blob: a1dacb6e993e7a8319b15f9d642724b757a46917 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* driver for Microsemi PQI-based storage controllers
* Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
* Copyright (c) 2016-2018 Microsemi Corporation
* Copyright (c) 2016 PMC-Sierra, Inc.
*
* Questions/Comments/Bugfixes to storagedev@microchip.com
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/reboot.h>
#include <linux/cciss_ioctl.h>
#include <linux/blk-mq-pci.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_transport_sas.h>
#include <asm/unaligned.h>
#include "smartpqi.h"
#include "smartpqi_sis.h"
#if !defined(BUILD_TIMESTAMP)
#define BUILD_TIMESTAMP
#endif
#define DRIVER_VERSION "1.2.16-012"
#define DRIVER_MAJOR 1
#define DRIVER_MINOR 2
#define DRIVER_RELEASE 16
#define DRIVER_REVISION 12
#define DRIVER_NAME "Microsemi PQI Driver (v" \
DRIVER_VERSION BUILD_TIMESTAMP ")"
#define DRIVER_NAME_SHORT "smartpqi"
#define PQI_EXTRA_SGL_MEMORY (12 * sizeof(struct pqi_sg_descriptor))
MODULE_AUTHOR("Microsemi");
MODULE_DESCRIPTION("Driver for Microsemi Smart Family Controller version "
DRIVER_VERSION);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL");
static void pqi_take_ctrl_offline(struct pqi_ctrl_info *ctrl_info);
static void pqi_ctrl_offline_worker(struct work_struct *work);
static void pqi_retry_raid_bypass_requests(struct pqi_ctrl_info *ctrl_info);
static int pqi_scan_scsi_devices(struct pqi_ctrl_info *ctrl_info);
static void pqi_scan_start(struct Scsi_Host *shost);
static void pqi_start_io(struct pqi_ctrl_info *ctrl_info,
struct pqi_queue_group *queue_group, enum pqi_io_path path,
struct pqi_io_request *io_request);
static int pqi_submit_raid_request_synchronous(struct pqi_ctrl_info *ctrl_info,
struct pqi_iu_header *request, unsigned int flags,
struct pqi_raid_error_info *error_info, unsigned long timeout_msecs);
static int pqi_aio_submit_io(struct pqi_ctrl_info *ctrl_info,
struct scsi_cmnd *scmd, u32 aio_handle, u8 *cdb,
unsigned int cdb_length, struct pqi_queue_group *queue_group,
struct pqi_encryption_info *encryption_info, bool raid_bypass);
static void pqi_ofa_ctrl_quiesce(struct pqi_ctrl_info *ctrl_info);
static void pqi_ofa_ctrl_unquiesce(struct pqi_ctrl_info *ctrl_info);
static int pqi_ofa_ctrl_restart(struct pqi_ctrl_info *ctrl_info);
static void pqi_ofa_setup_host_buffer(struct pqi_ctrl_info *ctrl_info,
u32 bytes_requested);
static void pqi_ofa_free_host_buffer(struct pqi_ctrl_info *ctrl_info);
static int pqi_ofa_host_memory_update(struct pqi_ctrl_info *ctrl_info);
static int pqi_device_wait_for_pending_io(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device, unsigned long timeout_secs);
/* for flags argument to pqi_submit_raid_request_synchronous() */
#define PQI_SYNC_FLAGS_INTERRUPTABLE 0x1
static struct scsi_transport_template *pqi_sas_transport_template;
static atomic_t pqi_controller_count = ATOMIC_INIT(0);
enum pqi_lockup_action {
NONE,
REBOOT,
PANIC
};
static enum pqi_lockup_action pqi_lockup_action = NONE;
static struct {
enum pqi_lockup_action action;
char *name;
} pqi_lockup_actions[] = {
{
.action = NONE,
.name = "none",
},
{
.action = REBOOT,
.name = "reboot",
},
{
.action = PANIC,
.name = "panic",
},
};
static unsigned int pqi_supported_event_types[] = {
PQI_EVENT_TYPE_HOTPLUG,
PQI_EVENT_TYPE_HARDWARE,
PQI_EVENT_TYPE_PHYSICAL_DEVICE,
PQI_EVENT_TYPE_LOGICAL_DEVICE,
PQI_EVENT_TYPE_OFA,
PQI_EVENT_TYPE_AIO_STATE_CHANGE,
PQI_EVENT_TYPE_AIO_CONFIG_CHANGE,
};
static int pqi_disable_device_id_wildcards;
module_param_named(disable_device_id_wildcards,
pqi_disable_device_id_wildcards, int, 0644);
MODULE_PARM_DESC(disable_device_id_wildcards,
"Disable device ID wildcards.");
static int pqi_disable_heartbeat;
module_param_named(disable_heartbeat,
pqi_disable_heartbeat, int, 0644);
MODULE_PARM_DESC(disable_heartbeat,
"Disable heartbeat.");
static int pqi_disable_ctrl_shutdown;
module_param_named(disable_ctrl_shutdown,
pqi_disable_ctrl_shutdown, int, 0644);
MODULE_PARM_DESC(disable_ctrl_shutdown,
"Disable controller shutdown when controller locked up.");
static char *pqi_lockup_action_param;
module_param_named(lockup_action,
pqi_lockup_action_param, charp, 0644);
MODULE_PARM_DESC(lockup_action, "Action to take when controller locked up.\n"
"\t\tSupported: none, reboot, panic\n"
"\t\tDefault: none");
static int pqi_expose_ld_first;
module_param_named(expose_ld_first,
pqi_expose_ld_first, int, 0644);
MODULE_PARM_DESC(expose_ld_first,
"Expose logical drives before physical drives.");
static int pqi_hide_vsep;
module_param_named(hide_vsep,
pqi_hide_vsep, int, 0644);
MODULE_PARM_DESC(hide_vsep,
"Hide the virtual SEP for direct attached drives.");
static char *raid_levels[] = {
"RAID-0",
"RAID-4",
"RAID-1(1+0)",
"RAID-5",
"RAID-5+1",
"RAID-ADG",
"RAID-1(ADM)",
};
static char *pqi_raid_level_to_string(u8 raid_level)
{
if (raid_level < ARRAY_SIZE(raid_levels))
return raid_levels[raid_level];
return "RAID UNKNOWN";
}
#define SA_RAID_0 0
#define SA_RAID_4 1
#define SA_RAID_1 2 /* also used for RAID 10 */
#define SA_RAID_5 3 /* also used for RAID 50 */
#define SA_RAID_51 4
#define SA_RAID_6 5 /* also used for RAID 60 */
#define SA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
#define SA_RAID_MAX SA_RAID_ADM
#define SA_RAID_UNKNOWN 0xff
static inline void pqi_scsi_done(struct scsi_cmnd *scmd)
{
pqi_prep_for_scsi_done(scmd);
scmd->scsi_done(scmd);
}
static inline void pqi_disable_write_same(struct scsi_device *sdev)
{
sdev->no_write_same = 1;
}
static inline bool pqi_scsi3addr_equal(u8 *scsi3addr1, u8 *scsi3addr2)
{
return memcmp(scsi3addr1, scsi3addr2, 8) == 0;
}
static inline bool pqi_is_logical_device(struct pqi_scsi_dev *device)
{
return !device->is_physical_device;
}
static inline bool pqi_is_external_raid_addr(u8 *scsi3addr)
{
return scsi3addr[2] != 0;
}
static inline bool pqi_ctrl_offline(struct pqi_ctrl_info *ctrl_info)
{
return !ctrl_info->controller_online;
}
static inline void pqi_check_ctrl_health(struct pqi_ctrl_info *ctrl_info)
{
if (ctrl_info->controller_online)
if (!sis_is_firmware_running(ctrl_info))
pqi_take_ctrl_offline(ctrl_info);
}
static inline bool pqi_is_hba_lunid(u8 *scsi3addr)
{
return pqi_scsi3addr_equal(scsi3addr, RAID_CTLR_LUNID);
}
static inline enum pqi_ctrl_mode pqi_get_ctrl_mode(
struct pqi_ctrl_info *ctrl_info)
{
return sis_read_driver_scratch(ctrl_info);
}
static inline void pqi_save_ctrl_mode(struct pqi_ctrl_info *ctrl_info,
enum pqi_ctrl_mode mode)
{
sis_write_driver_scratch(ctrl_info, mode);
}
static inline void pqi_ctrl_block_device_reset(struct pqi_ctrl_info *ctrl_info)
{
ctrl_info->block_device_reset = true;
}
static inline bool pqi_device_reset_blocked(struct pqi_ctrl_info *ctrl_info)
{
return ctrl_info->block_device_reset;
}
static inline bool pqi_ctrl_blocked(struct pqi_ctrl_info *ctrl_info)
{
return ctrl_info->block_requests;
}
static inline void pqi_ctrl_block_requests(struct pqi_ctrl_info *ctrl_info)
{
ctrl_info->block_requests = true;
scsi_block_requests(ctrl_info->scsi_host);
}
static inline void pqi_ctrl_unblock_requests(struct pqi_ctrl_info *ctrl_info)
{
ctrl_info->block_requests = false;
wake_up_all(&ctrl_info->block_requests_wait);
pqi_retry_raid_bypass_requests(ctrl_info);
scsi_unblock_requests(ctrl_info->scsi_host);
}
static unsigned long pqi_wait_if_ctrl_blocked(struct pqi_ctrl_info *ctrl_info,
unsigned long timeout_msecs)
{
unsigned long remaining_msecs;
if (!pqi_ctrl_blocked(ctrl_info))
return timeout_msecs;
atomic_inc(&ctrl_info->num_blocked_threads);
if (timeout_msecs == NO_TIMEOUT) {
wait_event(ctrl_info->block_requests_wait,
!pqi_ctrl_blocked(ctrl_info));
remaining_msecs = timeout_msecs;
} else {
unsigned long remaining_jiffies;
remaining_jiffies =
wait_event_timeout(ctrl_info->block_requests_wait,
!pqi_ctrl_blocked(ctrl_info),
msecs_to_jiffies(timeout_msecs));
remaining_msecs = jiffies_to_msecs(remaining_jiffies);
}
atomic_dec(&ctrl_info->num_blocked_threads);
return remaining_msecs;
}
static inline void pqi_ctrl_wait_until_quiesced(struct pqi_ctrl_info *ctrl_info)
{
while (atomic_read(&ctrl_info->num_busy_threads) >
atomic_read(&ctrl_info->num_blocked_threads))
usleep_range(1000, 2000);
}
static inline bool pqi_device_offline(struct pqi_scsi_dev *device)
{
return device->device_offline;
}
static inline void pqi_device_reset_start(struct pqi_scsi_dev *device)
{
device->in_reset = true;
}
static inline void pqi_device_reset_done(struct pqi_scsi_dev *device)
{
device->in_reset = false;
}
static inline bool pqi_device_in_reset(struct pqi_scsi_dev *device)
{
return device->in_reset;
}
static inline void pqi_ctrl_ofa_start(struct pqi_ctrl_info *ctrl_info)
{
ctrl_info->in_ofa = true;
}
static inline void pqi_ctrl_ofa_done(struct pqi_ctrl_info *ctrl_info)
{
ctrl_info->in_ofa = false;
}
static inline bool pqi_ctrl_in_ofa(struct pqi_ctrl_info *ctrl_info)
{
return ctrl_info->in_ofa;
}
static inline void pqi_device_remove_start(struct pqi_scsi_dev *device)
{
device->in_remove = true;
}
static inline bool pqi_device_in_remove(struct pqi_scsi_dev *device)
{
return device->in_remove;
}
static inline void pqi_ctrl_shutdown_start(struct pqi_ctrl_info *ctrl_info)
{
ctrl_info->in_shutdown = true;
}
static inline bool pqi_ctrl_in_shutdown(struct pqi_ctrl_info *ctrl_info)
{
return ctrl_info->in_shutdown;
}
static inline void pqi_schedule_rescan_worker_with_delay(
struct pqi_ctrl_info *ctrl_info, unsigned long delay)
{
if (pqi_ctrl_offline(ctrl_info))
return;
if (pqi_ctrl_in_ofa(ctrl_info))
return;
schedule_delayed_work(&ctrl_info->rescan_work, delay);
}
static inline void pqi_schedule_rescan_worker(struct pqi_ctrl_info *ctrl_info)
{
pqi_schedule_rescan_worker_with_delay(ctrl_info, 0);
}
#define PQI_RESCAN_WORK_DELAY (10 * PQI_HZ)
static inline void pqi_schedule_rescan_worker_delayed(
struct pqi_ctrl_info *ctrl_info)
{
pqi_schedule_rescan_worker_with_delay(ctrl_info, PQI_RESCAN_WORK_DELAY);
}
static inline void pqi_cancel_rescan_worker(struct pqi_ctrl_info *ctrl_info)
{
cancel_delayed_work_sync(&ctrl_info->rescan_work);
}
static inline void pqi_cancel_event_worker(struct pqi_ctrl_info *ctrl_info)
{
cancel_work_sync(&ctrl_info->event_work);
}
static inline u32 pqi_read_heartbeat_counter(struct pqi_ctrl_info *ctrl_info)
{
if (!ctrl_info->heartbeat_counter)
return 0;
return readl(ctrl_info->heartbeat_counter);
}
static inline u8 pqi_read_soft_reset_status(struct pqi_ctrl_info *ctrl_info)
{
if (!ctrl_info->soft_reset_status)
return 0;
return readb(ctrl_info->soft_reset_status);
}
static inline void pqi_clear_soft_reset_status(struct pqi_ctrl_info *ctrl_info,
u8 clear)
{
u8 status;
if (!ctrl_info->soft_reset_status)
return;
status = pqi_read_soft_reset_status(ctrl_info);
status &= ~clear;
writeb(status, ctrl_info->soft_reset_status);
}
static int pqi_map_single(struct pci_dev *pci_dev,
struct pqi_sg_descriptor *sg_descriptor, void *buffer,
size_t buffer_length, enum dma_data_direction data_direction)
{
dma_addr_t bus_address;
if (!buffer || buffer_length == 0 || data_direction == DMA_NONE)
return 0;
bus_address = dma_map_single(&pci_dev->dev, buffer, buffer_length,
data_direction);
if (dma_mapping_error(&pci_dev->dev, bus_address))
return -ENOMEM;
put_unaligned_le64((u64)bus_address, &sg_descriptor->address);
put_unaligned_le32(buffer_length, &sg_descriptor->length);
put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags);
return 0;
}
static void pqi_pci_unmap(struct pci_dev *pci_dev,
struct pqi_sg_descriptor *descriptors, int num_descriptors,
enum dma_data_direction data_direction)
{
int i;
if (data_direction == DMA_NONE)
return;
for (i = 0; i < num_descriptors; i++)
dma_unmap_single(&pci_dev->dev,
(dma_addr_t)get_unaligned_le64(&descriptors[i].address),
get_unaligned_le32(&descriptors[i].length),
data_direction);
}
static int pqi_build_raid_path_request(struct pqi_ctrl_info *ctrl_info,
struct pqi_raid_path_request *request, u8 cmd,
u8 *scsi3addr, void *buffer, size_t buffer_length,
u16 vpd_page, enum dma_data_direction *dir)
{
u8 *cdb;
size_t cdb_length = buffer_length;
memset(request, 0, sizeof(*request));
request->header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO;
put_unaligned_le16(offsetof(struct pqi_raid_path_request,
sg_descriptors[1]) - PQI_REQUEST_HEADER_LENGTH,
&request->header.iu_length);
put_unaligned_le32(buffer_length, &request->buffer_length);
memcpy(request->lun_number, scsi3addr, sizeof(request->lun_number));
request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE;
request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_0;
cdb = request->cdb;
switch (cmd) {
case INQUIRY:
request->data_direction = SOP_READ_FLAG;
cdb[0] = INQUIRY;
if (vpd_page & VPD_PAGE) {
cdb[1] = 0x1;
cdb[2] = (u8)vpd_page;
}
cdb[4] = (u8)cdb_length;
break;
case CISS_REPORT_LOG:
case CISS_REPORT_PHYS:
request->data_direction = SOP_READ_FLAG;
cdb[0] = cmd;
if (cmd == CISS_REPORT_PHYS)
cdb[1] = CISS_REPORT_PHYS_FLAG_OTHER;
else
cdb[1] = CISS_REPORT_LOG_FLAG_UNIQUE_LUN_ID;
put_unaligned_be32(cdb_length, &cdb[6]);
break;
case CISS_GET_RAID_MAP:
request->data_direction = SOP_READ_FLAG;
cdb[0] = CISS_READ;
cdb[1] = CISS_GET_RAID_MAP;
put_unaligned_be32(cdb_length, &cdb[6]);
break;
case SA_FLUSH_CACHE:
request->data_direction = SOP_WRITE_FLAG;
cdb[0] = BMIC_WRITE;
cdb[6] = BMIC_FLUSH_CACHE;
put_unaligned_be16(cdb_length, &cdb[7]);
break;
case BMIC_SENSE_DIAG_OPTIONS:
cdb_length = 0;
fallthrough;
case BMIC_IDENTIFY_CONTROLLER:
case BMIC_IDENTIFY_PHYSICAL_DEVICE:
case BMIC_SENSE_SUBSYSTEM_INFORMATION:
request->data_direction = SOP_READ_FLAG;
cdb[0] = BMIC_READ;
cdb[6] = cmd;
put_unaligned_be16(cdb_length, &cdb[7]);
break;
case BMIC_SET_DIAG_OPTIONS:
cdb_length = 0;
fallthrough;
case BMIC_WRITE_HOST_WELLNESS:
request->data_direction = SOP_WRITE_FLAG;
cdb[0] = BMIC_WRITE;
cdb[6] = cmd;
put_unaligned_be16(cdb_length, &cdb[7]);
break;
case BMIC_CSMI_PASSTHRU:
request->data_direction = SOP_BIDIRECTIONAL;
cdb[0] = BMIC_WRITE;
cdb[5] = CSMI_CC_SAS_SMP_PASSTHRU;
cdb[6] = cmd;
put_unaligned_be16(cdb_length, &cdb[7]);
break;
default:
dev_err(&ctrl_info->pci_dev->dev, "unknown command 0x%c\n", cmd);
break;
}
switch (request->data_direction) {
case SOP_READ_FLAG:
*dir = DMA_FROM_DEVICE;
break;
case SOP_WRITE_FLAG:
*dir = DMA_TO_DEVICE;
break;
case SOP_NO_DIRECTION_FLAG:
*dir = DMA_NONE;
break;
default:
*dir = DMA_BIDIRECTIONAL;
break;
}
return pqi_map_single(ctrl_info->pci_dev, &request->sg_descriptors[0],
buffer, buffer_length, *dir);
}
static inline void pqi_reinit_io_request(struct pqi_io_request *io_request)
{
io_request->scmd = NULL;
io_request->status = 0;
io_request->error_info = NULL;
io_request->raid_bypass = false;
}
static struct pqi_io_request *pqi_alloc_io_request(
struct pqi_ctrl_info *ctrl_info)
{
struct pqi_io_request *io_request;
u16 i = ctrl_info->next_io_request_slot; /* benignly racy */
while (1) {
io_request = &ctrl_info->io_request_pool[i];
if (atomic_inc_return(&io_request->refcount) == 1)
break;
atomic_dec(&io_request->refcount);
i = (i + 1) % ctrl_info->max_io_slots;
}
/* benignly racy */
ctrl_info->next_io_request_slot = (i + 1) % ctrl_info->max_io_slots;
pqi_reinit_io_request(io_request);
return io_request;
}
static void pqi_free_io_request(struct pqi_io_request *io_request)
{
atomic_dec(&io_request->refcount);
}
static int pqi_send_scsi_raid_request(struct pqi_ctrl_info *ctrl_info, u8 cmd,
u8 *scsi3addr, void *buffer, size_t buffer_length, u16 vpd_page,
struct pqi_raid_error_info *error_info, unsigned long timeout_msecs)
{
int rc;
struct pqi_raid_path_request request;
enum dma_data_direction dir;
rc = pqi_build_raid_path_request(ctrl_info, &request,
cmd, scsi3addr, buffer,
buffer_length, vpd_page, &dir);
if (rc)
return rc;
rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0,
error_info, timeout_msecs);
pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, dir);
return rc;
}
/* helper functions for pqi_send_scsi_raid_request */
static inline int pqi_send_ctrl_raid_request(struct pqi_ctrl_info *ctrl_info,
u8 cmd, void *buffer, size_t buffer_length)
{
return pqi_send_scsi_raid_request(ctrl_info, cmd, RAID_CTLR_LUNID,
buffer, buffer_length, 0, NULL, NO_TIMEOUT);
}
static inline int pqi_send_ctrl_raid_with_error(struct pqi_ctrl_info *ctrl_info,
u8 cmd, void *buffer, size_t buffer_length,
struct pqi_raid_error_info *error_info)
{
return pqi_send_scsi_raid_request(ctrl_info, cmd, RAID_CTLR_LUNID,
buffer, buffer_length, 0, error_info, NO_TIMEOUT);
}
static inline int pqi_identify_controller(struct pqi_ctrl_info *ctrl_info,
struct bmic_identify_controller *buffer)
{
return pqi_send_ctrl_raid_request(ctrl_info, BMIC_IDENTIFY_CONTROLLER,
buffer, sizeof(*buffer));
}
static inline int pqi_sense_subsystem_info(struct pqi_ctrl_info *ctrl_info,
struct bmic_sense_subsystem_info *sense_info)
{
return pqi_send_ctrl_raid_request(ctrl_info,
BMIC_SENSE_SUBSYSTEM_INFORMATION, sense_info,
sizeof(*sense_info));
}
static inline int pqi_scsi_inquiry(struct pqi_ctrl_info *ctrl_info,
u8 *scsi3addr, u16 vpd_page, void *buffer, size_t buffer_length)
{
return pqi_send_scsi_raid_request(ctrl_info, INQUIRY, scsi3addr,
buffer, buffer_length, vpd_page, NULL, NO_TIMEOUT);
}
static int pqi_identify_physical_device(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device,
struct bmic_identify_physical_device *buffer, size_t buffer_length)
{
int rc;
enum dma_data_direction dir;
u16 bmic_device_index;
struct pqi_raid_path_request request;
rc = pqi_build_raid_path_request(ctrl_info, &request,
BMIC_IDENTIFY_PHYSICAL_DEVICE, RAID_CTLR_LUNID, buffer,
buffer_length, 0, &dir);
if (rc)
return rc;
bmic_device_index = CISS_GET_DRIVE_NUMBER(device->scsi3addr);
request.cdb[2] = (u8)bmic_device_index;
request.cdb[9] = (u8)(bmic_device_index >> 8);
rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header,
0, NULL, NO_TIMEOUT);
pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, dir);
return rc;
}
static int pqi_flush_cache(struct pqi_ctrl_info *ctrl_info,
enum bmic_flush_cache_shutdown_event shutdown_event)
{
int rc;
struct bmic_flush_cache *flush_cache;
/*
* Don't bother trying to flush the cache if the controller is
* locked up.
