0; |
| |
| init_err_cleanup: |
| bnxt_dl_unregister(bp); |
| init_err_dl: |
| bnxt_shutdown_tc(bp); |
| bnxt_clear_int_mode(bp); |
| |
| init_err_pci_clean: |
| bnxt_hwrm_func_drv_unrgtr(bp); |
| bnxt_free_hwrm_resources(bp); |
| bnxt_ethtool_free(bp); |
| bnxt_ptp_clear(bp); |
| kfree(bp->ptp_cfg); |
| bp->ptp_cfg = NULL; |
| kfree(bp->fw_health); |
| bp->fw_health = NULL; |
| bnxt_cleanup_pci(bp); |
| bnxt_free_ctx_mem(bp); |
| kfree(bp->ctx); |
| bp->ctx = NULL; |
| kfree(bp->rss_indir_tbl); |
| bp->rss_indir_tbl = NULL; |
| |
| init_err_free: |
| free_netdev(dev); |
| return rc; |
| } |
| |
| static void bnxt_shutdown(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnxt *bp; |
| |
| if (!dev) |
| return; |
| |
| rtnl_lock(); |
| bp = netdev_priv(dev); |
| if (!bp) |
| goto shutdown_exit; |
| |
| if (netif_running(dev)) |
| dev_close(dev); |
| |
| bnxt_ulp_shutdown(bp); |
| bnxt_clear_int_mode(bp); |
| pci_disable_device(pdev); |
| |
| if (system_state == SYSTEM_POWER_OFF) { |
| pci_wake_from_d3(pdev, bp->wol); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| shutdown_exit: |
| rtnl_unlock(); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int bnxt_suspend(struct device *device) |
| { |
| struct net_device *dev = dev_get_drvdata(device); |
| struct bnxt *bp = netdev_priv(dev); |
| int rc = 0; |
| |
| rtnl_lock(); |
| bnxt_ulp_stop(bp); |
| if (netif_running(dev)) { |
| netif_device_detach(dev); |
| rc = bnxt_close(dev); |
| } |
| bnxt_hwrm_func_drv_unrgtr(bp); |
| pci_disable_device(bp->pdev); |
| bnxt_free_ctx_mem(bp); |
| kfree(bp->ctx); |
| bp->ctx = NULL; |
| rtnl_unlock(); |
| return rc; |
| } |
| |
| static int bnxt_resume(struct device *device) |
| { |
| struct net_device *dev = dev_get_drvdata(device); |
| struct bnxt *bp = netdev_priv(dev); |
| int rc = 0; |
| |
| rtnl_lock(); |
| rc = pci_enable_device(bp->pdev); |
| if (rc) { |
| netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", |
| rc); |
| goto resume_exit; |
| } |
| pci_set_master(bp->pdev); |
| if (bnxt_hwrm_ver_get(bp)) { |
| rc = -ENODEV; |
| goto resume_exit; |
| } |
| rc = bnxt_hwrm_func_reset(bp); |
| if (rc) { |
| rc = -EBUSY; |
| goto resume_exit; |
| } |
| |
| rc = bnxt_hwrm_func_qcaps(bp); |
| if (rc) |
| goto resume_exit; |
| |
| if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { |
| rc = -ENODEV; |
| goto resume_exit; |
| } |
| |
| bnxt_get_wol_settings(bp); |
| if (netif_running(dev)) { |
| rc = bnxt_open(dev); |
| if (!rc) |
| netif_device_attach(dev); |
| } |
| |
| resume_exit: |
| bnxt_ulp_start(bp, rc); |
| if (!rc) |
| bnxt_reenable_sriov(bp); |
| rtnl_unlock(); |
| return rc; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); |
| #define BNXT_PM_OPS (&bnxt_pm_ops) |
| |
| #else |
| |
| #define BNXT_PM_OPS NULL |
| |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| /** |
| * bnxt_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct bnxt *bp = netdev_priv(netdev); |
| |
| netdev_info(netdev, "PCI I/O error detected\n"); |
| |
| rtnl_lock(); |
| netif_device_detach(netdev); |
| |
| bnxt_ulp_stop(bp); |
| |
| if (state == pci_channel_io_perm_failure) { |
| rtnl_unlock(); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| if (state == pci_channel_io_frozen) |
