| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice_sched.h" |
| |
| /** |
| * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB |
| * @pi: port information structure |
| * @info: Scheduler element information from firmware |
| * |
| * This function inserts the root node of the scheduling tree topology |
| * to the SW DB. |
| */ |
| static int |
| ice_sched_add_root_node(struct ice_port_info *pi, |
| struct ice_aqc_txsched_elem_data *info) |
| { |
| struct ice_sched_node *root; |
| struct ice_hw *hw; |
| |
| if (!pi) |
| return -EINVAL; |
| |
| hw = pi->hw; |
| |
| root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); |
| if (!root) |
| return -ENOMEM; |
| |
| /* coverity[suspicious_sizeof] */ |
| root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], |
| sizeof(*root), GFP_KERNEL); |
| if (!root->children) { |
| devm_kfree(ice_hw_to_dev(hw), root); |
| return -ENOMEM; |
| } |
| |
| memcpy(&root->info, info, sizeof(*info)); |
| pi->root = root; |
| return 0; |
| } |
| |
| /** |
| * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB |
| * @start_node: pointer to the starting ice_sched_node struct in a sub-tree |
| * @teid: node TEID to search |
| * |
| * This function searches for a node matching the TEID in the scheduling tree |
| * from the SW DB. The search is recursive and is restricted by the number of |
| * layers it has searched through; stopping at the max supported layer. |
| * |
| * This function needs to be called when holding the port_info->sched_lock |
| */ |
| struct ice_sched_node * |
| ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) |
| { |
| u16 i; |
| |
| /* The TEID is same as that of the start_node */ |
| if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) |
| return start_node; |
| |
| /* The node has no children or is at the max layer */ |
| if (!start_node->num_children || |
| start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || |
| start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) |
| return NULL; |
| |
| /* Check if TEID matches to any of the children nodes */ |
| for (i = 0; i < start_node->num_children; i++) |
| if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) |
| return start_node->children[i]; |
| |
| /* Search within each child's sub-tree */ |
| for (i = 0; i < start_node->num_children; i++) { |
| struct ice_sched_node *tmp; |
| |
| tmp = ice_sched_find_node_by_teid(start_node->children[i], |
| teid); |
| if (tmp) |
| return tmp; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd |
| * @hw: pointer to the HW struct |
| * @cmd_opc: cmd opcode |
| * @elems_req: number of elements to request |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @elems_resp: returns total number of elements response |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function sends a scheduling elements cmd (cmd_opc) |
| */ |
| static int |
| ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, |
| u16 elems_req, void *buf, u16 buf_size, |
| u16 *elems_resp, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_sched_elem_cmd *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| |
| cmd = &desc.params.sched_elem_cmd; |
| ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); |
| cmd->num_elem_req = cpu_to_le16(elems_req); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status && elems_resp) |
| *elems_resp = le16_to_cpu(cmd->num_elem_resp); |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_query_sched_elems - query scheduler elements |
| * @hw: pointer to the HW struct |
| * @elems_req: number of elements to query |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @elems_ret: returns total number of elements returned |
| * @cd: pointer to command details structure or NULL |
| * |
| * Query scheduling elements (0x0404) |
| */ |
| int |
| ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, |
| struct ice_aqc_txsched_elem_data *buf, u16 buf_size, |
| u16 *elems_ret, struct ice_sq_cd *cd) |
| { |
| return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, |
| elems_req, (void *)buf, buf_size, |
| elems_ret, cd); |
| } |
| |
| /** |
| * ice_sched_add_node - Insert the Tx scheduler node in SW DB |
| * @pi: port information structure |
| * @layer: Scheduler layer of the node |
| * @info: Scheduler element information from firmware |
| * |
| * This function inserts a scheduler node to the SW DB. |
| */ |
| int |
| ice_sched_add_node(struct ice_port_info *pi, u8 layer, |
| struct ice_aqc_txsched_elem_data *info) |
| { |
| struct ice_aqc_txsched_elem_data elem; |
| struct ice_sched_node *parent; |
| struct ice_sched_node *node; |
| struct ice_hw *hw; |
| int status; |
| |
| if (!pi) |
| return -EINVAL; |
| |
| hw = pi->hw; |
| |
| /* A valid parent node should be there */ |
| parent = ice_sched_find_node_by_teid(pi->root, |
| le32_to_cpu(info->parent_teid)); |
| if (!parent) { |
| ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", |
| le32_to_cpu(info->parent_teid)); |
| return -EINVAL; |
| } |
| |
| /* query the current node information from FW before adding it |
| * to the SW DB |
| */ |
| status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); |
| if (status) |
| return status; |
| |
| node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); |
| if (!node) |
| return -ENOMEM; |
| if (hw->max_children[layer]) { |
| /* coverity[suspicious_sizeof] */ |
| node->children = devm_kcalloc(ice_hw_to_dev(hw), |
| hw->max_children[layer], |
| sizeof(*node), GFP_KERNEL); |
| if (!node->children) { |
| devm_kfree(ice_hw_to_dev(hw), node); |
| return -ENOMEM; |
| } |
| } |
| |
| node->in_use = true; |
| node->parent = parent; |
| node->tx_sched_layer = layer; |
| parent->children[parent->num_children++] = node; |
| node->info = elem; |
| return 0; |
| } |
| |
| /** |
| * ice_aq_delete_sched_elems - delete scheduler elements |
| * @hw: pointer to the HW struct |
| * @grps_req: number of groups to delete |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @grps_del: returns total number of elements deleted |
| * @cd: pointer to command details structure or NULL |
| * |
| * Delete scheduling elements (0x040F) |
| */ |
| static int |
| ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, |
| struct ice_aqc_delete_elem *buf, u16 buf_size, |
| u16 *grps_del, struct ice_sq_cd *cd) |
| { |
| return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, |
| grps_req, (void *)buf, buf_size, |
| grps_del, cd); |
| } |
| |
| /** |
| * ice_sched_remove_elems - remove nodes from HW |
| * @hw: pointer to the HW struct |
| * @parent: pointer to the parent node |
| * @num_nodes: number of nodes |
| * @node_teids: array of node teids to be deleted |
| * |
| * This function remove nodes from HW |
| */ |
| static int |
| ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, |
| u16 num_nodes, u32 *node_teids) |
| { |
| struct ice_aqc_delete_elem *buf; |
| u16 i, num_groups_removed = 0; |
| u16 buf_size; |
| int status; |
| |
| buf_size = struct_size(buf, teid, num_nodes); |
| buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| buf->hdr.parent_teid = parent->info.node_teid; |
| buf->hdr.num_elems = cpu_to_le16(num_nodes); |
| for (i = 0; i < num_nodes; i++) |
| buf->teid[i] = cpu_to_le32(node_teids[i]); |
| |
| status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, |
| &num_groups_removed, NULL); |
| if (status || num_groups_removed != 1) |
| ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", |
| hw->adminq.sq_last_status); |
| |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_get_first_node - get the first node of the given layer |
| * @pi: port information structure |
| * @parent: pointer the base node of the subtree |
| * @layer: layer number |
| * |
| * This function retrieves the first node of the given layer from the subtree |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_first_node(struct ice_port_info *pi, |
| struct ice_sched_node *parent, u8 layer) |
| { |
| return pi->sib_head[parent->tc_num][layer]; |
| } |
| |
| /** |
| * ice_sched_get_tc_node - get pointer to TC node |
| * @pi: port information structure |
| * @tc: TC number |
| * |
| * This function returns the TC node pointer |
| */ |
| struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) |
| { |
| u8 i; |
| |
| if (!pi || !pi->root) |
| return NULL; |
| for (i = 0; i < pi->root->num_children; i++) |
| if (pi->root->children[i]->tc_num == tc) |
| return pi->root->children[i]; |
| return NULL; |
| } |
| |
| /** |
| * ice_free_sched_node - Free a Tx scheduler node from SW DB |
| * @pi: port information structure |
| * @node: pointer to the ice_sched_node struct |
| * |
| * This function frees up a node from SW DB as well as from HW |
| * |
| * This function needs to be called with the port_info->sched_lock held |
| */ |
| void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) |
| { |
| struct ice_sched_node *parent; |
| struct ice_hw *hw = pi->hw; |
| u8 i, j; |
| |
| /* Free the children before freeing up the parent node |
| * The parent array is updated below and that shifts the nodes |
| * in the array. So always pick the first child if num children > 0 |
| */ |
| while (node->num_children) |
| ice_free_sched_node(pi, node->children[0]); |
| |
| /* Leaf, TC and root nodes can't be deleted by SW */ |
| if (node->tx_sched_layer >= hw->sw_entry_point_layer && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { |
| u32 teid = le32_to_cpu(node->info.node_teid); |
| |
| ice_sched_remove_elems(hw, node->parent, 1, &teid); |
| } |
| parent = node->parent; |
| /* root has no parent */ |
| if (parent) { |
| struct ice_sched_node *p; |
| |
| /* update the parent */ |
| for (i = 0; i < parent->num_children; i++) |
| if (parent->children[i] == node) { |
| for (j = i + 1; j < parent->num_children; j++) |
| parent->children[j - 1] = |
| parent->children[j]; |
| parent->num_children--; |
| break; |
| } |
| |
| p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); |
| while (p) { |
| if (p->sibling == node) { |
| p->sibling = node->sibling; |
| break; |
| } |
| p = p->sibling; |
| } |
| |
| /* update the sibling head if head is getting removed */ |
| if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) |
| pi->sib_head[node->tc_num][node->tx_sched_layer] = |
| node->sibling; |
| } |
| |
| /* leaf nodes have no children */ |
| if (node->children) |
| devm_kfree(ice_hw_to_dev(hw), node->children); |
| devm_kfree(ice_hw_to_dev(hw), node); |
| } |
| |
| /** |
| * ice_aq_get_dflt_topo - gets default scheduler topology |
| * @hw: pointer to the HW struct |
| * @lport: logical port number |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @num_branches: returns total number of queue to port branches |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get default scheduler topology (0x400) |
| */ |
| static int |
| ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, |
| struct ice_aqc_get_topo_elem *buf, u16 buf_size, |
| u8 *num_branches, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_topo *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| |
| cmd = &desc.params.get_topo; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); |
| cmd->port_num = lport; |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status && num_branches) |
| *num_branches = cmd->num_branches; |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_add_sched_elems - adds scheduling element |
| * @hw: pointer to the HW struct |
| * @grps_req: the number of groups that are requested to be added |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @grps_added: returns total number of groups added |
| * @cd: pointer to command details structure or NULL |
| * |
| * Add scheduling elements (0x0401) |
| */ |
| static int |
| ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, |
| struct ice_aqc_add_elem *buf, u16 buf_size, |
| u16 *grps_added, struct ice_sq_cd *cd) |
| { |
| return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, |
| grps_req, (void *)buf, buf_size, |
| grps_added, cd); |
| } |
| |
| /** |
| * ice_aq_cfg_sched_elems - configures scheduler elements |
| * @hw: pointer to the HW struct |
| * @elems_req: number of elements to configure |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @elems_cfgd: returns total number of elements configured |
| * @cd: pointer to command details structure or NULL |
| * |
| * Configure scheduling elements (0x0403) |
| */ |
| static int |
| ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, |
| struct ice_aqc_txsched_elem_data *buf, u16 buf_size, |
| u16 *elems_cfgd, struct ice_sq_cd *cd) |
| { |
| return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, |
| elems_req, (void *)buf, buf_size, |
| elems_cfgd, cd); |
| } |
| |
| /** |
| * ice_aq_move_sched_elems - move scheduler elements |
| * @hw: pointer to the HW struct |
| * @grps_req: number of groups to move |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @grps_movd: returns total number of groups moved |
| * @cd: pointer to command details structure or NULL |
| * |
| * Move scheduling elements (0x0408) |
| */ |
| static int |
| ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, |
| struct ice_aqc_move_elem *buf, u16 buf_size, |
| u16 *grps_movd, struct ice_sq_cd *cd) |
| { |
| return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, |
| grps_req, (void *)buf, buf_size, |
| grps_movd, cd); |
| } |
| |
| /** |
| * ice_aq_suspend_sched_elems - suspend scheduler elements |
| * @hw: pointer to the HW struct |
| * @elems_req: number of elements to suspend |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @elems_ret: returns total number of elements suspended |
| * @cd: pointer to command details structure or NULL |
| * |
| * Suspend scheduling elements (0x0409) |
| */ |
| static int |
| ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, |
| u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) |
| { |
| return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, |
| elems_req, (void *)buf, buf_size, |
| elems_ret, cd); |
| } |
| |
| /** |
| * ice_aq_resume_sched_elems - resume scheduler elements |
| * @hw: pointer to the HW struct |
| * @elems_req: number of elements to resume |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @elems_ret: returns total number of elements resumed |
| * @cd: pointer to command details structure or NULL |
| * |
| * resume scheduling elements (0x040A) |
| */ |
| static int |
| ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, |
| u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) |
| { |
| return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, |
| elems_req, (void *)buf, buf_size, |
| elems_ret, cd); |
| } |
| |
| /** |
| * ice_aq_query_sched_res - query scheduler resource |
| * @hw: pointer to the HW struct |
| * @buf_size: buffer size in bytes |
| * @buf: pointer to buffer |
| * @cd: pointer to command details structure or NULL |
| * |
| * Query scheduler resource allocation (0x0412) |
| */ |
| static int |
| ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, |
| struct ice_aqc_query_txsched_res_resp *buf, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aq_desc desc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); |
| return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| } |
| |
| /** |
| * ice_sched_suspend_resume_elems - suspend or resume HW nodes |
| * @hw: pointer to the HW struct |
| * @num_nodes: number of nodes |
| * @node_teids: array of node teids to be suspended or resumed |
| * @suspend: true means suspend / false means resume |
| * |
| * This function suspends or resumes HW nodes |
| */ |
| static int |
| ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, |
| bool suspend) |
| { |
| u16 i, buf_size, num_elem_ret = 0; |
| __le32 *buf; |
| int status; |