*/
if (pqi_ctrl_offline(ctrl_info))
return -ENXIO;
flush_cache = kzalloc(sizeof(*flush_cache), GFP_KERNEL);
if (!flush_cache)
return -ENOMEM;
flush_cache->shutdown_event = shutdown_event;
rc = pqi_send_ctrl_raid_request(ctrl_info, SA_FLUSH_CACHE, flush_cache,
sizeof(*flush_cache));
kfree(flush_cache);
return rc;
}
int pqi_csmi_smp_passthru(struct pqi_ctrl_info *ctrl_info,
struct bmic_csmi_smp_passthru_buffer *buffer, size_t buffer_length,
struct pqi_raid_error_info *error_info)
{
return pqi_send_ctrl_raid_with_error(ctrl_info, BMIC_CSMI_PASSTHRU,
buffer, buffer_length, error_info);
}
#define PQI_FETCH_PTRAID_DATA (1 << 31)
static int pqi_set_diag_rescan(struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct bmic_diag_options *diag;
diag = kzalloc(sizeof(*diag), GFP_KERNEL);
if (!diag)
return -ENOMEM;
rc = pqi_send_ctrl_raid_request(ctrl_info, BMIC_SENSE_DIAG_OPTIONS,
diag, sizeof(*diag));
if (rc)
goto out;
diag->options |= cpu_to_le32(PQI_FETCH_PTRAID_DATA);
rc = pqi_send_ctrl_raid_request(ctrl_info, BMIC_SET_DIAG_OPTIONS, diag,
sizeof(*diag));
out:
kfree(diag);
return rc;
}
static inline int pqi_write_host_wellness(struct pqi_ctrl_info *ctrl_info,
void *buffer, size_t buffer_length)
{
return pqi_send_ctrl_raid_request(ctrl_info, BMIC_WRITE_HOST_WELLNESS,
buffer, buffer_length);
}
#pragma pack(1)
struct bmic_host_wellness_driver_version {
u8 start_tag[4];
u8 driver_version_tag[2];
__le16 driver_version_length;
char driver_version[32];
u8 dont_write_tag[2];
u8 end_tag[2];
};
#pragma pack()
static int pqi_write_driver_version_to_host_wellness(
struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct bmic_host_wellness_driver_version *buffer;
size_t buffer_length;
buffer_length = sizeof(*buffer);
buffer = kmalloc(buffer_length, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
buffer->start_tag[0] = '<';
buffer->start_tag[1] = 'H';
buffer->start_tag[2] = 'W';
buffer->start_tag[3] = '>';
buffer->driver_version_tag[0] = 'D';
buffer->driver_version_tag[1] = 'V';
put_unaligned_le16(sizeof(buffer->driver_version),
&buffer->driver_version_length);
strncpy(buffer->driver_version, "Linux " DRIVER_VERSION,
sizeof(buffer->driver_version) - 1);
buffer->driver_version[sizeof(buffer->driver_version) - 1] = '\0';
buffer->dont_write_tag[0] = 'D';
buffer->dont_write_tag[1] = 'W';
buffer->end_tag[0] = 'Z';
buffer->end_tag[1] = 'Z';
rc = pqi_write_host_wellness(ctrl_info, buffer, buffer_length);
kfree(buffer);
return rc;
}
#pragma pack(1)
struct bmic_host_wellness_time {
u8 start_tag[4];
u8 time_tag[2];
__le16 time_length;
u8 time[8];
u8 dont_write_tag[2];
u8 end_tag[2];
};
#pragma pack()
static int pqi_write_current_time_to_host_wellness(
struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct bmic_host_wellness_time *buffer;
size_t buffer_length;
time64_t local_time;
unsigned int year;
struct tm tm;
buffer_length = sizeof(*buffer);
buffer = kmalloc(buffer_length, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
buffer->start_tag[0] = '<';
buffer->start_tag[1] = 'H';
buffer->start_tag[2] = 'W';
buffer->start_tag[3] = '>';
buffer->time_tag[0] = 'T';
buffer->time_tag[1] = 'D';
put_unaligned_le16(sizeof(buffer->time),
&buffer->time_length);
local_time = ktime_get_real_seconds();
time64_to_tm(local_time, -sys_tz.tz_minuteswest * 60, &tm);
year = tm.tm_year + 1900;
buffer->time[0] = bin2bcd(tm.tm_hour);
buffer->time[1] = bin2bcd(tm.tm_min);
buffer->time[2] = bin2bcd(tm.tm_sec);
buffer->time[3] = 0;
buffer->time[4] = bin2bcd(tm.tm_mon + 1);
buffer->time[5] = bin2bcd(tm.tm_mday);
buffer->time[6] = bin2bcd(year / 100);
buffer->time[7] = bin2bcd(year % 100);
buffer->dont_write_tag[0] = 'D';
buffer->dont_write_tag[1] = 'W';
buffer->end_tag[0] = 'Z';
buffer->end_tag[1] = 'Z';
rc = pqi_write_host_wellness(ctrl_info, buffer, buffer_length);
kfree(buffer);
return rc;
}
#define PQI_UPDATE_TIME_WORK_INTERVAL (24UL * 60 * 60 * PQI_HZ)
static void pqi_update_time_worker(struct work_struct *work)
{
int rc;
struct pqi_ctrl_info *ctrl_info;
ctrl_info = container_of(to_delayed_work(work), struct pqi_ctrl_info,
update_time_work);
if (pqi_ctrl_offline(ctrl_info))
return;
rc = pqi_write_current_time_to_host_wellness(ctrl_info);
if (rc)
dev_warn(&ctrl_info->pci_dev->dev,
"error updating time on controller\n");
schedule_delayed_work(&ctrl_info->update_time_work,
PQI_UPDATE_TIME_WORK_INTERVAL);
}
static inline void pqi_schedule_update_time_worker(
struct pqi_ctrl_info *ctrl_info)
{
schedule_delayed_work(&ctrl_info->update_time_work, 0);
}
static inline void pqi_cancel_update_time_worker(
struct pqi_ctrl_info *ctrl_info)
{
cancel_delayed_work_sync(&ctrl_info->update_time_work);
}
static inline int pqi_report_luns(struct pqi_ctrl_info *ctrl_info, u8 cmd,
void *buffer, size_t buffer_length)
{
return pqi_send_ctrl_raid_request(ctrl_info, cmd, buffer,
buffer_length);
}
static int pqi_report_phys_logical_luns(struct pqi_ctrl_info *ctrl_info, u8 cmd,
void **buffer)
{
int rc;
size_t lun_list_length;
size_t lun_data_length;
size_t new_lun_list_length;
void *lun_data = NULL;
struct report_lun_header *report_lun_header;
report_lun_header = kmalloc(sizeof(*report_lun_header), GFP_KERNEL);
if (!report_lun_header) {
rc = -ENOMEM;
goto out;
}
rc = pqi_report_luns(ctrl_info, cmd, report_lun_header,
sizeof(*report_lun_header));
if (rc)
goto out;
lun_list_length = get_unaligned_be32(&report_lun_header->list_length);
again:
lun_data_length = sizeof(struct report_lun_header) + lun_list_length;
lun_data = kmalloc(lun_data_length, GFP_KERNEL);
if (!lun_data) {
rc = -ENOMEM;
goto out;
}
if (lun_list_length == 0) {
memcpy(lun_data, report_lun_header, sizeof(*report_lun_header));
goto out;
}
rc = pqi_report_luns(ctrl_info, cmd, lun_data, lun_data_length);
if (rc)
goto out;
new_lun_list_length = get_unaligned_be32(
&((struct report_lun_header *)lun_data)->list_length);
if (new_lun_list_length > lun_list_length) {
lun_list_length = new_lun_list_length;
kfree(lun_data);
goto again;
}
out:
kfree(report_lun_header);
if (rc) {
kfree(lun_data);
lun_data = NULL;
}
*buffer = lun_data;
return rc;
}
static inline int pqi_report_phys_luns(struct pqi_ctrl_info *ctrl_info,
void **buffer)
{
return pqi_report_phys_logical_luns(ctrl_info, CISS_REPORT_PHYS,
buffer);
}
static inline int pqi_report_logical_luns(struct pqi_ctrl_info *ctrl_info,
void **buffer)
{
return pqi_report_phys_logical_luns(ctrl_info, CISS_REPORT_LOG, buffer);
}
static int pqi_get_device_lists(struct pqi_ctrl_info *ctrl_info,
struct report_phys_lun_extended **physdev_list,
struct report_log_lun_extended **logdev_list)
{
int rc;
size_t logdev_list_length;
size_t logdev_data_length;
struct report_log_lun_extended *internal_logdev_list;
struct report_log_lun_extended *logdev_data;
struct report_lun_header report_lun_header;
rc = pqi_report_phys_luns(ctrl_info, (void **)physdev_list);
if (rc)
dev_err(&ctrl_info->pci_dev->dev,
"report physical LUNs failed\n");
rc = pqi_report_logical_luns(ctrl_info, (void **)logdev_list);
if (rc)
dev_err(&ctrl_info->pci_dev->dev,
"report logical LUNs failed\n");
/*
* Tack the controller itself onto the end of the logical device list.
*/
logdev_data = *logdev_list;
if (logdev_data) {
logdev_list_length =
get_unaligned_be32(&logdev_data->header.list_length);
} else {
memset(&report_lun_header, 0, sizeof(report_lun_header));
logdev_data =
(struct report_log_lun_extended *)&report_lun_header;
logdev_list_length = 0;
}
logdev_data_length = sizeof(struct report_lun_header) +
logdev_list_length;
internal_logdev_list = kmalloc(logdev_data_length +
sizeof(struct report_log_lun_extended), GFP_KERNEL);
if (!internal_logdev_list) {
kfree(*logdev_list);
*logdev_list = NULL;
return -ENOMEM;
}
memcpy(internal_logdev_list, logdev_data, logdev_data_length);
memset((u8 *)internal_logdev_list + logdev_data_length, 0,
sizeof(struct report_log_lun_extended_entry));
put_unaligned_be32(logdev_list_length +
sizeof(struct report_log_lun_extended_entry),
&internal_logdev_list->header.list_length);
kfree(*logdev_list);
*logdev_list = internal_logdev_list;
return 0;
}
static inline void pqi_set_bus_target_lun(struct pqi_scsi_dev *device,
int bus, int target, int lun)
{
device->bus = bus;
device->target = target;
device->lun = lun;
}
static void pqi_assign_bus_target_lun(struct pqi_scsi_dev *device)
{
u8 *scsi3addr;
u32 lunid;
int bus;
int target;
int lun;
scsi3addr = device->scsi3addr;
lunid = get_unaligned_le32(scsi3addr);
if (pqi_is_hba_lunid(scsi3addr)) {
/* The specified device is the controller. */
pqi_set_bus_target_lun(device, PQI_HBA_BUS, 0, lunid & 0x3fff);
device->target_lun_valid = true;
return;
}
if (pqi_is_logical_device(device)) {
if (device->is_external_raid_device) {
bus = PQI_EXTERNAL_RAID_VOLUME_BUS;
target = (lunid >> 16) & 0x3fff;
lun = lunid & 0xff;
} else {
bus = PQI_RAID_VOLUME_BUS;
target = 0;
lun = lunid & 0x3fff;
}
pqi_set_bus_target_lun(device, bus, target, lun);
device->target_lun_valid = true;
return;
}
/*
* Defer target and LUN assignment for non-controller physical devices
* because the SAS transport layer will make these assignments later.
*/
pqi_set_bus_target_lun(device, PQI_PHYSICAL_DEVICE_BUS, 0, 0);
}
static void pqi_get_raid_level(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
u8 raid_level;
u8 *buffer;
raid_level = SA_RAID_UNKNOWN;
buffer = kmalloc(64, GFP_KERNEL);
if (buffer) {
rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr,
VPD_PAGE | CISS_VPD_LV_DEVICE_GEOMETRY, buffer, 64);
if (rc == 0) {
raid_level = buffer[8];
if (raid_level > SA_RAID_MAX)
raid_level = SA_RAID_UNKNOWN;
}
kfree(buffer);
}
device->raid_level = raid_level;
}
static int pqi_validate_raid_map(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device, struct raid_map *raid_map)
{
char *err_msg;
u32 raid_map_size;
u32 r5or6_blocks_per_row;
raid_map_size = get_unaligned_le32(&raid_map->structure_size);
if (raid_map_size < offsetof(struct raid_map, disk_data)) {
err_msg = "RAID map too small";
goto bad_raid_map;
}
if (device->raid_level == SA_RAID_1) {
if (get_unaligned_le16(&raid_map->layout_map_count) != 2) {
err_msg = "invalid RAID-1 map";
goto bad_raid_map;
}
} else if (device->raid_level == SA_RAID_ADM) {
if (get_unaligned_le16(&raid_map->layout_map_count) != 3) {
err_msg = "invalid RAID-1(ADM) map";
goto bad_raid_map;
}
} else if ((device->raid_level == SA_RAID_5 ||
device->raid_level == SA_RAID_6) &&
get_unaligned_le16(&raid_map->layout_map_count) > 1) {
/* RAID 50/60 */
r5or6_blocks_per_row =
get_unaligned_le16(&raid_map->strip_size) *
get_unaligned_le16(&raid_map->data_disks_per_row);
if (r5or6_blocks_per_row == 0) {
err_msg = "invalid RAID-5 or RAID-6 map";
goto bad_raid_map;
}
}
return 0;
bad_raid_map:
dev_warn(&ctrl_info->pci_dev->dev,
"logical device %08x%08x %s\n",
*((u32 *)&device->scsi3addr),
*((u32 *)&device->scsi3addr[4]), err_msg);
return -EINVAL;
}
static int pqi_get_raid_map(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
u32 raid_map_size;
struct raid_map *raid_map;
raid_map = kmalloc(sizeof(*raid_map), GFP_KERNEL);
if (!raid_map)
return -ENOMEM;
rc = pqi_send_scsi_raid_request(ctrl_info, CISS_GET_RAID_MAP,
device->scsi3addr, raid_map, sizeof(*raid_map),
0, NULL, NO_TIMEOUT);
if (rc)
goto error;
raid_map_size = get_unaligned_le32(&raid_map->structure_size);
if (raid_map_size > sizeof(*raid_map)) {
kfree(raid_map);
raid_map = kmalloc(raid_map_size, GFP_KERNEL);
if (!raid_map)
return -ENOMEM;
rc = pqi_send_scsi_raid_request(ctrl_info, CISS_GET_RAID_MAP,
device->scsi3addr, raid_map, raid_map_size,
0, NULL, NO_TIMEOUT);
if (rc)
goto error;
if (get_unaligned_le32(&raid_map->structure_size)
!= raid_map_size) {
dev_warn(&ctrl_info->pci_dev->dev,
"Requested %d bytes, received %d bytes",
raid_map_size,
get_unaligned_le32(&raid_map->structure_size));
goto error;
}
}
rc = pqi_validate_raid_map(ctrl_info, device, raid_map);
if (rc)
goto error;
device->raid_map = raid_map;
return 0;
error:
kfree(raid_map);
return rc;
}
static void pqi_get_raid_bypass_status(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
u8 *buffer;
u8 bypass_status;
buffer = kmalloc(64, GFP_KERNEL);
if (!buffer)
return;
rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr,
VPD_PAGE | CISS_VPD_LV_BYPASS_STATUS, buffer, 64);
if (rc)
goto out;
#define RAID_BYPASS_STATUS 4
#define RAID_BYPASS_CONFIGURED 0x1
#define RAID_BYPASS_ENABLED 0x2
bypass_status = buffer[RAID_BYPASS_STATUS];
device->raid_bypass_configured =
(bypass_status & RAID_BYPASS_CONFIGURED) != 0;
if (device->raid_bypass_configured &&
(bypass_status & RAID_BYPASS_ENABLED) &&
pqi_get_raid_map(ctrl_info, device) == 0)
device->raid_bypass_enabled = true;
out:
kfree(buffer);
}
/*
* Use vendor-specific VPD to determine online/offline status of a volume.
*/
static void pqi_get_volume_status(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
size_t page_length;
u8 volume_status = CISS_LV_STATUS_UNAVAILABLE;
bool volume_offline = true;
u32 volume_flags;
struct ciss_vpd_logical_volume_status *vpd;
vpd = kmalloc(sizeof(*vpd), GFP_KERNEL);
if (!vpd)
goto no_buffer;
rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr,
VPD_PAGE | CISS_VPD_LV_STATUS, vpd, sizeof(*vpd));
if (rc)
goto out;
if (vpd->page_code != CISS_VPD_LV_STATUS)
goto out;
page_length = offsetof(struct ciss_vpd_logical_volume_status,
volume_status) + vpd->page_length;
if (page_length < sizeof(*vpd))
goto out;
volume_status = vpd->volume_status;
volume_flags = get_unaligned_be32(&vpd->flags);
volume_offline = (volume_flags & CISS_LV_FLAGS_NO_HOST_IO) != 0;
out:
kfree(vpd);
no_buffer:
device->volume_status = volume_status;
device->volume_offline = volume_offline;
}
static int pqi_get_physical_device_info(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device,
struct bmic_identify_physical_device *id_phys)
{
int rc;
memset(id_phys, 0, sizeof(*id_phys));
rc = pqi_identify_physical_device(ctrl_info, device,
id_phys, sizeof(*id_phys));
if (rc) {
device->queue_depth = PQI_PHYSICAL_DISK_DEFAULT_MAX_QUEUE_DEPTH;
return rc;
}
scsi_sanitize_inquiry_string(&id_phys->model[0], 8);
scsi_sanitize_inquiry_string(&id_phys->model[8], 16);
memcpy(device->vendor, &id_phys->model[0], sizeof(device->vendor));
memcpy(device->model, &id_phys->model[8], sizeof(device->model));
device->box_index = id_phys->box_index;
device->phys_box_on_bus = id_phys->phys_box_on_bus;
device->phy_connected_dev_type = id_phys->phy_connected_dev_type[0];
device->queue_depth =
get_unaligned_le16(&id_phys->current_queue_depth_limit);
device->active_path_index = id_phys->active_path_number;
device->path_map = id_phys->redundant_path_present_map;
memcpy(&device->box,
&id_phys->alternate_paths_phys_box_on_port,
sizeof(device->box));
memcpy(&device->phys_connector,
&id_phys->alternate_paths_phys_connector,
sizeof(device->phys_connector));
device->bay = id_phys->phys_bay_in_box;
return 0;
}
static int pqi_get_logical_device_info(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
u8 *buffer;
buffer = kmalloc(64, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
/* Send an inquiry to the device to see what it is. */
rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, 0, buffer, 64);
if (rc)
goto out;
scsi_sanitize_inquiry_string(&buffer[8], 8);
scsi_sanitize_inquiry_string(&buffer[16], 16);
device->devtype = buffer[0] & 0x1f;
memcpy(device->vendor, &buffer[8], sizeof(device->vendor));
memcpy(device->model, &buffer[16], sizeof(device->model));
if (device->devtype == TYPE_DISK) {
if (device->is_external_raid_device) {
device->raid_level = SA_RAID_UNKNOWN;
device->volume_status = CISS_LV_OK;
device->volume_offline = false;
} else {
pqi_get_raid_level(ctrl_info, device);
pqi_get_raid_bypass_status(ctrl_info, device);
pqi_get_volume_status(ctrl_info, device);
}
}
out:
kfree(buffer);
return rc;
}
static int pqi_get_device_info(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device,
struct bmic_identify_physical_device *id_phys)
{
int rc;
if (device->is_expander_smp_device)
return 0;
if (pqi_is_logical_device(device))
rc = pqi_get_logical_device_info(ctrl_info, device);
else
rc = pqi_get_physical_device_info(ctrl_info, device, id_phys);
return rc;
}
static void pqi_show_volume_status(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
char *status;
static const char unknown_state_str[] =
"Volume is in an unknown state (%u)";
char unknown_state_buffer[sizeof(unknown_state_str) + 10];
switch (device->volume_status) {
case CISS_LV_OK:
status = "Volume online";
break;
case CISS_LV_FAILED:
status = "Volume failed";
break;
case CISS_LV_NOT_CONFIGURED:
status = "Volume not configured";
break;
case CISS_LV_DEGRADED:
status = "Volume degraded";
break;
case CISS_LV_READY_FOR_RECOVERY:
status = "Volume ready for recovery operation";
break;
case CISS_LV_UNDERGOING_RECOVERY:
status = "Volume undergoing recovery";
break;
case CISS_LV_WRONG_PHYSICAL_DRIVE_REPLACED:
status = "Wrong physical drive was replaced";
break;
case CISS_LV_PHYSICAL_DRIVE_CONNECTION_PROBLEM:
status = "A physical drive not properly connected";
break;
case CISS_LV_HARDWARE_OVERHEATING:
status = "Hardware is overheating";
break;
case CISS_LV_HARDWARE_HAS_OVERHEATED:
status = "Hardware has overheated";
break;
case CISS_LV_UNDERGOING_EXPANSION:
status = "Volume undergoing expansion";
break;
case CISS_LV_NOT_AVAILABLE:
status = "Volume waiting for transforming volume";
break;
case CISS_LV_QUEUED_FOR_EXPANSION:
status = "Volume queued for expansion";
break;
case CISS_LV_DISABLED_SCSI_ID_CONFLICT:
status = "Volume disabled due to SCSI ID conflict";
break;
case CISS_LV_EJECTED:
status = "Volume has been ejected";
break;
case CISS_LV_UNDERGOING_ERASE:
status = "Volume undergoing background erase";
break;
case CISS_LV_READY_FOR_PREDICTIVE_SPARE_REBUILD:
status = "Volume ready for predictive spare rebuild";
break;
case CISS_LV_UNDERGOING_RPI:
status = "Volume undergoing rapid parity initialization";
break;
case CISS_LV_PENDING_RPI:
status = "Volume queued for rapid parity initialization";
break;
case CISS_LV_ENCRYPTED_NO_KEY:
status = "Encrypted volume inaccessible - key not present";
break;
case CISS_LV_UNDERGOING_ENCRYPTION:
status = "Volume undergoing encryption process";
break;
case CISS_LV_UNDERGOING_ENCRYPTION_REKEYING:
status = "Volume undergoing encryption re-keying process";
break;
case CISS_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
status = "Volume encrypted but encryption is disabled";
break;
case CISS_LV_PENDING_ENCRYPTION:
status = "Volume pending migration to encrypted state";
break;
case CISS_LV_PENDING_ENCRYPTION_REKEYING:
status = "Volume pending encryption rekeying";
break;
case CISS_LV_NOT_SUPPORTED:
status = "Volume not supported on this controller";
break;
case CISS_LV_STATUS_UNAVAILABLE:
status = "Volume status not available";
break;
default:
snprintf(unknown_state_buffer, sizeof(unknown_state_buffer),
unknown_state_str, device->volume_status);
status = unknown_state_buffer;
break;
}
dev_info(&ctrl_info->pci_dev->dev,
"scsi %d:%d:%d:%d %s\n",
ctrl_info->scsi_host->host_no,
device->bus, device->target, device->lun, status);
}
static void pqi_rescan_worker(struct work_struct *work)
{
struct pqi_ctrl_info *ctrl_info;
ctrl_info = container_of(to_delayed_work(work), struct pqi_ctrl_info,
rescan_work);
pqi_scan_scsi_devices(ctrl_info);
}
static int pqi_add_device(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
if (pqi_is_logical_device(device))
rc = scsi_add_device(ctrl_info->scsi_host, device->bus,
device->target, device->lun);
else
rc = pqi_add_sas_device(ctrl_info->sas_host, device);
return rc;
}
#define PQI_PENDING_IO_TIMEOUT_SECS 20
static inline void pqi_remove_device(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
pqi_device_remove_start(device);
rc = pqi_device_wait_for_pending_io(ctrl_info, device, PQI_PENDING_IO_TIMEOUT_SECS);
if (rc)
dev_err(&ctrl_info->pci_dev->dev,
"scsi %d:%d:%d:%d removing device with %d outstanding command(s)\n",
ctrl_info->scsi_host->host_no, device->bus,
device->target, device->lun,
atomic_read(&device->scsi_cmds_outstanding));
if (pqi_is_logical_device(device))
scsi_remove_device(device->sdev);
else
pqi_remove_sas_device(device);
}
/* Assumes the SCSI device list lock is held. */
static struct pqi_scsi_dev *pqi_find_scsi_dev(struct pqi_ctrl_info *ctrl_info,
int bus, int target, int lun)
{
struct pqi_scsi_dev *device;
list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry)
if (device->bus == bus && device->target == target && device->lun == lun)
return device;
return NULL;
}
static inline bool pqi_device_equal(struct pqi_scsi_dev *dev1,
struct pqi_scsi_dev *dev2)
{
if (dev1->is_physical_device != dev2->is_physical_device)
return false;
if (dev1->is_physical_device)
return dev1->wwid == dev2->wwid;
return memcmp(dev1->volume_id, dev2->volume_id,
sizeof(dev1->volume_id)) == 0;
}
enum pqi_find_result {
DEVICE_NOT_FOUND,
DEVICE_CHANGED,
DEVICE_SAME,
};
static enum pqi_find_result pqi_scsi_find_entry(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device_to_find, struct pqi_scsi_dev **matching_device)
{
struct pqi_scsi_dev *device;
list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) {
if (pqi_scsi3addr_equal(device_to_find->scsi3addr, device->scsi3addr)) {
*matching_device = device;
if (pqi_device_equal(device_to_find, device)) {
if (device_to_find->volume_offline)
return DEVICE_CHANGED;
return DEVICE_SAME;
}
return DEVICE_CHANGED;
}
}
return DEVICE_NOT_FOUND;
}
static inline const char *pqi_device_type(struct pqi_scsi_dev *device)
{
if (device->is_expander_smp_device)
return "Enclosure SMP ";
return scsi_device_type(device->devtype);
}
#define PQI_DEV_INFO_BUFFER_LENGTH 128
static void pqi_dev_info(struct pqi_ctrl_info *ctrl_info,
char *action, struct pqi_scsi_dev *device)
{
ssize_t count;
char buffer[PQI_DEV_INFO_BUFFER_LENGTH];
count = snprintf(buffer, PQI_DEV_INFO_BUFFER_LENGTH,
"%d:%d:", ctrl_info->scsi_host->host_no, device->bus);
if (device->target_lun_valid)
count += scnprintf(buffer + count,
PQI_DEV_INFO_BUFFER_LENGTH - count,
"%d:%d",
device->target,
device->lun);
else
count += scnprintf(buffer + count,
PQI_DEV_INFO_BUFFER_LENGTH - count,
"-:-");
if (pqi_is_logical_device(device))
count += scnprintf(buffer + count,
PQI_DEV_INFO_BUFFER_LENGTH - count,
" %08x%08x",
*((u32 *)&device->scsi3addr),
*((u32 *)&device->scsi3addr[4]));
else
count += scnprintf(buffer + count,
PQI_DEV_INFO_BUFFER_LENGTH - count,
" %016llx", device->sas_address);
count += scnprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count,
" %s %.8s %.16s ",
pqi_device_type(device),
device->vendor,
device->model);
if (pqi_is_logical_device(device)) {
if (device->devtype == TYPE_DISK)
count += scnprintf(buffer + count,
PQI_DEV_INFO_BUFFER_LENGTH - count,
"SSDSmartPathCap%c En%c %-12s",
device->raid_bypass_configured ? '+' : '-',
device->raid_bypass_enabled ? '+' : '-',
pqi_raid_level_to_string(device->raid_level));
} else {
count += scnprintf(buffer + count,
PQI_DEV_INFO_BUFFER_LENGTH - count,
"AIO%c", device->aio_enabled ? '+' : '-');
if (device->devtype == TYPE_DISK ||
device->devtype == TYPE_ZBC)
count += scnprintf(buffer + count,
PQI_DEV_INFO_BUFFER_LENGTH - count,
" qd=%-6d", device->queue_depth);
}
dev_info(&ctrl_info->pci_dev->dev, "%s %s\n", action, buffer);
}
/* Assumes the SCSI device list lock is held. */
static void pqi_scsi_update_device(struct pqi_scsi_dev *existing_device,
struct pqi_scsi_dev *new_device)
{
existing_device->devtype = new_device->devtype;
existing_device->device_type = new_device->device_type;
existing_device->bus = new_device->bus;
if (new_device->target_lun_valid) {
existing_device->target = new_device->target;
existing_device->lun = new_device->lun;
existing_device->target_lun_valid = true;
}
if ((existing_device->volume_status == CISS_LV_QUEUED_FOR_EXPANSION ||
existing_device->volume_status == CISS_LV_UNDERGOING_EXPANSION) &&
new_device->volume_status == CISS_LV_OK)
existing_device->rescan = true;
/* By definition, the scsi3addr and wwid fields are already the same. */
existing_device->is_physical_device = new_device->is_physical_device;
existing_device->is_external_raid_device =
new_device->is_external_raid_device;
existing_device->is_expander_smp_device =
new_device->is_expander_smp_device;
existing_device->aio_enabled = new_device->aio_enabled;
memcpy(existing_device->vendor, new_device->vendor,
sizeof(existing_device->vendor));
memcpy(existing_device->model, new_device->model,
sizeof(existing_device->model));
existing_device->sas_address = new_device->sas_address;
existing_device->raid_level = new_device->raid_level;
existing_device->queue_depth = new_device->queue_depth;
existing_device->aio_handle = new_device->aio_handle;
existing_device->volume_status = new_device->volume_status;
existing_device->active_path_index = new_device->active_path_index;
existing_device->path_map = new_device->path_map;
existing_device->bay = new_device->bay;
existing_device->box_index = new_device->box_index;
existing_device->phys_box_on_bus = new_device->phys_box_on_bus;
existing_device->phy_connected_dev_type =
new_device->phy_connected_dev_type;
memcpy(existing_device->box, new_device->box,
sizeof(existing_device->box));
memcpy(existing_device->phys_connector, new_device->phys_connector,
sizeof(existing_device->phys_connector));
existing_device->offload_to_mirror = 0;
kfree(existing_device->raid_map);
existing_device->raid_map = new_device->raid_map;
existing_device->raid_bypass_configured =
new_device->raid_bypass_configured;
existing_device->raid_bypass_enabled =
new_device->raid_bypass_enabled;
existing_device->device_offline = false;
/* To prevent this from being freed later. */
new_device->raid_map = NULL;
}
static inline void pqi_free_device(struct pqi_scsi_dev *device)
{
if (device) {
kfree(device->raid_map);
kfree(device);
}
}
/*
* Called when exposing a new device to the OS fails in order to re-adjust
* our internal SCSI device list to match the SCSI ML's view.
*/
static inline void pqi_fixup_botched_add(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
unsigned long flags;
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
list_del(&device->scsi_device_list_entry);
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
/* Allow the device structure to be freed later. */
device->keep_device = false;
}
static inline bool pqi_is_device_added(struct pqi_scsi_dev *device)
{
if (device->is_expander_smp_device)
return device->sas_port != NULL;
return device->sdev != NULL;
}
static void pqi_update_device_list(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *new_device_list[], unsigned int num_new_devices)
{
int rc;
unsigned int i;
unsigned long flags;
enum pqi_find_result find_result;
struct pqi_scsi_dev *device;
struct pqi_scsi_dev *next;
struct pqi_scsi_dev *matching_device;
LIST_HEAD(add_list);
LIST_HEAD(delete_list);
/*
* The idea here is to do as little work as possible while holding the
* spinlock. That's why we go to great pains to defer anything other
* than updating the internal device list until after we release the
* spinlock.
