blob: ef9344ef0d8e46654aae8b46b3e1cf6fb58a9222 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021, Intel Corporation. */
#include "ice.h"
#include "ice_lib.h"
#include "ice_trace.h"
#define E810_OUT_PROP_DELAY_NS 1
#define UNKNOWN_INCVAL_E822 0x100000000ULL
static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
/* name idx func chan */
{ "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } },
{ "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } },
{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
{ "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } },
{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
};
/**
* ice_get_sma_config_e810t
* @hw: pointer to the hw struct
* @ptp_pins: pointer to the ptp_pin_desc struture
*
* Read the configuration of the SMA control logic and put it into the
* ptp_pin_desc structure
*/
static int
ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
{
u8 data, i;
int status;
/* Read initial pin state */
status = ice_read_sma_ctrl_e810t(hw, &data);
if (status)
return status;
/* initialize with defaults */
for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
"%s", ice_pin_desc_e810t[i].name);
ptp_pins[i].index = ice_pin_desc_e810t[i].index;
ptp_pins[i].func = ice_pin_desc_e810t[i].func;
ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
}
/* Parse SMA1/UFL1 */
switch (data & ICE_SMA1_MASK_E810T) {
case ICE_SMA1_MASK_E810T:
default:
ptp_pins[SMA1].func = PTP_PF_NONE;
ptp_pins[UFL1].func = PTP_PF_NONE;
break;
case ICE_SMA1_DIR_EN_E810T:
ptp_pins[SMA1].func = PTP_PF_PEROUT;
ptp_pins[UFL1].func = PTP_PF_NONE;
break;
case ICE_SMA1_TX_EN_E810T:
ptp_pins[SMA1].func = PTP_PF_EXTTS;
ptp_pins[UFL1].func = PTP_PF_NONE;
break;
case 0:
ptp_pins[SMA1].func = PTP_PF_EXTTS;
ptp_pins[UFL1].func = PTP_PF_PEROUT;
break;
}
/* Parse SMA2/UFL2 */
switch (data & ICE_SMA2_MASK_E810T) {
case ICE_SMA2_MASK_E810T:
default:
ptp_pins[SMA2].func = PTP_PF_NONE;
ptp_pins[UFL2].func = PTP_PF_NONE;
break;
case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
ptp_pins[SMA2].func = PTP_PF_EXTTS;
ptp_pins[UFL2].func = PTP_PF_NONE;
break;
case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
ptp_pins[SMA2].func = PTP_PF_PEROUT;
ptp_pins[UFL2].func = PTP_PF_NONE;
break;
case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
ptp_pins[SMA2].func = PTP_PF_NONE;
ptp_pins[UFL2].func = PTP_PF_EXTTS;
break;
case ICE_SMA2_DIR_EN_E810T:
ptp_pins[SMA2].func = PTP_PF_PEROUT;
ptp_pins[UFL2].func = PTP_PF_EXTTS;
break;
}
return 0;
}
/**
* ice_ptp_set_sma_config_e810t
* @hw: pointer to the hw struct
* @ptp_pins: pointer to the ptp_pin_desc struture
*
* Set the configuration of the SMA control logic based on the configuration in
* num_pins parameter
*/
static int
ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
const struct ptp_pin_desc *ptp_pins)
{
int status;
u8 data;
/* SMA1 and UFL1 cannot be set to TX at the same time */
if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
ptp_pins[UFL1].func == PTP_PF_PEROUT)
return -EINVAL;
/* SMA2 and UFL2 cannot be set to RX at the same time */
if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
ptp_pins[UFL2].func == PTP_PF_EXTTS)
return -EINVAL;
/* Read initial pin state value */
status = ice_read_sma_ctrl_e810t(hw, &data);
if (status)
return status;
/* Set the right sate based on the desired configuration */
data &= ~ICE_SMA1_MASK_E810T;
if (ptp_pins[SMA1].func == PTP_PF_NONE &&
ptp_pins[UFL1].func == PTP_PF_NONE) {
dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
data |= ICE_SMA1_MASK_E810T;
} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
ptp_pins[UFL1].func == PTP_PF_NONE) {
dev_info(ice_hw_to_dev(hw), "SMA1 RX");
data |= ICE_SMA1_TX_EN_E810T;
} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
ptp_pins[UFL1].func == PTP_PF_PEROUT) {
/* U.FL 1 TX will always enable SMA 1 RX */
dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
ptp_pins[UFL1].func == PTP_PF_PEROUT) {
dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
ptp_pins[UFL1].func == PTP_PF_NONE) {
dev_info(ice_hw_to_dev(hw), "SMA1 TX");
data |= ICE_SMA1_DIR_EN_E810T;
}
data &= ~ICE_SMA2_MASK_E810T;
if (ptp_pins[SMA2].func == PTP_PF_NONE &&
ptp_pins[UFL2].func == PTP_PF_NONE) {
dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
data |= ICE_SMA2_MASK_E810T;
} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
ptp_pins[UFL2].func == PTP_PF_NONE) {
dev_info(ice_hw_to_dev(hw), "SMA2 RX");
data |= (ICE_SMA2_TX_EN_E810T |
ICE_SMA2_UFL2_RX_DIS_E810T);
} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
ptp_pins[UFL2].func == PTP_PF_EXTTS) {
dev_info(ice_hw_to_dev(hw), "UFL2 RX");
data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
ptp_pins[UFL2].func == PTP_PF_NONE) {
dev_info(ice_hw_to_dev(hw), "SMA2 TX");
data |= (ICE_SMA2_DIR_EN_E810T |
ICE_SMA2_UFL2_RX_DIS_E810T);
} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
ptp_pins[UFL2].func == PTP_PF_EXTTS) {
dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
data |= ICE_SMA2_DIR_EN_E810T;
}
return ice_write_sma_ctrl_e810t(hw, data);
}
/**
* ice_ptp_set_sma_e810t
* @info: the driver's PTP info structure
* @pin: pin index in kernel structure
* @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
*
* Set the configuration of a single SMA pin
*/
static int
ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
enum ptp_pin_function func)
{
struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
struct ice_pf *pf = ptp_info_to_pf(info);
struct ice_hw *hw = &pf->hw;
int err;
if (pin < SMA1 || func > PTP_PF_PEROUT)
return -EOPNOTSUPP;
err = ice_get_sma_config_e810t(hw, ptp_pins);
if (err)
return err;
/* Disable the same function on the other pin sharing the channel */
if (pin == SMA1 && ptp_pins[UFL1].func == func)
ptp_pins[UFL1].func = PTP_PF_NONE;
if (pin == UFL1 && ptp_pins[SMA1].func == func)
ptp_pins[SMA1].func = PTP_PF_NONE;
if (pin == SMA2 && ptp_pins[UFL2].func == func)
ptp_pins[UFL2].func = PTP_PF_NONE;
if (pin == UFL2 && ptp_pins[SMA2].func == func)
ptp_pins[SMA2].func = PTP_PF_NONE;
/* Set up new pin function in the temp table */
ptp_pins[pin].func = func;
return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
}
/**
* ice_verify_pin_e810t
* @info: the driver's PTP info structure
* @pin: Pin index
* @func: Assigned function
* @chan: Assigned channel
*
* Verify if pin supports requested pin function. If the Check pins consistency.