| |
| buf_size = sizeof(*buf) * num_nodes; |
| buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_nodes; i++) |
| buf[i] = cpu_to_le32(node_teids[i]); |
| |
| if (suspend) |
| status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, |
| buf_size, &num_elem_ret, |
| NULL); |
| else |
| status = ice_aq_resume_sched_elems(hw, num_nodes, buf, |
| buf_size, &num_elem_ret, |
| NULL); |
| if (status || num_elem_ret != num_nodes) |
| ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); |
| |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC |
| * @hw: pointer to the HW struct |
| * @vsi_handle: VSI handle |
| * @tc: TC number |
| * @new_numqs: number of queues |
| */ |
| static int |
| ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) |
| { |
| struct ice_vsi_ctx *vsi_ctx; |
| struct ice_q_ctx *q_ctx; |
| |
| vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); |
| if (!vsi_ctx) |
| return -EINVAL; |
| /* allocate LAN queue contexts */ |
| if (!vsi_ctx->lan_q_ctx[tc]) { |
| vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), |
| new_numqs, |
| sizeof(*q_ctx), |
| GFP_KERNEL); |
| if (!vsi_ctx->lan_q_ctx[tc]) |
| return -ENOMEM; |
| vsi_ctx->num_lan_q_entries[tc] = new_numqs; |
| return 0; |
| } |
| /* num queues are increased, update the queue contexts */ |
| if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { |
| u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; |
| |
| q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, |
| sizeof(*q_ctx), GFP_KERNEL); |
| if (!q_ctx) |
| return -ENOMEM; |
| memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], |
| prev_num * sizeof(*q_ctx)); |
| devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); |
| vsi_ctx->lan_q_ctx[tc] = q_ctx; |
| vsi_ctx->num_lan_q_entries[tc] = new_numqs; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC |
| * @hw: pointer to the HW struct |
| * @vsi_handle: VSI handle |
| * @tc: TC number |
| * @new_numqs: number of queues |
| */ |
| static int |
| ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) |
| { |
| struct ice_vsi_ctx *vsi_ctx; |
| struct ice_q_ctx *q_ctx; |
| |
| vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); |
| if (!vsi_ctx) |
| return -EINVAL; |
| /* allocate RDMA queue contexts */ |
| if (!vsi_ctx->rdma_q_ctx[tc]) { |
| vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), |
| new_numqs, |
| sizeof(*q_ctx), |
| GFP_KERNEL); |
| if (!vsi_ctx->rdma_q_ctx[tc]) |
| return -ENOMEM; |
| vsi_ctx->num_rdma_q_entries[tc] = new_numqs; |
| return 0; |
| } |
| /* num queues are increased, update the queue contexts */ |
| if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { |
| u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; |
| |
| q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, |
| sizeof(*q_ctx), GFP_KERNEL); |
| if (!q_ctx) |
| return -ENOMEM; |
| memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], |
| prev_num * sizeof(*q_ctx)); |
| devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); |
| vsi_ctx->rdma_q_ctx[tc] = q_ctx; |
| vsi_ctx->num_rdma_q_entries[tc] = new_numqs; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_aq_rl_profile - performs a rate limiting task |
| * @hw: pointer to the HW struct |
| * @opcode: opcode for add, query, or remove profile(s) |
| * @num_profiles: the number of profiles |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @num_processed: number of processed add or remove profile(s) to return |
| * @cd: pointer to command details structure |
| * |
| * RL profile function to add, query, or remove profile(s) |
| */ |
| static int |
| ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, |
| u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, |
| u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_rl_profile *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| |
| cmd = &desc.params.rl_profile; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, opcode); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| cmd->num_profiles = cpu_to_le16(num_profiles); |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status && num_processed) |
| *num_processed = le16_to_cpu(cmd->num_processed); |
| return status; |
| } |
| |
| /** |
| * ice_aq_add_rl_profile - adds rate limiting profile(s) |
| * @hw: pointer to the HW struct |
| * @num_profiles: the number of profile(s) to be add |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @num_profiles_added: total number of profiles added to return |
| * @cd: pointer to command details structure |
| * |
| * Add RL profile (0x0410) |
| */ |
| static int |
| ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, |
| struct ice_aqc_rl_profile_elem *buf, u16 buf_size, |
| u16 *num_profiles_added, struct ice_sq_cd *cd) |
| { |
| return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, |
| buf, buf_size, num_profiles_added, cd); |
| } |
| |
| /** |
| * ice_aq_remove_rl_profile - removes RL profile(s) |
| * @hw: pointer to the HW struct |
| * @num_profiles: the number of profile(s) to remove |
| * @buf: pointer to buffer |
| * @buf_size: buffer size in bytes |
| * @num_profiles_removed: total number of profiles removed to return |
| * @cd: pointer to command details structure or NULL |
| * |
| * Remove RL profile (0x0415) |
| */ |
| static int |
| ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, |
| struct ice_aqc_rl_profile_elem *buf, u16 buf_size, |
| u16 *num_profiles_removed, struct ice_sq_cd *cd) |
| { |
| return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, |
| num_profiles, buf, buf_size, |
| num_profiles_removed, cd); |
| } |
| |
| /** |
| * ice_sched_del_rl_profile - remove RL profile |
| * @hw: pointer to the HW struct |
| * @rl_info: rate limit profile information |
| * |
| * If the profile ID is not referenced anymore, it removes profile ID with |
| * its associated parameters from HW DB,and locally. The caller needs to |
| * hold scheduler lock. |
| */ |
| static int |
| ice_sched_del_rl_profile(struct ice_hw *hw, |
| struct ice_aqc_rl_profile_info *rl_info) |
| { |
| struct ice_aqc_rl_profile_elem *buf; |
| u16 num_profiles_removed; |
| u16 num_profiles = 1; |
| int status; |
| |
| if (rl_info->prof_id_ref != 0) |
| return -EBUSY; |
| |
| /* Safe to remove profile ID */ |
| buf = &rl_info->profile; |
| status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), |
| &num_profiles_removed, NULL); |
| if (status || num_profiles_removed != num_profiles) |
| return -EIO; |
| |
| /* Delete stale entry now */ |
| list_del(&rl_info->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), rl_info); |
| return status; |
| } |
| |
| /** |
| * ice_sched_clear_rl_prof - clears RL prof entries |
| * @pi: port information structure |
| * |
| * This function removes all RL profile from HW as well as from SW DB. |
| */ |
| static void ice_sched_clear_rl_prof(struct ice_port_info *pi) |
| { |
| u16 ln; |
| |
| for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { |
| struct ice_aqc_rl_profile_info *rl_prof_elem; |
| struct ice_aqc_rl_profile_info *rl_prof_tmp; |
| |
| list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, |
| &pi->rl_prof_list[ln], list_entry) { |
| struct ice_hw *hw = pi->hw; |
| int status; |
| |
| rl_prof_elem->prof_id_ref = 0; |
| status = ice_sched_del_rl_profile(hw, rl_prof_elem); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); |
| /* On error, free mem required */ |
| list_del(&rl_prof_elem->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); |
| } |
| } |
| } |
| } |
| |
| /** |
| * ice_sched_clear_agg - clears the aggregator related information |
| * @hw: pointer to the hardware structure |
| * |
| * This function removes aggregator list and free up aggregator related memory |
| * previously allocated. |
| */ |
| void ice_sched_clear_agg(struct ice_hw *hw) |
| { |
| struct ice_sched_agg_info *agg_info; |
| struct ice_sched_agg_info *atmp; |
| |
| list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| struct ice_sched_agg_vsi_info *vtmp; |
| |
| list_for_each_entry_safe(agg_vsi_info, vtmp, |
| &agg_info->agg_vsi_list, list_entry) { |
| list_del(&agg_vsi_info->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); |
| } |
| list_del(&agg_info->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), agg_info); |
| } |
| } |
| |
| /** |
| * ice_sched_clear_tx_topo - clears the scheduler tree nodes |
| * @pi: port information structure |
| * |
| * This function removes all the nodes from HW as well as from SW DB. |
| */ |
| static void ice_sched_clear_tx_topo(struct ice_port_info *pi) |
| { |
| if (!pi) |
| return; |
| /* remove RL profiles related lists */ |
| ice_sched_clear_rl_prof(pi); |
| if (pi->root) { |
| ice_free_sched_node(pi, pi->root); |
| pi->root = NULL; |
| } |
| } |
| |
| /** |
| * ice_sched_clear_port - clear the scheduler elements from SW DB for a port |
| * @pi: port information structure |
| * |
| * Cleanup scheduling elements from SW DB |
| */ |
| void ice_sched_clear_port(struct ice_port_info *pi) |
| { |
| if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) |
| return; |
| |
| pi->port_state = ICE_SCHED_PORT_STATE_INIT; |
| mutex_lock(&pi->sched_lock); |
| ice_sched_clear_tx_topo(pi); |
| mutex_unlock(&pi->sched_lock); |
| mutex_destroy(&pi->sched_lock); |
| } |
| |
| /** |
| * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports |
| * @hw: pointer to the HW struct |
| * |
| * Cleanup scheduling elements from SW DB for all the ports |
| */ |
| void ice_sched_cleanup_all(struct ice_hw *hw) |
| { |
| if (!hw) |
| return; |
| |
| if (hw->layer_info) { |
| devm_kfree(ice_hw_to_dev(hw), hw->layer_info); |
| hw->layer_info = NULL; |
| } |
| |
| ice_sched_clear_port(hw->port_info); |
| |
| hw->num_tx_sched_layers = 0; |
| hw->num_tx_sched_phys_layers = 0; |
| hw->flattened_layers = 0; |
| hw->max_cgds = 0; |
| } |
| |
| /** |
| * ice_sched_add_elems - add nodes to HW and SW DB |
| * @pi: port information structure |
| * @tc_node: pointer to the branch node |
| * @parent: pointer to the parent node |
| * @layer: layer number to add nodes |
| * @num_nodes: number of nodes |
| * @num_nodes_added: pointer to num nodes added |
| * @first_node_teid: if new nodes are added then return the TEID of first node |
| * |
| * This function add nodes to HW as well as to SW DB for a given layer |
| */ |
| static int |
| ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, |
| struct ice_sched_node *parent, u8 layer, u16 num_nodes, |
| u16 *num_nodes_added, u32 *first_node_teid) |
| { |
| struct ice_sched_node *prev, *new_node; |
| struct ice_aqc_add_elem *buf; |
| u16 i, num_groups_added = 0; |
| struct ice_hw *hw = pi->hw; |
| size_t buf_size; |
| int status = 0; |
| u32 teid; |
| |
| buf_size = struct_size(buf, generic, num_nodes); |
| buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| buf->hdr.parent_teid = parent->info.node_teid; |
| buf->hdr.num_elems = cpu_to_le16(num_nodes); |
| for (i = 0; i < num_nodes; i++) { |
| buf->generic[i].parent_teid = parent->info.node_teid; |
| buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; |
| buf->generic[i].data.valid_sections = |
| ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | |
| ICE_AQC_ELEM_VALID_EIR; |
| buf->generic[i].data.generic = 0; |
| buf->generic[i].data.cir_bw.bw_profile_idx = |
| cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); |
| buf->generic[i].data.cir_bw.bw_alloc = |
| cpu_to_le16(ICE_SCHED_DFLT_BW_WT); |
| buf->generic[i].data.eir_bw.bw_profile_idx = |
| cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); |
| buf->generic[i].data.eir_bw.bw_alloc = |
| cpu_to_le16(ICE_SCHED_DFLT_BW_WT); |
| } |
| |
| status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, |
| &num_groups_added, NULL); |
| if (status || num_groups_added != 1) { |
| ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", |
| hw->adminq.sq_last_status); |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return -EIO; |
| } |
| |
| *num_nodes_added = num_nodes; |
| /* add nodes to the SW DB */ |
| for (i = 0; i < num_nodes; i++) { |
| status = ice_sched_add_node(pi, layer, &buf->generic[i]); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", |
| status); |
| break; |
| } |
| |
| teid = le32_to_cpu(buf->generic[i].node_teid); |
| new_node = ice_sched_find_node_by_teid(parent, teid); |
| if (!new_node) { |
| ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); |
| break; |
| } |
| |
| new_node->sibling = NULL; |
| new_node->tc_num = tc_node->tc_num; |
| |
| /* add it to previous node sibling pointer */ |
| /* Note: siblings are not linked across branches */ |
| prev = ice_sched_get_first_node(pi, tc_node, layer); |
| if (prev && prev != new_node) { |
| while (prev->sibling) |
| prev = prev->sibling; |
| prev->sibling = new_node; |
| } |
| |
| /* initialize the sibling head */ |
| if (!pi->sib_head[tc_node->tc_num][layer]) |
| pi->sib_head[tc_node->tc_num][layer] = new_node; |
| |
| if (i == 0) |
| *first_node_teid = teid; |
| } |
| |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer |
| * @pi: port information structure |
| * @tc_node: pointer to TC node |
| * @parent: pointer to parent node |
| * @layer: layer number to add nodes |
| * @num_nodes: number of nodes to be added |
| * @first_node_teid: pointer to the first node TEID |
| * @num_nodes_added: pointer to number of nodes added |
| * |
| * Add nodes into specific HW layer. |
| */ |
| static int |
| ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, |
| struct ice_sched_node *tc_node, |
| struct ice_sched_node *parent, u8 layer, |
| u16 num_nodes, u32 *first_node_teid, |
| u16 *num_nodes_added) |
| { |
| u16 max_child_nodes; |
| |
| *num_nodes_added = 0; |
| |
| if (!num_nodes) |
| return 0; |
| |
| if (!parent || layer < pi->hw->sw_entry_point_layer) |
| return -EINVAL; |
| |
| /* max children per node per layer */ |
| max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; |
| |
| /* current number of children + required nodes exceed max children */ |
| if ((parent->num_children + num_nodes) > max_child_nodes) { |
| /* Fail if the parent is a TC node */ |
| if (parent == tc_node) |
| return -EIO; |
| return -ENOSPC; |
| } |
| |
| return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, |
| num_nodes_added, first_node_teid); |
| } |
| |
| /** |
| * ice_sched_add_nodes_to_layer - Add nodes to a given layer |
| * @pi: port information structure |
| * @tc_node: pointer to TC node |
| * @parent: pointer to parent node |
| * @layer: layer number to add nodes |
| * @num_nodes: number of nodes to be added |
| * @first_node_teid: pointer to the first node TEID |
| * @num_nodes_added: pointer to number of nodes added |
| * |
| * This function add nodes to a given layer. |
| */ |
| static int |
| ice_sched_add_nodes_to_layer(struct ice_port_info *pi, |
| struct ice_sched_node *tc_node, |
| struct ice_sched_node *parent, u8 layer, |
| u16 num_nodes, u32 *first_node_teid, |
| u16 *num_nodes_added) |
| { |
| u32 *first_teid_ptr = first_node_teid; |
| u16 new_num_nodes = num_nodes; |
| int status = 0; |
| |
| *num_nodes_added = 0; |
| while (*num_nodes_added < num_nodes) { |
| u16 max_child_nodes, num_added = 0; |
| /* cppcheck-suppress unusedVariable */ |
| u32 temp; |
| |
| status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, |
| layer, new_num_nodes, |
| first_teid_ptr, |
| &num_added); |
| if (!status) |
| *num_nodes_added += num_added; |
| /* added more nodes than requested ? */ |
| if (*num_nodes_added > num_nodes) { |
| ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, |
| *num_nodes_added); |
| status = -EIO; |
| break; |
| } |
| /* break if all the nodes are added successfully */ |
| if (!status && (*num_nodes_added == num_nodes)) |
| break; |