*/
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
/* Assume that all devices in the existing list have gone away. */
list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry)
device->device_gone = true;
for (i = 0; i < num_new_devices; i++) {
device = new_device_list[i];
find_result = pqi_scsi_find_entry(ctrl_info, device,
&matching_device);
switch (find_result) {
case DEVICE_SAME:
/*
* The newly found device is already in the existing
* device list.
*/
device->new_device = false;
matching_device->device_gone = false;
pqi_scsi_update_device(matching_device, device);
break;
case DEVICE_NOT_FOUND:
/*
* The newly found device is NOT in the existing device
* list.
*/
device->new_device = true;
break;
case DEVICE_CHANGED:
/*
* The original device has gone away and we need to add
* the new device.
*/
device->new_device = true;
break;
}
}
/* Process all devices that have gone away. */
list_for_each_entry_safe(device, next, &ctrl_info->scsi_device_list,
scsi_device_list_entry) {
if (device->device_gone) {
list_del_init(&device->scsi_device_list_entry);
list_add_tail(&device->delete_list_entry, &delete_list);
}
}
/* Process all new devices. */
for (i = 0; i < num_new_devices; i++) {
device = new_device_list[i];
if (!device->new_device)
continue;
if (device->volume_offline)
continue;
list_add_tail(&device->scsi_device_list_entry,
&ctrl_info->scsi_device_list);
list_add_tail(&device->add_list_entry, &add_list);
/* To prevent this device structure from being freed later. */
device->keep_device = true;
}
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
if (pqi_ctrl_in_ofa(ctrl_info))
pqi_ctrl_ofa_done(ctrl_info);
/* Remove all devices that have gone away. */
list_for_each_entry_safe(device, next, &delete_list, delete_list_entry) {
if (device->volume_offline) {
pqi_dev_info(ctrl_info, "offline", device);
pqi_show_volume_status(ctrl_info, device);
}
list_del(&device->delete_list_entry);
if (pqi_is_device_added(device)) {
pqi_remove_device(ctrl_info, device);
} else {
if (!device->volume_offline)
pqi_dev_info(ctrl_info, "removed", device);
pqi_free_device(device);
}
}
/*
* Notify the SCSI ML if the queue depth of any existing device has
* changed.
*/
list_for_each_entry(device, &ctrl_info->scsi_device_list,
scsi_device_list_entry) {
if (device->sdev) {
if (device->queue_depth !=
device->advertised_queue_depth) {
device->advertised_queue_depth = device->queue_depth;
scsi_change_queue_depth(device->sdev,
device->advertised_queue_depth);
}
if (device->rescan) {
scsi_rescan_device(&device->sdev->sdev_gendev);
device->rescan = false;
}
}
}
/* Expose any new devices. */
list_for_each_entry_safe(device, next, &add_list, add_list_entry) {
if (!pqi_is_device_added(device)) {
rc = pqi_add_device(ctrl_info, device);
if (rc == 0) {
pqi_dev_info(ctrl_info, "added", device);
} else {
dev_warn(&ctrl_info->pci_dev->dev,
"scsi %d:%d:%d:%d addition failed, device not added\n",
ctrl_info->scsi_host->host_no,
device->bus, device->target,
device->lun);
pqi_fixup_botched_add(ctrl_info, device);
}
}
}
}
static inline bool pqi_is_supported_device(struct pqi_scsi_dev *device)
{
/*
* Only support the HBA controller itself as a RAID
* controller. If it's a RAID controller other than
* the HBA itself (an external RAID controller, for
* example), we don't support it.
*/
if (device->device_type == SA_DEVICE_TYPE_CONTROLLER &&
!pqi_is_hba_lunid(device->scsi3addr))
return false;
return true;
}
static inline bool pqi_skip_device(u8 *scsi3addr)
{
/* Ignore all masked devices. */
if (MASKED_DEVICE(scsi3addr))
return true;
return false;
}
static inline void pqi_mask_device(u8 *scsi3addr)
{
scsi3addr[3] |= 0xc0;
}
static inline bool pqi_is_device_with_sas_address(struct pqi_scsi_dev *device)
{
switch (device->device_type) {
case SA_DEVICE_TYPE_SAS:
case SA_DEVICE_TYPE_EXPANDER_SMP:
case SA_DEVICE_TYPE_SES:
return true;
}
return false;
}
static inline bool pqi_expose_device(struct pqi_scsi_dev *device)
{
return !device->is_physical_device ||
!pqi_skip_device(device->scsi3addr);
}
static int pqi_update_scsi_devices(struct pqi_ctrl_info *ctrl_info)
{
int i;
int rc;
LIST_HEAD(new_device_list_head);
struct report_phys_lun_extended *physdev_list = NULL;
struct report_log_lun_extended *logdev_list = NULL;
struct report_phys_lun_extended_entry *phys_lun_ext_entry;
struct report_log_lun_extended_entry *log_lun_ext_entry;
struct bmic_identify_physical_device *id_phys = NULL;
u32 num_physicals;
u32 num_logicals;
struct pqi_scsi_dev **new_device_list = NULL;
struct pqi_scsi_dev *device;
struct pqi_scsi_dev *next;
unsigned int num_new_devices;
unsigned int num_valid_devices;
bool is_physical_device;
u8 *scsi3addr;
unsigned int physical_index;
unsigned int logical_index;
static char *out_of_memory_msg =
"failed to allocate memory, device discovery stopped";
rc = pqi_get_device_lists(ctrl_info, &physdev_list, &logdev_list);
if (rc)
goto out;
if (physdev_list)
num_physicals =
get_unaligned_be32(&physdev_list->header.list_length)
/ sizeof(physdev_list->lun_entries[0]);
else
num_physicals = 0;
if (logdev_list)
num_logicals =
get_unaligned_be32(&logdev_list->header.list_length)
/ sizeof(logdev_list->lun_entries[0]);
else
num_logicals = 0;
if (num_physicals) {
/*
* We need this buffer for calls to pqi_get_physical_disk_info()
* below. We allocate it here instead of inside
* pqi_get_physical_disk_info() because it's a fairly large
* buffer.
*/
id_phys = kmalloc(sizeof(*id_phys), GFP_KERNEL);
if (!id_phys) {
dev_warn(&ctrl_info->pci_dev->dev, "%s\n",
out_of_memory_msg);
rc = -ENOMEM;
goto out;
}
if (pqi_hide_vsep) {
for (i = num_physicals - 1; i >= 0; i--) {
phys_lun_ext_entry =
&physdev_list->lun_entries[i];
if (CISS_GET_DRIVE_NUMBER(
phys_lun_ext_entry->lunid) ==
PQI_VSEP_CISS_BTL) {
pqi_mask_device(
phys_lun_ext_entry->lunid);
break;
}
}
}
}
num_new_devices = num_physicals + num_logicals;
new_device_list = kmalloc_array(num_new_devices,
sizeof(*new_device_list),
GFP_KERNEL);
if (!new_device_list) {
dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg);
rc = -ENOMEM;
goto out;
}
for (i = 0; i < num_new_devices; i++) {
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device) {
dev_warn(&ctrl_info->pci_dev->dev, "%s\n",
out_of_memory_msg);
rc = -ENOMEM;
goto out;
}
list_add_tail(&device->new_device_list_entry,
&new_device_list_head);
}
device = NULL;
num_valid_devices = 0;
physical_index = 0;
logical_index = 0;
for (i = 0; i < num_new_devices; i++) {
if ((!pqi_expose_ld_first && i < num_physicals) ||
(pqi_expose_ld_first && i >= num_logicals)) {
is_physical_device = true;
phys_lun_ext_entry =
&physdev_list->lun_entries[physical_index++];
log_lun_ext_entry = NULL;
scsi3addr = phys_lun_ext_entry->lunid;
} else {
is_physical_device = false;
phys_lun_ext_entry = NULL;
log_lun_ext_entry =
&logdev_list->lun_entries[logical_index++];
scsi3addr = log_lun_ext_entry->lunid;
}
if (is_physical_device && pqi_skip_device(scsi3addr))
continue;
if (device)
device = list_next_entry(device, new_device_list_entry);
else
device = list_first_entry(&new_device_list_head,
struct pqi_scsi_dev, new_device_list_entry);
memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
device->is_physical_device = is_physical_device;
if (is_physical_device) {
device->device_type = phys_lun_ext_entry->device_type;
if (device->device_type == SA_DEVICE_TYPE_EXPANDER_SMP)
device->is_expander_smp_device = true;
} else {
device->is_external_raid_device =
pqi_is_external_raid_addr(scsi3addr);
}
if (!pqi_is_supported_device(device))
continue;
/* Gather information about the device. */
rc = pqi_get_device_info(ctrl_info, device, id_phys);
if (rc == -ENOMEM) {
dev_warn(&ctrl_info->pci_dev->dev, "%s\n",
out_of_memory_msg);
goto out;
}
if (rc) {
if (device->is_physical_device)
dev_warn(&ctrl_info->pci_dev->dev,
"obtaining device info failed, skipping physical device %016llx\n",
get_unaligned_be64(
&phys_lun_ext_entry->wwid));
else
dev_warn(&ctrl_info->pci_dev->dev,
"obtaining device info failed, skipping logical device %08x%08x\n",
*((u32 *)&device->scsi3addr),
*((u32 *)&device->scsi3addr[4]));
rc = 0;
continue;
}
pqi_assign_bus_target_lun(device);
if (device->is_physical_device) {
device->wwid = phys_lun_ext_entry->wwid;
if ((phys_lun_ext_entry->device_flags &
CISS_REPORT_PHYS_DEV_FLAG_AIO_ENABLED) &&
phys_lun_ext_entry->aio_handle) {
device->aio_enabled = true;
device->aio_handle =
phys_lun_ext_entry->aio_handle;
}
} else {
memcpy(device->volume_id, log_lun_ext_entry->volume_id,
sizeof(device->volume_id));
}
if (pqi_is_device_with_sas_address(device))
device->sas_address = get_unaligned_be64(&device->wwid);
new_device_list[num_valid_devices++] = device;
}
pqi_update_device_list(ctrl_info, new_device_list, num_valid_devices);
out:
list_for_each_entry_safe(device, next, &new_device_list_head,
new_device_list_entry) {
if (device->keep_device)
continue;
list_del(&device->new_device_list_entry);
pqi_free_device(device);
}
kfree(new_device_list);
kfree(physdev_list);
kfree(logdev_list);
kfree(id_phys);
return rc;
}
static int pqi_scan_scsi_devices(struct pqi_ctrl_info *ctrl_info)
{
int rc = 0;
if (pqi_ctrl_offline(ctrl_info))
return -ENXIO;
if (!mutex_trylock(&ctrl_info->scan_mutex)) {
pqi_schedule_rescan_worker_delayed(ctrl_info);
rc = -EINPROGRESS;
} else {
rc = pqi_update_scsi_devices(ctrl_info);
if (rc)
pqi_schedule_rescan_worker_delayed(ctrl_info);
mutex_unlock(&ctrl_info->scan_mutex);
}
return rc;
}
static void pqi_scan_start(struct Scsi_Host *shost)
{
struct pqi_ctrl_info *ctrl_info;
ctrl_info = shost_to_hba(shost);
if (pqi_ctrl_in_ofa(ctrl_info))
return;
pqi_scan_scsi_devices(ctrl_info);
}
/* Returns TRUE if scan is finished. */
static int pqi_scan_finished(struct Scsi_Host *shost,
unsigned long elapsed_time)
{
struct pqi_ctrl_info *ctrl_info;
ctrl_info = shost_priv(shost);
return !mutex_is_locked(&ctrl_info->scan_mutex);
}
static void pqi_wait_until_scan_finished(struct pqi_ctrl_info *ctrl_info)
{
mutex_lock(&ctrl_info->scan_mutex);
mutex_unlock(&ctrl_info->scan_mutex);
}
static void pqi_wait_until_lun_reset_finished(struct pqi_ctrl_info *ctrl_info)
{
mutex_lock(&ctrl_info->lun_reset_mutex);
mutex_unlock(&ctrl_info->lun_reset_mutex);
}
static void pqi_wait_until_ofa_finished(struct pqi_ctrl_info *ctrl_info)
{
mutex_lock(&ctrl_info->ofa_mutex);
mutex_unlock(&ctrl_info->ofa_mutex);
}
static inline void pqi_set_encryption_info(
struct pqi_encryption_info *encryption_info, struct raid_map *raid_map,
u64 first_block)
{
u32 volume_blk_size;
/*
* Set the encryption tweak values based on logical block address.
* If the block size is 512, the tweak value is equal to the LBA.
* For other block sizes, tweak value is (LBA * block size) / 512.
*/
volume_blk_size = get_unaligned_le32(&raid_map->volume_blk_size);
if (volume_blk_size != 512)
first_block = (first_block * volume_blk_size) / 512;
encryption_info->data_encryption_key_index =
get_unaligned_le16(&raid_map->data_encryption_key_index);
encryption_info->encrypt_tweak_lower = lower_32_bits(first_block);
encryption_info->encrypt_tweak_upper = upper_32_bits(first_block);
}
/*
* Attempt to perform RAID bypass mapping for a logical volume I/O.
*/
#define PQI_RAID_BYPASS_INELIGIBLE 1
static int pqi_raid_bypass_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device, struct scsi_cmnd *scmd,
struct pqi_queue_group *queue_group)
{
struct raid_map *raid_map;
bool is_write = false;
u32 map_index;
u64 first_block;
u64 last_block;
u32 block_cnt;
u32 blocks_per_row;
u64 first_row;
u64 last_row;
u32 first_row_offset;
u32 last_row_offset;
u32 first_column;
u32 last_column;
u64 r0_first_row;
u64 r0_last_row;
u32 r5or6_blocks_per_row;
u64 r5or6_first_row;
u64 r5or6_last_row;
u32 r5or6_first_row_offset;
u32 r5or6_last_row_offset;
u32 r5or6_first_column;
u32 r5or6_last_column;
u16 data_disks_per_row;
u32 total_disks_per_row;
u16 layout_map_count;
u32 stripesize;
u16 strip_size;
u32 first_group;
u32 last_group;
u32 current_group;
u32 map_row;
u32 aio_handle;
u64 disk_block;
u32 disk_block_cnt;
u8 cdb[16];
u8 cdb_length;
int offload_to_mirror;
struct pqi_encryption_info *encryption_info_ptr;
struct pqi_encryption_info encryption_info;
#if BITS_PER_LONG == 32
u64 tmpdiv;
#endif
/* Check for valid opcode, get LBA and block count. */
switch (scmd->cmnd[0]) {
case WRITE_6:
is_write = true;
fallthrough;
case READ_6:
first_block = (u64)(((scmd->cmnd[1] & 0x1f) << 16) |
(scmd->cmnd[2] << 8) | scmd->cmnd[3]);
block_cnt = (u32)scmd->cmnd[4];
if (block_cnt == 0)
block_cnt = 256;
break;
case WRITE_10:
is_write = true;
fallthrough;
case READ_10:
first_block = (u64)get_unaligned_be32(&scmd->cmnd[2]);
block_cnt = (u32)get_unaligned_be16(&scmd->cmnd[7]);
break;
case WRITE_12:
is_write = true;
fallthrough;
case READ_12:
first_block = (u64)get_unaligned_be32(&scmd->cmnd[2]);
block_cnt = get_unaligned_be32(&scmd->cmnd[6]);
break;
case WRITE_16:
is_write = true;
fallthrough;
case READ_16:
first_block = get_unaligned_be64(&scmd->cmnd[2]);
block_cnt = get_unaligned_be32(&scmd->cmnd[10]);
break;
default:
/* Process via normal I/O path. */
return PQI_RAID_BYPASS_INELIGIBLE;
}
/* Check for write to non-RAID-0. */
if (is_write && device->raid_level != SA_RAID_0)
return PQI_RAID_BYPASS_INELIGIBLE;
if (unlikely(block_cnt == 0))
return PQI_RAID_BYPASS_INELIGIBLE;
last_block = first_block + block_cnt - 1;
raid_map = device->raid_map;
/* Check for invalid block or wraparound. */
if (last_block >= get_unaligned_le64(&raid_map->volume_blk_cnt) ||
last_block < first_block)
return PQI_RAID_BYPASS_INELIGIBLE;
data_disks_per_row = get_unaligned_le16(&raid_map->data_disks_per_row);
strip_size = get_unaligned_le16(&raid_map->strip_size);
layout_map_count = get_unaligned_le16(&raid_map->layout_map_count);
/* Calculate stripe information for the request. */
blocks_per_row = data_disks_per_row * strip_size;
#if BITS_PER_LONG == 32
tmpdiv = first_block;
do_div(tmpdiv, blocks_per_row);
first_row = tmpdiv;
tmpdiv = last_block;
do_div(tmpdiv, blocks_per_row);
last_row = tmpdiv;
first_row_offset = (u32)(first_block - (first_row * blocks_per_row));
last_row_offset = (u32)(last_block - (last_row * blocks_per_row));
tmpdiv = first_row_offset;
do_div(tmpdiv, strip_size);
first_column = tmpdiv;
tmpdiv = last_row_offset;
do_div(tmpdiv, strip_size);
last_column = tmpdiv;
#else
first_row = first_block / blocks_per_row;
last_row = last_block / blocks_per_row;
first_row_offset = (u32)(first_block - (first_row * blocks_per_row));
last_row_offset = (u32)(last_block - (last_row * blocks_per_row));
first_column = first_row_offset / strip_size;
last_column = last_row_offset / strip_size;
#endif
/* If this isn't a single row/column then give to the controller. */
if (first_row != last_row || first_column != last_column)
return PQI_RAID_BYPASS_INELIGIBLE;
/* Proceeding with driver mapping. */
total_disks_per_row = data_disks_per_row +
get_unaligned_le16(&raid_map->metadata_disks_per_row);
map_row = ((u32)(first_row >> raid_map->parity_rotation_shift)) %
get_unaligned_le16(&raid_map->row_cnt);
map_index = (map_row * total_disks_per_row) + first_column;
/* RAID 1 */
if (device->raid_level == SA_RAID_1) {
if (device->offload_to_mirror)
map_index += data_disks_per_row;
device->offload_to_mirror = !device->offload_to_mirror;
} else if (device->raid_level == SA_RAID_ADM) {
/* RAID ADM */
/*
* Handles N-way mirrors (R1-ADM) and R10 with # of drives
* divisible by 3.
*/
offload_to_mirror = device->offload_to_mirror;
if (offload_to_mirror == 0) {
/* use physical disk in the first mirrored group. */
map_index %= data_disks_per_row;
} else {
do {
/*
* Determine mirror group that map_index
* indicates.
*/
current_group = map_index / data_disks_per_row;
if (offload_to_mirror != current_group) {
if (current_group <
layout_map_count - 1) {
/*
* Select raid index from
* next group.
*/
map_index += data_disks_per_row;
current_group++;
} else {
/*
* Select raid index from first
* group.
*/
map_index %= data_disks_per_row;
current_group = 0;
}
}
} while (offload_to_mirror != current_group);
}
/* Set mirror group to use next time. */
offload_to_mirror =
(offload_to_mirror >= layout_map_count - 1) ?
0 : offload_to_mirror + 1;
device->offload_to_mirror = offload_to_mirror;
/*
* Avoid direct use of device->offload_to_mirror within this
* function since multiple threads might simultaneously
* increment it beyond the range of device->layout_map_count -1.