* Reconfigure the SMA logic attached to the given pin to enable its
* desired functionality
*/
static int
ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
/* Don't allow channel reassignment */
if (chan != ice_pin_desc_e810t[pin].chan)
return -EOPNOTSUPP;
/* Check if functions are properly assigned */
switch (func) {
case PTP_PF_NONE:
break;
case PTP_PF_EXTTS:
if (pin == UFL1)
return -EOPNOTSUPP;
break;
case PTP_PF_PEROUT:
if (pin == UFL2 || pin == GNSS)
return -EOPNOTSUPP;
break;
case PTP_PF_PHYSYNC:
return -EOPNOTSUPP;
}
return ice_ptp_set_sma_e810t(info, pin, func);
}
/**
* ice_set_tx_tstamp - Enable or disable Tx timestamping
* @pf: The PF pointer to search in
* @on: bool value for whether timestamps are enabled or disabled
*/
static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
{
struct ice_vsi *vsi;
u32 val;
u16 i;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return;
/* Set the timestamp enable flag for all the Tx rings */
ice_for_each_txq(vsi, i) {
if (!vsi->tx_rings[i])
continue;
vsi->tx_rings[i]->ptp_tx = on;
}
/* Configure the Tx timestamp interrupt */
val = rd32(&pf->hw, PFINT_OICR_ENA);
if (on)
val |= PFINT_OICR_TSYN_TX_M;
else
val &= ~PFINT_OICR_TSYN_TX_M;
wr32(&pf->hw, PFINT_OICR_ENA, val);
pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
}
/**
* ice_set_rx_tstamp - Enable or disable Rx timestamping
* @pf: The PF pointer to search in
* @on: bool value for whether timestamps are enabled or disabled
*/
static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
{
struct ice_vsi *vsi;
u16 i;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return;
/* Set the timestamp flag for all the Rx rings */
ice_for_each_rxq(vsi, i) {
if (!vsi->rx_rings[i])
continue;
vsi->rx_rings[i]->ptp_rx = on;
}
pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
HWTSTAMP_FILTER_NONE;
}
/**
* ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
* @pf: Board private structure
* @ena: bool value to enable or disable time stamp
*
* This function will configure timestamping during PTP initialization
* and deinitialization
*/
void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
{
ice_set_tx_tstamp(pf, ena);
ice_set_rx_tstamp(pf, ena);
}
/**
* ice_get_ptp_clock_index - Get the PTP clock index
* @pf: the PF pointer
*
* Determine the clock index of the PTP clock associated with this device. If
* this is the PF controlling the clock, just use the local access to the
* clock device pointer.
*
* Otherwise, read from the driver shared parameters to determine the clock
* index value.
*
* Returns: the index of the PTP clock associated with this device, or -1 if
* there is no associated clock.
*/
int ice_get_ptp_clock_index(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
enum ice_aqc_driver_params param_idx;
struct ice_hw *hw = &pf->hw;
u8 tmr_idx;
u32 value;
int err;
/* Use the ptp_clock structure if we're the main PF */
if (pf->ptp.clock)
return ptp_clock_index(pf->ptp.clock);
tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
if (!tmr_idx)
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
else
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
if (err) {
dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
return -1;
}
/* The PTP clock index is an integer, and will be between 0 and
* INT_MAX. The highest bit of the driver shared parameter is used to
* indicate whether or not the currently stored clock index is valid.
*/
if (!(value & PTP_SHARED_CLK_IDX_VALID))
return -1;
return value & ~PTP_SHARED_CLK_IDX_VALID;
}
/**
* ice_set_ptp_clock_index - Set the PTP clock index
* @pf: the PF pointer
*
* Set the PTP clock index for this device into the shared driver parameters,
* so that other PFs associated with this device can read it.
*
* If the PF is unable to store the clock index, it will log an error, but
* will continue operating PTP.
*/
static void ice_set_ptp_clock_index(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
enum ice_aqc_driver_params param_idx;
struct ice_hw *hw = &pf->hw;
u8 tmr_idx;
u32 value;
int err;
if (!pf->ptp.clock)
return;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
if (!tmr_idx)
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
else
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
value = (u32)ptp_clock_index(pf->ptp.clock);
if (value > INT_MAX) {
dev_err(dev, "PTP Clock index is too large to store\n");
return;
}
value |= PTP_SHARED_CLK_IDX_VALID;
err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
if (err) {
dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_clear_ptp_clock_index - Clear the PTP clock index
* @pf: the PF pointer
*
* Clear the PTP clock index for this device. Must be called when
* unregistering the PTP clock, in order to ensure other PFs stop reporting
* a clock object that no longer exists.
*/
static void ice_clear_ptp_clock_index(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
enum ice_aqc_driver_params param_idx;
struct ice_hw *hw = &pf->hw;
u8 tmr_idx;
int err;
/* Do not clear the index if we don't own the timer */
if (!hw->func_caps.ts_func_info.src_tmr_owned)
return;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
if (!tmr_idx)
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
else
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
if (err) {
dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_ptp_read_src_clk_reg - Read the source clock register
* @pf: Board private structure
* @sts: Optional parameter for holding a pair of system timestamps from
* the system clock. Will be ignored if NULL is given.
*/
static u64
ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
{
struct ice_hw *hw = &pf->hw;
u32 hi, lo, lo2;
u8 tmr_idx;
tmr_idx = ice_get_ptp_src_clock_index(hw);
/* Read the system timestamp pre PHC read */
ptp_read_system_prets(sts);
lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
/* Read the system timestamp post PHC read */
ptp_read_system_postts(sts);
hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
if (lo2 < lo) {
/* if TIME_L rolled over read TIME_L again and update
* system timestamps
*/
ptp_read_system_prets(sts);
lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
ptp_read_system_postts(sts);
hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
}
return ((u64)hi << 32) | lo;
}
/**
* ice_ptp_update_cached_phctime - Update the cached PHC time values
* @pf: Board specific private structure
*
* This function updates the system time values which are cached in the PF
* structure and the Rx rings.
*
* This function must be called periodically to ensure that the cached value
* is never more than 2 seconds old. It must also be called whenever the PHC
* time has been changed.
*
* Return:
* * 0 - OK, successfully updated
* * -EAGAIN - PF was busy, need to reschedule the update
*/
static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
{
u64 systime;
int i;
if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
return -EAGAIN;
/* Read the current PHC time */
systime = ice_ptp_read_src_clk_reg(pf, NULL);
/* Update the cached PHC time stored in the PF structure */
WRITE_ONCE(pf->ptp.cached_phc_time, systime);
ice_for_each_vsi(pf, i) {
struct ice_vsi *vsi = pf->vsi[i];
int j;
if (!vsi)
continue;
if (vsi->type != ICE_VSI_PF)
continue;
ice_for_each_rxq(vsi, j) {
if (!vsi->rx_rings[j])
continue;
WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
}
}
clear_bit(ICE_CFG_BUSY, pf->state);
return 0;
}
/**
* ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
* @cached_phc_time: recently cached copy of PHC time
* @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
*
* Hardware captures timestamps which contain only 32 bits of nominal
* nanoseconds, as opposed to the 64bit timestamps that the stack expects.
* Note that the captured timestamp values may be 40 bits, but the lower
* 8 bits are sub-nanoseconds and generally discarded.
*
* Extend the 32bit nanosecond timestamp using the following algorithm and
* assumptions:
*
* 1) have a recently cached copy of the PHC time
* 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
* seconds) before or after the PHC time was captured.
* 3) calculate the delta between the cached time and the timestamp
* 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
* captured after the PHC time. In this case, the full timestamp is just
* the cached PHC time plus the delta.
* 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
* timestamp was captured *before* the PHC time, i.e. because the PHC
* cache was updated after the timestamp was captured by hardware. In this
* case, the full timestamp is the cached time minus the inverse delta.
*
* This algorithm works even if the PHC time was updated after a Tx timestamp
* was requested, but before the Tx timestamp event was reported from
* hardware.
*
* This calculation primarily relies on keeping the cached PHC time up to
* date. If the timestamp was captured more than 2^31 nanoseconds after the
* PHC time, it is possible that the lower 32bits of PHC time have
* overflowed more than once, and we might generate an incorrect timestamp.
*
* This is prevented by (a) periodically updating the cached PHC time once
* a second, and (b) discarding any Tx timestamp packet if it has waited for
* a timestamp for more than one second.
*/
static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
{
u32 delta, phc_time_lo;
u64 ns;
/* Extract the lower 32 bits of the PHC time */
phc_time_lo = (u32)cached_phc_time;
/* Calculate the delta between the lower 32bits of the cached PHC
* time and the in_tstamp value
*/
delta = (in_tstamp - phc_time_lo);
/* Do not assume that the in_tstamp is always more recent than the
* cached PHC time. If the delta is large, it indicates that the
* in_tstamp was taken in the past, and should be converted
* forward.