| /* break if the error is not max limit */ |
| if (status && status != -ENOSPC) |
| break; |
| /* Exceeded the max children */ |
| max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; |
| /* utilize all the spaces if the parent is not full */ |
| if (parent->num_children < max_child_nodes) { |
| new_num_nodes = max_child_nodes - parent->num_children; |
| } else { |
| /* This parent is full, try the next sibling */ |
| parent = parent->sibling; |
| /* Don't modify the first node TEID memory if the |
| * first node was added already in the above call. |
| * Instead send some temp memory for all other |
| * recursive calls. |
| */ |
| if (num_added) |
| first_teid_ptr = &temp; |
| |
| new_num_nodes = num_nodes - *num_nodes_added; |
| } |
| } |
| return status; |
| } |
| |
| /** |
| * ice_sched_get_qgrp_layer - get the current queue group layer number |
| * @hw: pointer to the HW struct |
| * |
| * This function returns the current queue group layer number |
| */ |
| static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) |
| { |
| /* It's always total layers - 1, the array is 0 relative so -2 */ |
| return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; |
| } |
| |
| /** |
| * ice_sched_get_vsi_layer - get the current VSI layer number |
| * @hw: pointer to the HW struct |
| * |
| * This function returns the current VSI layer number |
| */ |
| static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) |
| { |
| /* Num Layers VSI layer |
| * 9 6 |
| * 7 4 |
| * 5 or less sw_entry_point_layer |
| */ |
| /* calculate the VSI layer based on number of layers. */ |
| if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { |
| u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; |
| |
| if (layer > hw->sw_entry_point_layer) |
| return layer; |
| } |
| return hw->sw_entry_point_layer; |
| } |
| |
| /** |
| * ice_sched_get_agg_layer - get the current aggregator layer number |
| * @hw: pointer to the HW struct |
| * |
| * This function returns the current aggregator layer number |
| */ |
| static u8 ice_sched_get_agg_layer(struct ice_hw *hw) |
| { |
| /* Num Layers aggregator layer |
| * 9 4 |
| * 7 or less sw_entry_point_layer |
| */ |
| /* calculate the aggregator layer based on number of layers. */ |
| if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { |
| u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; |
| |
| if (layer > hw->sw_entry_point_layer) |
| return layer; |
| } |
| return hw->sw_entry_point_layer; |
| } |
| |
| /** |
| * ice_rm_dflt_leaf_node - remove the default leaf node in the tree |
| * @pi: port information structure |
| * |
| * This function removes the leaf node that was created by the FW |
| * during initialization |
| */ |
| static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) |
| { |
| struct ice_sched_node *node; |
| |
| node = pi->root; |
| while (node) { |
| if (!node->num_children) |
| break; |
| node = node->children[0]; |
| } |
| if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { |
| u32 teid = le32_to_cpu(node->info.node_teid); |
| int status; |
| |
| /* remove the default leaf node */ |
| status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); |
| if (!status) |
| ice_free_sched_node(pi, node); |
| } |
| } |
| |
| /** |
| * ice_sched_rm_dflt_nodes - free the default nodes in the tree |
| * @pi: port information structure |
| * |
| * This function frees all the nodes except root and TC that were created by |
| * the FW during initialization |
| */ |
| static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) |
| { |
| struct ice_sched_node *node; |
| |
| ice_rm_dflt_leaf_node(pi); |
| |
| /* remove the default nodes except TC and root nodes */ |
| node = pi->root; |
| while (node) { |
| if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && |
| node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { |
| ice_free_sched_node(pi, node); |
| break; |
| } |
| |
| if (!node->num_children) |
| break; |
| node = node->children[0]; |
| } |
| } |
| |
| /** |
| * ice_sched_init_port - Initialize scheduler by querying information from FW |
| * @pi: port info structure for the tree to cleanup |
| * |
| * This function is the initial call to find the total number of Tx scheduler |
| * resources, default topology created by firmware and storing the information |
| * in SW DB. |
| */ |
| int ice_sched_init_port(struct ice_port_info *pi) |
| { |
| struct ice_aqc_get_topo_elem *buf; |
| struct ice_hw *hw; |
| u8 num_branches; |
| u16 num_elems; |
| int status; |
| u8 i, j; |
| |
| if (!pi) |
| return -EINVAL; |
| hw = pi->hw; |
| |
| /* Query the Default Topology from FW */ |
| buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| /* Query default scheduling tree topology */ |
| status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, |
| &num_branches, NULL); |
| if (status) |
| goto err_init_port; |
| |
| /* num_branches should be between 1-8 */ |
| if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { |
| ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", |
| num_branches); |
| status = -EINVAL; |
| goto err_init_port; |
| } |
| |
| /* get the number of elements on the default/first branch */ |
| num_elems = le16_to_cpu(buf[0].hdr.num_elems); |
| |
| /* num_elems should always be between 1-9 */ |
| if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { |
| ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", |
| num_elems); |
| status = -EINVAL; |
| goto err_init_port; |
| } |
| |
| /* If the last node is a leaf node then the index of the queue group |
| * layer is two less than the number of elements. |
| */ |
| if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == |
| ICE_AQC_ELEM_TYPE_LEAF) |
| pi->last_node_teid = |
| le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); |
| else |
| pi->last_node_teid = |
| le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); |
| |
| /* Insert the Tx Sched root node */ |
| status = ice_sched_add_root_node(pi, &buf[0].generic[0]); |
| if (status) |
| goto err_init_port; |
| |
| /* Parse the default tree and cache the information */ |
| for (i = 0; i < num_branches; i++) { |
| num_elems = le16_to_cpu(buf[i].hdr.num_elems); |
| |
| /* Skip root element as already inserted */ |
| for (j = 1; j < num_elems; j++) { |
| /* update the sw entry point */ |
| if (buf[0].generic[j].data.elem_type == |
| ICE_AQC_ELEM_TYPE_ENTRY_POINT) |
| hw->sw_entry_point_layer = j; |
| |
| status = ice_sched_add_node(pi, j, &buf[i].generic[j]); |
| if (status) |
| goto err_init_port; |
| } |
| } |
| |
| /* Remove the default nodes. */ |
| if (pi->root) |
| ice_sched_rm_dflt_nodes(pi); |
| |
| /* initialize the port for handling the scheduler tree */ |
| pi->port_state = ICE_SCHED_PORT_STATE_READY; |
| mutex_init(&pi->sched_lock); |
| for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) |
| INIT_LIST_HEAD(&pi->rl_prof_list[i]); |
| |
| err_init_port: |
| if (status && pi->root) { |
| ice_free_sched_node(pi, pi->root); |
| pi->root = NULL; |
| } |
| |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_query_res_alloc - query the FW for num of logical sched layers |
| * @hw: pointer to the HW struct |
| * |
| * query FW for allocated scheduler resources and store in HW struct |
| */ |
| int ice_sched_query_res_alloc(struct ice_hw *hw) |
| { |
| struct ice_aqc_query_txsched_res_resp *buf; |
| __le16 max_sibl; |
| int status = 0; |
| u16 i; |
| |
| if (hw->layer_info) |
| return status; |
| |
| buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); |
| if (status) |
| goto sched_query_out; |
| |
| hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); |
| hw->num_tx_sched_phys_layers = |
| le16_to_cpu(buf->sched_props.phys_levels); |
| hw->flattened_layers = buf->sched_props.flattening_bitmap; |
| hw->max_cgds = buf->sched_props.max_pf_cgds; |
| |
| /* max sibling group size of current layer refers to the max children |
| * of the below layer node. |
| * layer 1 node max children will be layer 2 max sibling group size |
| * layer 2 node max children will be layer 3 max sibling group size |
| * and so on. This array will be populated from root (index 0) to |
| * qgroup layer 7. Leaf node has no children. |
| */ |
| for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { |
| max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; |
| hw->max_children[i] = le16_to_cpu(max_sibl); |
| } |
| |
| hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, |
| (hw->num_tx_sched_layers * |
| sizeof(*hw->layer_info)), |
| GFP_KERNEL); |
| if (!hw->layer_info) { |
| status = -ENOMEM; |
| goto sched_query_out; |
| } |
| |
| sched_query_out: |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_get_psm_clk_freq - determine the PSM clock frequency |
| * @hw: pointer to the HW struct |
| * |
| * Determine the PSM clock frequency and store in HW struct |
| */ |
| void ice_sched_get_psm_clk_freq(struct ice_hw *hw) |
| { |
| u32 val, clk_src; |
| |
| val = rd32(hw, GLGEN_CLKSTAT_SRC); |
| clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> |
| GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; |
| |
| #define PSM_CLK_SRC_367_MHZ 0x0 |
| #define PSM_CLK_SRC_416_MHZ 0x1 |
| #define PSM_CLK_SRC_446_MHZ 0x2 |
| #define PSM_CLK_SRC_390_MHZ 0x3 |
| |
| switch (clk_src) { |
| case PSM_CLK_SRC_367_MHZ: |
| hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; |
| break; |
| case PSM_CLK_SRC_416_MHZ: |
| hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; |
| break; |
| case PSM_CLK_SRC_446_MHZ: |
| hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; |
| break; |
| case PSM_CLK_SRC_390_MHZ: |
| hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; |
| break; |
| default: |
| ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", |
| clk_src); |
| /* fall back to a safe default */ |
| hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; |
| } |
| } |
| |
| /** |
| * ice_sched_find_node_in_subtree - Find node in part of base node subtree |
| * @hw: pointer to the HW struct |
| * @base: pointer to the base node |
| * @node: pointer to the node to search |
| * |
| * This function checks whether a given node is part of the base node |
| * subtree or not |
| */ |
| static bool |
| ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, |
| struct ice_sched_node *node) |
| { |
| u8 i; |
| |
| for (i = 0; i < base->num_children; i++) { |
| struct ice_sched_node *child = base->children[i]; |
| |
| if (node == child) |
| return true; |
| |
| if (child->tx_sched_layer > node->tx_sched_layer) |
| return false; |
| |
| /* this recursion is intentional, and wouldn't |
| * go more than 8 calls |
| */ |
| if (ice_sched_find_node_in_subtree(hw, child, node)) |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node |
| * @pi: port information structure |
| * @vsi_node: software VSI handle |
| * @qgrp_node: first queue group node identified for scanning |
| * @owner: LAN or RDMA |
| * |
| * This function retrieves a free LAN or RDMA queue group node by scanning |
| * qgrp_node and its siblings for the queue group with the fewest number |
| * of queues currently assigned. |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_free_qgrp(struct ice_port_info *pi, |
| struct ice_sched_node *vsi_node, |
| struct ice_sched_node *qgrp_node, u8 owner) |
| { |
| struct ice_sched_node *min_qgrp; |
| u8 min_children; |
| |
| if (!qgrp_node) |
| return qgrp_node; |
| min_children = qgrp_node->num_children; |
| if (!min_children) |
| return qgrp_node; |
| min_qgrp = qgrp_node; |
| /* scan all queue groups until find a node which has less than the |
| * minimum number of children. This way all queue group nodes get |
| * equal number of shares and active. The bandwidth will be equally |
| * distributed across all queues. |
| */ |
| while (qgrp_node) { |
| /* make sure the qgroup node is part of the VSI subtree */ |
| if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) |
| if (qgrp_node->num_children < min_children && |
| qgrp_node->owner == owner) { |
| /* replace the new min queue group node */ |
| min_qgrp = qgrp_node; |
| min_children = min_qgrp->num_children; |
| /* break if it has no children, */ |
| if (!min_children) |
| break; |
| } |
| qgrp_node = qgrp_node->sibling; |
| } |
| return min_qgrp; |
| } |
| |
| /** |
| * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: branch number |
| * @owner: LAN or RDMA |
| * |
| * This function retrieves a free LAN or RDMA queue group node |
| */ |
| struct ice_sched_node * |
| ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, |
| u8 owner) |
| { |
| struct ice_sched_node *vsi_node, *qgrp_node; |
| struct ice_vsi_ctx *vsi_ctx; |
| u16 max_children; |
| u8 qgrp_layer; |
| |
| qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); |
| max_children = pi->hw->max_children[qgrp_layer]; |
| |
| vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); |
| if (!vsi_ctx) |
| return NULL; |
| vsi_node = vsi_ctx->sched.vsi_node[tc]; |
| /* validate invalid VSI ID */ |
| if (!vsi_node) |
| return NULL; |
| |
| /* get the first queue group node from VSI sub-tree */ |
| qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); |
| while (qgrp_node) { |
| /* make sure the qgroup node is part of the VSI subtree */ |
| if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) |
| if (qgrp_node->num_children < max_children && |
| qgrp_node->owner == owner) |
| break; |
| qgrp_node = qgrp_node->sibling; |
| } |
| |
| /* Select the best queue group */ |
| return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); |
| } |
| |
| /** |
| * ice_sched_get_vsi_node - Get a VSI node based on VSI ID |
| * @pi: pointer to the port information structure |
| * @tc_node: pointer to the TC node |
| * @vsi_handle: software VSI handle |
| * |
| * This function retrieves a VSI node for a given VSI ID from a given |
| * TC branch |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, |
| u16 vsi_handle) |
| { |
| struct ice_sched_node *node; |
| u8 vsi_layer; |
| |
| vsi_layer = ice_sched_get_vsi_layer(pi->hw); |
| node = ice_sched_get_first_node(pi, tc_node, vsi_layer); |
| |
| /* Check whether it already exists */ |
| while (node) { |
| if (node->vsi_handle == vsi_handle) |
| return node; |
| node = node->sibling; |
| } |
| |
| return node; |
| } |
| |
| /** |
| * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID |
| * @pi: pointer to the port information structure |
| * @tc_node: pointer to the TC node |
| * @agg_id: aggregator ID |
| * |
| * This function retrieves an aggregator node for a given aggregator ID from |
| * a given TC branch |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, |
| u32 agg_id) |
| { |
| struct ice_sched_node *node; |
| struct ice_hw *hw = pi->hw; |
| u8 agg_layer; |
| |
| if (!hw) |
| return NULL; |
| agg_layer = ice_sched_get_agg_layer(hw); |
| node = ice_sched_get_first_node(pi, tc_node, agg_layer); |
| |
| /* Check whether it already exists */ |
| while (node) { |
| if (node->agg_id == agg_id) |
| return node; |
| node = node->sibling; |
| } |
| |
| return node; |
| } |
| |
| /** |
| * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes |
| * @hw: pointer to the HW struct |
| * @num_qs: number of queues |
| * @num_nodes: num nodes array |
| * |
| * This function calculates the number of VSI child nodes based on the |
| * number of queues. |
| */ |
| static void |
| ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) |
| { |
| u16 num = num_qs; |
| u8 i, qgl, vsil; |
| |
| qgl = ice_sched_get_qgrp_layer(hw); |
| vsil = ice_sched_get_vsi_layer(hw); |
| |
| /* calculate num nodes from queue group to VSI layer */ |
| for (i = qgl; i > vsil; i--) { |
| /* round to the next integer if there is a remainder */ |
| num = DIV_ROUND_UP(num, hw->max_children[i]); |
| |