*/
} else if ((device->raid_level == SA_RAID_5 ||
device->raid_level == SA_RAID_6) && layout_map_count > 1) {
/* RAID 50/60 */
/* Verify first and last block are in same RAID group */
r5or6_blocks_per_row = strip_size * data_disks_per_row;
stripesize = r5or6_blocks_per_row * layout_map_count;
#if BITS_PER_LONG == 32
tmpdiv = first_block;
first_group = do_div(tmpdiv, stripesize);
tmpdiv = first_group;
do_div(tmpdiv, r5or6_blocks_per_row);
first_group = tmpdiv;
tmpdiv = last_block;
last_group = do_div(tmpdiv, stripesize);
tmpdiv = last_group;
do_div(tmpdiv, r5or6_blocks_per_row);
last_group = tmpdiv;
#else
first_group = (first_block % stripesize) / r5or6_blocks_per_row;
last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
if (first_group != last_group)
return PQI_RAID_BYPASS_INELIGIBLE;
/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
tmpdiv = first_block;
do_div(tmpdiv, stripesize);
first_row = r5or6_first_row = r0_first_row = tmpdiv;
tmpdiv = last_block;
do_div(tmpdiv, stripesize);
r5or6_last_row = r0_last_row = tmpdiv;
#else
first_row = r5or6_first_row = r0_first_row =
first_block / stripesize;
r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
if (r5or6_first_row != r5or6_last_row)
return PQI_RAID_BYPASS_INELIGIBLE;
/* Verify request is in a single column */
#if BITS_PER_LONG == 32
tmpdiv = first_block;
first_row_offset = do_div(tmpdiv, stripesize);
tmpdiv = first_row_offset;
first_row_offset = (u32)do_div(tmpdiv, r5or6_blocks_per_row);
r5or6_first_row_offset = first_row_offset;
tmpdiv = last_block;
r5or6_last_row_offset = do_div(tmpdiv, stripesize);
tmpdiv = r5or6_last_row_offset;
r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
tmpdiv = r5or6_first_row_offset;
do_div(tmpdiv, strip_size);
first_column = r5or6_first_column = tmpdiv;
tmpdiv = r5or6_last_row_offset;
do_div(tmpdiv, strip_size);
r5or6_last_column = tmpdiv;
#else
first_row_offset = r5or6_first_row_offset =
(u32)((first_block % stripesize) %
r5or6_blocks_per_row);
r5or6_last_row_offset =
(u32)((last_block % stripesize) %
r5or6_blocks_per_row);
first_column = r5or6_first_row_offset / strip_size;
r5or6_first_column = first_column;
r5or6_last_column = r5or6_last_row_offset / strip_size;
#endif
if (r5or6_first_column != r5or6_last_column)
return PQI_RAID_BYPASS_INELIGIBLE;
/* Request is eligible */
map_row =
((u32)(first_row >> raid_map->parity_rotation_shift)) %
get_unaligned_le16(&raid_map->row_cnt);
map_index = (first_group *
(get_unaligned_le16(&raid_map->row_cnt) *
total_disks_per_row)) +
(map_row * total_disks_per_row) + first_column;
}
aio_handle = raid_map->disk_data[map_index].aio_handle;
disk_block = get_unaligned_le64(&raid_map->disk_starting_blk) +
first_row * strip_size +
(first_row_offset - first_column * strip_size);
disk_block_cnt = block_cnt;
/* Handle differing logical/physical block sizes. */
if (raid_map->phys_blk_shift) {
disk_block <<= raid_map->phys_blk_shift;
disk_block_cnt <<= raid_map->phys_blk_shift;
}
if (unlikely(disk_block_cnt > 0xffff))
return PQI_RAID_BYPASS_INELIGIBLE;
/* Build the new CDB for the physical disk I/O. */
if (disk_block > 0xffffffff) {
cdb[0] = is_write ? WRITE_16 : READ_16;
cdb[1] = 0;
put_unaligned_be64(disk_block, &cdb[2]);
put_unaligned_be32(disk_block_cnt, &cdb[10]);
cdb[14] = 0;
cdb[15] = 0;
cdb_length = 16;
} else {
cdb[0] = is_write ? WRITE_10 : READ_10;
cdb[1] = 0;
put_unaligned_be32((u32)disk_block, &cdb[2]);
cdb[6] = 0;
put_unaligned_be16((u16)disk_block_cnt, &cdb[7]);
cdb[9] = 0;
cdb_length = 10;
}
if (get_unaligned_le16(&raid_map->flags) &
RAID_MAP_ENCRYPTION_ENABLED) {
pqi_set_encryption_info(&encryption_info, raid_map,
first_block);
encryption_info_ptr = &encryption_info;
} else {
encryption_info_ptr = NULL;
}
return pqi_aio_submit_io(ctrl_info, scmd, aio_handle,
cdb, cdb_length, queue_group, encryption_info_ptr, true);
}
#define PQI_STATUS_IDLE 0x0
#define PQI_CREATE_ADMIN_QUEUE_PAIR 1
#define PQI_DELETE_ADMIN_QUEUE_PAIR 2
#define PQI_DEVICE_STATE_POWER_ON_AND_RESET 0x0
#define PQI_DEVICE_STATE_STATUS_AVAILABLE 0x1
#define PQI_DEVICE_STATE_ALL_REGISTERS_READY 0x2
#define PQI_DEVICE_STATE_ADMIN_QUEUE_PAIR_READY 0x3
#define PQI_DEVICE_STATE_ERROR 0x4
#define PQI_MODE_READY_TIMEOUT_SECS 30
#define PQI_MODE_READY_POLL_INTERVAL_MSECS 1
static int pqi_wait_for_pqi_mode_ready(struct pqi_ctrl_info *ctrl_info)
{
struct pqi_device_registers __iomem *pqi_registers;
unsigned long timeout;
u64 signature;
u8 status;
pqi_registers = ctrl_info->pqi_registers;
timeout = (PQI_MODE_READY_TIMEOUT_SECS * PQI_HZ) + jiffies;
while (1) {
signature = readq(&pqi_registers->signature);
if (memcmp(&signature, PQI_DEVICE_SIGNATURE,
sizeof(signature)) == 0)
break;
if (time_after(jiffies, timeout)) {
dev_err(&ctrl_info->pci_dev->dev,
"timed out waiting for PQI signature\n");
return -ETIMEDOUT;
}
msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS);
}
while (1) {
status = readb(&pqi_registers->function_and_status_code);
if (status == PQI_STATUS_IDLE)
break;
if (time_after(jiffies, timeout)) {
dev_err(&ctrl_info->pci_dev->dev,
"timed out waiting for PQI IDLE\n");
return -ETIMEDOUT;
}
msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS);
}
while (1) {
if (readl(&pqi_registers->device_status) ==
PQI_DEVICE_STATE_ALL_REGISTERS_READY)
break;
if (time_after(jiffies, timeout)) {
dev_err(&ctrl_info->pci_dev->dev,
"timed out waiting for PQI all registers ready\n");
return -ETIMEDOUT;
}
msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS);
}
return 0;
}
static inline void pqi_aio_path_disabled(struct pqi_io_request *io_request)
{
struct pqi_scsi_dev *device;
device = io_request->scmd->device->hostdata;
device->raid_bypass_enabled = false;
device->aio_enabled = false;
}
static inline void pqi_take_device_offline(struct scsi_device *sdev, char *path)
{
struct pqi_ctrl_info *ctrl_info;
struct pqi_scsi_dev *device;
device = sdev->hostdata;
if (device->device_offline)
return;
device->device_offline = true;
ctrl_info = shost_to_hba(sdev->host);
pqi_schedule_rescan_worker(ctrl_info);
dev_err(&ctrl_info->pci_dev->dev, "re-scanning %s scsi %d:%d:%d:%d\n",
path, ctrl_info->scsi_host->host_no, device->bus,
device->target, device->lun);
}
static void pqi_process_raid_io_error(struct pqi_io_request *io_request)
{
u8 scsi_status;
u8 host_byte;
struct scsi_cmnd *scmd;
struct pqi_raid_error_info *error_info;
size_t sense_data_length;
int residual_count;
int xfer_count;
struct scsi_sense_hdr sshdr;
scmd = io_request->scmd;
if (!scmd)
return;
error_info = io_request->error_info;
scsi_status = error_info->status;
host_byte = DID_OK;
switch (error_info->data_out_result) {
case PQI_DATA_IN_OUT_GOOD:
break;
case PQI_DATA_IN_OUT_UNDERFLOW:
xfer_count =
get_unaligned_le32(&error_info->data_out_transferred);
residual_count = scsi_bufflen(scmd) - xfer_count;
scsi_set_resid(scmd, residual_count);
if (xfer_count < scmd->underflow)
host_byte = DID_SOFT_ERROR;
break;
case PQI_DATA_IN_OUT_UNSOLICITED_ABORT:
case PQI_DATA_IN_OUT_ABORTED:
host_byte = DID_ABORT;
break;
case PQI_DATA_IN_OUT_TIMEOUT:
host_byte = DID_TIME_OUT;
break;
case PQI_DATA_IN_OUT_BUFFER_OVERFLOW:
case PQI_DATA_IN_OUT_PROTOCOL_ERROR:
case PQI_DATA_IN_OUT_BUFFER_ERROR:
case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_DESCRIPTOR_AREA:
case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_BRIDGE:
case PQI_DATA_IN_OUT_ERROR:
case PQI_DATA_IN_OUT_HARDWARE_ERROR:
case PQI_DATA_IN_OUT_PCIE_FABRIC_ERROR:
case PQI_DATA_IN_OUT_PCIE_COMPLETION_TIMEOUT:
case PQI_DATA_IN_OUT_PCIE_COMPLETER_ABORT_RECEIVED:
case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST_RECEIVED:
case PQI_DATA_IN_OUT_PCIE_ECRC_CHECK_FAILED:
case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST:
case PQI_DATA_IN_OUT_PCIE_ACS_VIOLATION:
case PQI_DATA_IN_OUT_PCIE_TLP_PREFIX_BLOCKED:
case PQI_DATA_IN_OUT_PCIE_POISONED_MEMORY_READ:
default:
host_byte = DID_ERROR;
break;
}
sense_data_length = get_unaligned_le16(&error_info->sense_data_length);
if (sense_data_length == 0)
sense_data_length =
get_unaligned_le16(&error_info->response_data_length);
if (sense_data_length) {
if (sense_data_length > sizeof(error_info->data))
sense_data_length = sizeof(error_info->data);
if (scsi_status == SAM_STAT_CHECK_CONDITION &&
scsi_normalize_sense(error_info->data,
sense_data_length, &sshdr) &&
sshdr.sense_key == HARDWARE_ERROR &&
sshdr.asc == 0x3e) {
struct pqi_ctrl_info *ctrl_info = shost_to_hba(scmd->device->host);
struct pqi_scsi_dev *device = scmd->device->hostdata;
switch (sshdr.ascq) {
case 0x1: /* LOGICAL UNIT FAILURE */
if (printk_ratelimit())
scmd_printk(KERN_ERR, scmd, "received 'logical unit failure' from controller for scsi %d:%d:%d:%d\n",
ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun);
pqi_take_device_offline(scmd->device, "RAID");
host_byte = DID_NO_CONNECT;
break;
default: /* See http://www.t10.org/lists/asc-num.htm#ASC_3E */
if (printk_ratelimit())
scmd_printk(KERN_ERR, scmd, "received unhandled error %d from controller for scsi %d:%d:%d:%d\n",
sshdr.ascq, ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun);
break;
}
}
if (sense_data_length > SCSI_SENSE_BUFFERSIZE)
sense_data_length = SCSI_SENSE_BUFFERSIZE;
memcpy(scmd->sense_buffer, error_info->data,
sense_data_length);
}
scmd->result = scsi_status;
set_host_byte(scmd, host_byte);
}
static void pqi_process_aio_io_error(struct pqi_io_request *io_request)
{
u8 scsi_status;
u8 host_byte;
struct scsi_cmnd *scmd;
struct pqi_aio_error_info *error_info;
size_t sense_data_length;
int residual_count;
int xfer_count;
bool device_offline;
scmd = io_request->scmd;
error_info = io_request->error_info;
host_byte = DID_OK;
sense_data_length = 0;
device_offline = false;
switch (error_info->service_response) {
case PQI_AIO_SERV_RESPONSE_COMPLETE:
scsi_status = error_info->status;
break;
case PQI_AIO_SERV_RESPONSE_FAILURE:
switch (error_info->status) {
case PQI_AIO_STATUS_IO_ABORTED:
scsi_status = SAM_STAT_TASK_ABORTED;
break;
case PQI_AIO_STATUS_UNDERRUN:
scsi_status = SAM_STAT_GOOD;
residual_count = get_unaligned_le32(
&error_info->residual_count);
scsi_set_resid(scmd, residual_count);
xfer_count = scsi_bufflen(scmd) - residual_count;
if (xfer_count < scmd->underflow)
host_byte = DID_SOFT_ERROR;
break;
case PQI_AIO_STATUS_OVERRUN:
scsi_status = SAM_STAT_GOOD;
break;
case PQI_AIO_STATUS_AIO_PATH_DISABLED:
pqi_aio_path_disabled(io_request);
scsi_status = SAM_STAT_GOOD;
io_request->status = -EAGAIN;
break;
case PQI_AIO_STATUS_NO_PATH_TO_DEVICE:
case PQI_AIO_STATUS_INVALID_DEVICE:
if (!io_request->raid_bypass) {
device_offline = true;
pqi_take_device_offline(scmd->device, "AIO");
host_byte = DID_NO_CONNECT;
}
scsi_status = SAM_STAT_CHECK_CONDITION;
break;
case PQI_AIO_STATUS_IO_ERROR:
default:
scsi_status = SAM_STAT_CHECK_CONDITION;
break;
}
break;
case PQI_AIO_SERV_RESPONSE_TMF_COMPLETE:
case PQI_AIO_SERV_RESPONSE_TMF_SUCCEEDED:
scsi_status = SAM_STAT_GOOD;
break;
case PQI_AIO_SERV_RESPONSE_TMF_REJECTED:
case PQI_AIO_SERV_RESPONSE_TMF_INCORRECT_LUN:
default:
scsi_status = SAM_STAT_CHECK_CONDITION;
break;
}
if (error_info->data_present) {
sense_data_length =
get_unaligned_le16(&error_info->data_length);
if (sense_data_length) {
if (sense_data_length > sizeof(error_info->data))
sense_data_length = sizeof(error_info->data);
if (sense_data_length > SCSI_SENSE_BUFFERSIZE)
sense_data_length = SCSI_SENSE_BUFFERSIZE;
memcpy(scmd->sense_buffer, error_info->data,
sense_data_length);
}
}
if (device_offline && sense_data_length == 0)
scsi_build_sense_buffer(0, scmd->sense_buffer, HARDWARE_ERROR,
0x3e, 0x1);
scmd->result = scsi_status;
set_host_byte(scmd, host_byte);
}
static void pqi_process_io_error(unsigned int iu_type,
struct pqi_io_request *io_request)
{
switch (iu_type) {
case PQI_RESPONSE_IU_RAID_PATH_IO_ERROR:
pqi_process_raid_io_error(io_request);
break;
case PQI_RESPONSE_IU_AIO_PATH_IO_ERROR:
pqi_process_aio_io_error(io_request);
break;
}
}
static int pqi_interpret_task_management_response(
struct pqi_task_management_response *response)
{
int rc;
switch (response->response_code) {
case SOP_TMF_COMPLETE:
case SOP_TMF_FUNCTION_SUCCEEDED:
rc = 0;
break;
case SOP_TMF_REJECTED:
rc = -EAGAIN;
break;
default:
rc = -EIO;
break;
}
return rc;
}
static inline void pqi_invalid_response(struct pqi_ctrl_info *ctrl_info)
{
pqi_take_ctrl_offline(ctrl_info);
}
static int pqi_process_io_intr(struct pqi_ctrl_info *ctrl_info, struct pqi_queue_group *queue_group)
{
int num_responses;
pqi_index_t oq_pi;
pqi_index_t oq_ci;
struct pqi_io_request *io_request;
struct pqi_io_response *response;
u16 request_id;
num_responses = 0;
oq_ci = queue_group->oq_ci_copy;
while (1) {
oq_pi = readl(queue_group->oq_pi);
if (oq_pi >= ctrl_info->num_elements_per_oq) {
pqi_invalid_response(ctrl_info);
dev_err(&ctrl_info->pci_dev->dev,
"I/O interrupt: producer index (%u) out of range (0-%u): consumer index: %u\n",
oq_pi, ctrl_info->num_elements_per_oq - 1, oq_ci);
return -1;
}
if (oq_pi == oq_ci)
break;
num_responses++;
response = queue_group->oq_element_array +
(oq_ci * PQI_OPERATIONAL_OQ_ELEMENT_LENGTH);
request_id = get_unaligned_le16(&response->request_id);
if (request_id >= ctrl_info->max_io_slots) {
pqi_invalid_response(ctrl_info);
dev_err(&ctrl_info->pci_dev->dev,
"request ID in response (%u) out of range (0-%u): producer index: %u consumer index: %u\n",
request_id, ctrl_info->max_io_slots - 1, oq_pi, oq_ci);
return -1;
}
io_request = &ctrl_info->io_request_pool[request_id];
if (atomic_read(&io_request->refcount) == 0) {
pqi_invalid_response(ctrl_info);
dev_err(&ctrl_info->pci_dev->dev,
"request ID in response (%u) does not match an outstanding I/O request: producer index: %u consumer index: %u\n",
request_id, oq_pi, oq_ci);
return -1;
}
switch (response->header.iu_type) {
case PQI_RESPONSE_IU_RAID_PATH_IO_SUCCESS:
case PQI_RESPONSE_IU_AIO_PATH_IO_SUCCESS:
if (io_request->scmd)
io_request->scmd->result = 0;
fallthrough;
case PQI_RESPONSE_IU_GENERAL_MANAGEMENT:
break;
case PQI_RESPONSE_IU_VENDOR_GENERAL:
io_request->status =
get_unaligned_le16(
&((struct pqi_vendor_general_response *)
response)->status);
break;
case PQI_RESPONSE_IU_TASK_MANAGEMENT:
io_request->status =
pqi_interpret_task_management_response(
(void *)response);
break;
case PQI_RESPONSE_IU_AIO_PATH_DISABLED:
pqi_aio_path_disabled(io_request);
io_request->status = -EAGAIN;
break;
case PQI_RESPONSE_IU_RAID_PATH_IO_ERROR:
case PQI_RESPONSE_IU_AIO_PATH_IO_ERROR:
io_request->error_info = ctrl_info->error_buffer +
(get_unaligned_le16(&response->error_index) *
PQI_ERROR_BUFFER_ELEMENT_LENGTH);
pqi_process_io_error(response->header.iu_type, io_request);
break;
default:
pqi_invalid_response(ctrl_info);
dev_err(&ctrl_info->pci_dev->dev,
"unexpected IU type: 0x%x: producer index: %u consumer index: %u\n",
response->header.iu_type, oq_pi, oq_ci);
return -1;
}
io_request->io_complete_callback(io_request, io_request->context);
/*
* Note that the I/O request structure CANNOT BE TOUCHED after
* returning from the I/O completion callback!
*/
oq_ci = (oq_ci + 1) % ctrl_info->num_elements_per_oq;
}
if (num_responses) {
queue_group->oq_ci_copy = oq_ci;
writel(oq_ci, queue_group->oq_ci);
}
return num_responses;
}
static inline unsigned int pqi_num_elements_free(unsigned int pi,
unsigned int ci, unsigned int elements_in_queue)
{
unsigned int num_elements_used;
if (pi >= ci)
num_elements_used = pi - ci;
else
num_elements_used = elements_in_queue - ci + pi;
return elements_in_queue - num_elements_used - 1;
}
static void pqi_send_event_ack(struct pqi_ctrl_info *ctrl_info,
struct pqi_event_acknowledge_request *iu, size_t iu_length)
{
pqi_index_t iq_pi;
pqi_index_t iq_ci;
unsigned long flags;
void *next_element;
struct pqi_queue_group *queue_group;
queue_group = &ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP];
put_unaligned_le16(queue_group->oq_id, &iu->header.response_queue_id);
while (1) {
spin_lock_irqsave(&queue_group->submit_lock[RAID_PATH], flags);
iq_pi = queue_group->iq_pi_copy[RAID_PATH];
iq_ci = readl(queue_group->iq_ci[RAID_PATH]);
if (pqi_num_elements_free(iq_pi, iq_ci,
ctrl_info->num_elements_per_iq))
break;
spin_unlock_irqrestore(
&queue_group->submit_lock[RAID_PATH], flags);
if (pqi_ctrl_offline(ctrl_info))
return;
}
next_element = queue_group->iq_element_array[RAID_PATH] +
(iq_pi * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH);
memcpy(next_element, iu, iu_length);
iq_pi = (iq_pi + 1) % ctrl_info->num_elements_per_iq;
queue_group->iq_pi_copy[RAID_PATH] = iq_pi;
/*
* This write notifies the controller that an IU is available to be
* processed.
*/
writel(iq_pi, queue_group->iq_pi[RAID_PATH]);
spin_unlock_irqrestore(&queue_group->submit_lock[RAID_PATH], flags);
}
static void pqi_acknowledge_event(struct pqi_ctrl_info *ctrl_info,
struct pqi_event *event)
{
struct pqi_event_acknowledge_request request;
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_ACKNOWLEDGE_VENDOR_EVENT;
put_unaligned_le16(sizeof(request) - PQI_REQUEST_HEADER_LENGTH,
&request.header.iu_length);
request.event_type = event->event_type;
request.event_id = event->event_id;
request.additional_event_id = event->additional_event_id;
pqi_send_event_ack(ctrl_info, &request, sizeof(request));
}
#define PQI_SOFT_RESET_STATUS_TIMEOUT_SECS 30
#define PQI_SOFT_RESET_STATUS_POLL_INTERVAL_SECS 1
static enum pqi_soft_reset_status pqi_poll_for_soft_reset_status(
struct pqi_ctrl_info *ctrl_info)
{
unsigned long timeout;
u8 status;
timeout = (PQI_SOFT_RESET_STATUS_TIMEOUT_SECS * PQI_HZ) + jiffies;
while (1) {
status = pqi_read_soft_reset_status(ctrl_info);
if (status & PQI_SOFT_RESET_INITIATE)
return RESET_INITIATE_DRIVER;
if (status & PQI_SOFT_RESET_ABORT)
return RESET_ABORT;
if (time_after(jiffies, timeout)) {
dev_err(&ctrl_info->pci_dev->dev,
"timed out waiting for soft reset status\n");
return RESET_TIMEDOUT;
}
if (!sis_is_firmware_running(ctrl_info))
return RESET_NORESPONSE;
ssleep(PQI_SOFT_RESET_STATUS_POLL_INTERVAL_SECS);
}
}
static void pqi_process_soft_reset(struct pqi_ctrl_info *ctrl_info,
enum pqi_soft_reset_status reset_status)
{
int rc;
switch (reset_status) {
case RESET_INITIATE_DRIVER:
case RESET_TIMEDOUT:
dev_info(&ctrl_info->pci_dev->dev,
"resetting controller %u\n", ctrl_info->ctrl_id);
sis_soft_reset(ctrl_info);
fallthrough;
case RESET_INITIATE_FIRMWARE:
rc = pqi_ofa_ctrl_restart(ctrl_info);
pqi_ofa_free_host_buffer(ctrl_info);
dev_info(&ctrl_info->pci_dev->dev,
"Online Firmware Activation for controller %u: %s\n",
ctrl_info->ctrl_id, rc == 0 ? "SUCCESS" : "FAILED");
break;
case RESET_ABORT:
pqi_ofa_ctrl_unquiesce(ctrl_info);
dev_info(&ctrl_info->pci_dev->dev,
"Online Firmware Activation for controller %u: %s\n",
ctrl_info->ctrl_id, "ABORTED");
break;
case RESET_NORESPONSE:
pqi_ofa_free_host_buffer(ctrl_info);
pqi_take_ctrl_offline(ctrl_info);
break;
}
}
static void pqi_ofa_process_event(struct pqi_ctrl_info *ctrl_info,
struct pqi_event *event)
{
u16 event_id;
enum pqi_soft_reset_status status;
event_id = get_unaligned_le16(&event->event_id);
mutex_lock(&ctrl_info->ofa_mutex);
if (event_id == PQI_EVENT_OFA_QUIESCE) {
dev_info(&ctrl_info->pci_dev->dev,
"Received Online Firmware Activation quiesce event for controller %u\n",
ctrl_info->ctrl_id);
pqi_ofa_ctrl_quiesce(ctrl_info);
pqi_acknowledge_event(ctrl_info, event);
if (ctrl_info->soft_reset_handshake_supported) {
status = pqi_poll_for_soft_reset_status(ctrl_info);
pqi_process_soft_reset(ctrl_info, status);
} else {
pqi_process_soft_reset(ctrl_info,
RESET_INITIATE_FIRMWARE);
}
} else if (event_id == PQI_EVENT_OFA_MEMORY_ALLOCATION) {
pqi_acknowledge_event(ctrl_info, event);
pqi_ofa_setup_host_buffer(ctrl_info,
le32_to_cpu(event->ofa_bytes_requested));
pqi_ofa_host_memory_update(ctrl_info);
} else if (event_id == PQI_EVENT_OFA_CANCELLED) {
pqi_ofa_free_host_buffer(ctrl_info);
pqi_acknowledge_event(ctrl_info, event);
dev_info(&ctrl_info->pci_dev->dev,
"Online Firmware Activation(%u) cancel reason : %u\n",
ctrl_info->ctrl_id, event->ofa_cancel_reason);
}
mutex_unlock(&ctrl_info->ofa_mutex);
}
static void pqi_event_worker(struct work_struct *work)
{
unsigned int i;
struct pqi_ctrl_info *ctrl_info;
struct pqi_event *event;
ctrl_info = container_of(work, struct pqi_ctrl_info, event_work);
pqi_ctrl_busy(ctrl_info);
pqi_wait_if_ctrl_blocked(ctrl_info, NO_TIMEOUT);
if (pqi_ctrl_offline(ctrl_info))
goto out;
pqi_schedule_rescan_worker_delayed(ctrl_info);
event = ctrl_info->events;
for (i = 0; i < PQI_NUM_SUPPORTED_EVENTS; i++) {
if (event->pending) {
event->pending = false;
if (event->event_type == PQI_EVENT_TYPE_OFA) {
pqi_ctrl_unbusy(ctrl_info);
pqi_ofa_process_event(ctrl_info, event);
return;
}
pqi_acknowledge_event(ctrl_info, event);
}
event++;
}
out:
pqi_ctrl_unbusy(ctrl_info);
}
#define PQI_HEARTBEAT_TIMER_INTERVAL (10 * PQI_HZ)
static void pqi_heartbeat_timer_handler(struct timer_list *t)
{
int num_interrupts;
u32 heartbeat_count;
struct pqi_ctrl_info *ctrl_info = from_timer(ctrl_info, t,
heartbeat_timer);
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info))
return;
num_interrupts = atomic_read(&ctrl_info->num_interrupts);
heartbeat_count = pqi_read_heartbeat_counter(ctrl_info);
if (num_interrupts == ctrl_info->previous_num_interrupts) {
if (heartbeat_count == ctrl_info->previous_heartbeat_count) {
dev_err(&ctrl_info->pci_dev->dev,
"no heartbeat detected - last heartbeat count: %u\n",
heartbeat_count);
pqi_take_ctrl_offline(ctrl_info);
return;
}
} else {
ctrl_info->previous_num_interrupts = num_interrupts;
}
ctrl_info->previous_heartbeat_count = heartbeat_count;
mod_timer(&ctrl_info->heartbeat_timer,
jiffies + PQI_HEARTBEAT_TIMER_INTERVAL);
}
static void pqi_start_heartbeat_timer(struct pqi_ctrl_info *ctrl_info)
{
if (!ctrl_info->heartbeat_counter)
return;
ctrl_info->previous_num_interrupts =
atomic_read(&ctrl_info->num_interrupts);
ctrl_info->previous_heartbeat_count =
pqi_read_heartbeat_counter(ctrl_info);
ctrl_info->heartbeat_timer.expires =
jiffies + PQI_HEARTBEAT_TIMER_INTERVAL;
add_timer(&ctrl_info->heartbeat_timer);
}
static inline void pqi_stop_heartbeat_timer(struct pqi_ctrl_info *ctrl_info)
{
del_timer_sync(&ctrl_info->heartbeat_timer);
}
static inline int pqi_event_type_to_event_index(unsigned int event_type)
{
int index;
for (index = 0; index < ARRAY_SIZE(pqi_supported_event_types); index++)
if (event_type == pqi_supported_event_types[index])
return index;
return -1;
}
static inline bool pqi_is_supported_event(unsigned int event_type)
{
return pqi_event_type_to_event_index(event_type) != -1;
}
static void pqi_ofa_capture_event_payload(struct pqi_event *event,
struct pqi_event_response *response)
{
u16 event_id;
event_id = get_unaligned_le16(&event->event_id);
if (event->event_type == PQI_EVENT_TYPE_OFA) {
if (event_id == PQI_EVENT_OFA_MEMORY_ALLOCATION) {
event->ofa_bytes_requested =
response->data.ofa_memory_allocation.bytes_requested;
} else if (event_id == PQI_EVENT_OFA_CANCELLED) {
event->ofa_cancel_reason =
response->data.ofa_cancelled.reason;
}
}
}
static int pqi_process_event_intr(struct pqi_ctrl_info *ctrl_info)
{
int num_events;
pqi_index_t oq_pi;
pqi_index_t oq_ci;
struct pqi_event_queue *event_queue;
struct pqi_event_response *response;
struct pqi_event *event;
int event_index;
event_queue = &ctrl_info->event_queue;
num_events = 0;
oq_ci = event_queue->oq_ci_copy;
while (1) {
oq_pi = readl(event_queue->oq_pi);
if (oq_pi >= PQI_NUM_EVENT_QUEUE_ELEMENTS) {
pqi_invalid_response(ctrl_info);
dev_err(&ctrl_info->pci_dev->dev,
"event interrupt: producer index (%u) out of range (0-%u): consumer index: %u\n",
oq_pi, PQI_NUM_EVENT_QUEUE_ELEMENTS - 1, oq_ci);
return -1;
}
if (oq_pi == oq_ci)
break;
num_events++;
response = event_queue->oq_element_array + (oq_ci * PQI_EVENT_OQ_ELEMENT_LENGTH);
event_index =
pqi_event_type_to_event_index(response->event_type);
if (event_index >= 0 && response->request_acknowledge) {
event = &ctrl_info->events[event_index];
event->pending = true;
event->event_type = response->event_type;
event->event_id = response->event_id;
event->additional_event_id = response->additional_event_id;
if (event->event_type == PQI_EVENT_TYPE_OFA)
pqi_ofa_capture_event_payload(event, response);
}
oq_ci = (oq_ci + 1) % PQI_NUM_EVENT_QUEUE_ELEMENTS;
}
if (num_events) {
event_queue->oq_ci_copy = oq_ci;
writel(oq_ci, event_queue->oq_ci);
schedule_work(&ctrl_info->event_work);
}
return num_events;
}
#define PQI_LEGACY_INTX_MASK 0x1
static inline void pqi_configure_legacy_intx(struct pqi_ctrl_info *ctrl_info,
bool enable_intx)
{
u32 intx_mask;
struct pqi_device_registers __iomem *pqi_registers;
volatile void __iomem *register_addr;
pqi_registers = ctrl_info->pqi_registers;
if (enable_intx)
register_addr = &pqi_registers->legacy_intx_mask_clear;
else
register_addr = &pqi_registers->legacy_intx_mask_set;
intx_mask = readl(register_addr);
intx_mask |= PQI_LEGACY_INTX_MASK;
writel(intx_mask, register_addr);
}
static void pqi_change_irq_mode(struct pqi_ctrl_info *ctrl_info,
enum pqi_irq_mode new_mode)
{
switch (ctrl_info->irq_mode) {
case IRQ_MODE_MSIX:
switch (new_mode) {
case IRQ_MODE_MSIX:
break;
case IRQ_MODE_INTX:
pqi_configure_legacy_intx(ctrl_info, true);
sis_enable_intx(ctrl_info);
break;
case IRQ_MODE_NONE:
break;
}
break;
case IRQ_MODE_INTX:
switch (new_mode) {
case IRQ_MODE_MSIX:
pqi_configure_legacy_intx(ctrl_info, false);
sis_enable_msix(ctrl_info);
break;
case IRQ_MODE_INTX:
break;
case IRQ_MODE_NONE:
pqi_configure_legacy_intx(ctrl_info, false);
break;
}
break;
case IRQ_MODE_NONE:
switch (new_mode) {
case IRQ_MODE_MSIX:
sis_enable_msix(ctrl_info);
break;
case IRQ_MODE_INTX:
pqi_configure_legacy_intx(ctrl_info, true);
sis_enable_intx(ctrl_info);
break;
case IRQ_MODE_NONE:
break;
}
break;
}
ctrl_info->irq_mode = new_mode;
}
#define PQI_LEGACY_INTX_PENDING 0x1
static inline bool pqi_is_valid_irq(struct pqi_ctrl_info *ctrl_info)
{
bool valid_irq;
u32 intx_status;
switch (ctrl_info->irq_mode) {
case IRQ_MODE_MSIX:
valid_irq = true;
break;
case IRQ_MODE_INTX:
intx_status =
readl(&ctrl_info->pqi_registers->legacy_intx_status);
if (intx_status & PQI_LEGACY_INTX_PENDING)
valid_irq = true;
else
valid_irq = false;
break;
case IRQ_MODE_NONE:
default:
valid_irq = false;
break;
}
return valid_irq;
}
static irqreturn_t pqi_irq_handler(int irq, void *data)
{
struct pqi_ctrl_info *ctrl_info;
struct pqi_queue_group *queue_group;
int num_io_responses_handled;
int num_events_handled;
queue_group = data;
ctrl_info = queue_group->ctrl_info;
if (!pqi_is_valid_irq(ctrl_info))
return IRQ_NONE;
num_io_responses_handled = pqi_process_io_intr(ctrl_info, queue_group);
if (num_io_responses_handled < 0)
goto out;
if (irq == ctrl_info->event_irq) {
num_events_handled = pqi_process_event_intr(ctrl_info);
if (num_events_handled < 0)
goto out;
} else {
num_events_handled = 0;
}
if (num_io_responses_handled + num_events_handled > 0)
atomic_inc(&ctrl_info->num_interrupts);
pqi_start_io(ctrl_info, queue_group, RAID_PATH, NULL);
pqi_start_io(ctrl_info, queue_group, AIO_PATH, NULL);
out:
return IRQ_HANDLED;
}
static int pqi_request_irqs(struct pqi_ctrl_info *ctrl_info)
{
struct pci_dev *pci_dev = ctrl_info->pci_dev;
int i;
int rc;
ctrl_info->event_irq = pci_irq_vector(pci_dev, 0);
for (i = 0; i < ctrl_info->num_msix_vectors_enabled; i++) {
rc = request_irq(pci_irq_vector(pci_dev, i), pqi_irq_handler, 0,
DRIVER_NAME_SHORT, &ctrl_info->queue_groups[i]);
if (rc) {
dev_err(&pci_dev->dev,
"irq %u init failed with error %d\n",
pci_irq_vector(pci_dev, i), rc);
return rc;
}
ctrl_info->num_msix_vectors_initialized++;
}
return 0;
}
static void pqi_free_irqs(struct pqi_ctrl_info *ctrl_info)
{
int i;
for (i = 0; i < ctrl_info->num_msix_vectors_initialized; i++)
free_irq(pci_irq_vector(ctrl_info->pci_dev, i),
&ctrl_info->queue_groups[i]);
ctrl_info->num_msix_vectors_initialized = 0;
}
static int pqi_enable_msix_interrupts(struct pqi_ctrl_info *ctrl_info)
{
int num_vectors_enabled;
num_vectors_enabled = pci_alloc_irq_vectors(ctrl_info->pci_dev,
PQI_MIN_MSIX_VECTORS, ctrl_info->num_queue_groups,
PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
if (num_vectors_enabled < 0) {
dev_err(&ctrl_info->pci_dev->dev,
"MSI-X init failed with error %d\n",
num_vectors_enabled);
return num_vectors_enabled;
}
ctrl_info->num_msix_vectors_enabled = num_vectors_enabled;
ctrl_info->irq_mode = IRQ_MODE_MSIX;
return 0;
}
static void pqi_disable_msix_interrupts(struct pqi_ctrl_info *ctrl_info)
{
if (ctrl_info->num_msix_vectors_enabled) {
pci_free_irq_vectors(ctrl_info->pci_dev);
ctrl_info->num_msix_vectors_enabled = 0;
}
}
static int pqi_alloc_operational_queues(struct pqi_ctrl_info *ctrl_info)
{
unsigned int i;
size_t alloc_length;
size_t element_array_length_per_iq;
size_t element_array_length_per_oq;
void *element_array;
void __iomem *next_queue_index;
void *aligned_pointer;
unsigned int num_inbound_queues;
unsigned int num_outbound_queues;
unsigned int num_queue_indexes;
struct pqi_queue_group *queue_group;
element_array_length_per_iq =
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH *
ctrl_info->num_elements_per_iq;
element_array_length_per_oq =
PQI_OPERATIONAL_OQ_ELEMENT_LENGTH *
ctrl_info->num_elements_per_oq;
num_inbound_queues = ctrl_info->num_queue_groups * 2;
num_outbound_queues = ctrl_info->num_queue_groups;
num_queue_indexes = (ctrl_info->num_queue_groups * 3) + 1;
aligned_pointer = NULL;
for (i = 0; i < num_inbound_queues; i++) {
aligned_pointer = PTR_ALIGN(aligned_pointer,
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT);
aligned_pointer += element_array_length_per_iq;
}
for (i = 0; i < num_outbound_queues; i++) {
aligned_pointer = PTR_ALIGN(aligned_pointer,
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT);
aligned_pointer += element_array_length_per_oq;
}
aligned_pointer = PTR_ALIGN(aligned_pointer,
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT);
aligned_pointer += PQI_NUM_EVENT_QUEUE_ELEMENTS *
PQI_EVENT_OQ_ELEMENT_LENGTH;
for (i = 0; i < num_queue_indexes; i++) {
aligned_pointer = PTR_ALIGN(aligned_pointer,
PQI_OPERATIONAL_INDEX_ALIGNMENT);
aligned_pointer += sizeof(pqi_index_t);
}
alloc_length = (size_t)aligned_pointer +
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT;
alloc_length += PQI_EXTRA_SGL_MEMORY;
ctrl_info->queue_memory_base =
dma_alloc_coherent(&ctrl_info->pci_dev->dev, alloc_length,
&ctrl_info->queue_memory_base_dma_handle,
GFP_KERNEL);
if (!ctrl_info->queue_memory_base)
return -ENOMEM;
ctrl_info->queue_memory_length = alloc_length;
element_array = PTR_ALIGN(ctrl_info->queue_memory_base,
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT);
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
queue_group = &ctrl_info->queue_groups[i];
queue_group->iq_element_array[RAID_PATH] = element_array;
queue_group->iq_element_array_bus_addr[RAID_PATH] =
ctrl_info->queue_memory_base_dma_handle +
(element_array - ctrl_info->queue_memory_base);
element_array += element_array_length_per_iq;
element_array = PTR_ALIGN(element_array,
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT);
queue_group->iq_element_array[AIO_PATH] = element_array;
queue_group->iq_element_array_bus_addr[AIO_PATH] =
ctrl_info->queue_memory_base_dma_handle +
(element_array - ctrl_info->queue_memory_base);
element_array += element_array_length_per_iq;
element_array = PTR_ALIGN(element_array,
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT);
}
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
queue_group = &ctrl_info->queue_groups[i];
queue_group->oq_element_array = element_array;
queue_group->oq_element_array_bus_addr =
ctrl_info->queue_memory_base_dma_handle +
(element_array - ctrl_info->queue_memory_base);
element_array += element_array_length_per_oq;
element_array = PTR_ALIGN(element_array,
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT);
}
ctrl_info->event_queue.oq_element_array = element_array;
ctrl_info->event_queue.oq_element_array_bus_addr =
ctrl_info->queue_memory_base_dma_handle +
(element_array - ctrl_info->queue_memory_base);
element_array += PQI_NUM_EVENT_QUEUE_ELEMENTS *
PQI_EVENT_OQ_ELEMENT_LENGTH;
next_queue_index = (void __iomem *)PTR_ALIGN(element_array,
PQI_OPERATIONAL_INDEX_ALIGNMENT);
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
queue_group = &ctrl_info->queue_groups[i];
queue_group->iq_ci[RAID_PATH] = next_queue_index;
queue_group->iq_ci_bus_addr[RAID_PATH] =
ctrl_info->queue_memory_base_dma_handle +
(next_queue_index -
(void __iomem *)ctrl_info->queue_memory_base);
next_queue_index += sizeof(pqi_index_t);
next_queue_index = PTR_ALIGN(next_queue_index,
PQI_OPERATIONAL_INDEX_ALIGNMENT);
queue_group->iq_ci[AIO_PATH] = next_queue_index;
queue_group->iq_ci_bus_addr[AIO_PATH] =
ctrl_info->queue_memory_base_dma_handle +
(next_queue_index -
(void __iomem *)ctrl_info->queue_memory_base);
next_queue_index += sizeof(pqi_index_t);
next_queue_index = PTR_ALIGN(next_queue_index,
PQI_OPERATIONAL_INDEX_ALIGNMENT);
queue_group->oq_pi = next_queue_index;
queue_group->oq_pi_bus_addr =
ctrl_info->queue_memory_base_dma_handle +
(next_queue_index -
(void __iomem *)ctrl_info->queue_memory_base);
next_queue_index += sizeof(pqi_index_t);
next_queue_index = PTR_ALIGN(next_queue_index,
PQI_OPERATIONAL_INDEX_ALIGNMENT);
}
ctrl_info->event_queue.oq_pi = next_queue_index;
ctrl_info->event_queue.oq_pi_bus_addr =
ctrl_info->queue_memory_base_dma_handle +
(next_queue_index -
(void __iomem *)ctrl_info->queue_memory_base);
return 0;
}
static void pqi_init_operational_queues(struct pqi_ctrl_info *ctrl_info)
{
unsigned int i;
u16 next_iq_id = PQI_MIN_OPERATIONAL_QUEUE_ID;
u16 next_oq_id = PQI_MIN_OPERATIONAL_QUEUE_ID;
/*
* Initialize the backpointers to the controller structure in
* each operational queue group structure.