| set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); |
| |
| if (netif_running(netdev)) |
| bnxt_close(netdev); |
| |
| if (pci_is_enabled(pdev)) |
| pci_disable_device(pdev); |
| bnxt_free_ctx_mem(bp); |
| kfree(bp->ctx); |
| bp->ctx = NULL; |
| rtnl_unlock(); |
| |
| /* Request a slot slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * bnxt_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. |
| * At this point, the card has exprienced a hard reset, |
| * followed by fixups by BIOS, and has its config space |
| * set up identically to what it was at cold boot. |
| */ |
| static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) |
| { |
| pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct bnxt *bp = netdev_priv(netdev); |
| int err = 0, off; |
| |
| netdev_info(bp->dev, "PCI Slot Reset\n"); |
| |
| rtnl_lock(); |
| |
| if (pci_enable_device(pdev)) { |
| dev_err(&pdev->dev, |
| "Cannot re-enable PCI device after reset.\n"); |
| } else { |
| pci_set_master(pdev); |
| /* Upon fatal error, our device internal logic that latches to |
| * BAR value is getting reset and will restore only upon |
| * rewritting the BARs. |
| * |
| * As pci_restore_state() does not re-write the BARs if the |
| * value is same as saved value earlier, driver needs to |
| * write the BARs to 0 to force restore, in case of fatal error. |
| */ |
| if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, |
| &bp->state)) { |
| for (off = PCI_BASE_ADDRESS_0; |
| off <= PCI_BASE_ADDRESS_5; off += 4) |
| pci_write_config_dword(bp->pdev, off, 0); |
| } |
| pci_restore_state(pdev); |
| pci_save_state(pdev); |
| |
| err = bnxt_hwrm_func_reset(bp); |
| if (!err) |
| result = PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| rtnl_unlock(); |
| |
| return result; |
| } |
| |
| /** |
| * bnxt_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells |
| * us that its OK to resume normal operation. |
| */ |
| static void bnxt_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct bnxt *bp = netdev_priv(netdev); |
| int err; |
| |
| netdev_info(bp->dev, "PCI Slot Resume\n"); |
| rtnl_lock(); |
| |
| err = bnxt_hwrm_func_qcaps(bp); |
| if (!err && netif_running(netdev)) |
| err = bnxt_open(netdev); |
| |
| bnxt_ulp_start(bp, err); |
| if (!err) { |
| bnxt_reenable_sriov(bp); |
| netif_device_attach(netdev); |
| } |
| |
| rtnl_unlock(); |
| } |
| |
| static const struct pci_error_handlers bnxt_err_handler = { |
| .error_detected = bnxt_io_error_detected, |
| .slot_reset = bnxt_io_slot_reset, |
| .resume = bnxt_io_resume |
| }; |
| |
| static struct pci_driver bnxt_pci_driver = { |
| .name = DRV_MODULE_NAME, |
| .id_table = bnxt_pci_tbl, |
| .probe = bnxt_init_one, |
| .remove = bnxt_remove_one, |
| .shutdown = bnxt_shutdown, |
| .driver.pm = BNXT_PM_OPS, |
| .err_handler = &bnxt_err_handler, |
| #if defined(CONFIG_BNXT_SRIOV) |
| .sriov_configure = bnxt_sriov_configure, |
| #endif |
| }; |
| |
| static int __init bnxt_init(void) |
| { |
| bnxt_debug_init(); |
| return pci_register_driver(&bnxt_pci_driver); |
| } |
| |
| static void __exit bnxt_exit(void) |
| { |
| pci_unregister_driver(&bnxt_pci_driver); |
| if (bnxt_pf_wq) |
| destroy_workqueue(bnxt_pf_wq); |
| bnxt_debug_exit(); |
| } |
| |
| module_init(bnxt_init); |
| module_exit(bnxt_exit); |