| /* need at least one node */ |
| num_nodes[i] = num ? num : 1; |
| } |
| } |
| |
| /** |
| * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc_node: pointer to the TC node |
| * @num_nodes: pointer to the num nodes that needs to be added per layer |
| * @owner: node owner (LAN or RDMA) |
| * |
| * This function adds the VSI child nodes to tree. It gets called for |
| * LAN and RDMA separately. |
| */ |
| static int |
| ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, |
| struct ice_sched_node *tc_node, u16 *num_nodes, |
| u8 owner) |
| { |
| struct ice_sched_node *parent, *node; |
| struct ice_hw *hw = pi->hw; |
| u32 first_node_teid; |
| u16 num_added = 0; |
| u8 i, qgl, vsil; |
| int status; |
| |
| qgl = ice_sched_get_qgrp_layer(hw); |
| vsil = ice_sched_get_vsi_layer(hw); |
| parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); |
| for (i = vsil + 1; i <= qgl; i++) { |
| if (!parent) |
| return -EIO; |
| |
| status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, |
| num_nodes[i], |
| &first_node_teid, |
| &num_added); |
| if (status || num_nodes[i] != num_added) |
| return -EIO; |
| |
| /* The newly added node can be a new parent for the next |
| * layer nodes |
| */ |
| if (num_added) { |
| parent = ice_sched_find_node_by_teid(tc_node, |
| first_node_teid); |
| node = parent; |
| while (node) { |
| node->owner = owner; |
| node = node->sibling; |
| } |
| } else { |
| parent = parent->children[0]; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes |
| * @pi: pointer to the port info structure |
| * @tc_node: pointer to TC node |
| * @num_nodes: pointer to num nodes array |
| * |
| * This function calculates the number of supported nodes needed to add this |
| * VSI into Tx tree including the VSI, parent and intermediate nodes in below |
| * layers |
| */ |
| static void |
| ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, |
| struct ice_sched_node *tc_node, u16 *num_nodes) |
| { |
| struct ice_sched_node *node; |
| u8 vsil; |
| int i; |
| |
| vsil = ice_sched_get_vsi_layer(pi->hw); |
| for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) |
| /* Add intermediate nodes if TC has no children and |
| * need at least one node for VSI |
| */ |
| if (!tc_node->num_children || i == vsil) { |
| num_nodes[i]++; |
| } else { |
| /* If intermediate nodes are reached max children |
| * then add a new one. |
| */ |
| node = ice_sched_get_first_node(pi, tc_node, (u8)i); |
| /* scan all the siblings */ |
| while (node) { |
| if (node->num_children < pi->hw->max_children[i]) |
| break; |
| node = node->sibling; |
| } |
| |
| /* tree has one intermediate node to add this new VSI. |
| * So no need to calculate supported nodes for below |
| * layers. |
| */ |
| if (node) |
| break; |
| /* all the nodes are full, allocate a new one */ |
| num_nodes[i]++; |
| } |
| } |
| |
| /** |
| * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc_node: pointer to TC node |
| * @num_nodes: pointer to num nodes array |
| * |
| * This function adds the VSI supported nodes into Tx tree including the |
| * VSI, its parent and intermediate nodes in below layers |
| */ |
| static int |
| ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, |
| struct ice_sched_node *tc_node, u16 *num_nodes) |
| { |
| struct ice_sched_node *parent = tc_node; |
| u32 first_node_teid; |
| u16 num_added = 0; |
| u8 i, vsil; |
| int status; |
| |
| if (!pi) |
| return -EINVAL; |
| |
| vsil = ice_sched_get_vsi_layer(pi->hw); |
| for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { |
| status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, |
| i, num_nodes[i], |
| &first_node_teid, |
| &num_added); |
| if (status || num_nodes[i] != num_added) |
| return -EIO; |
| |
| /* The newly added node can be a new parent for the next |
| * layer nodes |
| */ |
| if (num_added) |
| parent = ice_sched_find_node_by_teid(tc_node, |
| first_node_teid); |
| else |
| parent = parent->children[0]; |
| |
| if (!parent) |
| return -EIO; |
| |
| if (i == vsil) |
| parent->vsi_handle = vsi_handle; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sched_add_vsi_to_topo - add a new VSI into tree |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: TC number |
| * |
| * This function adds a new VSI into scheduler tree |
| */ |
| static int |
| ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) |
| { |
| u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; |
| struct ice_sched_node *tc_node; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return -EINVAL; |
| |
| /* calculate number of supported nodes needed for this VSI */ |
| ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); |
| |
| /* add VSI supported nodes to TC subtree */ |
| return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, |
| num_nodes); |
| } |
| |
| /** |
| * ice_sched_update_vsi_child_nodes - update VSI child nodes |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: TC number |
| * @new_numqs: new number of max queues |
| * @owner: owner of this subtree |
| * |
| * This function updates the VSI child nodes based on the number of queues |
| */ |
| static int |
| ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, |
| u8 tc, u16 new_numqs, u8 owner) |
| { |
| u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; |
| struct ice_sched_node *vsi_node; |
| struct ice_sched_node *tc_node; |
| struct ice_vsi_ctx *vsi_ctx; |
| struct ice_hw *hw = pi->hw; |
| u16 prev_numqs; |
| int status = 0; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return -EIO; |
| |
| vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); |
| if (!vsi_node) |
| return -EIO; |
| |
| vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); |
| if (!vsi_ctx) |
| return -EINVAL; |
| |
| if (owner == ICE_SCHED_NODE_OWNER_LAN) |
| prev_numqs = vsi_ctx->sched.max_lanq[tc]; |
| else |
| prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; |
| /* num queues are not changed or less than the previous number */ |
| if (new_numqs <= prev_numqs) |
| return status; |
| if (owner == ICE_SCHED_NODE_OWNER_LAN) { |
| status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); |
| if (status) |
| return status; |
| } else { |
| status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); |
| if (status) |
| return status; |
| } |
| |
| if (new_numqs) |
| ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); |
| /* Keep the max number of queue configuration all the time. Update the |
| * tree only if number of queues > previous number of queues. This may |
| * leave some extra nodes in the tree if number of queues < previous |
| * number but that wouldn't harm anything. Removing those extra nodes |
| * may complicate the code if those nodes are part of SRL or |
| * individually rate limited. |
| */ |
| status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, |
| new_num_nodes, owner); |
| if (status) |
| return status; |
| if (owner == ICE_SCHED_NODE_OWNER_LAN) |
| vsi_ctx->sched.max_lanq[tc] = new_numqs; |
| else |
| vsi_ctx->sched.max_rdmaq[tc] = new_numqs; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sched_cfg_vsi - configure the new/existing VSI |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: TC number |
| * @maxqs: max number of queues |
| * @owner: LAN or RDMA |
| * @enable: TC enabled or disabled |
| * |
| * This function adds/updates VSI nodes based on the number of queues. If TC is |
| * enabled and VSI is in suspended state then resume the VSI back. If TC is |
| * disabled then suspend the VSI if it is not already. |
| */ |
| int |
| ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, |
| u8 owner, bool enable) |
| { |
| struct ice_sched_node *vsi_node, *tc_node; |
| struct ice_vsi_ctx *vsi_ctx; |
| struct ice_hw *hw = pi->hw; |
| int status = 0; |
| |
| ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return -EINVAL; |
| vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); |
| if (!vsi_ctx) |
| return -EINVAL; |
| vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); |
| |
| /* suspend the VSI if TC is not enabled */ |
| if (!enable) { |
| if (vsi_node && vsi_node->in_use) { |
| u32 teid = le32_to_cpu(vsi_node->info.node_teid); |
| |
| status = ice_sched_suspend_resume_elems(hw, 1, &teid, |
| true); |
| if (!status) |
| vsi_node->in_use = false; |
| } |
| return status; |
| } |
| |
| /* TC is enabled, if it is a new VSI then add it to the tree */ |
| if (!vsi_node) { |
| status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); |
| if (status) |
| return status; |
| |
| vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); |
| if (!vsi_node) |
| return -EIO; |
| |
| vsi_ctx->sched.vsi_node[tc] = vsi_node; |
| vsi_node->in_use = true; |
| /* invalidate the max queues whenever VSI gets added first time |
| * into the scheduler tree (boot or after reset). We need to |
| * recreate the child nodes all the time in these cases. |
| */ |
| vsi_ctx->sched.max_lanq[tc] = 0; |
| vsi_ctx->sched.max_rdmaq[tc] = 0; |
| } |
| |
| /* update the VSI child nodes */ |
| status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, |
| owner); |
| if (status) |
| return status; |
| |
| /* TC is enabled, resume the VSI if it is in the suspend state */ |
| if (!vsi_node->in_use) { |
| u32 teid = le32_to_cpu(vsi_node->info.node_teid); |
| |
| status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); |
| if (!status) |
| vsi_node->in_use = true; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * |
| * This function removes single aggregator VSI info entry from |
| * aggregator list. |
| */ |
| static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) |
| { |
| struct ice_sched_agg_info *agg_info; |
| struct ice_sched_agg_info *atmp; |
| |
| list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, |
| list_entry) { |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| struct ice_sched_agg_vsi_info *vtmp; |
| |
| list_for_each_entry_safe(agg_vsi_info, vtmp, |
| &agg_info->agg_vsi_list, list_entry) |
| if (agg_vsi_info->vsi_handle == vsi_handle) { |
| list_del(&agg_vsi_info->list_entry); |
| devm_kfree(ice_hw_to_dev(pi->hw), |
| agg_vsi_info); |
| return; |
| } |
| } |
| } |
| |
| /** |
| * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree |
| * @node: pointer to the sub-tree node |
| * |
| * This function checks for a leaf node presence in a given sub-tree node. |
| */ |
| static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) |
| { |
| u8 i; |
| |
| for (i = 0; i < node->num_children; i++) |
| if (ice_sched_is_leaf_node_present(node->children[i])) |
| return true; |
| /* check for a leaf node */ |
| return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); |
| } |
| |
| /** |
| * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @owner: LAN or RDMA |
| * |
| * This function removes the VSI and its LAN or RDMA children nodes from the |
| * scheduler tree. |
| */ |
| static int |
| ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) |
| { |
| struct ice_vsi_ctx *vsi_ctx; |
| int status = -EINVAL; |
| u8 i; |
| |
| ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); |
| if (!ice_is_vsi_valid(pi->hw, vsi_handle)) |
| return status; |
| mutex_lock(&pi->sched_lock); |
| vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); |
| if (!vsi_ctx) |
| goto exit_sched_rm_vsi_cfg; |
| |
| ice_for_each_traffic_class(i) { |
| struct ice_sched_node *vsi_node, *tc_node; |
| u8 j = 0; |
| |
| tc_node = ice_sched_get_tc_node(pi, i); |
| if (!tc_node) |
| continue; |
| |
| vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); |
| if (!vsi_node) |
| continue; |
| |
| if (ice_sched_is_leaf_node_present(vsi_node)) { |
| ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); |
| status = -EBUSY; |
| goto exit_sched_rm_vsi_cfg; |
| } |
| while (j < vsi_node->num_children) { |
| if (vsi_node->children[j]->owner == owner) { |
| ice_free_sched_node(pi, vsi_node->children[j]); |
| |
| /* reset the counter again since the num |
| * children will be updated after node removal |
| */ |
| j = 0; |
| } else { |
| j++; |
| } |
| } |
| /* remove the VSI if it has no children */ |
| if (!vsi_node->num_children) { |
| ice_free_sched_node(pi, vsi_node); |
| vsi_ctx->sched.vsi_node[i] = NULL; |
| |
| /* clean up aggregator related VSI info if any */ |
| ice_sched_rm_agg_vsi_info(pi, vsi_handle); |
| } |
| if (owner == ICE_SCHED_NODE_OWNER_LAN) |
| vsi_ctx->sched.max_lanq[i] = 0; |
| else |
| vsi_ctx->sched.max_rdmaq[i] = 0; |
| } |
| status = 0; |
| |
| exit_sched_rm_vsi_cfg: |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * |
| * This function clears the VSI and its LAN children nodes from scheduler tree |
| * for all TCs. |
| */ |
| int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) |
| { |
| return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); |
| } |
| |
| /** |
| * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * |
| * This function clears the VSI and its RDMA children nodes from scheduler tree |
| * for all TCs. |
| */ |
| int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) |
| { |
| return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); |
| } |
| |
| /** |
| * ice_get_agg_info - get the aggregator ID |
| * @hw: pointer to the hardware structure |
| * @agg_id: aggregator ID |
| * |
| * This function validates aggregator ID. The function returns info if |
| * aggregator ID is present in list otherwise it returns null. |
| */ |
| static struct ice_sched_agg_info * |
| ice_get_agg_info(struct ice_hw *hw, u32 agg_id) |
| { |
| struct ice_sched_agg_info *agg_info; |
| |
| list_for_each_entry(agg_info, &hw->agg_list, list_entry) |
| if (agg_info->agg_id == agg_id) |
| return agg_info; |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree |
| * @hw: pointer to the HW struct |
| * @node: pointer to a child node |
| * @num_nodes: num nodes count array |
| * |
| * This function walks through the aggregator subtree to find a free parent |
| * node |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, |
| u16 *num_nodes) |
| { |
| u8 l = node->tx_sched_layer; |
| u8 vsil, i; |
| |
| vsil = ice_sched_get_vsi_layer(hw); |
| |
| /* Is it VSI parent layer ? */ |
| if (l == vsil - 1) |
| return (node->num_children < hw->max_children[l]) ? node : NULL; |
| |
| /* We have intermediate nodes. Let's walk through the subtree. If the |
| * intermediate node has space to add a new node then clear the count |
| */ |
| if (node->num_children < hw->max_children[l]) |
| num_nodes[l] = 0; |
| /* The below recursive call is intentional and wouldn't go more than |
| * 2 or 3 iterations. |
| */ |
| |
| for (i = 0; i < node->num_children; i++) { |
| struct ice_sched_node *parent; |
| |
| parent = ice_sched_get_free_vsi_parent(hw, node->children[i], |
| num_nodes); |
| if (parent) |
| return parent; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_sched_update_parent - update the new parent in SW DB |
| * @new_parent: pointer to a new parent node |
| * @node: pointer to a child node |
| * |
| * This function removes the child from the old parent and adds it to a new |
| * parent |
| */ |
| static void |
| ice_sched_update_parent(struct ice_sched_node *new_parent, |
| struct ice_sched_node *node) |
| { |
| struct ice_sched_node *old_parent; |
| u8 i, j; |
| |
| old_parent = node->parent; |
| |
| /* update the old parent children */ |
| for (i = 0; i < old_parent->num_children; i++) |
| if (old_parent->children[i] == node) { |
| for (j = i + 1; j < old_parent->num_children; j++) |
| old_parent->children[j - 1] = |
| old_parent->children[j]; |
| old_parent->num_children--; |
| break; |
| } |
| |
| /* now move the node to a new parent */ |
| new_parent->children[new_parent->num_children++] = node; |
| node->parent = new_parent; |