*/
for (i = 0; i < ctrl_info->num_queue_groups; i++)
ctrl_info->queue_groups[i].ctrl_info = ctrl_info;
/*
* Assign IDs to all operational queues. Note that the IDs
* assigned to operational IQs are independent of the IDs
* assigned to operational OQs.
*/
ctrl_info->event_queue.oq_id = next_oq_id++;
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
ctrl_info->queue_groups[i].iq_id[RAID_PATH] = next_iq_id++;
ctrl_info->queue_groups[i].iq_id[AIO_PATH] = next_iq_id++;
ctrl_info->queue_groups[i].oq_id = next_oq_id++;
}
/*
* Assign MSI-X table entry indexes to all queues. Note that the
* interrupt for the event queue is shared with the first queue group.
*/
ctrl_info->event_queue.int_msg_num = 0;
for (i = 0; i < ctrl_info->num_queue_groups; i++)
ctrl_info->queue_groups[i].int_msg_num = i;
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
spin_lock_init(&ctrl_info->queue_groups[i].submit_lock[0]);
spin_lock_init(&ctrl_info->queue_groups[i].submit_lock[1]);
INIT_LIST_HEAD(&ctrl_info->queue_groups[i].request_list[0]);
INIT_LIST_HEAD(&ctrl_info->queue_groups[i].request_list[1]);
}
}
static int pqi_alloc_admin_queues(struct pqi_ctrl_info *ctrl_info)
{
size_t alloc_length;
struct pqi_admin_queues_aligned *admin_queues_aligned;
struct pqi_admin_queues *admin_queues;
alloc_length = sizeof(struct pqi_admin_queues_aligned) +
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT;
ctrl_info->admin_queue_memory_base =
dma_alloc_coherent(&ctrl_info->pci_dev->dev, alloc_length,
&ctrl_info->admin_queue_memory_base_dma_handle,
GFP_KERNEL);
if (!ctrl_info->admin_queue_memory_base)
return -ENOMEM;
ctrl_info->admin_queue_memory_length = alloc_length;
admin_queues = &ctrl_info->admin_queues;
admin_queues_aligned = PTR_ALIGN(ctrl_info->admin_queue_memory_base,
PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT);
admin_queues->iq_element_array =
&admin_queues_aligned->iq_element_array;
admin_queues->oq_element_array =
&admin_queues_aligned->oq_element_array;
admin_queues->iq_ci = &admin_queues_aligned->iq_ci;
admin_queues->oq_pi =
(pqi_index_t __iomem *)&admin_queues_aligned->oq_pi;
admin_queues->iq_element_array_bus_addr =
ctrl_info->admin_queue_memory_base_dma_handle +
(admin_queues->iq_element_array -
ctrl_info->admin_queue_memory_base);
admin_queues->oq_element_array_bus_addr =
ctrl_info->admin_queue_memory_base_dma_handle +
(admin_queues->oq_element_array -
ctrl_info->admin_queue_memory_base);
admin_queues->iq_ci_bus_addr =
ctrl_info->admin_queue_memory_base_dma_handle +
((void *)admin_queues->iq_ci -
ctrl_info->admin_queue_memory_base);
admin_queues->oq_pi_bus_addr =
ctrl_info->admin_queue_memory_base_dma_handle +
((void __iomem *)admin_queues->oq_pi -
(void __iomem *)ctrl_info->admin_queue_memory_base);
return 0;
}
#define PQI_ADMIN_QUEUE_CREATE_TIMEOUT_JIFFIES PQI_HZ
#define PQI_ADMIN_QUEUE_CREATE_POLL_INTERVAL_MSECS 1
static int pqi_create_admin_queues(struct pqi_ctrl_info *ctrl_info)
{
struct pqi_device_registers __iomem *pqi_registers;
struct pqi_admin_queues *admin_queues;
unsigned long timeout;
u8 status;
u32 reg;
pqi_registers = ctrl_info->pqi_registers;
admin_queues = &ctrl_info->admin_queues;
writeq((u64)admin_queues->iq_element_array_bus_addr,
&pqi_registers->admin_iq_element_array_addr);
writeq((u64)admin_queues->oq_element_array_bus_addr,
&pqi_registers->admin_oq_element_array_addr);
writeq((u64)admin_queues->iq_ci_bus_addr,
&pqi_registers->admin_iq_ci_addr);
writeq((u64)admin_queues->oq_pi_bus_addr,
&pqi_registers->admin_oq_pi_addr);
reg = PQI_ADMIN_IQ_NUM_ELEMENTS |
(PQI_ADMIN_OQ_NUM_ELEMENTS << 8) |
(admin_queues->int_msg_num << 16);
writel(reg, &pqi_registers->admin_iq_num_elements);
writel(PQI_CREATE_ADMIN_QUEUE_PAIR,
&pqi_registers->function_and_status_code);
timeout = PQI_ADMIN_QUEUE_CREATE_TIMEOUT_JIFFIES + jiffies;
while (1) {
status = readb(&pqi_registers->function_and_status_code);
if (status == PQI_STATUS_IDLE)
break;
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
msleep(PQI_ADMIN_QUEUE_CREATE_POLL_INTERVAL_MSECS);
}
/*
* The offset registers are not initialized to the correct
* offsets until *after* the create admin queue pair command
* completes successfully.
*/
admin_queues->iq_pi = ctrl_info->iomem_base +
PQI_DEVICE_REGISTERS_OFFSET +
readq(&pqi_registers->admin_iq_pi_offset);
admin_queues->oq_ci = ctrl_info->iomem_base +
PQI_DEVICE_REGISTERS_OFFSET +
readq(&pqi_registers->admin_oq_ci_offset);
return 0;
}
static void pqi_submit_admin_request(struct pqi_ctrl_info *ctrl_info,
struct pqi_general_admin_request *request)
{
struct pqi_admin_queues *admin_queues;
void *next_element;
pqi_index_t iq_pi;
admin_queues = &ctrl_info->admin_queues;
iq_pi = admin_queues->iq_pi_copy;
next_element = admin_queues->iq_element_array +
(iq_pi * PQI_ADMIN_IQ_ELEMENT_LENGTH);
memcpy(next_element, request, sizeof(*request));
iq_pi = (iq_pi + 1) % PQI_ADMIN_IQ_NUM_ELEMENTS;
admin_queues->iq_pi_copy = iq_pi;
/*
* This write notifies the controller that an IU is available to be
* processed.
*/
writel(iq_pi, admin_queues->iq_pi);
}
#define PQI_ADMIN_REQUEST_TIMEOUT_SECS 60
static int pqi_poll_for_admin_response(struct pqi_ctrl_info *ctrl_info,
struct pqi_general_admin_response *response)
{
struct pqi_admin_queues *admin_queues;
pqi_index_t oq_pi;
pqi_index_t oq_ci;
unsigned long timeout;
admin_queues = &ctrl_info->admin_queues;
oq_ci = admin_queues->oq_ci_copy;
timeout = (PQI_ADMIN_REQUEST_TIMEOUT_SECS * PQI_HZ) + jiffies;
while (1) {
oq_pi = readl(admin_queues->oq_pi);
if (oq_pi != oq_ci)
break;
if (time_after(jiffies, timeout)) {
dev_err(&ctrl_info->pci_dev->dev,
"timed out waiting for admin response\n");
return -ETIMEDOUT;
}
if (!sis_is_firmware_running(ctrl_info))
return -ENXIO;
usleep_range(1000, 2000);
}
memcpy(response, admin_queues->oq_element_array +
(oq_ci * PQI_ADMIN_OQ_ELEMENT_LENGTH), sizeof(*response));
oq_ci = (oq_ci + 1) % PQI_ADMIN_OQ_NUM_ELEMENTS;
admin_queues->oq_ci_copy = oq_ci;
writel(oq_ci, admin_queues->oq_ci);
return 0;
}
static void pqi_start_io(struct pqi_ctrl_info *ctrl_info,
struct pqi_queue_group *queue_group, enum pqi_io_path path,
struct pqi_io_request *io_request)
{
struct pqi_io_request *next;
void *next_element;
pqi_index_t iq_pi;
pqi_index_t iq_ci;
size_t iu_length;
unsigned long flags;
unsigned int num_elements_needed;
unsigned int num_elements_to_end_of_queue;
size_t copy_count;
struct pqi_iu_header *request;
spin_lock_irqsave(&queue_group->submit_lock[path], flags);
if (io_request) {
io_request->queue_group = queue_group;
list_add_tail(&io_request->request_list_entry,
&queue_group->request_list[path]);
}
iq_pi = queue_group->iq_pi_copy[path];
list_for_each_entry_safe(io_request, next,
&queue_group->request_list[path], request_list_entry) {
request = io_request->iu;
iu_length = get_unaligned_le16(&request->iu_length) +
PQI_REQUEST_HEADER_LENGTH;
num_elements_needed =
DIV_ROUND_UP(iu_length,
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH);
iq_ci = readl(queue_group->iq_ci[path]);
if (num_elements_needed > pqi_num_elements_free(iq_pi, iq_ci,
ctrl_info->num_elements_per_iq))
break;
put_unaligned_le16(queue_group->oq_id,
&request->response_queue_id);
next_element = queue_group->iq_element_array[path] +
(iq_pi * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH);
num_elements_to_end_of_queue =
ctrl_info->num_elements_per_iq - iq_pi;
if (num_elements_needed <= num_elements_to_end_of_queue) {
memcpy(next_element, request, iu_length);
} else {
copy_count = num_elements_to_end_of_queue *
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH;
memcpy(next_element, request, copy_count);
memcpy(queue_group->iq_element_array[path],
(u8 *)request + copy_count,
iu_length - copy_count);
}
iq_pi = (iq_pi + num_elements_needed) %
ctrl_info->num_elements_per_iq;
list_del(&io_request->request_list_entry);
}
if (iq_pi != queue_group->iq_pi_copy[path]) {
queue_group->iq_pi_copy[path] = iq_pi;
/*
* This write notifies the controller that one or more IUs are
* available to be processed.
*/
writel(iq_pi, queue_group->iq_pi[path]);
}
spin_unlock_irqrestore(&queue_group->submit_lock[path], flags);
}
#define PQI_WAIT_FOR_COMPLETION_IO_TIMEOUT_SECS 10
static int pqi_wait_for_completion_io(struct pqi_ctrl_info *ctrl_info,
struct completion *wait)
{
int rc;
while (1) {
if (wait_for_completion_io_timeout(wait,
PQI_WAIT_FOR_COMPLETION_IO_TIMEOUT_SECS * PQI_HZ)) {
rc = 0;
break;
}
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info)) {
rc = -ENXIO;
break;
}
}
return rc;
}
static void pqi_raid_synchronous_complete(struct pqi_io_request *io_request,
void *context)
{
struct completion *waiting = context;
complete(waiting);
}
static int pqi_process_raid_io_error_synchronous(
struct pqi_raid_error_info *error_info)
{
int rc = -EIO;
switch (error_info->data_out_result) {
case PQI_DATA_IN_OUT_GOOD:
if (error_info->status == SAM_STAT_GOOD)
rc = 0;
break;
case PQI_DATA_IN_OUT_UNDERFLOW:
if (error_info->status == SAM_STAT_GOOD ||
error_info->status == SAM_STAT_CHECK_CONDITION)
rc = 0;
break;
case PQI_DATA_IN_OUT_ABORTED:
rc = PQI_CMD_STATUS_ABORTED;
break;
}
return rc;
}
static int pqi_submit_raid_request_synchronous(struct pqi_ctrl_info *ctrl_info,
struct pqi_iu_header *request, unsigned int flags,
struct pqi_raid_error_info *error_info, unsigned long timeout_msecs)
{
int rc = 0;
struct pqi_io_request *io_request;
unsigned long start_jiffies;
unsigned long msecs_blocked;
size_t iu_length;
DECLARE_COMPLETION_ONSTACK(wait);
/*
* Note that specifying PQI_SYNC_FLAGS_INTERRUPTABLE and a timeout value
* are mutually exclusive.
*/
if (flags & PQI_SYNC_FLAGS_INTERRUPTABLE) {
if (down_interruptible(&ctrl_info->sync_request_sem))
return -ERESTARTSYS;
} else {
if (timeout_msecs == NO_TIMEOUT) {
down(&ctrl_info->sync_request_sem);
} else {
start_jiffies = jiffies;
if (down_timeout(&ctrl_info->sync_request_sem,
msecs_to_jiffies(timeout_msecs)))
return -ETIMEDOUT;
msecs_blocked =
jiffies_to_msecs(jiffies - start_jiffies);
if (msecs_blocked >= timeout_msecs) {
rc = -ETIMEDOUT;
goto out;
}
timeout_msecs -= msecs_blocked;
}
}
pqi_ctrl_busy(ctrl_info);
timeout_msecs = pqi_wait_if_ctrl_blocked(ctrl_info, timeout_msecs);
if (timeout_msecs == 0) {
pqi_ctrl_unbusy(ctrl_info);
rc = -ETIMEDOUT;
goto out;
}
if (pqi_ctrl_offline(ctrl_info)) {
pqi_ctrl_unbusy(ctrl_info);
rc = -ENXIO;
goto out;
}
atomic_inc(&ctrl_info->sync_cmds_outstanding);
io_request = pqi_alloc_io_request(ctrl_info);
put_unaligned_le16(io_request->index,
&(((struct pqi_raid_path_request *)request)->request_id));
if (request->iu_type == PQI_REQUEST_IU_RAID_PATH_IO)
((struct pqi_raid_path_request *)request)->error_index =
((struct pqi_raid_path_request *)request)->request_id;
iu_length = get_unaligned_le16(&request->iu_length) +
PQI_REQUEST_HEADER_LENGTH;
memcpy(io_request->iu, request, iu_length);
io_request->io_complete_callback = pqi_raid_synchronous_complete;
io_request->context = &wait;
pqi_start_io(ctrl_info,
&ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP], RAID_PATH,
io_request);
pqi_ctrl_unbusy(ctrl_info);
if (timeout_msecs == NO_TIMEOUT) {
pqi_wait_for_completion_io(ctrl_info, &wait);
} else {
if (!wait_for_completion_io_timeout(&wait,
msecs_to_jiffies(timeout_msecs))) {
dev_warn(&ctrl_info->pci_dev->dev,
"command timed out\n");
rc = -ETIMEDOUT;
}
}
if (error_info) {
if (io_request->error_info)
memcpy(error_info, io_request->error_info,
sizeof(*error_info));
else
memset(error_info, 0, sizeof(*error_info));
} else if (rc == 0 && io_request->error_info) {
rc = pqi_process_raid_io_error_synchronous(
io_request->error_info);
}
pqi_free_io_request(io_request);
atomic_dec(&ctrl_info->sync_cmds_outstanding);
out:
up(&ctrl_info->sync_request_sem);
return rc;
}
static int pqi_validate_admin_response(
struct pqi_general_admin_response *response, u8 expected_function_code)
{
if (response->header.iu_type != PQI_RESPONSE_IU_GENERAL_ADMIN)
return -EINVAL;
if (get_unaligned_le16(&response->header.iu_length) !=
PQI_GENERAL_ADMIN_IU_LENGTH)
return -EINVAL;
if (response->function_code != expected_function_code)
return -EINVAL;
if (response->status != PQI_GENERAL_ADMIN_STATUS_SUCCESS)
return -EINVAL;
return 0;
}
static int pqi_submit_admin_request_synchronous(
struct pqi_ctrl_info *ctrl_info,
struct pqi_general_admin_request *request,
struct pqi_general_admin_response *response)
{
int rc;
pqi_submit_admin_request(ctrl_info, request);
rc = pqi_poll_for_admin_response(ctrl_info, response);
if (rc == 0)
rc = pqi_validate_admin_response(response,
request->function_code);
return rc;
}
static int pqi_report_device_capability(struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct pqi_general_admin_request request;
struct pqi_general_admin_response response;
struct pqi_device_capability *capability;
struct pqi_iu_layer_descriptor *sop_iu_layer_descriptor;
capability = kmalloc(sizeof(*capability), GFP_KERNEL);
if (!capability)
return -ENOMEM;
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN;
put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH,
&request.header.iu_length);
request.function_code =
PQI_GENERAL_ADMIN_FUNCTION_REPORT_DEVICE_CAPABILITY;
put_unaligned_le32(sizeof(*capability),
&request.data.report_device_capability.buffer_length);
rc = pqi_map_single(ctrl_info->pci_dev,
&request.data.report_device_capability.sg_descriptor,
capability, sizeof(*capability),
DMA_FROM_DEVICE);
if (rc)
goto out;
rc = pqi_submit_admin_request_synchronous(ctrl_info, &request,
&response);
pqi_pci_unmap(ctrl_info->pci_dev,
&request.data.report_device_capability.sg_descriptor, 1,
DMA_FROM_DEVICE);
if (rc)
goto out;
if (response.status != PQI_GENERAL_ADMIN_STATUS_SUCCESS) {
rc = -EIO;
goto out;
}
ctrl_info->max_inbound_queues =
get_unaligned_le16(&capability->max_inbound_queues);
ctrl_info->max_elements_per_iq =
get_unaligned_le16(&capability->max_elements_per_iq);
ctrl_info->max_iq_element_length =
get_unaligned_le16(&capability->max_iq_element_length)
* 16;
ctrl_info->max_outbound_queues =
get_unaligned_le16(&capability->max_outbound_queues);
ctrl_info->max_elements_per_oq =
get_unaligned_le16(&capability->max_elements_per_oq);
ctrl_info->max_oq_element_length =
get_unaligned_le16(&capability->max_oq_element_length)
* 16;
sop_iu_layer_descriptor =
&capability->iu_layer_descriptors[PQI_PROTOCOL_SOP];
ctrl_info->max_inbound_iu_length_per_firmware =
get_unaligned_le16(
&sop_iu_layer_descriptor->max_inbound_iu_length);
ctrl_info->inbound_spanning_supported =
sop_iu_layer_descriptor->inbound_spanning_supported;
ctrl_info->outbound_spanning_supported =
sop_iu_layer_descriptor->outbound_spanning_supported;
out:
kfree(capability);
return rc;
}
static int pqi_validate_device_capability(struct pqi_ctrl_info *ctrl_info)
{
if (ctrl_info->max_iq_element_length <
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) {
dev_err(&ctrl_info->pci_dev->dev,
"max. inbound queue element length of %d is less than the required length of %d\n",
ctrl_info->max_iq_element_length,
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH);
return -EINVAL;
}
if (ctrl_info->max_oq_element_length <
PQI_OPERATIONAL_OQ_ELEMENT_LENGTH) {
dev_err(&ctrl_info->pci_dev->dev,
"max. outbound queue element length of %d is less than the required length of %d\n",
ctrl_info->max_oq_element_length,
PQI_OPERATIONAL_OQ_ELEMENT_LENGTH);
return -EINVAL;
}
if (ctrl_info->max_inbound_iu_length_per_firmware <
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) {
dev_err(&ctrl_info->pci_dev->dev,
"max. inbound IU length of %u is less than the min. required length of %d\n",
ctrl_info->max_inbound_iu_length_per_firmware,
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH);
return -EINVAL;
}
if (!ctrl_info->inbound_spanning_supported) {
dev_err(&ctrl_info->pci_dev->dev,
"the controller does not support inbound spanning\n");
return -EINVAL;
}
if (ctrl_info->outbound_spanning_supported) {
dev_err(&ctrl_info->pci_dev->dev,
"the controller supports outbound spanning but this driver does not\n");
return -EINVAL;
}
return 0;
}
static int pqi_create_event_queue(struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct pqi_event_queue *event_queue;
struct pqi_general_admin_request request;
struct pqi_general_admin_response response;
event_queue = &ctrl_info->event_queue;
/*
* Create OQ (Outbound Queue - device to host queue) to dedicate
* to events.