*/
if (delta > (U32_MAX / 2)) {
/* reverse the delta calculation here */
delta = (phc_time_lo - in_tstamp);
ns = cached_phc_time - delta;
} else {
ns = cached_phc_time + delta;
}
return ns;
}
/**
* ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
* @pf: Board private structure
* @in_tstamp: Ingress/egress 40b timestamp value
*
* The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
* nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
*
* *--------------------------------------------------------------*
* | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
* *--------------------------------------------------------------*
*
* The low bit is an indicator of whether the timestamp is valid. The next
* 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
* and the remaining 32 bits are the lower 32 bits of the PHC timer.
*
* It is assumed that the caller verifies the timestamp is valid prior to
* calling this function.
*
* Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
* time stored in the device private PTP structure as the basis for timestamp
* extension.
*
* See ice_ptp_extend_32b_ts for a detailed explanation of the extension
* algorithm.
*/
static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
{
const u64 mask = GENMASK_ULL(31, 0);
return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
(in_tstamp >> 8) & mask);
}
/**
* ice_ptp_read_time - Read the time from the device
* @pf: Board private structure
* @ts: timespec structure to hold the current time value
* @sts: Optional parameter for holding a pair of system timestamps from
* the system clock. Will be ignored if NULL is given.
*
* This function reads the source clock registers and stores them in a timespec.
* However, since the registers are 64 bits of nanoseconds, we must convert the
* result to a timespec before we can return.
*/
static void
ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
*ts = ns_to_timespec64(time_ns);
}
/**
* ice_ptp_write_init - Set PHC time to provided value
* @pf: Board private structure
* @ts: timespec structure that holds the new time value
*
* Set the PHC time to the specified time provided in the timespec.
*/
static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
{
u64 ns = timespec64_to_ns(ts);
struct ice_hw *hw = &pf->hw;
return ice_ptp_init_time(hw, ns);
}
/**
* ice_ptp_write_adj - Adjust PHC clock time atomically
* @pf: Board private structure
* @adj: Adjustment in nanoseconds
*
* Perform an atomic adjustment of the PHC time by the specified number of
* nanoseconds.
*/
static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
{
struct ice_hw *hw = &pf->hw;
return ice_ptp_adj_clock(hw, adj);
}
/**
* ice_base_incval - Get base timer increment value
* @pf: Board private structure
*
* Look up the base timer increment value for this device. The base increment
* value is used to define the nominal clock tick rate. This increment value
* is programmed during device initialization. It is also used as the basis
* for calculating adjustments using scaled_ppm.
*/
static u64 ice_base_incval(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
u64 incval;
if (ice_is_e810(hw))
incval = ICE_PTP_NOMINAL_INCVAL_E810;
else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
else
incval = UNKNOWN_INCVAL_E822;
dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
incval);
return incval;
}
/**
* ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad
* @pf: The PF private data structure
* @quad: The quad (0-4)
*/
static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad)
{
struct ice_hw *hw = &pf->hw;
ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
}
/**
* ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
* @port: PTP port for which Tx FIFO is checked
*/
static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
{
int quad = port->port_num / ICE_PORTS_PER_QUAD;
int offs = port->port_num % ICE_PORTS_PER_QUAD;
struct ice_pf *pf;
struct ice_hw *hw;
u32 val, phy_sts;
int err;
pf = ptp_port_to_pf(port);
hw = &pf->hw;
if (port->tx_fifo_busy_cnt == FIFO_OK)
return 0;
/* need to read FIFO state */
if (offs == 0 || offs == 1)
err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
&val);
else
err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
&val);
if (err) {
dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
port->port_num, err);
return err;
}
if (offs & 0x1)
phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
else
phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
if (phy_sts & FIFO_EMPTY) {
port->tx_fifo_busy_cnt = FIFO_OK;
return 0;
}
port->tx_fifo_busy_cnt++;
dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
port->tx_fifo_busy_cnt, port->port_num);
if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
dev_dbg(ice_pf_to_dev(pf),
"Port %d Tx FIFO still not empty; resetting quad %d\n",
port->port_num, quad);
ice_ptp_reset_ts_memory_quad(pf, quad);
port->tx_fifo_busy_cnt = FIFO_OK;
return 0;
}
return -EAGAIN;
}
/**
* ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid
* @port: the PTP port to check
*
* Checks whether the Tx offset for the PHY associated with this port is
* valid. Returns 0 if the offset is valid, and a non-zero error code if it is
* not.
*/
static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port)
{
struct ice_pf *pf = ptp_port_to_pf(port);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
u32 val;
int err;
err = ice_ptp_check_tx_fifo(port);
if (err)
return err;
err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS,
&val);
if (err) {
dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n",
port->port_num, err);
return -EAGAIN;
}
if (!(val & P_REG_TX_OV_STATUS_OV_M))
return -EAGAIN;
return 0;
}
/**
* ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid
* @port: the PTP port to check
*
* Checks whether the Rx offset for the PHY associated with this port is
* valid. Returns 0 if the offset is valid, and a non-zero error code if it is
* not.
*/
static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port)
{
struct ice_pf *pf = ptp_port_to_pf(port);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
int err;
u32 val;
err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS,
&val);
if (err) {
dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n",
port->port_num, err);
return err;
}
if (!(val & P_REG_RX_OV_STATUS_OV_M))
return -EAGAIN;
return 0;
}
/**
* ice_ptp_check_offset_valid - Check port offset valid bit
* @port: Port for which offset valid bit is checked
*
* Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the
* offset is not ready.
*/
static int ice_ptp_check_offset_valid(struct ice_ptp_port *port)
{
int tx_err, rx_err;
/* always check both Tx and Rx offset validity */
tx_err = ice_ptp_check_tx_offset_valid(port);
rx_err = ice_ptp_check_rx_offset_valid(port);
if (tx_err || rx_err)
return -EAGAIN;
return 0;
}
/**
* ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets
* @work: Pointer to the kthread_work structure for this task
*
* Check whether both the Tx and Rx offsets are valid for enabling the vernier
* calibration.
*
* Once we have valid offsets from hardware, update the total Tx and Rx
* offsets, and exit bypass mode. This enables more precise timestamps using
* the extra data measured during the vernier calibration process.
*/
static void ice_ptp_wait_for_offset_valid(struct kthread_work *work)
{
struct ice_ptp_port *port;
int err;
struct device *dev;
struct ice_pf *pf;
struct ice_hw *hw;
port = container_of(work, struct ice_ptp_port, ov_work.work);
pf = ptp_port_to_pf(port);
hw = &pf->hw;
dev = ice_pf_to_dev(pf);
if (ice_ptp_check_offset_valid(port)) {
/* Offsets not ready yet, try again later */
kthread_queue_delayed_work(pf->ptp.kworker,
&port->ov_work,
msecs_to_jiffies(100));
return;
}
/* Offsets are valid, so it is safe to exit bypass mode */
err = ice_phy_exit_bypass_e822(hw, port->port_num);
if (err) {
dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n",
port->port_num, err);
return;
}
}
/**
* ice_ptp_port_phy_stop - Stop timestamping for a PHY port
* @ptp_port: PTP port to stop
*/
static int
ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
{
struct ice_pf *pf = ptp_port_to_pf(ptp_port);
u8 port = ptp_port->port_num;
struct ice_hw *hw = &pf->hw;
int err;
if (ice_is_e810(hw))
return 0;
mutex_lock(&ptp_port->ps_lock);
kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
err = ice_stop_phy_timer_e822(hw, port, true);
if (err)
dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
port, err);
mutex_unlock(&ptp_port->ps_lock);
return err;
}
/**
* ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
* @ptp_port: PTP port for which the PHY start is set
*
* Start the PHY timestamping block, and initiate Vernier timestamping
* calibration. If timestamping cannot be calibrated (such as if link is down)
* then disable the timestamping block instead.