| node->info.parent_teid = new_parent->info.node_teid; |
| } |
| |
| /** |
| * ice_sched_move_nodes - move child nodes to a given parent |
| * @pi: port information structure |
| * @parent: pointer to parent node |
| * @num_items: number of child nodes to be moved |
| * @list: pointer to child node teids |
| * |
| * This function move the child nodes to a given parent. |
| */ |
| static int |
| ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, |
| u16 num_items, u32 *list) |
| { |
| struct ice_aqc_move_elem *buf; |
| struct ice_sched_node *node; |
| u16 i, grps_movd = 0; |
| struct ice_hw *hw; |
| int status = 0; |
| u16 buf_len; |
| |
| hw = pi->hw; |
| |
| if (!parent || !num_items) |
| return -EINVAL; |
| |
| /* Does parent have enough space */ |
| if (parent->num_children + num_items > |
| hw->max_children[parent->tx_sched_layer]) |
| return -ENOSPC; |
| |
| buf_len = struct_size(buf, teid, 1); |
| buf = kzalloc(buf_len, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_items; i++) { |
| node = ice_sched_find_node_by_teid(pi->root, list[i]); |
| if (!node) { |
| status = -EINVAL; |
| goto move_err_exit; |
| } |
| |
| buf->hdr.src_parent_teid = node->info.parent_teid; |
| buf->hdr.dest_parent_teid = parent->info.node_teid; |
| buf->teid[0] = node->info.node_teid; |
| buf->hdr.num_elems = cpu_to_le16(1); |
| status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, |
| &grps_movd, NULL); |
| if (status && grps_movd != 1) { |
| status = -EIO; |
| goto move_err_exit; |
| } |
| |
| /* update the SW DB */ |
| ice_sched_update_parent(parent, node); |
| } |
| |
| move_err_exit: |
| kfree(buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_move_vsi_to_agg - move VSI to aggregator node |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @agg_id: aggregator ID |
| * @tc: TC number |
| * |
| * This function moves a VSI to an aggregator node or its subtree. |
| * Intermediate nodes may be created if required. |
| */ |
| static int |
| ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, |
| u8 tc) |
| { |
| struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; |
| u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; |
| u32 first_node_teid, vsi_teid; |
| u16 num_nodes_added; |
| u8 aggl, vsil, i; |
| int status; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return -EIO; |
| |
| agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); |
| if (!agg_node) |
| return -ENOENT; |
| |
| vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); |
| if (!vsi_node) |
| return -ENOENT; |
| |
| /* Is this VSI already part of given aggregator? */ |
| if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) |
| return 0; |
| |
| aggl = ice_sched_get_agg_layer(pi->hw); |
| vsil = ice_sched_get_vsi_layer(pi->hw); |
| |
| /* set intermediate node count to 1 between aggregator and VSI layers */ |
| for (i = aggl + 1; i < vsil; i++) |
| num_nodes[i] = 1; |
| |
| /* Check if the aggregator subtree has any free node to add the VSI */ |
| for (i = 0; i < agg_node->num_children; i++) { |
| parent = ice_sched_get_free_vsi_parent(pi->hw, |
| agg_node->children[i], |
| num_nodes); |
| if (parent) |
| goto move_nodes; |
| } |
| |
| /* add new nodes */ |
| parent = agg_node; |
| for (i = aggl + 1; i < vsil; i++) { |
| status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, |
| num_nodes[i], |
| &first_node_teid, |
| &num_nodes_added); |
| if (status || num_nodes[i] != num_nodes_added) |
| return -EIO; |
| |
| /* The newly added node can be a new parent for the next |
| * layer nodes |
| */ |
| if (num_nodes_added) |
| parent = ice_sched_find_node_by_teid(tc_node, |
| first_node_teid); |
| else |
| parent = parent->children[0]; |
| |
| if (!parent) |
| return -EIO; |
| } |
| |
| move_nodes: |
| vsi_teid = le32_to_cpu(vsi_node->info.node_teid); |
| return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); |
| } |
| |
| /** |
| * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator |
| * @pi: port information structure |
| * @agg_info: aggregator info |
| * @tc: traffic class number |
| * @rm_vsi_info: true or false |
| * |
| * This function move all the VSI(s) to the default aggregator and delete |
| * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The |
| * caller holds the scheduler lock. |
| */ |
| static int |
| ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, |
| struct ice_sched_agg_info *agg_info, u8 tc, |
| bool rm_vsi_info) |
| { |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| struct ice_sched_agg_vsi_info *tmp; |
| int status = 0; |
| |
| list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, |
| list_entry) { |
| u16 vsi_handle = agg_vsi_info->vsi_handle; |
| |
| /* Move VSI to default aggregator */ |
| if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) |
| continue; |
| |
| status = ice_sched_move_vsi_to_agg(pi, vsi_handle, |
| ICE_DFLT_AGG_ID, tc); |
| if (status) |
| break; |
| |
| clear_bit(tc, agg_vsi_info->tc_bitmap); |
| if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { |
| list_del(&agg_vsi_info->list_entry); |
| devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_sched_is_agg_inuse - check whether the aggregator is in use or not |
| * @pi: port information structure |
| * @node: node pointer |
| * |
| * This function checks whether the aggregator is attached with any VSI or not. |
| */ |
| static bool |
| ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) |
| { |
| u8 vsil, i; |
| |
| vsil = ice_sched_get_vsi_layer(pi->hw); |
| if (node->tx_sched_layer < vsil - 1) { |
| for (i = 0; i < node->num_children; i++) |
| if (ice_sched_is_agg_inuse(pi, node->children[i])) |
| return true; |
| return false; |
| } else { |
| return node->num_children ? true : false; |
| } |
| } |
| |
| /** |
| * ice_sched_rm_agg_cfg - remove the aggregator node |
| * @pi: port information structure |
| * @agg_id: aggregator ID |
| * @tc: TC number |
| * |
| * This function removes the aggregator node and intermediate nodes if any |
| * from the given TC |
| */ |
| static int |
| ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) |
| { |
| struct ice_sched_node *tc_node, *agg_node; |
| struct ice_hw *hw = pi->hw; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return -EIO; |
| |
| agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); |
| if (!agg_node) |
| return -ENOENT; |
| |
| /* Can't remove the aggregator node if it has children */ |
| if (ice_sched_is_agg_inuse(pi, agg_node)) |
| return -EBUSY; |
| |
| /* need to remove the whole subtree if aggregator node is the |
| * only child. |
| */ |
| while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { |
| struct ice_sched_node *parent = agg_node->parent; |
| |
| if (!parent) |
| return -EIO; |
| |
| if (parent->num_children > 1) |
| break; |
| |
| agg_node = parent; |
| } |
| |
| ice_free_sched_node(pi, agg_node); |
| return 0; |
| } |
| |
| /** |
| * ice_rm_agg_cfg_tc - remove aggregator configuration for TC |
| * @pi: port information structure |
| * @agg_info: aggregator ID |
| * @tc: TC number |
| * @rm_vsi_info: bool value true or false |
| * |
| * This function removes aggregator reference to VSI of given TC. It removes |
| * the aggregator configuration completely for requested TC. The caller needs |
| * to hold the scheduler lock. |
| */ |
| static int |
| ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, |
| u8 tc, bool rm_vsi_info) |
| { |
| int status = 0; |
| |
| /* If nothing to remove - return success */ |
| if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) |
| goto exit_rm_agg_cfg_tc; |
| |
| status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); |
| if (status) |
| goto exit_rm_agg_cfg_tc; |
| |
| /* Delete aggregator node(s) */ |
| status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); |
| if (status) |
| goto exit_rm_agg_cfg_tc; |
| |
| clear_bit(tc, agg_info->tc_bitmap); |
| exit_rm_agg_cfg_tc: |
| return status; |
| } |
| |
| /** |
| * ice_save_agg_tc_bitmap - save aggregator TC bitmap |
| * @pi: port information structure |
| * @agg_id: aggregator ID |
| * @tc_bitmap: 8 bits TC bitmap |
| * |
| * Save aggregator TC bitmap. This function needs to be called with scheduler |
| * lock held. |
| */ |
| static int |
| ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, |
| unsigned long *tc_bitmap) |
| { |
| struct ice_sched_agg_info *agg_info; |
| |
| agg_info = ice_get_agg_info(pi->hw, agg_id); |
| if (!agg_info) |
| return -EINVAL; |
| bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, |
| ICE_MAX_TRAFFIC_CLASS); |
| return 0; |
| } |
| |
| /** |
| * ice_sched_add_agg_cfg - create an aggregator node |
| * @pi: port information structure |
| * @agg_id: aggregator ID |
| * @tc: TC number |
| * |
| * This function creates an aggregator node and intermediate nodes if required |
| * for the given TC |
| */ |
| static int |
| ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) |
| { |
| struct ice_sched_node *parent, *agg_node, *tc_node; |
| u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; |
| struct ice_hw *hw = pi->hw; |
| u32 first_node_teid; |
| u16 num_nodes_added; |
| int status = 0; |
| u8 i, aggl; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (!tc_node) |
| return -EIO; |
| |
| agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); |
| /* Does Agg node already exist ? */ |
| if (agg_node) |
| return status; |
| |
| aggl = ice_sched_get_agg_layer(hw); |
| |
| /* need one node in Agg layer */ |
| num_nodes[aggl] = 1; |
| |
| /* Check whether the intermediate nodes have space to add the |
| * new aggregator. If they are full, then SW needs to allocate a new |
| * intermediate node on those layers |
| */ |
| for (i = hw->sw_entry_point_layer; i < aggl; i++) { |
| parent = ice_sched_get_first_node(pi, tc_node, i); |
| |
| /* scan all the siblings */ |
| while (parent) { |
| if (parent->num_children < hw->max_children[i]) |
| break; |
| parent = parent->sibling; |
| } |
| |
| /* all the nodes are full, reserve one for this layer */ |
| if (!parent) |
| num_nodes[i]++; |
| } |
| |
| /* add the aggregator node */ |
| parent = tc_node; |
| for (i = hw->sw_entry_point_layer; i <= aggl; i++) { |
| if (!parent) |
| return -EIO; |
| |
| status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, |
| num_nodes[i], |
| &first_node_teid, |
| &num_nodes_added); |
| if (status || num_nodes[i] != num_nodes_added) |
| return -EIO; |
| |
| /* The newly added node can be a new parent for the next |
| * layer nodes |
| */ |
| if (num_nodes_added) { |
| parent = ice_sched_find_node_by_teid(tc_node, |
| first_node_teid); |
| /* register aggregator ID with the aggregator node */ |
| if (parent && i == aggl) |
| parent->agg_id = agg_id; |
| } else { |
| parent = parent->children[0]; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sched_cfg_agg - configure aggregator node |
| * @pi: port information structure |
| * @agg_id: aggregator ID |
| * @agg_type: aggregator type queue, VSI, or aggregator group |
| * @tc_bitmap: bits TC bitmap |
| * |
| * It registers a unique aggregator node into scheduler services. It |
| * allows a user to register with a unique ID to track it's resources. |
| * The aggregator type determines if this is a queue group, VSI group |
| * or aggregator group. It then creates the aggregator node(s) for requested |
| * TC(s) or removes an existing aggregator node including its configuration |
| * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator |
| * resources and remove aggregator ID. |
| * This function needs to be called with scheduler lock held. |
| */ |
| static int |
| ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, |
| enum ice_agg_type agg_type, unsigned long *tc_bitmap) |
| { |
| struct ice_sched_agg_info *agg_info; |
| struct ice_hw *hw = pi->hw; |
| int status = 0; |
| u8 tc; |
| |
| agg_info = ice_get_agg_info(hw, agg_id); |
| if (!agg_info) { |
| /* Create new entry for new aggregator ID */ |
| agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), |
| GFP_KERNEL); |
| if (!agg_info) |
| return -ENOMEM; |
| |
| agg_info->agg_id = agg_id; |
| agg_info->agg_type = agg_type; |
| agg_info->tc_bitmap[0] = 0; |
| |
| /* Initialize the aggregator VSI list head */ |
| INIT_LIST_HEAD(&agg_info->agg_vsi_list); |
| |
| /* Add new entry in aggregator list */ |
| list_add(&agg_info->list_entry, &hw->agg_list); |
| } |
| /* Create aggregator node(s) for requested TC(s) */ |
| ice_for_each_traffic_class(tc) { |
| if (!ice_is_tc_ena(*tc_bitmap, tc)) { |
| /* Delete aggregator cfg TC if it exists previously */ |
| status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); |
| if (status) |
| break; |
| continue; |
| } |
| |
| /* Check if aggregator node for TC already exists */ |
| if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) |
| continue; |
| |
| /* Create new aggregator node for TC */ |
| status = ice_sched_add_agg_cfg(pi, agg_id, tc); |
| if (status) |
| break; |
| |
| /* Save aggregator node's TC information */ |
| set_bit(tc, agg_info->tc_bitmap); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_cfg_agg - config aggregator node |
| * @pi: port information structure |
| * @agg_id: aggregator ID |
| * @agg_type: aggregator type queue, VSI, or aggregator group |
| * @tc_bitmap: bits TC bitmap |
| * |
| * This function configures aggregator node(s). |
| */ |
| int |
| ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, |
| u8 tc_bitmap) |
| { |
| unsigned long bitmap = tc_bitmap; |
| int status; |
| |
| mutex_lock(&pi->sched_lock); |
| status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); |
| if (!status) |
| status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_get_agg_vsi_info - get the aggregator ID |
| * @agg_info: aggregator info |
| * @vsi_handle: software VSI handle |
| * |
| * The function returns aggregator VSI info based on VSI handle. This function |
| * needs to be called with scheduler lock held. |
| */ |
| static struct ice_sched_agg_vsi_info * |
| ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) |
| { |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| |
| list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) |
| if (agg_vsi_info->vsi_handle == vsi_handle) |
| return agg_vsi_info; |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_get_vsi_agg_info - get the aggregator info of VSI |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: Sw VSI handle |
| * |
| * The function returns aggregator info of VSI represented via vsi_handle. The |
| * VSI has in this case a different aggregator than the default one. This |
| * function needs to be called with scheduler lock held. |
| */ |
| static struct ice_sched_agg_info * |
| ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) |
| { |
| struct ice_sched_agg_info *agg_info; |
| |
| list_for_each_entry(agg_info, &hw->agg_list, list_entry) { |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| |
| agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); |
| if (agg_vsi_info) |
| return agg_info; |
| } |
| return NULL; |
| } |
| |
| /** |
| * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap |
| * @pi: port information structure |
| * @agg_id: aggregator ID |
| * @vsi_handle: software VSI handle |
| * @tc_bitmap: TC bitmap of enabled TC(s) |
| * |
| * Save VSI to aggregator TC bitmap. This function needs to call with scheduler |
| * lock held. |
| */ |
| static int |
| ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, |
| unsigned long *tc_bitmap) |
| { |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| struct ice_sched_agg_info *agg_info; |
| |
| agg_info = ice_get_agg_info(pi->hw, agg_id); |
| if (!agg_info) |
| return -EINVAL; |
| /* check if entry already exist */ |
| agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); |