*/
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN;
put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH,
&request.header.iu_length);
request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_OQ;
put_unaligned_le16(event_queue->oq_id,
&request.data.create_operational_oq.queue_id);
put_unaligned_le64((u64)event_queue->oq_element_array_bus_addr,
&request.data.create_operational_oq.element_array_addr);
put_unaligned_le64((u64)event_queue->oq_pi_bus_addr,
&request.data.create_operational_oq.pi_addr);
put_unaligned_le16(PQI_NUM_EVENT_QUEUE_ELEMENTS,
&request.data.create_operational_oq.num_elements);
put_unaligned_le16(PQI_EVENT_OQ_ELEMENT_LENGTH / 16,
&request.data.create_operational_oq.element_length);
request.data.create_operational_oq.queue_protocol = PQI_PROTOCOL_SOP;
put_unaligned_le16(event_queue->int_msg_num,
&request.data.create_operational_oq.int_msg_num);
rc = pqi_submit_admin_request_synchronous(ctrl_info, &request,
&response);
if (rc)
return rc;
event_queue->oq_ci = ctrl_info->iomem_base +
PQI_DEVICE_REGISTERS_OFFSET +
get_unaligned_le64(
&response.data.create_operational_oq.oq_ci_offset);
return 0;
}
static int pqi_create_queue_group(struct pqi_ctrl_info *ctrl_info,
unsigned int group_number)
{
int rc;
struct pqi_queue_group *queue_group;
struct pqi_general_admin_request request;
struct pqi_general_admin_response response;
queue_group = &ctrl_info->queue_groups[group_number];
/*
* Create IQ (Inbound Queue - host to device queue) for
* RAID path.
*/
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN;
put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH,
&request.header.iu_length);
request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_IQ;
put_unaligned_le16(queue_group->iq_id[RAID_PATH],
&request.data.create_operational_iq.queue_id);
put_unaligned_le64(
(u64)queue_group->iq_element_array_bus_addr[RAID_PATH],
&request.data.create_operational_iq.element_array_addr);
put_unaligned_le64((u64)queue_group->iq_ci_bus_addr[RAID_PATH],
&request.data.create_operational_iq.ci_addr);
put_unaligned_le16(ctrl_info->num_elements_per_iq,
&request.data.create_operational_iq.num_elements);
put_unaligned_le16(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH / 16,
&request.data.create_operational_iq.element_length);
request.data.create_operational_iq.queue_protocol = PQI_PROTOCOL_SOP;
rc = pqi_submit_admin_request_synchronous(ctrl_info, &request,
&response);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error creating inbound RAID queue\n");
return rc;
}
queue_group->iq_pi[RAID_PATH] = ctrl_info->iomem_base +
PQI_DEVICE_REGISTERS_OFFSET +
get_unaligned_le64(
&response.data.create_operational_iq.iq_pi_offset);
/*
* Create IQ (Inbound Queue - host to device queue) for
* Advanced I/O (AIO) path.
*/
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN;
put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH,
&request.header.iu_length);
request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_IQ;
put_unaligned_le16(queue_group->iq_id[AIO_PATH],
&request.data.create_operational_iq.queue_id);
put_unaligned_le64((u64)queue_group->
iq_element_array_bus_addr[AIO_PATH],
&request.data.create_operational_iq.element_array_addr);
put_unaligned_le64((u64)queue_group->iq_ci_bus_addr[AIO_PATH],
&request.data.create_operational_iq.ci_addr);
put_unaligned_le16(ctrl_info->num_elements_per_iq,
&request.data.create_operational_iq.num_elements);
put_unaligned_le16(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH / 16,
&request.data.create_operational_iq.element_length);
request.data.create_operational_iq.queue_protocol = PQI_PROTOCOL_SOP;
rc = pqi_submit_admin_request_synchronous(ctrl_info, &request,
&response);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error creating inbound AIO queue\n");
return rc;
}
queue_group->iq_pi[AIO_PATH] = ctrl_info->iomem_base +
PQI_DEVICE_REGISTERS_OFFSET +
get_unaligned_le64(
&response.data.create_operational_iq.iq_pi_offset);
/*
* Designate the 2nd IQ as the AIO path. By default, all IQs are
* assumed to be for RAID path I/O unless we change the queue's
* property.
*/
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN;
put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH,
&request.header.iu_length);
request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CHANGE_IQ_PROPERTY;
put_unaligned_le16(queue_group->iq_id[AIO_PATH],
&request.data.change_operational_iq_properties.queue_id);
put_unaligned_le32(PQI_IQ_PROPERTY_IS_AIO_QUEUE,
&request.data.change_operational_iq_properties.vendor_specific);
rc = pqi_submit_admin_request_synchronous(ctrl_info, &request,
&response);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error changing queue property\n");
return rc;
}
/*
* Create OQ (Outbound Queue - device to host queue).
*/
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN;
put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH,
&request.header.iu_length);
request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_OQ;
put_unaligned_le16(queue_group->oq_id,
&request.data.create_operational_oq.queue_id);
put_unaligned_le64((u64)queue_group->oq_element_array_bus_addr,
&request.data.create_operational_oq.element_array_addr);
put_unaligned_le64((u64)queue_group->oq_pi_bus_addr,
&request.data.create_operational_oq.pi_addr);
put_unaligned_le16(ctrl_info->num_elements_per_oq,
&request.data.create_operational_oq.num_elements);
put_unaligned_le16(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH / 16,
&request.data.create_operational_oq.element_length);
request.data.create_operational_oq.queue_protocol = PQI_PROTOCOL_SOP;
put_unaligned_le16(queue_group->int_msg_num,
&request.data.create_operational_oq.int_msg_num);
rc = pqi_submit_admin_request_synchronous(ctrl_info, &request,
&response);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error creating outbound queue\n");
return rc;
}
queue_group->oq_ci = ctrl_info->iomem_base +
PQI_DEVICE_REGISTERS_OFFSET +
get_unaligned_le64(
&response.data.create_operational_oq.oq_ci_offset);
return 0;
}
static int pqi_create_queues(struct pqi_ctrl_info *ctrl_info)
{
int rc;
unsigned int i;
rc = pqi_create_event_queue(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error creating event queue\n");
return rc;
}
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
rc = pqi_create_queue_group(ctrl_info, i);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error creating queue group number %u/%u\n",
i, ctrl_info->num_queue_groups);
return rc;
}
}
return 0;
}
#define PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH \
(offsetof(struct pqi_event_config, descriptors) + \
(PQI_MAX_EVENT_DESCRIPTORS * sizeof(struct pqi_event_descriptor)))
static int pqi_configure_events(struct pqi_ctrl_info *ctrl_info,
bool enable_events)
{
int rc;
unsigned int i;
struct pqi_event_config *event_config;
struct pqi_event_descriptor *event_descriptor;
struct pqi_general_management_request request;
event_config = kmalloc(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH,
GFP_KERNEL);
if (!event_config)
return -ENOMEM;
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_REPORT_VENDOR_EVENT_CONFIG;
put_unaligned_le16(offsetof(struct pqi_general_management_request,
data.report_event_configuration.sg_descriptors[1]) -
PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length);
put_unaligned_le32(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH,
&request.data.report_event_configuration.buffer_length);
rc = pqi_map_single(ctrl_info->pci_dev,
request.data.report_event_configuration.sg_descriptors,
event_config, PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH,
DMA_FROM_DEVICE);
if (rc)
goto out;
rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header,
0, NULL, NO_TIMEOUT);
pqi_pci_unmap(ctrl_info->pci_dev,
request.data.report_event_configuration.sg_descriptors, 1,
DMA_FROM_DEVICE);
if (rc)
goto out;
for (i = 0; i < event_config->num_event_descriptors; i++) {
event_descriptor = &event_config->descriptors[i];
if (enable_events &&
pqi_is_supported_event(event_descriptor->event_type))
put_unaligned_le16(ctrl_info->event_queue.oq_id,
&event_descriptor->oq_id);
else
put_unaligned_le16(0, &event_descriptor->oq_id);
}
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_SET_VENDOR_EVENT_CONFIG;
put_unaligned_le16(offsetof(struct pqi_general_management_request,
data.report_event_configuration.sg_descriptors[1]) -
PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length);
put_unaligned_le32(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH,
&request.data.report_event_configuration.buffer_length);
rc = pqi_map_single(ctrl_info->pci_dev,
request.data.report_event_configuration.sg_descriptors,
event_config, PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH,
DMA_TO_DEVICE);
if (rc)
goto out;
rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0,
NULL, NO_TIMEOUT);
pqi_pci_unmap(ctrl_info->pci_dev,
request.data.report_event_configuration.sg_descriptors, 1,
DMA_TO_DEVICE);
out:
kfree(event_config);
return rc;
}
static inline int pqi_enable_events(struct pqi_ctrl_info *ctrl_info)
{
return pqi_configure_events(ctrl_info, true);
}
static inline int pqi_disable_events(struct pqi_ctrl_info *ctrl_info)
{
return pqi_configure_events(ctrl_info, false);
}
static void pqi_free_all_io_requests(struct pqi_ctrl_info *ctrl_info)
{
unsigned int i;
struct device *dev;
size_t sg_chain_buffer_length;
struct pqi_io_request *io_request;
if (!ctrl_info->io_request_pool)
return;
dev = &ctrl_info->pci_dev->dev;
sg_chain_buffer_length = ctrl_info->sg_chain_buffer_length;
io_request = ctrl_info->io_request_pool;
for (i = 0; i < ctrl_info->max_io_slots; i++) {
kfree(io_request->iu);
if (!io_request->sg_chain_buffer)
break;
dma_free_coherent(dev, sg_chain_buffer_length,
io_request->sg_chain_buffer,
io_request->sg_chain_buffer_dma_handle);
io_request++;
}
kfree(ctrl_info->io_request_pool);
ctrl_info->io_request_pool = NULL;
}
static inline int pqi_alloc_error_buffer(struct pqi_ctrl_info *ctrl_info)
{
ctrl_info->error_buffer = dma_alloc_coherent(&ctrl_info->pci_dev->dev,
ctrl_info->error_buffer_length,
&ctrl_info->error_buffer_dma_handle,
GFP_KERNEL);
if (!ctrl_info->error_buffer)
return -ENOMEM;
return 0;
}
static int pqi_alloc_io_resources(struct pqi_ctrl_info *ctrl_info)
{
unsigned int i;
void *sg_chain_buffer;
size_t sg_chain_buffer_length;
dma_addr_t sg_chain_buffer_dma_handle;
struct device *dev;
struct pqi_io_request *io_request;
ctrl_info->io_request_pool =
kcalloc(ctrl_info->max_io_slots,
sizeof(ctrl_info->io_request_pool[0]), GFP_KERNEL);
if (!ctrl_info->io_request_pool) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to allocate I/O request pool\n");
goto error;
}
dev = &ctrl_info->pci_dev->dev;
sg_chain_buffer_length = ctrl_info->sg_chain_buffer_length;
io_request = ctrl_info->io_request_pool;
for (i = 0; i < ctrl_info->max_io_slots; i++) {
io_request->iu =
kmalloc(ctrl_info->max_inbound_iu_length, GFP_KERNEL);
if (!io_request->iu) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to allocate IU buffers\n");
goto error;
}
sg_chain_buffer = dma_alloc_coherent(dev,
sg_chain_buffer_length, &sg_chain_buffer_dma_handle,
GFP_KERNEL);
if (!sg_chain_buffer) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to allocate PQI scatter-gather chain buffers\n");
goto error;
}
io_request->index = i;
io_request->sg_chain_buffer = sg_chain_buffer;
io_request->sg_chain_buffer_dma_handle =
sg_chain_buffer_dma_handle;
io_request++;
}
return 0;
error:
pqi_free_all_io_requests(ctrl_info);
return -ENOMEM;
}
/*
* Calculate required resources that are sized based on max. outstanding
* requests and max. transfer size.
*/
static void pqi_calculate_io_resources(struct pqi_ctrl_info *ctrl_info)
{
u32 max_transfer_size;
u32 max_sg_entries;
ctrl_info->scsi_ml_can_queue =
ctrl_info->max_outstanding_requests - PQI_RESERVED_IO_SLOTS;
ctrl_info->max_io_slots = ctrl_info->max_outstanding_requests;
ctrl_info->error_buffer_length =
ctrl_info->max_io_slots * PQI_ERROR_BUFFER_ELEMENT_LENGTH;
if (reset_devices)
max_transfer_size = min(ctrl_info->max_transfer_size,
PQI_MAX_TRANSFER_SIZE_KDUMP);
else
max_transfer_size = min(ctrl_info->max_transfer_size,
PQI_MAX_TRANSFER_SIZE);
max_sg_entries = max_transfer_size / PAGE_SIZE;
/* +1 to cover when the buffer is not page-aligned. */
max_sg_entries++;
max_sg_entries = min(ctrl_info->max_sg_entries, max_sg_entries);
max_transfer_size = (max_sg_entries - 1) * PAGE_SIZE;
ctrl_info->sg_chain_buffer_length =
(max_sg_entries * sizeof(struct pqi_sg_descriptor)) +
PQI_EXTRA_SGL_MEMORY;
ctrl_info->sg_tablesize = max_sg_entries;
ctrl_info->max_sectors = max_transfer_size / 512;
}
static void pqi_calculate_queue_resources(struct pqi_ctrl_info *ctrl_info)
{
int num_queue_groups;
u16 num_elements_per_iq;
u16 num_elements_per_oq;
if (reset_devices) {
num_queue_groups = 1;
} else {
int num_cpus;
int max_queue_groups;
max_queue_groups = min(ctrl_info->max_inbound_queues / 2,
ctrl_info->max_outbound_queues - 1);
max_queue_groups = min(max_queue_groups, PQI_MAX_QUEUE_GROUPS);
num_cpus = num_online_cpus();
num_queue_groups = min(num_cpus, ctrl_info->max_msix_vectors);
num_queue_groups = min(num_queue_groups, max_queue_groups);
}
ctrl_info->num_queue_groups = num_queue_groups;
ctrl_info->max_hw_queue_index = num_queue_groups - 1;
/*
* Make sure that the max. inbound IU length is an even multiple
* of our inbound element length.
*/
ctrl_info->max_inbound_iu_length =
(ctrl_info->max_inbound_iu_length_per_firmware /
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) *
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH;
num_elements_per_iq =
(ctrl_info->max_inbound_iu_length /
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH);
/* Add one because one element in each queue is unusable. */
num_elements_per_iq++;
num_elements_per_iq = min(num_elements_per_iq,
ctrl_info->max_elements_per_iq);
num_elements_per_oq = ((num_elements_per_iq - 1) * 2) + 1;
num_elements_per_oq = min(num_elements_per_oq,
ctrl_info->max_elements_per_oq);
ctrl_info->num_elements_per_iq = num_elements_per_iq;
ctrl_info->num_elements_per_oq = num_elements_per_oq;
ctrl_info->max_sg_per_iu =
((ctrl_info->max_inbound_iu_length -
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) /
sizeof(struct pqi_sg_descriptor)) +
PQI_MAX_EMBEDDED_SG_DESCRIPTORS;
}
static inline void pqi_set_sg_descriptor(
struct pqi_sg_descriptor *sg_descriptor, struct scatterlist *sg)
{
u64 address = (u64)sg_dma_address(sg);
unsigned int length = sg_dma_len(sg);
put_unaligned_le64(address, &sg_descriptor->address);
put_unaligned_le32(length, &sg_descriptor->length);
put_unaligned_le32(0, &sg_descriptor->flags);
}
static int pqi_build_raid_sg_list(struct pqi_ctrl_info *ctrl_info,
struct pqi_raid_path_request *request, struct scsi_cmnd *scmd,
struct pqi_io_request *io_request)
{
int i;
u16 iu_length;
int sg_count;
bool chained;
unsigned int num_sg_in_iu;
unsigned int max_sg_per_iu;
struct scatterlist *sg;
struct pqi_sg_descriptor *sg_descriptor;
sg_count = scsi_dma_map(scmd);
if (sg_count < 0)
return sg_count;
iu_length = offsetof(struct pqi_raid_path_request, sg_descriptors) -
PQI_REQUEST_HEADER_LENGTH;
if (sg_count == 0)
goto out;
sg = scsi_sglist(scmd);
sg_descriptor = request->sg_descriptors;
max_sg_per_iu = ctrl_info->max_sg_per_iu - 1;
chained = false;
num_sg_in_iu = 0;
i = 0;
while (1) {
pqi_set_sg_descriptor(sg_descriptor, sg);
if (!chained)
num_sg_in_iu++;
i++;
if (i == sg_count)
break;
sg_descriptor++;
if (i == max_sg_per_iu) {
put_unaligned_le64(
(u64)io_request->sg_chain_buffer_dma_handle,
&sg_descriptor->address);
put_unaligned_le32((sg_count - num_sg_in_iu)
* sizeof(*sg_descriptor),
&sg_descriptor->length);
put_unaligned_le32(CISS_SG_CHAIN,
&sg_descriptor->flags);
chained = true;
num_sg_in_iu++;
sg_descriptor = io_request->sg_chain_buffer;
}
sg = sg_next(sg);
}
put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags);
request->partial = chained;
iu_length += num_sg_in_iu * sizeof(*sg_descriptor);
out:
put_unaligned_le16(iu_length, &request->header.iu_length);
return 0;
}
static int pqi_build_aio_sg_list(struct pqi_ctrl_info *ctrl_info,
struct pqi_aio_path_request *request, struct scsi_cmnd *scmd,
struct pqi_io_request *io_request)
{
int i;
u16 iu_length;
int sg_count;
bool chained;
unsigned int num_sg_in_iu;
unsigned int max_sg_per_iu;
struct scatterlist *sg;
struct pqi_sg_descriptor *sg_descriptor;
sg_count = scsi_dma_map(scmd);
if (sg_count < 0)
return sg_count;
iu_length = offsetof(struct pqi_aio_path_request, sg_descriptors) -
PQI_REQUEST_HEADER_LENGTH;
num_sg_in_iu = 0;
if (sg_count == 0)
goto out;
sg = scsi_sglist(scmd);
sg_descriptor = request->sg_descriptors;
max_sg_per_iu = ctrl_info->max_sg_per_iu - 1;
chained = false;
i = 0;
while (1) {
pqi_set_sg_descriptor(sg_descriptor, sg);
if (!chained)
num_sg_in_iu++;
i++;
if (i == sg_count)
break;
sg_descriptor++;
if (i == max_sg_per_iu) {
put_unaligned_le64(
(u64)io_request->sg_chain_buffer_dma_handle,
&sg_descriptor->address);
put_unaligned_le32((sg_count - num_sg_in_iu)
* sizeof(*sg_descriptor),
&sg_descriptor->length);
put_unaligned_le32(CISS_SG_CHAIN,
&sg_descriptor->flags);
chained = true;
num_sg_in_iu++;
sg_descriptor = io_request->sg_chain_buffer;
}
sg = sg_next(sg);
}
put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags);
request->partial = chained;
iu_length += num_sg_in_iu * sizeof(*sg_descriptor);
out:
put_unaligned_le16(iu_length, &request->header.iu_length);
request->num_sg_descriptors = num_sg_in_iu;
return 0;
}
static void pqi_raid_io_complete(struct pqi_io_request *io_request,
void *context)
{
struct scsi_cmnd *scmd;
scmd = io_request->scmd;
pqi_free_io_request(io_request);
scsi_dma_unmap(scmd);
pqi_scsi_done(scmd);
}
static int pqi_raid_submit_scsi_cmd_with_io_request(
struct pqi_ctrl_info *ctrl_info, struct pqi_io_request *io_request,
struct pqi_scsi_dev *device, struct scsi_cmnd *scmd,
struct pqi_queue_group *queue_group)
{
int rc;
size_t cdb_length;
struct pqi_raid_path_request *request;
io_request->io_complete_callback = pqi_raid_io_complete;
io_request->scmd = scmd;
request = io_request->iu;
memset(request, 0,
offsetof(struct pqi_raid_path_request, sg_descriptors));
request->header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO;
put_unaligned_le32(scsi_bufflen(scmd), &request->buffer_length);
request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE;
put_unaligned_le16(io_request->index, &request->request_id);
request->error_index = request->request_id;
memcpy(request->lun_number, device->scsi3addr,
sizeof(request->lun_number));
cdb_length = min_t(size_t, scmd->cmd_len, sizeof(request->cdb));
memcpy(request->cdb, scmd->cmnd, cdb_length);
switch (cdb_length) {
case 6:
case 10:
case 12:
case 16:
/* No bytes in the Additional CDB bytes field */
request->additional_cdb_bytes_usage =
SOP_ADDITIONAL_CDB_BYTES_0;
break;
case 20:
/* 4 bytes in the Additional cdb field */
request->additional_cdb_bytes_usage =
SOP_ADDITIONAL_CDB_BYTES_4;
break;
case 24:
/* 8 bytes in the Additional cdb field */
request->additional_cdb_bytes_usage =
SOP_ADDITIONAL_CDB_BYTES_8;
break;
case 28:
/* 12 bytes in the Additional cdb field */
request->additional_cdb_bytes_usage =
SOP_ADDITIONAL_CDB_BYTES_12;
break;
case 32:
default:
/* 16 bytes in the Additional cdb field */
request->additional_cdb_bytes_usage =
SOP_ADDITIONAL_CDB_BYTES_16;
break;
}
switch (scmd->sc_data_direction) {
case DMA_TO_DEVICE:
request->data_direction = SOP_READ_FLAG;
break;
case DMA_FROM_DEVICE:
request->data_direction = SOP_WRITE_FLAG;
break;
case DMA_NONE:
request->data_direction = SOP_NO_DIRECTION_FLAG;
break;
case DMA_BIDIRECTIONAL:
request->data_direction = SOP_BIDIRECTIONAL;
break;
default:
dev_err(&ctrl_info->pci_dev->dev,
"unknown data direction: %d\n",
scmd->sc_data_direction);
break;
}
rc = pqi_build_raid_sg_list(ctrl_info, request, scmd, io_request);
if (rc) {
pqi_free_io_request(io_request);
return SCSI_MLQUEUE_HOST_BUSY;
}
pqi_start_io(ctrl_info, queue_group, RAID_PATH, io_request);
return 0;
}
static inline int pqi_raid_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device, struct scsi_cmnd *scmd,
struct pqi_queue_group *queue_group)
{
struct pqi_io_request *io_request;
io_request = pqi_alloc_io_request(ctrl_info);
return pqi_raid_submit_scsi_cmd_with_io_request(ctrl_info, io_request,
device, scmd, queue_group);
}
static inline void pqi_schedule_bypass_retry(struct pqi_ctrl_info *ctrl_info)
{
if (!pqi_ctrl_blocked(ctrl_info))
schedule_work(&ctrl_info->raid_bypass_retry_work);
}
static bool pqi_raid_bypass_retry_needed(struct pqi_io_request *io_request)
{
struct scsi_cmnd *scmd;
struct pqi_scsi_dev *device;
struct pqi_ctrl_info *ctrl_info;
if (!io_request->raid_bypass)
return false;
scmd = io_request->scmd;
if ((scmd->result & 0xff) == SAM_STAT_GOOD)
return false;
if (host_byte(scmd->result) == DID_NO_CONNECT)
return false;
device = scmd->device->hostdata;
if (pqi_device_offline(device))
return false;
ctrl_info = shost_to_hba(scmd->device->host);
if (pqi_ctrl_offline(ctrl_info))
return false;
return true;
}
static inline void pqi_add_to_raid_bypass_retry_list(
struct pqi_ctrl_info *ctrl_info,
struct pqi_io_request *io_request, bool at_head)
{
unsigned long flags;
spin_lock_irqsave(&ctrl_info->raid_bypass_retry_list_lock, flags);
if (at_head)
list_add(&io_request->request_list_entry,
&ctrl_info->raid_bypass_retry_list);
else
list_add_tail(&io_request->request_list_entry,
&ctrl_info->raid_bypass_retry_list);
spin_unlock_irqrestore(&ctrl_info->raid_bypass_retry_list_lock, flags);
}
static void pqi_queued_raid_bypass_complete(struct pqi_io_request *io_request,
void *context)
{
struct scsi_cmnd *scmd;
scmd = io_request->scmd;
pqi_free_io_request(io_request);
pqi_scsi_done(scmd);
}
static void pqi_queue_raid_bypass_retry(struct pqi_io_request *io_request)
{
struct scsi_cmnd *scmd;
struct pqi_ctrl_info *ctrl_info;
io_request->io_complete_callback = pqi_queued_raid_bypass_complete;
scmd = io_request->scmd;
scmd->result = 0;
ctrl_info = shost_to_hba(scmd->device->host);
pqi_add_to_raid_bypass_retry_list(ctrl_info, io_request, false);
pqi_schedule_bypass_retry(ctrl_info);
}
static int pqi_retry_raid_bypass(struct pqi_io_request *io_request)
{
struct scsi_cmnd *scmd;
struct pqi_scsi_dev *device;
struct pqi_ctrl_info *ctrl_info;
struct pqi_queue_group *queue_group;
scmd = io_request->scmd;
device = scmd->device->hostdata;
if (pqi_device_in_reset(device)) {
pqi_free_io_request(io_request);
set_host_byte(scmd, DID_RESET);
pqi_scsi_done(scmd);
return 0;
}
ctrl_info = shost_to_hba(scmd->device->host);
queue_group = io_request->queue_group;
pqi_reinit_io_request(io_request);
return pqi_raid_submit_scsi_cmd_with_io_request(ctrl_info, io_request,
device, scmd, queue_group);
}
static inline struct pqi_io_request *pqi_next_queued_raid_bypass_request(
struct pqi_ctrl_info *ctrl_info)
{
unsigned long flags;
struct pqi_io_request *io_request;
spin_lock_irqsave(&ctrl_info->raid_bypass_retry_list_lock, flags);
io_request = list_first_entry_or_null(
&ctrl_info->raid_bypass_retry_list,
struct pqi_io_request, request_list_entry);
if (io_request)
list_del(&io_request->request_list_entry);
spin_unlock_irqrestore(&ctrl_info->raid_bypass_retry_list_lock, flags);
return io_request;
}
static void pqi_retry_raid_bypass_requests(struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct pqi_io_request *io_request;
pqi_ctrl_busy(ctrl_info);
while (1) {
if (pqi_ctrl_blocked(ctrl_info))
break;
io_request = pqi_next_queued_raid_bypass_request(ctrl_info);
if (!io_request)
break;
rc = pqi_retry_raid_bypass(io_request);
if (rc) {
pqi_add_to_raid_bypass_retry_list(ctrl_info, io_request,
true);
pqi_schedule_bypass_retry(ctrl_info);
break;
}
}
pqi_ctrl_unbusy(ctrl_info);
}
static void pqi_raid_bypass_retry_worker(struct work_struct *work)
{
struct pqi_ctrl_info *ctrl_info;
ctrl_info = container_of(work, struct pqi_ctrl_info,
raid_bypass_retry_work);
pqi_retry_raid_bypass_requests(ctrl_info);
}
static void pqi_clear_all_queued_raid_bypass_retries(
struct pqi_ctrl_info *ctrl_info)
{
unsigned long flags;
spin_lock_irqsave(&ctrl_info->raid_bypass_retry_list_lock, flags);
INIT_LIST_HEAD(&ctrl_info->raid_bypass_retry_list);
spin_unlock_irqrestore(&ctrl_info->raid_bypass_retry_list_lock, flags);
}
static void pqi_aio_io_complete(struct pqi_io_request *io_request,
void *context)
{
struct scsi_cmnd *scmd;
scmd = io_request->scmd;
scsi_dma_unmap(scmd);
if (io_request->status == -EAGAIN)
set_host_byte(scmd, DID_IMM_RETRY);
else if (pqi_raid_bypass_retry_needed(io_request)) {
pqi_queue_raid_bypass_retry(io_request);
return;
}
pqi_free_io_request(io_request);
pqi_scsi_done(scmd);
}
static inline int pqi_aio_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device, struct scsi_cmnd *scmd,
struct pqi_queue_group *queue_group)
{
return pqi_aio_submit_io(ctrl_info, scmd, device->aio_handle,
scmd->cmnd, scmd->cmd_len, queue_group, NULL, false);
}
static int pqi_aio_submit_io(struct pqi_ctrl_info *ctrl_info,
struct scsi_cmnd *scmd, u32 aio_handle, u8 *cdb,
unsigned int cdb_length, struct pqi_queue_group *queue_group,
struct pqi_encryption_info *encryption_info, bool raid_bypass)
{
int rc;
struct pqi_io_request *io_request;
struct pqi_aio_path_request *request;
io_request = pqi_alloc_io_request(ctrl_info);
io_request->io_complete_callback = pqi_aio_io_complete;
io_request->scmd = scmd;
io_request->raid_bypass = raid_bypass;
request = io_request->iu;
memset(request, 0,
offsetof(struct pqi_raid_path_request, sg_descriptors));
request->header.iu_type = PQI_REQUEST_IU_AIO_PATH_IO;
put_unaligned_le32(aio_handle, &request->nexus_id);
put_unaligned_le32(scsi_bufflen(scmd), &request->buffer_length);
request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE;
put_unaligned_le16(io_request->index, &request->request_id);
request->error_index = request->request_id;
if (cdb_length > sizeof(request->cdb))
cdb_length = sizeof(request->cdb);
request->cdb_length = cdb_length;
memcpy(request->cdb, cdb, cdb_length);
switch (scmd->sc_data_direction) {
case DMA_TO_DEVICE:
request->data_direction = SOP_READ_FLAG;
break;
case DMA_FROM_DEVICE:
request->data_direction = SOP_WRITE_FLAG;
break;
case DMA_NONE:
request->data_direction = SOP_NO_DIRECTION_FLAG;
break;
case DMA_BIDIRECTIONAL:
request->data_direction = SOP_BIDIRECTIONAL;
break;
default:
dev_err(&ctrl_info->pci_dev->dev,
"unknown data direction: %d\n",
scmd->sc_data_direction);
break;
}
if (encryption_info) {
request->encryption_enable = true;
put_unaligned_le16(encryption_info->data_encryption_key_index,
&request->data_encryption_key_index);
put_unaligned_le32(encryption_info->encrypt_tweak_lower,
&request->encrypt_tweak_lower);
put_unaligned_le32(encryption_info->encrypt_tweak_upper,
&request->encrypt_tweak_upper);
}
rc = pqi_build_aio_sg_list(ctrl_info, request, scmd, io_request);
if (rc) {
pqi_free_io_request(io_request);
return SCSI_MLQUEUE_HOST_BUSY;
}
pqi_start_io(ctrl_info, queue_group, AIO_PATH, io_request);
return 0;
}
static inline u16 pqi_get_hw_queue(struct pqi_ctrl_info *ctrl_info,
struct scsi_cmnd *scmd)
{
u16 hw_queue;
hw_queue = blk_mq_unique_tag_to_hwq(blk_mq_unique_tag(scmd->request));
if (hw_queue > ctrl_info->max_hw_queue_index)
hw_queue = 0;
return hw_queue;
}
/*
* This function gets called just before we hand the completed SCSI request
* back to the SML.