*/
static int
ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
{
struct ice_pf *pf = ptp_port_to_pf(ptp_port);
u8 port = ptp_port->port_num;
struct ice_hw *hw = &pf->hw;
int err;
if (ice_is_e810(hw))
return 0;
if (!ptp_port->link_up)
return ice_ptp_port_phy_stop(ptp_port);
mutex_lock(&ptp_port->ps_lock);
kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
/* temporarily disable Tx timestamps while calibrating PHY offset */
ptp_port->tx.calibrating = true;
ptp_port->tx_fifo_busy_cnt = 0;
/* Start the PHY timer in bypass mode */
err = ice_start_phy_timer_e822(hw, port, true);
if (err)
goto out_unlock;
/* Enable Tx timestamps right away */
ptp_port->tx.calibrating = false;
kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
out_unlock:
if (err)
dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
port, err);
mutex_unlock(&ptp_port->ps_lock);
return err;
}
/**
* ice_ptp_link_change - Set or clear port registers for timestamping
* @pf: Board private structure
* @port: Port for which the PHY start is set
* @linkup: Link is up or down
*/
int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
{
struct ice_ptp_port *ptp_port;
if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
return 0;
if (port >= ICE_NUM_EXTERNAL_PORTS)
return -EINVAL;
ptp_port = &pf->ptp.port;
if (ptp_port->port_num != port)
return -EINVAL;
/* Update cached link err for this port immediately */
ptp_port->link_up = linkup;
if (!test_bit(ICE_FLAG_PTP, pf->flags))
/* PTP is not setup */
return -EAGAIN;
return ice_ptp_port_phy_restart(ptp_port);
}
/**
* ice_ptp_reset_ts_memory - Reset timestamp memory for all quads
* @pf: The PF private data structure
*/
static void ice_ptp_reset_ts_memory(struct ice_pf *pf)
{
int quad;
quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD;
ice_ptp_reset_ts_memory_quad(pf, quad);
}
/**
* ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
* @pf: PF private structure
* @ena: bool value to enable or disable interrupt
* @threshold: Minimum number of packets at which intr is triggered
*
* Utility function to enable or disable Tx timestamp interrupt and threshold
*/
static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
{
struct ice_hw *hw = &pf->hw;
int err = 0;
int quad;
u32 val;
ice_ptp_reset_ts_memory(pf);
for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
&val);
if (err)
break;
if (ena) {
val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
} else {
val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
}
err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
val);
if (err)
break;
}
if (err)
dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
err);
return err;
}
/**
* ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
* @pf: Board private structure
*/
static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
{
ice_ptp_port_phy_restart(&pf->ptp.port);
}
/**
* ice_ptp_adjfine - Adjust clock increment rate
* @info: the driver's PTP info structure
* @scaled_ppm: Parts per million with 16-bit fractional field
*
* Adjust the frequency of the clock by the indicated scaled ppm from the
* base frequency.
*/
static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
{
struct ice_pf *pf = ptp_info_to_pf(info);
u64 freq, divisor = 1000000ULL;
struct ice_hw *hw = &pf->hw;
s64 incval, diff;
int neg_adj = 0;
int err;
incval = ice_base_incval(pf);
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
while ((u64)scaled_ppm > div64_u64(U64_MAX, incval)) {
/* handle overflow by scaling down the scaled_ppm and
* the divisor, losing some precision
*/
scaled_ppm >>= 2;
divisor >>= 2;
}
freq = (incval * (u64)scaled_ppm) >> 16;
diff = div_u64(freq, divisor);
if (neg_adj)
incval -= diff;
else
incval += diff;
err = ice_ptp_write_incval_locked(hw, incval);
if (err) {
dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
err);
return -EIO;
}
return 0;
}
/**
* ice_ptp_extts_work - Workqueue task function
* @work: external timestamp work structure
*
* Service for PTP external clock event
*/
static void ice_ptp_extts_work(struct kthread_work *work)
{
struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
struct ptp_clock_event event;
struct ice_hw *hw = &pf->hw;
u8 chan, tmr_idx;
u32 hi, lo;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Event time is captured by one of the two matched registers
* GLTSYN_EVNT_L: 32 LSB of sampled time event
* GLTSYN_EVNT_H: 32 MSB of sampled time event
* Event is defined in GLTSYN_EVNT_0 register
*/
for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
/* Check if channel is enabled */
if (pf->ptp.ext_ts_irq & (1 << chan)) {
lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
event.timestamp = (((u64)hi) << 32) | lo;
event.type = PTP_CLOCK_EXTTS;
event.index = chan;
/* Fire event */
ptp_clock_event(pf->ptp.clock, &event);
pf->ptp.ext_ts_irq &= ~(1 << chan);
}
}
}
/**
* ice_ptp_cfg_extts - Configure EXTTS pin and channel
* @pf: Board private structure
* @ena: true to enable; false to disable
* @chan: GPIO channel (0-3)
* @gpio_pin: GPIO pin
* @extts_flags: request flags from the ptp_extts_request.flags
*/
static int
ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
unsigned int extts_flags)
{
u32 func, aux_reg, gpio_reg, irq_reg;
struct ice_hw *hw = &pf->hw;
u8 tmr_idx;
if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
return -EINVAL;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
irq_reg = rd32(hw, PFINT_OICR_ENA);
if (ena) {
/* Enable the interrupt */
irq_reg |= PFINT_OICR_TSYN_EVNT_M;
aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
/* set event level to requested edge */
if (extts_flags & PTP_FALLING_EDGE)
aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
if (extts_flags & PTP_RISING_EDGE)
aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
/* Write GPIO CTL reg.
* 0x1 is input sampled by EVENT register(channel)
* + num_in_channels * tmr_idx
*/
func = 1 + chan + (tmr_idx * 3);
gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
GLGEN_GPIO_CTL_PIN_FUNC_M);
pf->ptp.ext_ts_chan |= (1 << chan);
} else {
/* clear the values we set to reset defaults */
aux_reg = 0;
gpio_reg = 0;
pf->ptp.ext_ts_chan &= ~(1 << chan);
if (!pf->ptp.ext_ts_chan)
irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
}
wr32(hw, PFINT_OICR_ENA, irq_reg);
wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
return 0;
}
/**
* ice_ptp_cfg_clkout - Configure clock to generate periodic wave
* @pf: Board private structure
* @chan: GPIO channel (0-3)
* @config: desired periodic clk configuration. NULL will disable channel
* @store: If set to true the values will be stored
*
* Configure the internal clock generator modules to generate the clock wave of
* specified period.
*/
static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
struct ice_perout_channel *config, bool store)
{
u64 current_time, period, start_time, phase;
struct ice_hw *hw = &pf->hw;
u32 func, val, gpio_pin;
u8 tmr_idx;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* 0. Reset mode & out_en in AUX_OUT */
wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
/* If we're disabling the output, clear out CLKO and TGT and keep
* output level low
*/
if (!config || !config->ena) {
wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
val = GLGEN_GPIO_CTL_PIN_DIR_M;
gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
/* Store the value if requested */
if (store)
memset(&pf->ptp.perout_channels[chan], 0,
sizeof(struct ice_perout_channel));
return 0;
}
period = config->period;
start_time = config->start_time;
div64_u64_rem(start_time, period, &phase);
gpio_pin = config->gpio_pin;
/* 1. Write clkout with half of required period value */
if (period & 0x1) {
dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
goto err;
}
period >>= 1;
/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
*/
#define MIN_PULSE 3
if (period <= MIN_PULSE || period > U32_MAX) {
dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
MIN_PULSE * 2);
goto err;
}
wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
/* Allow time for programming before start_time is hit */
current_time = ice_ptp_read_src_clk_reg(pf, NULL);
/* if start time is in the past start the timer at the nearest second
* maintaining phase
*/
if (start_time < current_time)
start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
NSEC_PER_SEC) * NSEC_PER_SEC + phase;
if (ice_is_e810(hw))
start_time -= E810_OUT_PROP_DELAY_NS;
else
start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
/* 2. Write TARGET time */
wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
/* 3. Write AUX_OUT register */
val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
/* 4. write GPIO CTL reg */
func = 8 + chan + (tmr_idx * 4);
val = GLGEN_GPIO_CTL_PIN_DIR_M |
((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
/* Store the value if requested */
if (store) {
memcpy(&pf->ptp.perout_channels[chan], config,
sizeof(struct ice_perout_channel));
pf->ptp.perout_channels[chan].start_time = phase;
}
return 0;
err:
dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
return -EFAULT;
}
/**
* ice_ptp_disable_all_clkout - Disable all currently configured outputs
* @pf: pointer to the PF structure
*
* Disable all currently configured clock outputs. This is necessary before
* certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
* re-enable the clocks again.