| if (!agg_vsi_info) |
| return -EINVAL; |
| bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, |
| ICE_MAX_TRAFFIC_CLASS); |
| return 0; |
| } |
| |
| /** |
| * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator |
| * @pi: port information structure |
| * @agg_id: aggregator ID |
| * @vsi_handle: software VSI handle |
| * @tc_bitmap: TC bitmap of enabled TC(s) |
| * |
| * This function moves VSI to a new or default aggregator node. If VSI is |
| * already associated to the aggregator node then no operation is performed on |
| * the tree. This function needs to be called with scheduler lock held. |
| */ |
| static int |
| ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, |
| u16 vsi_handle, unsigned long *tc_bitmap) |
| { |
| struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL; |
| struct ice_sched_agg_info *agg_info, *old_agg_info; |
| struct ice_hw *hw = pi->hw; |
| int status = 0; |
| u8 tc; |
| |
| if (!ice_is_vsi_valid(pi->hw, vsi_handle)) |
| return -EINVAL; |
| agg_info = ice_get_agg_info(hw, agg_id); |
| if (!agg_info) |
| return -EINVAL; |
| /* If the VSI is already part of another aggregator then update |
| * its VSI info list |
| */ |
| old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); |
| if (old_agg_info && old_agg_info != agg_info) { |
| struct ice_sched_agg_vsi_info *vtmp; |
| |
| list_for_each_entry_safe(old_agg_vsi_info, vtmp, |
| &old_agg_info->agg_vsi_list, |
| list_entry) |
| if (old_agg_vsi_info->vsi_handle == vsi_handle) |
| break; |
| } |
| |
| /* check if entry already exist */ |
| agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); |
| if (!agg_vsi_info) { |
| /* Create new entry for VSI under aggregator list */ |
| agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*agg_vsi_info), GFP_KERNEL); |
| if (!agg_vsi_info) |
| return -EINVAL; |
| |
| /* add VSI ID into the aggregator list */ |
| agg_vsi_info->vsi_handle = vsi_handle; |
| list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); |
| } |
| /* Move VSI node to new aggregator node for requested TC(s) */ |
| ice_for_each_traffic_class(tc) { |
| if (!ice_is_tc_ena(*tc_bitmap, tc)) |
| continue; |
| |
| /* Move VSI to new aggregator */ |
| status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); |
| if (status) |
| break; |
| |
| set_bit(tc, agg_vsi_info->tc_bitmap); |
| if (old_agg_vsi_info) |
| clear_bit(tc, old_agg_vsi_info->tc_bitmap); |
| } |
| if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { |
| list_del(&old_agg_vsi_info->list_entry); |
| devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); |
| } |
| return status; |
| } |
| |
| /** |
| * ice_sched_rm_unused_rl_prof - remove unused RL profile |
| * @pi: port information structure |
| * |
| * This function removes unused rate limit profiles from the HW and |
| * SW DB. The caller needs to hold scheduler lock. |
| */ |
| static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) |
| { |
| u16 ln; |
| |
| for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { |
| struct ice_aqc_rl_profile_info *rl_prof_elem; |
| struct ice_aqc_rl_profile_info *rl_prof_tmp; |
| |
| list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, |
| &pi->rl_prof_list[ln], list_entry) { |
| if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) |
| ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); |
| } |
| } |
| } |
| |
| /** |
| * ice_sched_update_elem - update element |
| * @hw: pointer to the HW struct |
| * @node: pointer to node |
| * @info: node info to update |
| * |
| * Update the HW DB, and local SW DB of node. Update the scheduling |
| * parameters of node from argument info data buffer (Info->data buf) and |
| * returns success or error on config sched element failure. The caller |
| * needs to hold scheduler lock. |
| */ |
| static int |
| ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, |
| struct ice_aqc_txsched_elem_data *info) |
| { |
| struct ice_aqc_txsched_elem_data buf; |
| u16 elem_cfgd = 0; |
| u16 num_elems = 1; |
| int status; |
| |
| buf = *info; |
| /* Parent TEID is reserved field in this aq call */ |
| buf.parent_teid = 0; |
| /* Element type is reserved field in this aq call */ |
| buf.data.elem_type = 0; |
| /* Flags is reserved field in this aq call */ |
| buf.data.flags = 0; |
| |
| /* Update HW DB */ |
| /* Configure element node */ |
| status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), |
| &elem_cfgd, NULL); |
| if (status || elem_cfgd != num_elems) { |
| ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); |
| return -EIO; |
| } |
| |
| /* Config success case */ |
| /* Now update local SW DB */ |
| /* Only copy the data portion of info buffer */ |
| node->info.data = info->data; |
| return status; |
| } |
| |
| /** |
| * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params |
| * @hw: pointer to the HW struct |
| * @node: sched node to configure |
| * @rl_type: rate limit type CIR, EIR, or shared |
| * @bw_alloc: BW weight/allocation |
| * |
| * This function configures node element's BW allocation. |
| */ |
| static int |
| ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, |
| enum ice_rl_type rl_type, u16 bw_alloc) |
| { |
| struct ice_aqc_txsched_elem_data buf; |
| struct ice_aqc_txsched_elem *data; |
| |
| buf = node->info; |
| data = &buf.data; |
| if (rl_type == ICE_MIN_BW) { |
| data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; |
| data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); |
| } else if (rl_type == ICE_MAX_BW) { |
| data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; |
| data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); |
| } else { |
| return -EINVAL; |
| } |
| |
| /* Configure element */ |
| return ice_sched_update_elem(hw, node, &buf); |
| } |
| |
| /** |
| * ice_move_vsi_to_agg - moves VSI to new or default aggregator |
| * @pi: port information structure |
| * @agg_id: aggregator ID |
| * @vsi_handle: software VSI handle |
| * @tc_bitmap: TC bitmap of enabled TC(s) |
| * |
| * Move or associate VSI to a new or default aggregator node. |
| */ |
| int |
| ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, |
| u8 tc_bitmap) |
| { |
| unsigned long bitmap = tc_bitmap; |
| int status; |
| |
| mutex_lock(&pi->sched_lock); |
| status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, |
| (unsigned long *)&bitmap); |
| if (!status) |
| status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, |
| (unsigned long *)&bitmap); |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_set_clear_cir_bw - set or clear CIR BW |
| * @bw_t_info: bandwidth type information structure |
| * @bw: bandwidth in Kbps - Kilo bits per sec |
| * |
| * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. |
| */ |
| static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) |
| { |
| if (bw == ICE_SCHED_DFLT_BW) { |
| clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); |
| bw_t_info->cir_bw.bw = 0; |
| } else { |
| /* Save type of BW information */ |
| set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); |
| bw_t_info->cir_bw.bw = bw; |
| } |
| } |
| |
| /** |
| * ice_set_clear_eir_bw - set or clear EIR BW |
| * @bw_t_info: bandwidth type information structure |
| * @bw: bandwidth in Kbps - Kilo bits per sec |
| * |
| * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. |
| */ |
| static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) |
| { |
| if (bw == ICE_SCHED_DFLT_BW) { |
| clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); |
| bw_t_info->eir_bw.bw = 0; |
| } else { |
| /* EIR BW and Shared BW profiles are mutually exclusive and |
| * hence only one of them may be set for any given element. |
| * First clear earlier saved shared BW information. |
| */ |
| clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); |
| bw_t_info->shared_bw = 0; |
| /* save EIR BW information */ |
| set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); |
| bw_t_info->eir_bw.bw = bw; |
| } |
| } |
| |
| /** |
| * ice_set_clear_shared_bw - set or clear shared BW |
| * @bw_t_info: bandwidth type information structure |
| * @bw: bandwidth in Kbps - Kilo bits per sec |
| * |
| * Save or clear shared bandwidth (BW) in the passed param bw_t_info. |
| */ |
| static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) |
| { |
| if (bw == ICE_SCHED_DFLT_BW) { |
| clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); |
| bw_t_info->shared_bw = 0; |
| } else { |
| /* EIR BW and Shared BW profiles are mutually exclusive and |
| * hence only one of them may be set for any given element. |
| * First clear earlier saved EIR BW information. |
| */ |
| clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); |
| bw_t_info->eir_bw.bw = 0; |
| /* save shared BW information */ |
| set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); |
| bw_t_info->shared_bw = bw; |
| } |
| } |
| |
| /** |
| * ice_sched_save_vsi_bw - save VSI node's BW information |
| * @pi: port information structure |
| * @vsi_handle: sw VSI handle |
| * @tc: traffic class |
| * @rl_type: rate limit type min, max, or shared |
| * @bw: bandwidth in Kbps - Kilo bits per sec |
| * |
| * Save BW information of VSI type node for post replay use. |
| */ |
| static int |
| ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, |
| enum ice_rl_type rl_type, u32 bw) |
| { |
| struct ice_vsi_ctx *vsi_ctx; |
| |
| if (!ice_is_vsi_valid(pi->hw, vsi_handle)) |
| return -EINVAL; |
| vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); |
| if (!vsi_ctx) |
| return -EINVAL; |
| switch (rl_type) { |
| case ICE_MIN_BW: |
| ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); |
| break; |
| case ICE_MAX_BW: |
| ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); |
| break; |
| case ICE_SHARED_BW: |
| ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_sched_calc_wakeup - calculate RL profile wakeup parameter |
| * @hw: pointer to the HW struct |
| * @bw: bandwidth in Kbps |
| * |
| * This function calculates the wakeup parameter of RL profile. |
| */ |
| static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) |
| { |
| s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; |
| s32 wakeup_f_int; |
| u16 wakeup = 0; |
| |
| /* Get the wakeup integer value */ |
| bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); |
| wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); |
| if (wakeup_int > 63) { |
| wakeup = (u16)((1 << 15) | wakeup_int); |
| } else { |
| /* Calculate fraction value up to 4 decimals |
| * Convert Integer value to a constant multiplier |
| */ |
| wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; |
| wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * |
| hw->psm_clk_freq, bytes_per_sec); |
| |
| /* Get Fraction value */ |
| wakeup_f = wakeup_a - wakeup_b; |
| |
| /* Round up the Fractional value via Ceil(Fractional value) */ |
| if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) |
| wakeup_f += 1; |
| |
| wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, |
| ICE_RL_PROF_MULTIPLIER); |
| wakeup |= (u16)(wakeup_int << 9); |
| wakeup |= (u16)(0x1ff & wakeup_f_int); |
| } |
| |
| return wakeup; |
| } |
| |
| /** |
| * ice_sched_bw_to_rl_profile - convert BW to profile parameters |
| * @hw: pointer to the HW struct |
| * @bw: bandwidth in Kbps |
| * @profile: profile parameters to return |
| * |
| * This function converts the BW to profile structure format. |
| */ |
| static int |
| ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, |
| struct ice_aqc_rl_profile_elem *profile) |
| { |
| s64 bytes_per_sec, ts_rate, mv_tmp; |
| int status = -EINVAL; |
| bool found = false; |
| s32 encode = 0; |
| s64 mv = 0; |
| s32 i; |
| |
| /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ |
| if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) |
| return status; |
| |
| /* Bytes per second from Kbps */ |
| bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); |
| |
| /* encode is 6 bits but really useful are 5 bits */ |
| for (i = 0; i < 64; i++) { |
| u64 pow_result = BIT_ULL(i); |
| |
| ts_rate = div64_long((s64)hw->psm_clk_freq, |
| pow_result * ICE_RL_PROF_TS_MULTIPLIER); |
| if (ts_rate <= 0) |
| continue; |
| |
| /* Multiplier value */ |
| mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, |
| ts_rate); |
| |
| /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ |
| mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); |
| |
| /* First multiplier value greater than the given |
| * accuracy bytes |
| */ |
| if (mv > ICE_RL_PROF_ACCURACY_BYTES) { |
| encode = i; |
| found = true; |
| break; |
| } |
| } |
| if (found) { |
| u16 wm; |
| |
| wm = ice_sched_calc_wakeup(hw, bw); |
| profile->rl_multiply = cpu_to_le16(mv); |
| profile->wake_up_calc = cpu_to_le16(wm); |
| profile->rl_encode = cpu_to_le16(encode); |
| status = 0; |
| } else { |
| status = -ENOENT; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_sched_add_rl_profile - add RL profile |
| * @pi: port information structure |
| * @rl_type: type of rate limit BW - min, max, or shared |
| * @bw: bandwidth in Kbps - Kilo bits per sec |
| * @layer_num: specifies in which layer to create profile |
| * |
| * This function first checks the existing list for corresponding BW |
| * parameter. If it exists, it returns the associated profile otherwise |
| * it creates a new rate limit profile for requested BW, and adds it to |
| * the HW DB and local list. It returns the new profile or null on error. |
| * The caller needs to hold the scheduler lock. |
| */ |
| static struct ice_aqc_rl_profile_info * |
| ice_sched_add_rl_profile(struct ice_port_info *pi, |
| enum ice_rl_type rl_type, u32 bw, u8 layer_num) |
| { |
| struct ice_aqc_rl_profile_info *rl_prof_elem; |
| u16 profiles_added = 0, num_profiles = 1; |
| struct ice_aqc_rl_profile_elem *buf; |
| struct ice_hw *hw; |
| u8 profile_type; |
| int status; |
| |
| if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) |
| return NULL; |
| switch (rl_type) { |
| case ICE_MIN_BW: |
| profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; |
| break; |
| case ICE_MAX_BW: |
| profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; |
| break; |
| case ICE_SHARED_BW: |
| profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; |
| break; |
| default: |
| return NULL; |
| } |
| |
| if (!pi) |
| return NULL; |
| hw = pi->hw; |
| list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], |
| list_entry) |
| if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == |
| profile_type && rl_prof_elem->bw == bw) |
| /* Return existing profile ID info */ |
| return rl_prof_elem; |
| |
| /* Create new profile ID */ |
| rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), |
| GFP_KERNEL); |
| |
| if (!rl_prof_elem) |
| return NULL; |
| |
| status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); |
| if (status) |
| goto exit_add_rl_prof; |
| |
| rl_prof_elem->bw = bw; |
| /* layer_num is zero relative, and fw expects level from 1 to 9 */ |
| rl_prof_elem->profile.level = layer_num + 1; |
| rl_prof_elem->profile.flags = profile_type; |
| rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); |
| |
| /* Create new entry in HW DB */ |
| buf = &rl_prof_elem->profile; |
| status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), |
| &profiles_added, NULL); |
| if (status || profiles_added != num_profiles) |
| goto exit_add_rl_prof; |
| |
| /* Good entry - add in the list */ |
| rl_prof_elem->prof_id_ref = 0; |
| list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); |
| return rl_prof_elem; |
| |
| exit_add_rl_prof: |
| devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); |
| return NULL; |
| } |
| |
| /** |
| * ice_sched_cfg_node_bw_lmt - configure node sched params |