*/
void pqi_prep_for_scsi_done(struct scsi_cmnd *scmd)
{
struct pqi_scsi_dev *device;
if (!scmd->device) {
set_host_byte(scmd, DID_NO_CONNECT);
return;
}
device = scmd->device->hostdata;
if (!device) {
set_host_byte(scmd, DID_NO_CONNECT);
return;
}
atomic_dec(&device->scsi_cmds_outstanding);
}
static int pqi_scsi_queue_command(struct Scsi_Host *shost,
struct scsi_cmnd *scmd)
{
int rc;
struct pqi_ctrl_info *ctrl_info;
struct pqi_scsi_dev *device;
u16 hw_queue;
struct pqi_queue_group *queue_group;
bool raid_bypassed;
device = scmd->device->hostdata;
ctrl_info = shost_to_hba(shost);
if (!device) {
set_host_byte(scmd, DID_NO_CONNECT);
pqi_scsi_done(scmd);
return 0;
}
atomic_inc(&device->scsi_cmds_outstanding);
if (pqi_ctrl_offline(ctrl_info) || pqi_device_in_remove(device)) {
set_host_byte(scmd, DID_NO_CONNECT);
pqi_scsi_done(scmd);
return 0;
}
pqi_ctrl_busy(ctrl_info);
if (pqi_ctrl_blocked(ctrl_info) || pqi_device_in_reset(device) ||
pqi_ctrl_in_ofa(ctrl_info) || pqi_ctrl_in_shutdown(ctrl_info)) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
/*
* This is necessary because the SML doesn't zero out this field during
* error recovery.
*/
scmd->result = 0;
hw_queue = pqi_get_hw_queue(ctrl_info, scmd);
queue_group = &ctrl_info->queue_groups[hw_queue];
if (pqi_is_logical_device(device)) {
raid_bypassed = false;
if (device->raid_bypass_enabled &&
!blk_rq_is_passthrough(scmd->request)) {
rc = pqi_raid_bypass_submit_scsi_cmd(ctrl_info, device,
scmd, queue_group);
if (rc == 0 || rc == SCSI_MLQUEUE_HOST_BUSY) {
raid_bypassed = true;
atomic_inc(&device->raid_bypass_cnt);
}
}
if (!raid_bypassed)
rc = pqi_raid_submit_scsi_cmd(ctrl_info, device, scmd, queue_group);
} else {
if (device->aio_enabled)
rc = pqi_aio_submit_scsi_cmd(ctrl_info, device, scmd, queue_group);
else
rc = pqi_raid_submit_scsi_cmd(ctrl_info, device, scmd, queue_group);
}
out:
pqi_ctrl_unbusy(ctrl_info);
if (rc)
atomic_dec(&device->scsi_cmds_outstanding);
return rc;
}
static int pqi_wait_until_queued_io_drained(struct pqi_ctrl_info *ctrl_info,
struct pqi_queue_group *queue_group)
{
unsigned int path;
unsigned long flags;
bool list_is_empty;
for (path = 0; path < 2; path++) {
while (1) {
spin_lock_irqsave(
&queue_group->submit_lock[path], flags);
list_is_empty =
list_empty(&queue_group->request_list[path]);
spin_unlock_irqrestore(
&queue_group->submit_lock[path], flags);
if (list_is_empty)
break;
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info))
return -ENXIO;
usleep_range(1000, 2000);
}
}
return 0;
}
static int pqi_wait_until_inbound_queues_empty(struct pqi_ctrl_info *ctrl_info)
{
int rc;
unsigned int i;
unsigned int path;
struct pqi_queue_group *queue_group;
pqi_index_t iq_pi;
pqi_index_t iq_ci;
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
queue_group = &ctrl_info->queue_groups[i];
rc = pqi_wait_until_queued_io_drained(ctrl_info, queue_group);
if (rc)
return rc;
for (path = 0; path < 2; path++) {
iq_pi = queue_group->iq_pi_copy[path];
while (1) {
iq_ci = readl(queue_group->iq_ci[path]);
if (iq_ci == iq_pi)
break;
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info))
return -ENXIO;
usleep_range(1000, 2000);
}
}
}
return 0;
}
static void pqi_fail_io_queued_for_device(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
unsigned int i;
unsigned int path;
struct pqi_queue_group *queue_group;
unsigned long flags;
struct pqi_io_request *io_request;
struct pqi_io_request *next;
struct scsi_cmnd *scmd;
struct pqi_scsi_dev *scsi_device;
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
queue_group = &ctrl_info->queue_groups[i];
for (path = 0; path < 2; path++) {
spin_lock_irqsave(
&queue_group->submit_lock[path], flags);
list_for_each_entry_safe(io_request, next,
&queue_group->request_list[path],
request_list_entry) {
scmd = io_request->scmd;
if (!scmd)
continue;
scsi_device = scmd->device->hostdata;
if (scsi_device != device)
continue;
list_del(&io_request->request_list_entry);
set_host_byte(scmd, DID_RESET);
pqi_scsi_done(scmd);
}
spin_unlock_irqrestore(
&queue_group->submit_lock[path], flags);
}
}
}
static void pqi_fail_io_queued_for_all_devices(struct pqi_ctrl_info *ctrl_info)
{
unsigned int i;
unsigned int path;
struct pqi_queue_group *queue_group;
unsigned long flags;
struct pqi_io_request *io_request;
struct pqi_io_request *next;
struct scsi_cmnd *scmd;
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
queue_group = &ctrl_info->queue_groups[i];
for (path = 0; path < 2; path++) {
spin_lock_irqsave(&queue_group->submit_lock[path],
flags);
list_for_each_entry_safe(io_request, next,
&queue_group->request_list[path],
request_list_entry) {
scmd = io_request->scmd;
if (!scmd)
continue;
list_del(&io_request->request_list_entry);
set_host_byte(scmd, DID_RESET);
pqi_scsi_done(scmd);
}
spin_unlock_irqrestore(
&queue_group->submit_lock[path], flags);
}
}
}
static int pqi_device_wait_for_pending_io(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device, unsigned long timeout_secs)
{
unsigned long timeout;
timeout = (timeout_secs * PQI_HZ) + jiffies;
while (atomic_read(&device->scsi_cmds_outstanding)) {
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info))
return -ENXIO;
if (timeout_secs != NO_TIMEOUT) {
if (time_after(jiffies, timeout)) {
dev_err(&ctrl_info->pci_dev->dev,
"timed out waiting for pending IO\n");
return -ETIMEDOUT;
}
}
usleep_range(1000, 2000);
}
return 0;
}
static int pqi_ctrl_wait_for_pending_io(struct pqi_ctrl_info *ctrl_info,
unsigned long timeout_secs)
{
bool io_pending;
unsigned long flags;
unsigned long timeout;
struct pqi_scsi_dev *device;
timeout = (timeout_secs * PQI_HZ) + jiffies;
while (1) {
io_pending = false;
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
list_for_each_entry(device, &ctrl_info->scsi_device_list,
scsi_device_list_entry) {
if (atomic_read(&device->scsi_cmds_outstanding)) {
io_pending = true;
break;
}
}
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock,
flags);
if (!io_pending)
break;
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info))
return -ENXIO;
if (timeout_secs != NO_TIMEOUT) {
if (time_after(jiffies, timeout)) {
dev_err(&ctrl_info->pci_dev->dev,
"timed out waiting for pending IO\n");
return -ETIMEDOUT;
}
}
usleep_range(1000, 2000);
}
return 0;
}
static int pqi_ctrl_wait_for_pending_sync_cmds(struct pqi_ctrl_info *ctrl_info)
{
while (atomic_read(&ctrl_info->sync_cmds_outstanding)) {
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info))
return -ENXIO;
usleep_range(1000, 2000);
}
return 0;
}
static void pqi_lun_reset_complete(struct pqi_io_request *io_request,
void *context)
{
struct completion *waiting = context;
complete(waiting);
}
#define PQI_LUN_RESET_TIMEOUT_SECS 30
#define PQI_LUN_RESET_POLL_COMPLETION_SECS 10
static int pqi_wait_for_lun_reset_completion(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device, struct completion *wait)
{
int rc;
while (1) {
if (wait_for_completion_io_timeout(wait,
PQI_LUN_RESET_POLL_COMPLETION_SECS * PQI_HZ)) {
rc = 0;
break;
}
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info)) {
rc = -ENXIO;
break;
}
}
return rc;
}
static int pqi_lun_reset(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
struct pqi_io_request *io_request;
DECLARE_COMPLETION_ONSTACK(wait);
struct pqi_task_management_request *request;
io_request = pqi_alloc_io_request(ctrl_info);
io_request->io_complete_callback = pqi_lun_reset_complete;
io_request->context = &wait;
request = io_request->iu;
memset(request, 0, sizeof(*request));
request->header.iu_type = PQI_REQUEST_IU_TASK_MANAGEMENT;
put_unaligned_le16(sizeof(*request) - PQI_REQUEST_HEADER_LENGTH,
&request->header.iu_length);
put_unaligned_le16(io_request->index, &request->request_id);
memcpy(request->lun_number, device->scsi3addr,
sizeof(request->lun_number));
request->task_management_function = SOP_TASK_MANAGEMENT_LUN_RESET;
if (ctrl_info->tmf_iu_timeout_supported)
put_unaligned_le16(PQI_LUN_RESET_TIMEOUT_SECS,
&request->timeout);
pqi_start_io(ctrl_info,
&ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP], RAID_PATH,
io_request);
rc = pqi_wait_for_lun_reset_completion(ctrl_info, device, &wait);
if (rc == 0)
rc = io_request->status;
pqi_free_io_request(io_request);
return rc;
}
/* Performs a reset at the LUN level. */
#define PQI_LUN_RESET_RETRIES 3
#define PQI_LUN_RESET_RETRY_INTERVAL_MSECS 10000
#define PQI_LUN_RESET_PENDING_IO_TIMEOUT_SECS 120
static int _pqi_device_reset(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
unsigned int retries;
unsigned long timeout_secs;
for (retries = 0;;) {
rc = pqi_lun_reset(ctrl_info, device);
if (rc == 0 || ++retries > PQI_LUN_RESET_RETRIES)
break;
msleep(PQI_LUN_RESET_RETRY_INTERVAL_MSECS);
}
timeout_secs = rc ? PQI_LUN_RESET_PENDING_IO_TIMEOUT_SECS : NO_TIMEOUT;
rc |= pqi_device_wait_for_pending_io(ctrl_info, device, timeout_secs);
return rc == 0 ? SUCCESS : FAILED;
}
static int pqi_device_reset(struct pqi_ctrl_info *ctrl_info,
struct pqi_scsi_dev *device)
{
int rc;
mutex_lock(&ctrl_info->lun_reset_mutex);
pqi_ctrl_block_requests(ctrl_info);
pqi_ctrl_wait_until_quiesced(ctrl_info);
pqi_fail_io_queued_for_device(ctrl_info, device);
rc = pqi_wait_until_inbound_queues_empty(ctrl_info);
pqi_device_reset_start(device);
pqi_ctrl_unblock_requests(ctrl_info);
if (rc)
rc = FAILED;
else
rc = _pqi_device_reset(ctrl_info, device);
pqi_device_reset_done(device);
mutex_unlock(&ctrl_info->lun_reset_mutex);
return rc;
}
static int pqi_eh_device_reset_handler(struct scsi_cmnd *scmd)
{
int rc;
struct Scsi_Host *shost;
struct pqi_ctrl_info *ctrl_info;
struct pqi_scsi_dev *device;
shost = scmd->device->host;
ctrl_info = shost_to_hba(shost);
device = scmd->device->hostdata;
dev_err(&ctrl_info->pci_dev->dev,
"resetting scsi %d:%d:%d:%d\n",
shost->host_no, device->bus, device->target, device->lun);
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info) ||
pqi_device_reset_blocked(ctrl_info)) {
rc = FAILED;
goto out;
}
pqi_wait_until_ofa_finished(ctrl_info);
atomic_inc(&ctrl_info->sync_cmds_outstanding);
rc = pqi_device_reset(ctrl_info, device);
atomic_dec(&ctrl_info->sync_cmds_outstanding);
out:
dev_err(&ctrl_info->pci_dev->dev,
"reset of scsi %d:%d:%d:%d: %s\n",
shost->host_no, device->bus, device->target, device->lun,
rc == SUCCESS ? "SUCCESS" : "FAILED");
return rc;
}
static int pqi_slave_alloc(struct scsi_device *sdev)
{
struct pqi_scsi_dev *device;
unsigned long flags;
struct pqi_ctrl_info *ctrl_info;
struct scsi_target *starget;
struct sas_rphy *rphy;
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
if (sdev_channel(sdev) == PQI_PHYSICAL_DEVICE_BUS) {
starget = scsi_target(sdev);
rphy = target_to_rphy(starget);
device = pqi_find_device_by_sas_rphy(ctrl_info, rphy);
if (device) {
device->target = sdev_id(sdev);
device->lun = sdev->lun;
device->target_lun_valid = true;
}
} else {
device = pqi_find_scsi_dev(ctrl_info, sdev_channel(sdev),
sdev_id(sdev), sdev->lun);
}
if (device) {
sdev->hostdata = device;
device->sdev = sdev;
if (device->queue_depth) {
device->advertised_queue_depth = device->queue_depth;
scsi_change_queue_depth(sdev,
device->advertised_queue_depth);
}
if (pqi_is_logical_device(device))
pqi_disable_write_same(sdev);
else
sdev->allow_restart = 1;
}
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return 0;
}
static int pqi_map_queues(struct Scsi_Host *shost)
{
struct pqi_ctrl_info *ctrl_info = shost_to_hba(shost);
return blk_mq_pci_map_queues(&shost->tag_set.map[HCTX_TYPE_DEFAULT],
ctrl_info->pci_dev, 0);
}
static int pqi_slave_configure(struct scsi_device *sdev)
{
struct pqi_scsi_dev *device;
device = sdev->hostdata;
device->devtype = sdev->type;
return 0;
}
static void pqi_slave_destroy(struct scsi_device *sdev)
{
unsigned long flags;
struct pqi_scsi_dev *device;
struct pqi_ctrl_info *ctrl_info;
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
device = sdev->hostdata;
if (device) {
sdev->hostdata = NULL;
if (!list_empty(&device->scsi_device_list_entry))
list_del(&device->scsi_device_list_entry);
}
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
if (device) {
pqi_dev_info(ctrl_info, "removed", device);
pqi_free_device(device);
}
}
static int pqi_getpciinfo_ioctl(struct pqi_ctrl_info *ctrl_info, void __user *arg)
{
struct pci_dev *pci_dev;
u32 subsystem_vendor;
u32 subsystem_device;
cciss_pci_info_struct pciinfo;
if (!arg)
return -EINVAL;
pci_dev = ctrl_info->pci_dev;
pciinfo.domain = pci_domain_nr(pci_dev->bus);
pciinfo.bus = pci_dev->bus->number;
pciinfo.dev_fn = pci_dev->devfn;
subsystem_vendor = pci_dev->subsystem_vendor;
subsystem_device = pci_dev->subsystem_device;
pciinfo.board_id = ((subsystem_device << 16) & 0xffff0000) | subsystem_vendor;
if (copy_to_user(arg, &pciinfo, sizeof(pciinfo)))
return -EFAULT;
return 0;
}
static int pqi_getdrivver_ioctl(void __user *arg)
{
u32 version;
if (!arg)
return -EINVAL;
version = (DRIVER_MAJOR << 28) | (DRIVER_MINOR << 24) |
(DRIVER_RELEASE << 16) | DRIVER_REVISION;
if (copy_to_user(arg, &version, sizeof(version)))
return -EFAULT;
return 0;
}
struct ciss_error_info {
u8 scsi_status;
int command_status;
size_t sense_data_length;
};
static void pqi_error_info_to_ciss(struct pqi_raid_error_info *pqi_error_info,
struct ciss_error_info *ciss_error_info)
{
int ciss_cmd_status;
size_t sense_data_length;
switch (pqi_error_info->data_out_result) {
case PQI_DATA_IN_OUT_GOOD:
ciss_cmd_status = CISS_CMD_STATUS_SUCCESS;
break;
case PQI_DATA_IN_OUT_UNDERFLOW:
ciss_cmd_status = CISS_CMD_STATUS_DATA_UNDERRUN;
break;
case PQI_DATA_IN_OUT_BUFFER_OVERFLOW:
ciss_cmd_status = CISS_CMD_STATUS_DATA_OVERRUN;
break;
case PQI_DATA_IN_OUT_PROTOCOL_ERROR:
case PQI_DATA_IN_OUT_BUFFER_ERROR:
case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_DESCRIPTOR_AREA:
case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_BRIDGE:
case PQI_DATA_IN_OUT_ERROR:
ciss_cmd_status = CISS_CMD_STATUS_PROTOCOL_ERROR;
break;
case PQI_DATA_IN_OUT_HARDWARE_ERROR:
case PQI_DATA_IN_OUT_PCIE_FABRIC_ERROR:
case PQI_DATA_IN_OUT_PCIE_COMPLETION_TIMEOUT:
case PQI_DATA_IN_OUT_PCIE_COMPLETER_ABORT_RECEIVED:
case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST_RECEIVED:
case PQI_DATA_IN_OUT_PCIE_ECRC_CHECK_FAILED:
case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST:
case PQI_DATA_IN_OUT_PCIE_ACS_VIOLATION:
case PQI_DATA_IN_OUT_PCIE_TLP_PREFIX_BLOCKED:
case PQI_DATA_IN_OUT_PCIE_POISONED_MEMORY_READ:
ciss_cmd_status = CISS_CMD_STATUS_HARDWARE_ERROR;
break;
case PQI_DATA_IN_OUT_UNSOLICITED_ABORT:
ciss_cmd_status = CISS_CMD_STATUS_UNSOLICITED_ABORT;
break;
case PQI_DATA_IN_OUT_ABORTED:
ciss_cmd_status = CISS_CMD_STATUS_ABORTED;
break;
case PQI_DATA_IN_OUT_TIMEOUT:
ciss_cmd_status = CISS_CMD_STATUS_TIMEOUT;
break;
default:
ciss_cmd_status = CISS_CMD_STATUS_TARGET_STATUS;
break;
}
sense_data_length =
get_unaligned_le16(&pqi_error_info->sense_data_length);
if (sense_data_length == 0)
sense_data_length =
get_unaligned_le16(&pqi_error_info->response_data_length);
if (sense_data_length)
if (sense_data_length > sizeof(pqi_error_info->data))
sense_data_length = sizeof(pqi_error_info->data);
ciss_error_info->scsi_status = pqi_error_info->status;
ciss_error_info->command_status = ciss_cmd_status;
ciss_error_info->sense_data_length = sense_data_length;
}
static int pqi_passthru_ioctl(struct pqi_ctrl_info *ctrl_info, void __user *arg)
{
int rc;
char *kernel_buffer = NULL;
u16 iu_length;
size_t sense_data_length;
IOCTL_Command_struct iocommand;
struct pqi_raid_path_request request;
struct pqi_raid_error_info pqi_error_info;
struct ciss_error_info ciss_error_info;
if (pqi_ctrl_offline(ctrl_info))
return -ENXIO;
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (copy_from_user(&iocommand, arg, sizeof(iocommand)))
return -EFAULT;
if (iocommand.buf_size < 1 &&
iocommand.Request.Type.Direction != XFER_NONE)
return -EINVAL;
if (iocommand.Request.CDBLen > sizeof(request.cdb))
return -EINVAL;
if (iocommand.Request.Type.Type != TYPE_CMD)
return -EINVAL;
switch (iocommand.Request.Type.Direction) {
case XFER_NONE:
case XFER_WRITE:
case XFER_READ:
case XFER_READ | XFER_WRITE:
break;
default:
return -EINVAL;
}
if (iocommand.buf_size > 0) {
kernel_buffer = kmalloc(iocommand.buf_size, GFP_KERNEL);
if (!kernel_buffer)
return -ENOMEM;
if (iocommand.Request.Type.Direction & XFER_WRITE) {
if (copy_from_user(kernel_buffer, iocommand.buf,
iocommand.buf_size)) {
rc = -EFAULT;
goto out;
}
} else {
memset(kernel_buffer, 0, iocommand.buf_size);
}
}
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO;
iu_length = offsetof(struct pqi_raid_path_request, sg_descriptors) -
PQI_REQUEST_HEADER_LENGTH;
memcpy(request.lun_number, iocommand.LUN_info.LunAddrBytes,
sizeof(request.lun_number));
memcpy(request.cdb, iocommand.Request.CDB, iocommand.Request.CDBLen);
request.additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_0;
switch (iocommand.Request.Type.Direction) {
case XFER_NONE:
request.data_direction = SOP_NO_DIRECTION_FLAG;
break;
case XFER_WRITE:
request.data_direction = SOP_WRITE_FLAG;
break;
case XFER_READ:
request.data_direction = SOP_READ_FLAG;
break;
case XFER_READ | XFER_WRITE:
request.data_direction = SOP_BIDIRECTIONAL;
break;
}
request.task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE;
if (iocommand.buf_size > 0) {
put_unaligned_le32(iocommand.buf_size, &request.buffer_length);
rc = pqi_map_single(ctrl_info->pci_dev,
&request.sg_descriptors[0], kernel_buffer,
iocommand.buf_size, DMA_BIDIRECTIONAL);
if (rc)
goto out;
iu_length += sizeof(request.sg_descriptors[0]);
}
put_unaligned_le16(iu_length, &request.header.iu_length);
if (ctrl_info->raid_iu_timeout_supported)
put_unaligned_le32(iocommand.Request.Timeout, &request.timeout);
rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header,
PQI_SYNC_FLAGS_INTERRUPTABLE, &pqi_error_info, NO_TIMEOUT);
if (iocommand.buf_size > 0)
pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1,
DMA_BIDIRECTIONAL);
memset(&iocommand.error_info, 0, sizeof(iocommand.error_info));
if (rc == 0) {
pqi_error_info_to_ciss(&pqi_error_info, &ciss_error_info);
iocommand.error_info.ScsiStatus = ciss_error_info.scsi_status;
iocommand.error_info.CommandStatus =
ciss_error_info.command_status;
sense_data_length = ciss_error_info.sense_data_length;
if (sense_data_length) {
if (sense_data_length >
sizeof(iocommand.error_info.SenseInfo))
sense_data_length =
sizeof(iocommand.error_info.SenseInfo);
memcpy(iocommand.error_info.SenseInfo,
pqi_error_info.data, sense_data_length);
iocommand.error_info.SenseLen = sense_data_length;
}
}
if (copy_to_user(arg, &iocommand, sizeof(iocommand))) {
rc = -EFAULT;
goto out;
}
if (rc == 0 && iocommand.buf_size > 0 &&
(iocommand.Request.Type.Direction & XFER_READ)) {
if (copy_to_user(iocommand.buf, kernel_buffer,
iocommand.buf_size)) {
rc = -EFAULT;
}
}
out:
kfree(kernel_buffer);
return rc;
}
static int pqi_ioctl(struct scsi_device *sdev, unsigned int cmd,
void __user *arg)
{
int rc;
struct pqi_ctrl_info *ctrl_info;
ctrl_info = shost_to_hba(sdev->host);
if (pqi_ctrl_in_ofa(ctrl_info) || pqi_ctrl_in_shutdown(ctrl_info))
return -EBUSY;
switch (cmd) {
case CCISS_DEREGDISK:
case CCISS_REGNEWDISK:
case CCISS_REGNEWD:
rc = pqi_scan_scsi_devices(ctrl_info);
break;
case CCISS_GETPCIINFO:
rc = pqi_getpciinfo_ioctl(ctrl_info, arg);
break;
case CCISS_GETDRIVVER:
rc = pqi_getdrivver_ioctl(arg);
break;
case CCISS_PASSTHRU:
rc = pqi_passthru_ioctl(ctrl_info, arg);
break;
default:
rc = -EINVAL;
break;
}
return rc;
}
static ssize_t pqi_firmware_version_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct Scsi_Host *shost;
struct pqi_ctrl_info *ctrl_info;
shost = class_to_shost(dev);
ctrl_info = shost_to_hba(shost);
return snprintf(buffer, PAGE_SIZE, "%s\n", ctrl_info->firmware_version);
}
static ssize_t pqi_driver_version_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
return snprintf(buffer, PAGE_SIZE, "%s\n",
DRIVER_VERSION BUILD_TIMESTAMP);
}
static ssize_t pqi_serial_number_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct Scsi_Host *shost;
struct pqi_ctrl_info *ctrl_info;
shost = class_to_shost(dev);
ctrl_info = shost_to_hba(shost);
return snprintf(buffer, PAGE_SIZE, "%s\n", ctrl_info->serial_number);
}
static ssize_t pqi_model_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct Scsi_Host *shost;
struct pqi_ctrl_info *ctrl_info;
shost = class_to_shost(dev);
ctrl_info = shost_to_hba(shost);
return snprintf(buffer, PAGE_SIZE, "%s\n", ctrl_info->model);
}
static ssize_t pqi_vendor_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct Scsi_Host *shost;
struct pqi_ctrl_info *ctrl_info;
shost = class_to_shost(dev);
ctrl_info = shost_to_hba(shost);
return snprintf(buffer, PAGE_SIZE, "%s\n", ctrl_info->vendor);
}
static ssize_t pqi_host_rescan_store(struct device *dev,
struct device_attribute *attr, const char *buffer, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
pqi_scan_start(shost);
return count;
}
static ssize_t pqi_lockup_action_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
int count = 0;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pqi_lockup_actions); i++) {
if (pqi_lockup_actions[i].action == pqi_lockup_action)
count += scnprintf(buffer + count, PAGE_SIZE - count,
"[%s] ", pqi_lockup_actions[i].name);
else
count += scnprintf(buffer + count, PAGE_SIZE - count,
"%s ", pqi_lockup_actions[i].name);
}
count += scnprintf(buffer + count, PAGE_SIZE - count, "\n");