*/
static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
{
uint i;
for (i = 0; i < pf->ptp.info.n_per_out; i++)
if (pf->ptp.perout_channels[i].ena)
ice_ptp_cfg_clkout(pf, i, NULL, false);
}
/**
* ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
* @pf: pointer to the PF structure
*
* Enable all currently configured clock outputs. Use this after
* ice_ptp_disable_all_clkout to reconfigure the output signals according to
* their configuration.
*/
static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
{
uint i;
for (i = 0; i < pf->ptp.info.n_per_out; i++)
if (pf->ptp.perout_channels[i].ena)
ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
false);
}
/**
* ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
* @info: the driver's PTP info structure
* @rq: The requested feature to change
* @on: Enable/disable flag
*/
static int
ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
struct ptp_clock_request *rq, int on)
{
struct ice_pf *pf = ptp_info_to_pf(info);
struct ice_perout_channel clk_cfg = {0};
bool sma_pres = false;
unsigned int chan;
u32 gpio_pin;
int err;
if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
sma_pres = true;
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
chan = rq->perout.index;
if (sma_pres) {
if (chan == ice_pin_desc_e810t[SMA1].chan)
clk_cfg.gpio_pin = GPIO_20;
else if (chan == ice_pin_desc_e810t[SMA2].chan)
clk_cfg.gpio_pin = GPIO_22;
else
return -1;
} else if (ice_is_e810t(&pf->hw)) {
if (chan == 0)
clk_cfg.gpio_pin = GPIO_20;
else
clk_cfg.gpio_pin = GPIO_22;
} else if (chan == PPS_CLK_GEN_CHAN) {
clk_cfg.gpio_pin = PPS_PIN_INDEX;
} else {
clk_cfg.gpio_pin = chan;
}
clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
rq->perout.period.nsec);
clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
rq->perout.start.nsec);
clk_cfg.ena = !!on;
err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
break;
case PTP_CLK_REQ_EXTTS:
chan = rq->extts.index;
if (sma_pres) {
if (chan < ice_pin_desc_e810t[SMA2].chan)
gpio_pin = GPIO_21;
else
gpio_pin = GPIO_23;
} else if (ice_is_e810t(&pf->hw)) {
if (chan == 0)
gpio_pin = GPIO_21;
else
gpio_pin = GPIO_23;
} else {
gpio_pin = chan;
}
err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
rq->extts.flags);
break;
default:
return -EOPNOTSUPP;
}
return err;
}
/**
* ice_ptp_gettimex64 - Get the time of the clock
* @info: the driver's PTP info structure
* @ts: timespec64 structure to hold the current time value
* @sts: Optional parameter for holding a pair of system timestamps from
* the system clock. Will be ignored if NULL is given.
*
* Read the device clock and return the correct value on ns, after converting it
* into a timespec struct.
*/
static int
ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct ice_pf *pf = ptp_info_to_pf(info);
struct ice_hw *hw = &pf->hw;
if (!ice_ptp_lock(hw)) {
dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
return -EBUSY;
}
ice_ptp_read_time(pf, ts, sts);
ice_ptp_unlock(hw);
return 0;
}
/**
* ice_ptp_settime64 - Set the time of the clock
* @info: the driver's PTP info structure
* @ts: timespec64 structure that holds the new time value
*
* Set the device clock to the user input value. The conversion from timespec
* to ns happens in the write function.
*/
static int
ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
{
struct ice_pf *pf = ptp_info_to_pf(info);
struct timespec64 ts64 = *ts;
struct ice_hw *hw = &pf->hw;
int err;
/* For Vernier mode, we need to recalibrate after new settime
* Start with disabling timestamp block
*/
if (pf->ptp.port.link_up)
ice_ptp_port_phy_stop(&pf->ptp.port);
if (!ice_ptp_lock(hw)) {
err = -EBUSY;
goto exit;
}
/* Disable periodic outputs */
ice_ptp_disable_all_clkout(pf);
err = ice_ptp_write_init(pf, &ts64);
ice_ptp_unlock(hw);
if (!err)
ice_ptp_update_cached_phctime(pf);
/* Reenable periodic outputs */
ice_ptp_enable_all_clkout(pf);
/* Recalibrate and re-enable timestamp block */
if (pf->ptp.port.link_up)
ice_ptp_port_phy_restart(&pf->ptp.port);
exit:
if (err) {
dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
return err;
}
return 0;
}
/**
* ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
* @info: the driver's PTP info structure
* @delta: Offset in nanoseconds to adjust the time by
*/
static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
{
struct timespec64 now, then;
int ret;
then = ns_to_timespec64(delta);
ret = ice_ptp_gettimex64(info, &now, NULL);
if (ret)
return ret;
now = timespec64_add(now, then);
return ice_ptp_settime64(info, (const struct timespec64 *)&now);
}
/**
* ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
* @info: the driver's PTP info structure
* @delta: Offset in nanoseconds to adjust the time by
*/
static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
{
struct ice_pf *pf = ptp_info_to_pf(info);
struct ice_hw *hw = &pf->hw;
struct device *dev;
int err;
dev = ice_pf_to_dev(pf);
/* Hardware only supports atomic adjustments using signed 32-bit
* integers. For any adjustment outside this range, perform
* a non-atomic get->adjust->set flow.
*/
if (delta > S32_MAX || delta < S32_MIN) {
dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
return ice_ptp_adjtime_nonatomic(info, delta);
}
if (!ice_ptp_lock(hw)) {
dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
return -EBUSY;
}
/* Disable periodic outputs */
ice_ptp_disable_all_clkout(pf);
err = ice_ptp_write_adj(pf, delta);
/* Reenable periodic outputs */
ice_ptp_enable_all_clkout(pf);
ice_ptp_unlock(hw);
if (err) {
dev_err(dev, "PTP failed to adjust time, err %d\n", err);
return err;
}
ice_ptp_update_cached_phctime(pf);
return 0;
}
#ifdef CONFIG_ICE_HWTS
/**
* ice_ptp_get_syncdevicetime - Get the cross time stamp info
* @device: Current device time
* @system: System counter value read synchronously with device time
* @ctx: Context provided by timekeeping code
*
* Read device and system (ART) clock simultaneously and return the corrected
* clock values in ns.
*/
static int
ice_ptp_get_syncdevicetime(ktime_t *device,
struct system_counterval_t *system,
void *ctx)
{
struct ice_pf *pf = (struct ice_pf *)ctx;
struct ice_hw *hw = &pf->hw;
u32 hh_lock, hh_art_ctl;
int i;
/* Get the HW lock */
hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
if (hh_lock & PFHH_SEM_BUSY_M) {
dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
return -EFAULT;
}
/* Start the ART and device clock sync sequence */
hh_art_ctl = rd32(hw, GLHH_ART_CTL);
hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
wr32(hw, GLHH_ART_CTL, hh_art_ctl);
#define MAX_HH_LOCK_TRIES 100
for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
/* Wait for sync to complete */
hh_art_ctl = rd32(hw, GLHH_ART_CTL);
if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
udelay(1);
continue;
} else {
u32 hh_ts_lo, hh_ts_hi, tmr_idx;
u64 hh_ts;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
/* Read ART time */
hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
*system = convert_art_ns_to_tsc(hh_ts);
/* Read Device source clock time */
hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
*device = ns_to_ktime(hh_ts);
break;
}
}
/* Release HW lock */
hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
if (i == MAX_HH_LOCK_TRIES)
return -ETIMEDOUT;
return 0;
}
/**
* ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
* @info: the driver's PTP info structure
* @cts: The memory to fill the cross timestamp info
*
* Capture a cross timestamp between the ART and the device PTP hardware
* clock. Fill the cross timestamp information and report it back to the
* caller.
*
* This is only valid for E822 devices which have support for generating the
* cross timestamp via PCIe PTM.