| * @hw: pointer to the HW struct |
| * @node: sched node to configure |
| * @rl_type: rate limit type CIR, EIR, or shared |
| * @rl_prof_id: rate limit profile ID |
| * |
| * This function configures node element's BW limit. |
| */ |
| static int |
| ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, |
| enum ice_rl_type rl_type, u16 rl_prof_id) |
| { |
| struct ice_aqc_txsched_elem_data buf; |
| struct ice_aqc_txsched_elem *data; |
| |
| buf = node->info; |
| data = &buf.data; |
| switch (rl_type) { |
| case ICE_MIN_BW: |
| data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; |
| data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); |
| break; |
| case ICE_MAX_BW: |
| /* EIR BW and Shared BW profiles are mutually exclusive and |
| * hence only one of them may be set for any given element |
| */ |
| if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) |
| return -EIO; |
| data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; |
| data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); |
| break; |
| case ICE_SHARED_BW: |
| /* Check for removing shared BW */ |
| if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { |
| /* remove shared profile */ |
| data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; |
| data->srl_id = 0; /* clear SRL field */ |
| |
| /* enable back EIR to default profile */ |
| data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; |
| data->eir_bw.bw_profile_idx = |
| cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); |
| break; |
| } |
| /* EIR BW and Shared BW profiles are mutually exclusive and |
| * hence only one of them may be set for any given element |
| */ |
| if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && |
| (le16_to_cpu(data->eir_bw.bw_profile_idx) != |
| ICE_SCHED_DFLT_RL_PROF_ID)) |
| return -EIO; |
| /* EIR BW is set to default, disable it */ |
| data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; |
| /* Okay to enable shared BW now */ |
| data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; |
| data->srl_id = cpu_to_le16(rl_prof_id); |
| break; |
| default: |
| /* Unknown rate limit type */ |
| return -EINVAL; |
| } |
| |
| /* Configure element */ |
| return ice_sched_update_elem(hw, node, &buf); |
| } |
| |
| /** |
| * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID |
| * @node: sched node |
| * @rl_type: rate limit type |
| * |
| * If existing profile matches, it returns the corresponding rate |
| * limit profile ID, otherwise it returns an invalid ID as error. |
| */ |
| static u16 |
| ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, |
| enum ice_rl_type rl_type) |
| { |
| u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; |
| struct ice_aqc_txsched_elem *data; |
| |
| data = &node->info.data; |
| switch (rl_type) { |
| case ICE_MIN_BW: |
| if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) |
| rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); |
| break; |
| case ICE_MAX_BW: |
| if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) |
| rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); |
| break; |
| case ICE_SHARED_BW: |
| if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) |
| rl_prof_id = le16_to_cpu(data->srl_id); |
| break; |
| default: |
| break; |
| } |
| |
| return rl_prof_id; |
| } |
| |
| /** |
| * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer |
| * @pi: port information structure |
| * @rl_type: type of rate limit BW - min, max, or shared |
| * @layer_index: layer index |
| * |
| * This function returns requested profile creation layer. |
| */ |
| static u8 |
| ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, |
| u8 layer_index) |
| { |
| struct ice_hw *hw = pi->hw; |
| |
| if (layer_index >= hw->num_tx_sched_layers) |
| return ICE_SCHED_INVAL_LAYER_NUM; |
| switch (rl_type) { |
| case ICE_MIN_BW: |
| if (hw->layer_info[layer_index].max_cir_rl_profiles) |
| return layer_index; |
| break; |
| case ICE_MAX_BW: |
| if (hw->layer_info[layer_index].max_eir_rl_profiles) |
| return layer_index; |
| break; |
| case ICE_SHARED_BW: |
| /* if current layer doesn't support SRL profile creation |
| * then try a layer up or down. |
| */ |
| if (hw->layer_info[layer_index].max_srl_profiles) |
| return layer_index; |
| else if (layer_index < hw->num_tx_sched_layers - 1 && |
| hw->layer_info[layer_index + 1].max_srl_profiles) |
| return layer_index + 1; |
| else if (layer_index > 0 && |
| hw->layer_info[layer_index - 1].max_srl_profiles) |
| return layer_index - 1; |
| break; |
| default: |
| break; |
| } |
| return ICE_SCHED_INVAL_LAYER_NUM; |
| } |
| |
| /** |
| * ice_sched_get_srl_node - get shared rate limit node |
| * @node: tree node |
| * @srl_layer: shared rate limit layer |
| * |
| * This function returns SRL node to be used for shared rate limit purpose. |
| * The caller needs to hold scheduler lock. |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) |
| { |
| if (srl_layer > node->tx_sched_layer) |
| return node->children[0]; |
| else if (srl_layer < node->tx_sched_layer) |
| /* Node can't be created without a parent. It will always |
| * have a valid parent except root node. |
| */ |
| return node->parent; |
| else |
| return node; |
| } |
| |
| /** |
| * ice_sched_rm_rl_profile - remove RL profile ID |
| * @pi: port information structure |
| * @layer_num: layer number where profiles are saved |
| * @profile_type: profile type like EIR, CIR, or SRL |
| * @profile_id: profile ID to remove |
| * |
| * This function removes rate limit profile from layer 'layer_num' of type |
| * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold |
| * scheduler lock. |
| */ |
| static int |
| ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, |
| u16 profile_id) |
| { |
| struct ice_aqc_rl_profile_info *rl_prof_elem; |
| int status = 0; |
| |
| if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) |
| return -EINVAL; |
| /* Check the existing list for RL profile */ |
| list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], |
| list_entry) |
| if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == |
| profile_type && |
| le16_to_cpu(rl_prof_elem->profile.profile_id) == |
| profile_id) { |
| if (rl_prof_elem->prof_id_ref) |
| rl_prof_elem->prof_id_ref--; |
| |
| /* Remove old profile ID from database */ |
| status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); |
| if (status && status != -EBUSY) |
| ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); |
| break; |
| } |
| if (status == -EBUSY) |
| status = 0; |
| return status; |
| } |
| |
| /** |
| * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default |
| * @pi: port information structure |
| * @node: pointer to node structure |
| * @rl_type: rate limit type min, max, or shared |
| * @layer_num: layer number where RL profiles are saved |
| * |
| * This function configures node element's BW rate limit profile ID of |
| * type CIR, EIR, or SRL to default. This function needs to be called |
| * with the scheduler lock held. |
| */ |
| static int |
| ice_sched_set_node_bw_dflt(struct ice_port_info *pi, |
| struct ice_sched_node *node, |
| enum ice_rl_type rl_type, u8 layer_num) |
| { |
| struct ice_hw *hw; |
| u8 profile_type; |
| u16 rl_prof_id; |
| u16 old_id; |
| int status; |
| |
| hw = pi->hw; |
| switch (rl_type) { |
| case ICE_MIN_BW: |
| profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; |
| rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; |
| break; |
| case ICE_MAX_BW: |
| profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; |
| rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; |
| break; |
| case ICE_SHARED_BW: |
| profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; |
| /* No SRL is configured for default case */ |
| rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; |
| break; |
| default: |
| return -EINVAL; |
| } |
| /* Save existing RL prof ID for later clean up */ |
| old_id = ice_sched_get_node_rl_prof_id(node, rl_type); |
| /* Configure BW scheduling parameters */ |
| status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); |
| if (status) |
| return status; |
| |
| /* Remove stale RL profile ID */ |
| if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || |
| old_id == ICE_SCHED_INVAL_PROF_ID) |
| return 0; |
| |
| return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); |
| } |
| |
| /** |
| * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness |
| * @pi: port information structure |
| * @node: pointer to node structure |
| * @layer_num: layer number where rate limit profiles are saved |
| * @rl_type: rate limit type min, max, or shared |
| * @bw: bandwidth value |
| * |
| * This function prepares node element's bandwidth to SRL or EIR exclusively. |
| * EIR BW and Shared BW profiles are mutually exclusive and hence only one of |
| * them may be set for any given element. This function needs to be called |
| * with the scheduler lock held. |
| */ |
| static int |
| ice_sched_set_eir_srl_excl(struct ice_port_info *pi, |
| struct ice_sched_node *node, |
| u8 layer_num, enum ice_rl_type rl_type, u32 bw) |
| { |
| if (rl_type == ICE_SHARED_BW) { |
| /* SRL node passed in this case, it may be different node */ |
| if (bw == ICE_SCHED_DFLT_BW) |
| /* SRL being removed, ice_sched_cfg_node_bw_lmt() |
| * enables EIR to default. EIR is not set in this |
| * case, so no additional action is required. |
| */ |
| return 0; |
| |
| /* SRL being configured, set EIR to default here. |
| * ice_sched_cfg_node_bw_lmt() disables EIR when it |
| * configures SRL |
| */ |
| return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, |
| layer_num); |
| } else if (rl_type == ICE_MAX_BW && |
| node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { |
| /* Remove Shared profile. Set default shared BW call |
| * removes shared profile for a node. |
| */ |
| return ice_sched_set_node_bw_dflt(pi, node, |
| ICE_SHARED_BW, |
| layer_num); |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_sched_set_node_bw - set node's bandwidth |
| * @pi: port information structure |
| * @node: tree node |
| * @rl_type: rate limit type min, max, or shared |
| * @bw: bandwidth in Kbps - Kilo bits per sec |
| * @layer_num: layer number |
| * |
| * This function adds new profile corresponding to requested BW, configures |
| * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile |
| * ID from local database. The caller needs to hold scheduler lock. |
| */ |
| static int |
| ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, |
| enum ice_rl_type rl_type, u32 bw, u8 layer_num) |
| { |
| struct ice_aqc_rl_profile_info *rl_prof_info; |
| struct ice_hw *hw = pi->hw; |
| u16 old_id, rl_prof_id; |
| int status = -EINVAL; |
| |
| rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); |
| if (!rl_prof_info) |
| return status; |
| |
| rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); |
| |
| /* Save existing RL prof ID for later clean up */ |
| old_id = ice_sched_get_node_rl_prof_id(node, rl_type); |
| /* Configure BW scheduling parameters */ |
| status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); |
| if (status) |
| return status; |
| |
| /* New changes has been applied */ |
| /* Increment the profile ID reference count */ |
| rl_prof_info->prof_id_ref++; |
| |
| /* Check for old ID removal */ |
| if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || |
| old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) |
| return 0; |
| |
| return ice_sched_rm_rl_profile(pi, layer_num, |
| rl_prof_info->profile.flags & |
| ICE_AQC_RL_PROFILE_TYPE_M, old_id); |
| } |
| |
| /** |
| * ice_sched_set_node_bw_lmt - set node's BW limit |
| * @pi: port information structure |
| * @node: tree node |
| * @rl_type: rate limit type min, max, or shared |
| * @bw: bandwidth in Kbps - Kilo bits per sec |
| * |
| * It updates node's BW limit parameters like BW RL profile ID of type CIR, |
| * EIR, or SRL. The caller needs to hold scheduler lock. |
| */ |
| static int |
| ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, |
| enum ice_rl_type rl_type, u32 bw) |
| { |
| struct ice_sched_node *cfg_node = node; |
| int status; |
| |
| struct ice_hw *hw; |
| u8 layer_num; |
| |
| if (!pi) |
| return -EINVAL; |
| hw = pi->hw; |
| /* Remove unused RL profile IDs from HW and SW DB */ |
| ice_sched_rm_unused_rl_prof(pi); |
| layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, |
| node->tx_sched_layer); |
| if (layer_num >= hw->num_tx_sched_layers) |
| return -EINVAL; |
| |
| if (rl_type == ICE_SHARED_BW) { |
| /* SRL node may be different */ |
| cfg_node = ice_sched_get_srl_node(node, layer_num); |
| if (!cfg_node) |
| return -EIO; |
| } |
| /* EIR BW and Shared BW profiles are mutually exclusive and |
| * hence only one of them may be set for any given element |
| */ |
| status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, |
| bw); |
| if (status) |
| return status; |
| if (bw == ICE_SCHED_DFLT_BW) |
| return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, |
| layer_num); |
| return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); |
| } |
| |
| /** |
| * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default |
| * @pi: port information structure |
| * @node: pointer to node structure |
| * @rl_type: rate limit type min, max, or shared |
| * |
| * This function configures node element's BW rate limit profile ID of |
| * type CIR, EIR, or SRL to default. This function needs to be called |
| * with the scheduler lock held. |
| */ |
| static int |
| ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, |
| struct ice_sched_node *node, |
| enum ice_rl_type rl_type) |
| { |
| return ice_sched_set_node_bw_lmt(pi, node, rl_type, |
| ICE_SCHED_DFLT_BW); |
| } |
| |
| /** |
| * ice_sched_validate_srl_node - Check node for SRL applicability |
| * @node: sched node to configure |
| * @sel_layer: selected SRL layer |
| * |
| * This function checks if the SRL can be applied to a selected layer node on |
| * behalf of the requested node (first argument). This function needs to be |
| * called with scheduler lock held. |
| */ |
| static int |
| ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) |
| { |
| /* SRL profiles are not available on all layers. Check if the |
| * SRL profile can be applied to a node above or below the |
| * requested node. SRL configuration is possible only if the |
| * selected layer's node has single child. |
| */ |
| if (sel_layer == node->tx_sched_layer || |
| ((sel_layer == node->tx_sched_layer + 1) && |
| node->num_children == 1) || |
| ((sel_layer == node->tx_sched_layer - 1) && |
| (node->parent && node->parent->num_children == 1))) |
| return 0; |
| |
| return -EIO; |
| } |
| |
| /** |
| * ice_sched_save_q_bw - save queue node's BW information |
| * @q_ctx: queue context structure |
| * @rl_type: rate limit type min, max, or shared |
| * @bw: bandwidth in Kbps - Kilo bits per sec |
| * |
| * Save BW information of queue type node for post replay use. |
| */ |
| static int |
| ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) |
| { |
| switch (rl_type) { |
| case ICE_MIN_BW: |
| ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); |
| break; |
| case ICE_MAX_BW: |
| ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); |
| break; |
| case ICE_SHARED_BW: |
| ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_sched_set_q_bw_lmt - sets queue BW limit |
| * @pi: port information structure |
| * @vsi_handle: sw VSI handle |
| * @tc: traffic class |
| * @q_handle: software queue handle |
| * @rl_type: min, max, or shared |
| * @bw: bandwidth in Kbps |
| * |
| * This function sets BW limit of queue scheduling node. |
| */ |
| static int |
| ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, |