*
* In order to correctly correlate the ART timestamp back to the TSC time, the
* CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
*/
static int
ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
struct system_device_crosststamp *cts)
{
struct ice_pf *pf = ptp_info_to_pf(info);
return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
pf, NULL, cts);
}
#endif /* CONFIG_ICE_HWTS */
/**
* ice_ptp_get_ts_config - ioctl interface to read the timestamping config
* @pf: Board private structure
* @ifr: ioctl data
*
* Copy the timestamping config to user buffer
*/
int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
{
struct hwtstamp_config *config;
if (!test_bit(ICE_FLAG_PTP, pf->flags))
return -EIO;
config = &pf->ptp.tstamp_config;
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
-EFAULT : 0;
}
/**
* ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
* @pf: Board private structure
* @config: hwtstamp settings requested or saved
*/
static int
ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
{
switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
ice_set_tx_tstamp(pf, false);
break;
case HWTSTAMP_TX_ON:
ice_set_tx_tstamp(pf, true);
break;
default:
return -ERANGE;
}
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
ice_set_rx_tstamp(pf, false);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
ice_set_rx_tstamp(pf, true);
break;
default:
return -ERANGE;
}
return 0;
}
/**
* ice_ptp_set_ts_config - ioctl interface to control the timestamping
* @pf: Board private structure
* @ifr: ioctl data
*
* Get the user config and store it
*/
int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
{
struct hwtstamp_config config;
int err;
if (!test_bit(ICE_FLAG_PTP, pf->flags))
return -EAGAIN;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
err = ice_ptp_set_timestamp_mode(pf, &config);
if (err)
return err;
/* Return the actual configuration set */
config = pf->ptp.tstamp_config;
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
/**
* ice_ptp_rx_hwtstamp - Check for an Rx timestamp
* @rx_ring: Ring to get the VSI info
* @rx_desc: Receive descriptor
* @skb: Particular skb to send timestamp with
*
* The driver receives a notification in the receive descriptor with timestamp.
* The timestamp is in ns, so we must convert the result first.
*/
void
ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
{
u32 ts_high;
u64 ts_ns;
/* Populate timesync data into skb */
if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
struct skb_shared_hwtstamps *hwtstamps;
/* Use ice_ptp_extend_32b_ts directly, using the ring-specific
* cached PHC value, rather than accessing the PF. This also
* allows us to simply pass the upper 32bits of nanoseconds
* directly. Calling ice_ptp_extend_40b_ts is unnecessary as
* it would just discard these bits itself.
*/
ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
hwtstamps = skb_hwtstamps(skb);
memset(hwtstamps, 0, sizeof(*hwtstamps));
hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
}
}
/**
* ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
* @pf: pointer to the PF structure
* @info: PTP clock info structure
*
* Disable the OS access to the SMA pins. Called to clear out the OS
* indications of pin support when we fail to setup the E810-T SMA control
* register.
*/
static void
ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
{
struct device *dev = ice_pf_to_dev(pf);
dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
info->enable = NULL;
info->verify = NULL;
info->n_pins = 0;
info->n_ext_ts = 0;
info->n_per_out = 0;
}
/**
* ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
* @pf: pointer to the PF structure
* @info: PTP clock info structure
*
* Finish setting up the SMA pins by allocating pin_config, and setting it up
* according to the current status of the SMA. On failure, disable all of the
* extended SMA pin support.
*/
static void
ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
{
struct device *dev = ice_pf_to_dev(pf);
int err;
/* Allocate memory for kernel pins interface */
info->pin_config = devm_kcalloc(dev, info->n_pins,
sizeof(*info->pin_config), GFP_KERNEL);
if (!info->pin_config) {
ice_ptp_disable_sma_pins_e810t(pf, info);
return;
}
/* Read current SMA status */
err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
if (err)
ice_ptp_disable_sma_pins_e810t(pf, info);
}
/**
* ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs
* @pf: pointer to the PF instance
* @info: PTP clock capabilities
*/
static void
ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
{
/* Check if SMA controller is in the netlist */
if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) &&
!ice_is_pca9575_present(&pf->hw))
ice_clear_feature_support(pf, ICE_F_SMA_CTRL);
if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
info->n_ext_ts = N_EXT_TS_E810_NO_SMA;
info->n_per_out = N_PER_OUT_E810T_NO_SMA;
return;
}
info->n_per_out = N_PER_OUT_E810T;
info->n_ext_ts = N_EXT_TS_E810;
info->n_pins = NUM_PTP_PINS_E810T;
info->verify = ice_verify_pin_e810t;
/* Complete setup of the SMA pins */
ice_ptp_setup_sma_pins_e810t(pf, info);
}
/**
* ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
* @info: PTP clock capabilities
*/
static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info)
{
info->n_per_out = N_PER_OUT_E810;
info->n_ext_ts = N_EXT_TS_E810;
}
/**
* ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
* @pf: Board private structure
* @info: PTP info to fill
*
* Assign functions to the PTP capabiltiies structure for E822 devices.
* Functions which operate across all device families should be set directly
* in ice_ptp_set_caps. Only add functions here which are distinct for E822
* devices.
*/
static void
ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
{
#ifdef CONFIG_ICE_HWTS
if (boot_cpu_has(X86_FEATURE_ART) &&
boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
info->getcrosststamp = ice_ptp_getcrosststamp_e822;
#endif /* CONFIG_ICE_HWTS */
}
/**
* ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
* @pf: Board private structure
* @info: PTP info to fill
*
* Assign functions to the PTP capabiltiies structure for E810 devices.
* Functions which operate across all device families should be set directly
* in ice_ptp_set_caps. Only add functions here which are distinct for e810
* devices.
*/
static void
ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
{
info->enable = ice_ptp_gpio_enable_e810;
if (ice_is_e810t(&pf->hw))
ice_ptp_setup_pins_e810t(pf, info);
else
ice_ptp_setup_pins_e810(info);
}
/**
* ice_ptp_set_caps - Set PTP capabilities
* @pf: Board private structure
*/
static void ice_ptp_set_caps(struct ice_pf *pf)
{
struct ptp_clock_info *info = &pf->ptp.info;
struct device *dev = ice_pf_to_dev(pf);
snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
dev_driver_string(dev), dev_name(dev));
info->owner = THIS_MODULE;
info->max_adj = 999999999;
info->adjtime = ice_ptp_adjtime;
info->adjfine = ice_ptp_adjfine;
info->gettimex64 = ice_ptp_gettimex64;
info->settime64 = ice_ptp_settime64;
if (ice_is_e810(&pf->hw))
ice_ptp_set_funcs_e810(pf, info);
else
ice_ptp_set_funcs_e822(pf, info);
}
/**
* ice_ptp_create_clock - Create PTP clock device for userspace
* @pf: Board private structure
*
* This function creates a new PTP clock device. It only creates one if we
* don't already have one. Will return error if it can't create one, but success
* if we already have a device. Should be used by ice_ptp_init to create clock
* initially, and prevent global resets from creating new clock devices.
*/
static long ice_ptp_create_clock(struct ice_pf *pf)
{
struct ptp_clock_info *info;
struct ptp_clock *clock;
struct device *dev;
/* No need to create a clock device if we already have one */
if (pf->ptp.clock)
return 0;
ice_ptp_set_caps(pf);
info = &pf->ptp.info;
dev = ice_pf_to_dev(pf);
/* Attempt to register the clock before enabling the hardware. */
clock = ptp_clock_register(info, dev);
if (IS_ERR(clock))
return PTR_ERR(clock);
pf->ptp.clock = clock;
return 0;
}
/**
* ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
* @work: pointer to the kthread_work struct
*
* Process timestamps captured by the PHY associated with this port. To do
* this, loop over each index with a waiting skb.
*
* If a given index has a valid timestamp, perform the following steps:
*
* 1) copy the timestamp out of the PHY register
* 4) clear the timestamp valid bit in the PHY register
* 5) unlock the index by clearing the associated in_use bit.
* 2) extend the 40b timestamp value to get a 64bit timestamp
* 3) send that timestamp to the stack
*
* After looping, if we still have waiting SKBs, then re-queue the work. This
* may cause us effectively poll even when not strictly necessary. We do this
* because it's possible a new timestamp was requested around the same time as
* the interrupt. In some cases hardware might not interrupt us again when the
* timestamp is captured.
*
* Note that we only take the tracking lock when clearing the bit and when
* checking if we need to re-queue this task. The only place where bits can be
* set is the hard xmit routine where an SKB has a request flag set. The only
* places where we clear bits are this work function, or the periodic cleanup
* thread. If the cleanup thread clears a bit we're processing we catch it
* when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
* starts a new timestamp, we might not begin processing it right away but we
* will notice it at the end when we re-queue the work item. If a Tx thread
* starts a new timestamp just after this function exits without re-queuing,
* the interrupt when the timestamp finishes should trigger. Avoiding holding
* the lock for the entire function is important in order to ensure that Tx
* threads do not get blocked while waiting for the lock.
*/
static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
{
struct ice_ptp_port *ptp_port;
struct ice_ptp_tx *tx;
struct ice_pf *pf;
struct ice_hw *hw;
u8 idx;
tx = container_of(work, struct ice_ptp_tx, work);
if (!tx->init)
return;
ptp_port = container_of(tx, struct ice_ptp_port, tx);
pf = ptp_port_to_pf(ptp_port);
hw = &pf->hw;
for_each_set_bit(idx, tx->in_use, tx->len) {
struct skb_shared_hwtstamps shhwtstamps = {};
u8 phy_idx = idx + tx->quad_offset;
u64 raw_tstamp, tstamp;
struct sk_buff *skb;
int err;
ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
&raw_tstamp);
if (err)
continue;
ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
/* Check if the timestamp is invalid or stale */
if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
raw_tstamp == tx->tstamps[idx].cached_tstamp)
continue;
/* The timestamp is valid, so we'll go ahead and clear this
* index and then send the timestamp up to the stack.
*/
spin_lock(&tx->lock);
tx->tstamps[idx].cached_tstamp = raw_tstamp;
clear_bit(idx, tx->in_use);
skb = tx->tstamps[idx].skb;
tx->tstamps[idx].skb = NULL;
spin_unlock(&tx->lock);
/* it's (unlikely but) possible we raced with the cleanup
* thread for discarding old timestamp requests.
*/
if (!skb)
continue;
/* Extend the timestamp using cached PHC time */
tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
ice_trace(tx_tstamp_complete, skb, idx);
skb_tstamp_tx(skb, &shhwtstamps);
dev_kfree_skb_any(skb);
}
/* Check if we still have work to do. If so, re-queue this task to
* poll for remaining timestamps.
*/
spin_lock(&tx->lock);
if (!bitmap_empty(tx->in_use, tx->len))
kthread_queue_work(pf->ptp.kworker, &tx->work);
spin_unlock(&tx->lock);
}
/**
* ice_ptp_request_ts - Request an available Tx timestamp index
* @tx: the PTP Tx timestamp tracker to request from
* @skb: the SKB to associate with this timestamp request
*/
s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
{
u8 idx;
/* Check if this tracker is initialized */
if (!tx->init || tx->calibrating)
return -1;
spin_lock(&tx->lock);
/* Find and set the first available index */
idx = find_first_zero_bit(tx->in_use, tx->len);
if (idx < tx->len) {
/* We got a valid index that no other thread could have set. Store
* a reference to the skb and the start time to allow discarding old
* requests.
*/
set_bit(idx, tx->in_use);
tx->tstamps[idx].start = jiffies;
tx->tstamps[idx].skb = skb_get(skb);
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
ice_trace(tx_tstamp_request, skb, idx);
}
spin_unlock(&tx->lock);
/* return the appropriate PHY timestamp register index, -1 if no
* indexes were available.
*/
if (idx >= tx->len)
return -1;
else
return idx + tx->quad_offset;
}
/**
* ice_ptp_process_ts - Spawn kthread work to handle timestamps
* @pf: Board private structure
*
* Queue work required to process the PTP Tx timestamps outside of interrupt
* context.
*/
void ice_ptp_process_ts(struct ice_pf *pf)
{
if (pf->ptp.port.tx.init)
kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
}
/**
* ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
* @tx: Tx tracking structure to initialize
*
* Assumes that the length has already been initialized. Do not call directly,
* use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
*/
static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
{
tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
if (!tx->tstamps)
return -ENOMEM;
tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
if (!tx->in_use) {
kfree(tx->tstamps);
tx->tstamps = NULL;
return -ENOMEM;
}
spin_lock_init(&tx->lock);
kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
tx->init = 1;
return 0;
}
/**
* ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
* @pf: Board private structure
* @tx: the tracker to flush
*/
static void
ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
u8 idx;
for (idx = 0; idx < tx->len; idx++) {
u8 phy_idx = idx + tx->quad_offset;
spin_lock(&tx->lock);
if (tx->tstamps[idx].skb) {
dev_kfree_skb_any(tx->tstamps[idx].skb);
tx->tstamps[idx].skb = NULL;
}
clear_bit(idx, tx->in_use);
spin_unlock(&tx->lock);
/* Clear any potential residual timestamp in the PHY block */
if (!pf->hw.reset_ongoing)
ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
}
}
/**
* ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
* @pf: Board private structure
* @tx: Tx tracking structure to release
*
* Free memory associated with the Tx timestamp tracker.
*/
static void
ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
tx->init = 0;
kthread_cancel_work_sync(&tx->work);
ice_ptp_flush_tx_tracker(pf, tx);
kfree(tx->tstamps);
tx->tstamps = NULL;
bitmap_free(tx->in_use);
tx->in_use = NULL;
tx->len = 0;
}
/**
* ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
* @pf: Board private structure
* @tx: the Tx tracking structure to initialize
* @port: the port this structure tracks
*
* Initialize the Tx timestamp tracker for this port. For generic MAC devices,
* the timestamp block is shared for all ports in the same quad. To avoid
* ports using the same timestamp index, logically break the block of
* registers into chunks based on the port number.
*/
static int
ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
{
tx->quad = port / ICE_PORTS_PER_QUAD;
tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT;
tx->len = INDEX_PER_PORT;
return ice_ptp_alloc_tx_tracker(tx);
}
/**
* ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
* @pf: Board private structure
* @tx: the Tx tracking structure to initialize
*
* Initialize the Tx timestamp tracker for this PF. For E810 devices, each
* port has its own block of timestamps, independent of the other ports.
*/
static int
ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
tx->quad = pf->hw.port_info->lport;
tx->quad_offset = 0;
tx->len = INDEX_PER_QUAD;
return ice_ptp_alloc_tx_tracker(tx);
}
/**
* ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
* @hw: pointer to the hw struct
* @tx: PTP Tx tracker to clean up
*
* Loop through the Tx timestamp requests and see if any of them have been
* waiting for a long time. Discard any SKBs that have been waiting for more
* than 2 seconds. This is long enough to be reasonably sure that the
* timestamp will never be captured. This might happen if the packet gets
* discarded before it reaches the PHY timestamping block.