| u16 q_handle, enum ice_rl_type rl_type, u32 bw) |
| { |
| struct ice_sched_node *node; |
| struct ice_q_ctx *q_ctx; |
| int status = -EINVAL; |
| |
| if (!ice_is_vsi_valid(pi->hw, vsi_handle)) |
| return -EINVAL; |
| mutex_lock(&pi->sched_lock); |
| q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); |
| if (!q_ctx) |
| goto exit_q_bw_lmt; |
| node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); |
| if (!node) { |
| ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); |
| goto exit_q_bw_lmt; |
| } |
| |
| /* Return error if it is not a leaf node */ |
| if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) |
| goto exit_q_bw_lmt; |
| |
| /* SRL bandwidth layer selection */ |
| if (rl_type == ICE_SHARED_BW) { |
| u8 sel_layer; /* selected layer */ |
| |
| sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, |
| node->tx_sched_layer); |
| if (sel_layer >= pi->hw->num_tx_sched_layers) { |
| status = -EINVAL; |
| goto exit_q_bw_lmt; |
| } |
| status = ice_sched_validate_srl_node(node, sel_layer); |
| if (status) |
| goto exit_q_bw_lmt; |
| } |
| |
| if (bw == ICE_SCHED_DFLT_BW) |
| status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); |
| else |
| status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); |
| |
| if (!status) |
| status = ice_sched_save_q_bw(q_ctx, rl_type, bw); |
| |
| exit_q_bw_lmt: |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_cfg_q_bw_lmt - configure queue BW limit |
| * @pi: port information structure |
| * @vsi_handle: sw VSI handle |
| * @tc: traffic class |
| * @q_handle: software queue handle |
| * @rl_type: min, max, or shared |
| * @bw: bandwidth in Kbps |
| * |
| * This function configures BW limit of queue scheduling node. |
| */ |
| int |
| ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, |
| u16 q_handle, enum ice_rl_type rl_type, u32 bw) |
| { |
| return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, |
| bw); |
| } |
| |
| /** |
| * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit |
| * @pi: port information structure |
| * @vsi_handle: sw VSI handle |
| * @tc: traffic class |
| * @q_handle: software queue handle |
| * @rl_type: min, max, or shared |
| * |
| * This function configures BW default limit of queue scheduling node. |
| */ |
| int |
| ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, |
| u16 q_handle, enum ice_rl_type rl_type) |
| { |
| return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, |
| ICE_SCHED_DFLT_BW); |
| } |
| |
| /** |
| * ice_sched_get_node_by_id_type - get node from ID type |
| * @pi: port information structure |
| * @id: identifier |
| * @agg_type: type of aggregator |
| * @tc: traffic class |
| * |
| * This function returns node identified by ID of type aggregator, and |
| * based on traffic class (TC). This function needs to be called with |
| * the scheduler lock held. |
| */ |
| static struct ice_sched_node * |
| ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, |
| enum ice_agg_type agg_type, u8 tc) |
| { |
| struct ice_sched_node *node = NULL; |
| |
| switch (agg_type) { |
| case ICE_AGG_TYPE_VSI: { |
| struct ice_vsi_ctx *vsi_ctx; |
| u16 vsi_handle = (u16)id; |
| |
| if (!ice_is_vsi_valid(pi->hw, vsi_handle)) |
| break; |
| /* Get sched_vsi_info */ |
| vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); |
| if (!vsi_ctx) |
| break; |
| node = vsi_ctx->sched.vsi_node[tc]; |
| break; |
| } |
| |
| case ICE_AGG_TYPE_AGG: { |
| struct ice_sched_node *tc_node; |
| |
| tc_node = ice_sched_get_tc_node(pi, tc); |
| if (tc_node) |
| node = ice_sched_get_agg_node(pi, tc_node, id); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| return node; |
| } |
| |
| /** |
| * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC |
| * @pi: port information structure |
| * @id: ID (software VSI handle or AGG ID) |
| * @agg_type: aggregator type (VSI or AGG type node) |
| * @tc: traffic class |
| * @rl_type: min or max |
| * @bw: bandwidth in Kbps |
| * |
| * This function sets BW limit of VSI or Aggregator scheduling node |
| * based on TC information from passed in argument BW. |
| */ |
| int |
| ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, |
| enum ice_agg_type agg_type, u8 tc, |
| enum ice_rl_type rl_type, u32 bw) |
| { |
| struct ice_sched_node *node; |
| int status = -EINVAL; |
| |
| if (!pi) |
| return status; |
| |
| if (rl_type == ICE_UNKNOWN_BW) |
| return status; |
| |
| mutex_lock(&pi->sched_lock); |
| node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); |
| if (!node) { |
| ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); |
| goto exit_set_node_bw_lmt_per_tc; |
| } |
| if (bw == ICE_SCHED_DFLT_BW) |
| status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); |
| else |
| status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); |
| |
| exit_set_node_bw_lmt_per_tc: |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: traffic class |
| * @rl_type: min or max |
| * @bw: bandwidth in Kbps |
| * |
| * This function configures BW limit of VSI scheduling node based on TC |
| * information. |
| */ |
| int |
| ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, |
| enum ice_rl_type rl_type, u32 bw) |
| { |
| int status; |
| |
| status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, |
| ICE_AGG_TYPE_VSI, |
| tc, rl_type, bw); |
| if (!status) { |
| mutex_lock(&pi->sched_lock); |
| status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); |
| mutex_unlock(&pi->sched_lock); |
| } |
| return status; |
| } |
| |
| /** |
| * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: traffic class |
| * @rl_type: min or max |
| * |
| * This function configures default BW limit of VSI scheduling node based on TC |
| * information. |
| */ |
| int |
| ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, |
| enum ice_rl_type rl_type) |
| { |
| int status; |
| |
| status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, |
| ICE_AGG_TYPE_VSI, |
| tc, rl_type, |
| ICE_SCHED_DFLT_BW); |
| if (!status) { |
| mutex_lock(&pi->sched_lock); |
| status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, |
| ICE_SCHED_DFLT_BW); |
| mutex_unlock(&pi->sched_lock); |
| } |
| return status; |
| } |
| |
| /** |
| * ice_cfg_rl_burst_size - Set burst size value |
| * @hw: pointer to the HW struct |
| * @bytes: burst size in bytes |
| * |
| * This function configures/set the burst size to requested new value. The new |
| * burst size value is used for future rate limit calls. It doesn't change the |
| * existing or previously created RL profiles. |
| */ |
| int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) |
| { |
| u16 burst_size_to_prog; |
| |
| if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || |
| bytes > ICE_MAX_BURST_SIZE_ALLOWED) |
| return -EINVAL; |
| if (ice_round_to_num(bytes, 64) <= |
| ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { |
| /* 64 byte granularity case */ |
| /* Disable MSB granularity bit */ |
| burst_size_to_prog = ICE_64_BYTE_GRANULARITY; |
| /* round number to nearest 64 byte granularity */ |
| bytes = ice_round_to_num(bytes, 64); |
| /* The value is in 64 byte chunks */ |
| burst_size_to_prog |= (u16)(bytes / 64); |
| } else { |
| /* k bytes granularity case */ |
| /* Enable MSB granularity bit */ |
| burst_size_to_prog = ICE_KBYTE_GRANULARITY; |
| /* round number to nearest 1024 granularity */ |
| bytes = ice_round_to_num(bytes, 1024); |
| /* check rounding doesn't go beyond allowed */ |
| if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) |
| bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; |
| /* The value is in k bytes */ |
| burst_size_to_prog |= (u16)(bytes / 1024); |
| } |
| hw->max_burst_size = burst_size_to_prog; |
| return 0; |
| } |
| |
| /** |
| * ice_sched_replay_node_prio - re-configure node priority |
| * @hw: pointer to the HW struct |
| * @node: sched node to configure |
| * @priority: priority value |
| * |
| * This function configures node element's priority value. It |
| * needs to be called with scheduler lock held. |
| */ |
| static int |
| ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, |
| u8 priority) |
| { |
| struct ice_aqc_txsched_elem_data buf; |
| struct ice_aqc_txsched_elem *data; |
| int status; |
| |
| buf = node->info; |
| data = &buf.data; |
| data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; |
| data->generic = priority; |
| |
| /* Configure element */ |
| status = ice_sched_update_elem(hw, node, &buf); |
| return status; |
| } |
| |
| /** |
| * ice_sched_replay_node_bw - replay node(s) BW |
| * @hw: pointer to the HW struct |
| * @node: sched node to configure |
| * @bw_t_info: BW type information |
| * |
| * This function restores node's BW from bw_t_info. The caller needs |
| * to hold the scheduler lock. |
| */ |
| static int |
| ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, |
| struct ice_bw_type_info *bw_t_info) |
| { |
| struct ice_port_info *pi = hw->port_info; |
| int status = -EINVAL; |
| u16 bw_alloc; |
| |
| if (!node) |
| return status; |
| if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) |
| return 0; |
| if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { |
| status = ice_sched_replay_node_prio(hw, node, |
| bw_t_info->generic); |
| if (status) |
| return status; |
| } |
| if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { |
| status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, |
| bw_t_info->cir_bw.bw); |
| if (status) |
| return status; |
| } |
| if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { |
| bw_alloc = bw_t_info->cir_bw.bw_alloc; |
| status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, |
| bw_alloc); |
| if (status) |
| return status; |
| } |
| if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { |
| status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, |
| bw_t_info->eir_bw.bw); |
| if (status) |
| return status; |
| } |
| if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { |
| bw_alloc = bw_t_info->eir_bw.bw_alloc; |
| status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, |
| bw_alloc); |
| if (status) |
| return status; |
| } |
| if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) |
| status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, |
| bw_t_info->shared_bw); |
| return status; |
| } |
| |
| /** |
| * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap |
| * @pi: port info struct |
| * @tc_bitmap: 8 bits TC bitmap to check |
| * @ena_tc_bitmap: 8 bits enabled TC bitmap to return |
| * |
| * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs |
| * may be missing, it returns enabled TCs. This function needs to be called with |
| * scheduler lock held. |
| */ |
| static void |
| ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, |
| unsigned long *tc_bitmap, |
| unsigned long *ena_tc_bitmap) |
| { |
| u8 tc; |
| |
| /* Some TC(s) may be missing after reset, adjust for replay */ |
| ice_for_each_traffic_class(tc) |
| if (ice_is_tc_ena(*tc_bitmap, tc) && |
| (ice_sched_get_tc_node(pi, tc))) |
| set_bit(tc, ena_tc_bitmap); |
| } |
| |
| /** |
| * ice_sched_replay_agg - recreate aggregator node(s) |
| * @hw: pointer to the HW struct |
| * |
| * This function recreate aggregator type nodes which are not replayed earlier. |
| * It also replay aggregator BW information. These aggregator nodes are not |
| * associated with VSI type node yet. |
| */ |
| void ice_sched_replay_agg(struct ice_hw *hw) |
| { |
| struct ice_port_info *pi = hw->port_info; |
| struct ice_sched_agg_info *agg_info; |
| |
| mutex_lock(&pi->sched_lock); |
| list_for_each_entry(agg_info, &hw->agg_list, list_entry) |
| /* replay aggregator (re-create aggregator node) */ |
| if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, |
| ICE_MAX_TRAFFIC_CLASS)) { |
| DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); |
| int status; |
| |
| bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); |
| ice_sched_get_ena_tc_bitmap(pi, |
| agg_info->replay_tc_bitmap, |
| replay_bitmap); |
| status = ice_sched_cfg_agg(hw->port_info, |
| agg_info->agg_id, |
| ICE_AGG_TYPE_AGG, |
| replay_bitmap); |
| if (status) { |
| dev_info(ice_hw_to_dev(hw), |
| "Replay agg id[%d] failed\n", |
| agg_info->agg_id); |
| /* Move on to next one */ |
| continue; |
| } |
| } |
| mutex_unlock(&pi->sched_lock); |
| } |
| |
| /** |
| * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization |
| * @hw: pointer to the HW struct |
| * |
| * This function initialize aggregator(s) TC bitmap to zero. A required |
| * preinit step for replaying aggregators. |
| */ |
| void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) |
| { |
| struct ice_port_info *pi = hw->port_info; |
| struct ice_sched_agg_info *agg_info; |
| |
| mutex_lock(&pi->sched_lock); |
| list_for_each_entry(agg_info, &hw->agg_list, list_entry) { |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| |
| agg_info->tc_bitmap[0] = 0; |
| list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, |
| list_entry) |
| agg_vsi_info->tc_bitmap[0] = 0; |
| } |
| mutex_unlock(&pi->sched_lock); |
| } |
| |
| /** |
| * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) |
| * @hw: pointer to the HW struct |
| * @vsi_handle: software VSI handle |
| * |
| * This function replays aggregator node, VSI to aggregator type nodes, and |
| * their node bandwidth information. This function needs to be called with |
| * scheduler lock held. |
| */ |
| static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) |
| { |
| DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); |
| struct ice_sched_agg_vsi_info *agg_vsi_info; |
| struct ice_port_info *pi = hw->port_info; |
| struct ice_sched_agg_info *agg_info; |
| int status; |
| |
| bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| agg_info = ice_get_vsi_agg_info(hw, vsi_handle); |
| if (!agg_info) |
| return 0; /* Not present in list - default Agg case */ |
| agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); |
| if (!agg_vsi_info) |
| return 0; /* Not present in list - default Agg case */ |
| ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, |
| replay_bitmap); |
| /* Replay aggregator node associated to vsi_handle */ |
| status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, |
| ICE_AGG_TYPE_AGG, replay_bitmap); |
| if (status) |
| return status; |
| |
| bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); |
| ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, |
| replay_bitmap); |
| /* Move this VSI (vsi_handle) to above aggregator */ |
| return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, |
| replay_bitmap); |
| } |
| |
| /** |
| * ice_replay_vsi_agg - replay VSI to aggregator node |
| * @hw: pointer to the HW struct |
| * @vsi_handle: software VSI handle |
| * |
| * This function replays association of VSI to aggregator type nodes, and |
| * node bandwidth information. |
| */ |
| int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) |
| { |
| struct ice_port_info *pi = hw->port_info; |
| int status; |
| |
| mutex_lock(&pi->sched_lock); |
| status = ice_sched_replay_vsi_agg(hw, vsi_handle); |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_sched_replay_q_bw - replay queue type node BW |
| * @pi: port information structure |
| * @q_ctx: queue context structure |
| * |
| * This function replays queue type node bandwidth. This function needs to be |
| * called with scheduler lock held. |
| */ |
| int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) |
| { |
| struct ice_sched_node *q_node; |
| |
| /* Following also checks the presence of node in tree */ |
| q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); |
| if (!q_node) |
| return -EINVAL; |
| return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); |
| } |