*/
static void ice_ptp_tx_tstamp_cleanup(struct ice_hw *hw, struct ice_ptp_tx *tx)
{
u8 idx;
if (!tx->init)
return;
for_each_set_bit(idx, tx->in_use, tx->len) {
struct sk_buff *skb;
u64 raw_tstamp;
/* Check if this SKB has been waiting for too long */
if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
continue;
/* Read tstamp to be able to use this register again */
ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset,
&raw_tstamp);
spin_lock(&tx->lock);
skb = tx->tstamps[idx].skb;
tx->tstamps[idx].skb = NULL;
clear_bit(idx, tx->in_use);
spin_unlock(&tx->lock);
/* Free the SKB after we've cleared the bit */
dev_kfree_skb_any(skb);
}
}
static void ice_ptp_periodic_work(struct kthread_work *work)
{
struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
int err;
if (!test_bit(ICE_FLAG_PTP, pf->flags))
return;
err = ice_ptp_update_cached_phctime(pf);
ice_ptp_tx_tstamp_cleanup(&pf->hw, &pf->ptp.port.tx);
/* Run twice a second or reschedule if phc update failed */
kthread_queue_delayed_work(ptp->kworker, &ptp->work,
msecs_to_jiffies(err ? 10 : 500));
}
/**
* ice_ptp_reset - Initialize PTP hardware clock support after reset
* @pf: Board private structure
*/
void ice_ptp_reset(struct ice_pf *pf)
{
struct ice_ptp *ptp = &pf->ptp;
struct ice_hw *hw = &pf->hw;
struct timespec64 ts;
int err, itr = 1;
u64 time_diff;
if (test_bit(ICE_PFR_REQ, pf->state))
goto pfr;
if (!hw->func_caps.ts_func_info.src_tmr_owned)
goto reset_ts;
err = ice_ptp_init_phc(hw);
if (err)
goto err;
/* Acquire the global hardware lock */
if (!ice_ptp_lock(hw)) {
err = -EBUSY;
goto err;
}
/* Write the increment time value to PHY and LAN */
err = ice_ptp_write_incval(hw, ice_base_incval(pf));
if (err) {
ice_ptp_unlock(hw);
goto err;
}
/* Write the initial Time value to PHY and LAN using the cached PHC
* time before the reset and time difference between stopping and
* starting the clock.
*/
if (ptp->cached_phc_time) {
time_diff = ktime_get_real_ns() - ptp->reset_time;
ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
} else {
ts = ktime_to_timespec64(ktime_get_real());
}
err = ice_ptp_write_init(pf, &ts);
if (err) {
ice_ptp_unlock(hw);
goto err;
}
/* Release the global hardware lock */
ice_ptp_unlock(hw);
if (!ice_is_e810(hw)) {
/* Enable quad interrupts */
err = ice_ptp_tx_ena_intr(pf, true, itr);
if (err)
goto err;
}
reset_ts:
/* Restart the PHY timestamping block */
ice_ptp_reset_phy_timestamping(pf);
pfr:
/* Init Tx structures */
if (ice_is_e810(&pf->hw)) {
err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
} else {
kthread_init_delayed_work(&ptp->port.ov_work,
ice_ptp_wait_for_offset_valid);
err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
ptp->port.port_num);
}
if (err)
goto err;
set_bit(ICE_FLAG_PTP, pf->flags);
/* Start periodic work going */
kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
return;
err:
dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
}
/**
* ice_ptp_prepare_for_reset - Prepare PTP for reset
* @pf: Board private structure
*/
void ice_ptp_prepare_for_reset(struct ice_pf *pf)
{
struct ice_ptp *ptp = &pf->ptp;
u8 src_tmr;
clear_bit(ICE_FLAG_PTP, pf->flags);
/* Disable timestamping for both Tx and Rx */
ice_ptp_cfg_timestamp(pf, false);
kthread_cancel_delayed_work_sync(&ptp->work);
kthread_cancel_work_sync(&ptp->extts_work);
if (test_bit(ICE_PFR_REQ, pf->state))
return;
ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
/* Disable periodic outputs */
ice_ptp_disable_all_clkout(pf);
src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
/* Disable source clock */
wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
/* Acquire PHC and system timer to restore after reset */
ptp->reset_time = ktime_get_real_ns();
}
/**
* ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
* @pf: Board private structure
*
* Setup and initialize a PTP clock device that represents the device hardware
* clock. Save the clock index for other functions connected to the same
* hardware resource.
*/
static int ice_ptp_init_owner(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
struct timespec64 ts;
int err, itr = 1;
err = ice_ptp_init_phc(hw);
if (err) {
dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
err);
return err;
}
/* Acquire the global hardware lock */
if (!ice_ptp_lock(hw)) {
err = -EBUSY;
goto err_exit;
}
/* Write the increment time value to PHY and LAN */
err = ice_ptp_write_incval(hw, ice_base_incval(pf));
if (err) {
ice_ptp_unlock(hw);
goto err_exit;
}
ts = ktime_to_timespec64(ktime_get_real());
/* Write the initial Time value to PHY and LAN */
err = ice_ptp_write_init(pf, &ts);
if (err) {
ice_ptp_unlock(hw);
goto err_exit;
}
/* Release the global hardware lock */
ice_ptp_unlock(hw);
if (!ice_is_e810(hw)) {
/* Enable quad interrupts */
err = ice_ptp_tx_ena_intr(pf, true, itr);
if (err)
goto err_exit;
}
/* Ensure we have a clock device */
err = ice_ptp_create_clock(pf);
if (err)
goto err_clk;
/* Store the PTP clock index for other PFs */
ice_set_ptp_clock_index(pf);
return 0;
err_clk:
pf->ptp.clock = NULL;
err_exit:
return err;
}
/**
* ice_ptp_init_work - Initialize PTP work threads
* @pf: Board private structure
* @ptp: PF PTP structure
*/
static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
{
struct kthread_worker *kworker;
/* Initialize work functions */
kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
/* Allocate a kworker for handling work required for the ports
* connected to the PTP hardware clock.
*/
kworker = kthread_create_worker(0, "ice-ptp-%s",
dev_name(ice_pf_to_dev(pf)));
if (IS_ERR(kworker))
return PTR_ERR(kworker);
ptp->kworker = kworker;
/* Start periodic work going */
kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
return 0;
}
/**
* ice_ptp_init_port - Initialize PTP port structure
* @pf: Board private structure
* @ptp_port: PTP port structure
*/
static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
{
mutex_init(&ptp_port->ps_lock);
if (ice_is_e810(&pf->hw))
return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
kthread_init_delayed_work(&ptp_port->ov_work,
ice_ptp_wait_for_offset_valid);
return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
}
/**
* ice_ptp_init - Initialize PTP hardware clock support
* @pf: Board private structure
*
* Set up the device for interacting with the PTP hardware clock for all
* functions, both the function that owns the clock hardware, and the
* functions connected to the clock hardware.
*
* The clock owner will allocate and register a ptp_clock with the
* PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
* items used for asynchronous work such as Tx timestamps and periodic work.
*/
void ice_ptp_init(struct ice_pf *pf)
{
struct ice_ptp *ptp = &pf->ptp;
struct ice_hw *hw = &pf->hw;
int err;
/* If this function owns the clock hardware, it must allocate and
* configure the PTP clock device to represent it.
*/
if (hw->func_caps.ts_func_info.src_tmr_owned) {
err = ice_ptp_init_owner(pf);
if (err)
goto err;
}
ptp->port.port_num = hw->pf_id;
err = ice_ptp_init_port(pf, &ptp->port);
if (err)
goto err;
/* Start the PHY timestamping block */
ice_ptp_reset_phy_timestamping(pf);
set_bit(ICE_FLAG_PTP, pf->flags);
err = ice_ptp_init_work(pf, ptp);
if (err)
goto err;
dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
return;
err:
/* If we registered a PTP clock, release it */
if (pf->ptp.clock) {
ptp_clock_unregister(ptp->clock);
pf->ptp.clock = NULL;
}
clear_bit(ICE_FLAG_PTP, pf->flags);
dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
}
/**
* ice_ptp_release - Disable the driver/HW support and unregister the clock
* @pf: Board private structure
*
* This function handles the cleanup work required from the initialization by
* clearing out the important information and unregistering the clock
*/
void ice_ptp_release(struct ice_pf *pf)
{
if (!test_bit(ICE_FLAG_PTP, pf->flags))
return;
/* Disable timestamping for both Tx and Rx */
ice_ptp_cfg_timestamp(pf, false);
ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
clear_bit(ICE_FLAG_PTP, pf->flags);
kthread_cancel_delayed_work_sync(&pf->ptp.work);
ice_ptp_port_phy_stop(&pf->ptp.port);
mutex_destroy(&pf->ptp.port.ps_lock);
if (pf->ptp.kworker) {
kthread_destroy_worker(pf->ptp.kworker);
pf->ptp.kworker = NULL;
}
if (!pf->ptp.clock)
return;
/* Disable periodic outputs */
ice_ptp_disable_all_clkout(pf);
ice_clear_ptp_clock_index(pf);
ptp_clock_unregister(pf->ptp.clock);
pf->ptp.clock = NULL;
dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
}