return count;
}
static ssize_t pqi_lockup_action_store(struct device *dev,
struct device_attribute *attr, const char *buffer, size_t count)
{
unsigned int i;
char *action_name;
char action_name_buffer[32];
strlcpy(action_name_buffer, buffer, sizeof(action_name_buffer));
action_name = strstrip(action_name_buffer);
for (i = 0; i < ARRAY_SIZE(pqi_lockup_actions); i++) {
if (strcmp(action_name, pqi_lockup_actions[i].name) == 0) {
pqi_lockup_action = pqi_lockup_actions[i].action;
return count;
}
}
return -EINVAL;
}
static DEVICE_ATTR(driver_version, 0444, pqi_driver_version_show, NULL);
static DEVICE_ATTR(firmware_version, 0444, pqi_firmware_version_show, NULL);
static DEVICE_ATTR(model, 0444, pqi_model_show, NULL);
static DEVICE_ATTR(serial_number, 0444, pqi_serial_number_show, NULL);
static DEVICE_ATTR(vendor, 0444, pqi_vendor_show, NULL);
static DEVICE_ATTR(rescan, 0200, NULL, pqi_host_rescan_store);
static DEVICE_ATTR(lockup_action, 0644,
pqi_lockup_action_show, pqi_lockup_action_store);
static struct device_attribute *pqi_shost_attrs[] = {
&dev_attr_driver_version,
&dev_attr_firmware_version,
&dev_attr_model,
&dev_attr_serial_number,
&dev_attr_vendor,
&dev_attr_rescan,
&dev_attr_lockup_action,
NULL
};
static ssize_t pqi_unique_id_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct pqi_ctrl_info *ctrl_info;
struct scsi_device *sdev;
struct pqi_scsi_dev *device;
unsigned long flags;
u8 unique_id[16];
sdev = to_scsi_device(dev);
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
device = sdev->hostdata;
if (!device) {
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return -ENODEV;
}
if (device->is_physical_device) {
memset(unique_id, 0, 8);
memcpy(unique_id + 8, &device->wwid, sizeof(device->wwid));
} else {
memcpy(unique_id, device->volume_id, sizeof(device->volume_id));
}
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return snprintf(buffer, PAGE_SIZE,
"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n",
unique_id[0], unique_id[1], unique_id[2], unique_id[3],
unique_id[4], unique_id[5], unique_id[6], unique_id[7],
unique_id[8], unique_id[9], unique_id[10], unique_id[11],
unique_id[12], unique_id[13], unique_id[14], unique_id[15]);
}
static ssize_t pqi_lunid_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct pqi_ctrl_info *ctrl_info;
struct scsi_device *sdev;
struct pqi_scsi_dev *device;
unsigned long flags;
u8 lunid[8];
sdev = to_scsi_device(dev);
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
device = sdev->hostdata;
if (!device) {
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return -ENODEV;
}
memcpy(lunid, device->scsi3addr, sizeof(lunid));
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return snprintf(buffer, PAGE_SIZE, "0x%8phN\n", lunid);
}
#define MAX_PATHS 8
static ssize_t pqi_path_info_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pqi_ctrl_info *ctrl_info;
struct scsi_device *sdev;
struct pqi_scsi_dev *device;
unsigned long flags;
int i;
int output_len = 0;
u8 box;
u8 bay;
u8 path_map_index;
char *active;
u8 phys_connector[2];
sdev = to_scsi_device(dev);
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
device = sdev->hostdata;
if (!device) {
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return -ENODEV;
}
bay = device->bay;
for (i = 0; i < MAX_PATHS; i++) {
path_map_index = 1 << i;
if (i == device->active_path_index)
active = "Active";
else if (device->path_map & path_map_index)
active = "Inactive";
else
continue;
output_len += scnprintf(buf + output_len,
PAGE_SIZE - output_len,
"[%d:%d:%d:%d] %20.20s ",
ctrl_info->scsi_host->host_no,
device->bus, device->target,
device->lun,
scsi_device_type(device->devtype));
if (device->devtype == TYPE_RAID ||
pqi_is_logical_device(device))
goto end_buffer;
memcpy(&phys_connector, &device->phys_connector[i],
sizeof(phys_connector));
if (phys_connector[0] < '0')
phys_connector[0] = '0';
if (phys_connector[1] < '0')
phys_connector[1] = '0';
output_len += scnprintf(buf + output_len,
PAGE_SIZE - output_len,
"PORT: %.2s ", phys_connector);
box = device->box[i];
if (box != 0 && box != 0xFF)
output_len += scnprintf(buf + output_len,
PAGE_SIZE - output_len,
"BOX: %hhu ", box);
if ((device->devtype == TYPE_DISK ||
device->devtype == TYPE_ZBC) &&
pqi_expose_device(device))
output_len += scnprintf(buf + output_len,
PAGE_SIZE - output_len,
"BAY: %hhu ", bay);
end_buffer:
output_len += scnprintf(buf + output_len,
PAGE_SIZE - output_len,
"%s\n", active);
}
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return output_len;
}
static ssize_t pqi_sas_address_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct pqi_ctrl_info *ctrl_info;
struct scsi_device *sdev;
struct pqi_scsi_dev *device;
unsigned long flags;
u64 sas_address;
sdev = to_scsi_device(dev);
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
device = sdev->hostdata;
if (!device || !pqi_is_device_with_sas_address(device)) {
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return -ENODEV;
}
sas_address = device->sas_address;
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return snprintf(buffer, PAGE_SIZE, "0x%016llx\n", sas_address);
}
static ssize_t pqi_ssd_smart_path_enabled_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct pqi_ctrl_info *ctrl_info;
struct scsi_device *sdev;
struct pqi_scsi_dev *device;
unsigned long flags;
sdev = to_scsi_device(dev);
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
device = sdev->hostdata;
if (!device) {
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return -ENODEV;
}
buffer[0] = device->raid_bypass_enabled ? '1' : '0';
buffer[1] = '\n';
buffer[2] = '\0';
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return 2;
}
static ssize_t pqi_raid_level_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct pqi_ctrl_info *ctrl_info;
struct scsi_device *sdev;
struct pqi_scsi_dev *device;
unsigned long flags;
char *raid_level;
sdev = to_scsi_device(dev);
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
device = sdev->hostdata;
if (!device) {
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return -ENODEV;
}
if (pqi_is_logical_device(device))
raid_level = pqi_raid_level_to_string(device->raid_level);
else
raid_level = "N/A";
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return snprintf(buffer, PAGE_SIZE, "%s\n", raid_level);
}
static ssize_t pqi_raid_bypass_cnt_show(struct device *dev,
struct device_attribute *attr, char *buffer)
{
struct pqi_ctrl_info *ctrl_info;
struct scsi_device *sdev;
struct pqi_scsi_dev *device;
unsigned long flags;
int raid_bypass_cnt;
sdev = to_scsi_device(dev);
ctrl_info = shost_to_hba(sdev->host);
spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags);
device = sdev->hostdata;
if (!device) {
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return -ENODEV;
}
raid_bypass_cnt = atomic_read(&device->raid_bypass_cnt);
spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags);
return snprintf(buffer, PAGE_SIZE, "0x%x\n", raid_bypass_cnt);
}
static DEVICE_ATTR(lunid, 0444, pqi_lunid_show, NULL);
static DEVICE_ATTR(unique_id, 0444, pqi_unique_id_show, NULL);
static DEVICE_ATTR(path_info, 0444, pqi_path_info_show, NULL);
static DEVICE_ATTR(sas_address, 0444, pqi_sas_address_show, NULL);
static DEVICE_ATTR(ssd_smart_path_enabled, 0444, pqi_ssd_smart_path_enabled_show, NULL);
static DEVICE_ATTR(raid_level, 0444, pqi_raid_level_show, NULL);
static DEVICE_ATTR(raid_bypass_cnt, 0444, pqi_raid_bypass_cnt_show, NULL);
static struct device_attribute *pqi_sdev_attrs[] = {
&dev_attr_lunid,
&dev_attr_unique_id,
&dev_attr_path_info,
&dev_attr_sas_address,
&dev_attr_ssd_smart_path_enabled,
&dev_attr_raid_level,
&dev_attr_raid_bypass_cnt,
NULL
};
static struct scsi_host_template pqi_driver_template = {
.module = THIS_MODULE,
.name = DRIVER_NAME_SHORT,
.proc_name = DRIVER_NAME_SHORT,
.queuecommand = pqi_scsi_queue_command,
.scan_start = pqi_scan_start,
.scan_finished = pqi_scan_finished,
.this_id = -1,
.eh_device_reset_handler = pqi_eh_device_reset_handler,
.ioctl = pqi_ioctl,
.slave_alloc = pqi_slave_alloc,
.slave_configure = pqi_slave_configure,
.slave_destroy = pqi_slave_destroy,
.map_queues = pqi_map_queues,
.sdev_attrs = pqi_sdev_attrs,
.shost_attrs = pqi_shost_attrs,
};
static int pqi_register_scsi(struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct Scsi_Host *shost;
shost = scsi_host_alloc(&pqi_driver_template, sizeof(ctrl_info));
if (!shost) {
dev_err(&ctrl_info->pci_dev->dev,
"scsi_host_alloc failed for controller %u\n",
ctrl_info->ctrl_id);
return -ENOMEM;
}
shost->io_port = 0;
shost->n_io_port = 0;
shost->this_id = -1;
shost->max_channel = PQI_MAX_BUS;
shost->max_cmd_len = MAX_COMMAND_SIZE;
shost->max_lun = ~0;
shost->max_id = ~0;
shost->max_sectors = ctrl_info->max_sectors;
shost->can_queue = ctrl_info->scsi_ml_can_queue;
shost->cmd_per_lun = shost->can_queue;
shost->sg_tablesize = ctrl_info->sg_tablesize;
shost->transportt = pqi_sas_transport_template;
shost->irq = pci_irq_vector(ctrl_info->pci_dev, 0);
shost->unique_id = shost->irq;
shost->nr_hw_queues = ctrl_info->num_queue_groups;
shost->hostdata[0] = (unsigned long)ctrl_info;
rc = scsi_add_host(shost, &ctrl_info->pci_dev->dev);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"scsi_add_host failed for controller %u\n",
ctrl_info->ctrl_id);
goto free_host;
}
rc = pqi_add_sas_host(shost, ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"add SAS host failed for controller %u\n",
ctrl_info->ctrl_id);
goto remove_host;
}
ctrl_info->scsi_host = shost;
return 0;
remove_host:
scsi_remove_host(shost);
free_host:
scsi_host_put(shost);
return rc;
}
static void pqi_unregister_scsi(struct pqi_ctrl_info *ctrl_info)
{
struct Scsi_Host *shost;
pqi_delete_sas_host(ctrl_info);
shost = ctrl_info->scsi_host;
if (!shost)
return;
scsi_remove_host(shost);
scsi_host_put(shost);
}
static int pqi_wait_for_pqi_reset_completion(struct pqi_ctrl_info *ctrl_info)
{
int rc = 0;
struct pqi_device_registers __iomem *pqi_registers;
unsigned long timeout;
unsigned int timeout_msecs;
union pqi_reset_register reset_reg;
pqi_registers = ctrl_info->pqi_registers;
timeout_msecs = readw(&pqi_registers->max_reset_timeout) * 100;
timeout = msecs_to_jiffies(timeout_msecs) + jiffies;
while (1) {
msleep(PQI_RESET_POLL_INTERVAL_MSECS);
reset_reg.all_bits = readl(&pqi_registers->device_reset);
if (reset_reg.bits.reset_action == PQI_RESET_ACTION_COMPLETED)
break;
pqi_check_ctrl_health(ctrl_info);
if (pqi_ctrl_offline(ctrl_info)) {
rc = -ENXIO;
break;
}
if (time_after(jiffies, timeout)) {
rc = -ETIMEDOUT;
break;
}
}
return rc;
}
static int pqi_reset(struct pqi_ctrl_info *ctrl_info)
{
int rc;
union pqi_reset_register reset_reg;
if (ctrl_info->pqi_reset_quiesce_supported) {
rc = sis_pqi_reset_quiesce(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"PQI reset failed during quiesce with error %d\n",
rc);
return rc;
}
}
reset_reg.all_bits = 0;
reset_reg.bits.reset_type = PQI_RESET_TYPE_HARD_RESET;
reset_reg.bits.reset_action = PQI_RESET_ACTION_RESET;
writel(reset_reg.all_bits, &ctrl_info->pqi_registers->device_reset);
rc = pqi_wait_for_pqi_reset_completion(ctrl_info);
if (rc)
dev_err(&ctrl_info->pci_dev->dev,
"PQI reset failed with error %d\n", rc);
return rc;
}
static int pqi_get_ctrl_serial_number(struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct bmic_sense_subsystem_info *sense_info;
sense_info = kzalloc(sizeof(*sense_info), GFP_KERNEL);
if (!sense_info)
return -ENOMEM;
rc = pqi_sense_subsystem_info(ctrl_info, sense_info);
if (rc)
goto out;
memcpy(ctrl_info->serial_number, sense_info->ctrl_serial_number,
sizeof(sense_info->ctrl_serial_number));
ctrl_info->serial_number[sizeof(sense_info->ctrl_serial_number)] = '\0';
out:
kfree(sense_info);
return rc;
}
static int pqi_get_ctrl_product_details(struct pqi_ctrl_info *ctrl_info)
{
int rc;
struct bmic_identify_controller *identify;
identify = kmalloc(sizeof(*identify), GFP_KERNEL);
if (!identify)
return -ENOMEM;
rc = pqi_identify_controller(ctrl_info, identify);
if (rc)
goto out;
memcpy(ctrl_info->firmware_version, identify->firmware_version,
sizeof(identify->firmware_version));
ctrl_info->firmware_version[sizeof(identify->firmware_version)] = '\0';
snprintf(ctrl_info->firmware_version +
strlen(ctrl_info->firmware_version),
sizeof(ctrl_info->firmware_version),
"-%u", get_unaligned_le16(&identify->firmware_build_number));
memcpy(ctrl_info->model, identify->product_id,
sizeof(identify->product_id));
ctrl_info->model[sizeof(identify->product_id)] = '\0';
memcpy(ctrl_info->vendor, identify->vendor_id,
sizeof(identify->vendor_id));
ctrl_info->vendor[sizeof(identify->vendor_id)] = '\0';
out:
kfree(identify);
return rc;
}
struct pqi_config_table_section_info {
struct pqi_ctrl_info *ctrl_info;
void *section;
u32 section_offset;
void __iomem *section_iomem_addr;
};
static inline bool pqi_is_firmware_feature_supported(
struct pqi_config_table_firmware_features *firmware_features,
unsigned int bit_position)
{
unsigned int byte_index;
byte_index = bit_position / BITS_PER_BYTE;
if (byte_index >= le16_to_cpu(firmware_features->num_elements))
return false;
return firmware_features->features_supported[byte_index] &
(1 << (bit_position % BITS_PER_BYTE)) ? true : false;
}
static inline bool pqi_is_firmware_feature_enabled(
struct pqi_config_table_firmware_features *firmware_features,
void __iomem *firmware_features_iomem_addr,
unsigned int bit_position)
{
unsigned int byte_index;
u8 __iomem *features_enabled_iomem_addr;
byte_index = (bit_position / BITS_PER_BYTE) +
(le16_to_cpu(firmware_features->num_elements) * 2);
features_enabled_iomem_addr = firmware_features_iomem_addr +
offsetof(struct pqi_config_table_firmware_features,
features_supported) + byte_index;
return *((__force u8 *)features_enabled_iomem_addr) &
(1 << (bit_position % BITS_PER_BYTE)) ? true : false;
}
static inline void pqi_request_firmware_feature(
struct pqi_config_table_firmware_features *firmware_features,
unsigned int bit_position)
{
unsigned int byte_index;
byte_index = (bit_position / BITS_PER_BYTE) +
le16_to_cpu(firmware_features->num_elements);
firmware_features->features_supported[byte_index] |=
(1 << (bit_position % BITS_PER_BYTE));
}
static int pqi_config_table_update(struct pqi_ctrl_info *ctrl_info,
u16 first_section, u16 last_section)
{
struct pqi_vendor_general_request request;
memset(&request, 0, sizeof(request));
request.header.iu_type = PQI_REQUEST_IU_VENDOR_GENERAL;
put_unaligned_le16(sizeof(request) - PQI_REQUEST_HEADER_LENGTH,
&request.header.iu_length);
put_unaligned_le16(PQI_VENDOR_GENERAL_CONFIG_TABLE_UPDATE,
&request.function_code);
put_unaligned_le16(first_section,
&request.data.config_table_update.first_section);
put_unaligned_le16(last_section,
&request.data.config_table_update.last_section);
return pqi_submit_raid_request_synchronous(ctrl_info, &request.header,
0, NULL, NO_TIMEOUT);
}
static int pqi_enable_firmware_features(struct pqi_ctrl_info *ctrl_info,
struct pqi_config_table_firmware_features *firmware_features,
void __iomem *firmware_features_iomem_addr)
{
void *features_requested;
void __iomem *features_requested_iomem_addr;
features_requested = firmware_features->features_supported +
le16_to_cpu(firmware_features->num_elements);
features_requested_iomem_addr = firmware_features_iomem_addr +
(features_requested - (void *)firmware_features);
memcpy_toio(features_requested_iomem_addr, features_requested,
le16_to_cpu(firmware_features->num_elements));
return pqi_config_table_update(ctrl_info,
PQI_CONFIG_TABLE_SECTION_FIRMWARE_FEATURES,
PQI_CONFIG_TABLE_SECTION_FIRMWARE_FEATURES);
}
struct pqi_firmware_feature {
char *feature_name;
unsigned int feature_bit;
bool supported;
bool enabled;
void (*feature_status)(struct pqi_ctrl_info *ctrl_info,
struct pqi_firmware_feature *firmware_feature);
};
static void pqi_firmware_feature_status(struct pqi_ctrl_info *ctrl_info,
struct pqi_firmware_feature *firmware_feature)
{
if (!firmware_feature->supported) {
dev_info(&ctrl_info->pci_dev->dev, "%s not supported by controller\n",
firmware_feature->feature_name);
return;
}
if (firmware_feature->enabled) {
dev_info(&ctrl_info->pci_dev->dev,
"%s enabled\n", firmware_feature->feature_name);
return;
}
dev_err(&ctrl_info->pci_dev->dev, "failed to enable %s\n",
firmware_feature->feature_name);
}
static void pqi_ctrl_update_feature_flags(struct pqi_ctrl_info *ctrl_info,
struct pqi_firmware_feature *firmware_feature)
{
switch (firmware_feature->feature_bit) {
case PQI_FIRMWARE_FEATURE_SOFT_RESET_HANDSHAKE:
ctrl_info->soft_reset_handshake_supported =
firmware_feature->enabled;
break;
case PQI_FIRMWARE_FEATURE_RAID_IU_TIMEOUT:
ctrl_info->raid_iu_timeout_supported =
firmware_feature->enabled;
break;
case PQI_FIRMWARE_FEATURE_TMF_IU_TIMEOUT:
ctrl_info->tmf_iu_timeout_supported =
firmware_feature->enabled;
break;
}
pqi_firmware_feature_status(ctrl_info, firmware_feature);
}
static inline void pqi_firmware_feature_update(struct pqi_ctrl_info *ctrl_info,
struct pqi_firmware_feature *firmware_feature)
{
if (firmware_feature->feature_status)
firmware_feature->feature_status(ctrl_info, firmware_feature);
}
static DEFINE_MUTEX(pqi_firmware_features_mutex);
static struct pqi_firmware_feature pqi_firmware_features[] = {
{
.feature_name = "Online Firmware Activation",
.feature_bit = PQI_FIRMWARE_FEATURE_OFA,
.feature_status = pqi_firmware_feature_status,
},
{
.feature_name = "Serial Management Protocol",
.feature_bit = PQI_FIRMWARE_FEATURE_SMP,
.feature_status = pqi_firmware_feature_status,
},
{
.feature_name = "New Soft Reset Handshake",
.feature_bit = PQI_FIRMWARE_FEATURE_SOFT_RESET_HANDSHAKE,
.feature_status = pqi_ctrl_update_feature_flags,
},
{
.feature_name = "RAID IU Timeout",
.feature_bit = PQI_FIRMWARE_FEATURE_RAID_IU_TIMEOUT,
.feature_status = pqi_ctrl_update_feature_flags,
},
{
.feature_name = "TMF IU Timeout",
.feature_bit = PQI_FIRMWARE_FEATURE_TMF_IU_TIMEOUT,
.feature_status = pqi_ctrl_update_feature_flags,
},
};
static void pqi_process_firmware_features(
struct pqi_config_table_section_info *section_info)
{
int rc;
struct pqi_ctrl_info *ctrl_info;
struct pqi_config_table_firmware_features *firmware_features;
void __iomem *firmware_features_iomem_addr;
unsigned int i;
unsigned int num_features_supported;
ctrl_info = section_info->ctrl_info;
firmware_features = section_info->section;
firmware_features_iomem_addr = section_info->section_iomem_addr;
for (i = 0, num_features_supported = 0;
i < ARRAY_SIZE(pqi_firmware_features); i++) {
if (pqi_is_firmware_feature_supported(firmware_features,
pqi_firmware_features[i].feature_bit)) {
pqi_firmware_features[i].supported = true;
num_features_supported++;
} else {
pqi_firmware_feature_update(ctrl_info,
&pqi_firmware_features[i]);
}
}
if (num_features_supported == 0)
return;
for (i = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) {
if (!pqi_firmware_features[i].supported)
continue;
pqi_request_firmware_feature(firmware_features,
pqi_firmware_features[i].feature_bit);
}
rc = pqi_enable_firmware_features(ctrl_info, firmware_features,
firmware_features_iomem_addr);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to enable firmware features in PQI configuration table\n");
for (i = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) {
if (!pqi_firmware_features[i].supported)
continue;
pqi_firmware_feature_update(ctrl_info,
&pqi_firmware_features[i]);
}
return;
}
for (i = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) {
if (!pqi_firmware_features[i].supported)
continue;
if (pqi_is_firmware_feature_enabled(firmware_features,
firmware_features_iomem_addr,
pqi_firmware_features[i].feature_bit)) {
pqi_firmware_features[i].enabled = true;
}
pqi_firmware_feature_update(ctrl_info,
&pqi_firmware_features[i]);
}
}
static void pqi_init_firmware_features(void)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) {
pqi_firmware_features[i].supported = false;
pqi_firmware_features[i].enabled = false;
}
}
static void pqi_process_firmware_features_section(
struct pqi_config_table_section_info *section_info)
{
mutex_lock(&pqi_firmware_features_mutex);
pqi_init_firmware_features();
pqi_process_firmware_features(section_info);
mutex_unlock(&pqi_firmware_features_mutex);
}
static int pqi_process_config_table(struct pqi_ctrl_info *ctrl_info)
{
u32 table_length;
u32 section_offset;
void __iomem *table_iomem_addr;
struct pqi_config_table *config_table;
struct pqi_config_table_section_header *section;
struct pqi_config_table_section_info section_info;
table_length = ctrl_info->config_table_length;
if (table_length == 0)
return 0;
config_table = kmalloc(table_length, GFP_KERNEL);
if (!config_table) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to allocate memory for PQI configuration table\n");
return -ENOMEM;
}
/*
* Copy the config table contents from I/O memory space into the
* temporary buffer.
*/
table_iomem_addr = ctrl_info->iomem_base +
ctrl_info->config_table_offset;
memcpy_fromio(config_table, table_iomem_addr, table_length);
section_info.ctrl_info = ctrl_info;
section_offset =
get_unaligned_le32(&config_table->first_section_offset);
while (section_offset) {
section = (void *)config_table + section_offset;
section_info.section = section;
section_info.section_offset = section_offset;
section_info.section_iomem_addr =
table_iomem_addr + section_offset;
switch (get_unaligned_le16(&section->section_id)) {
case PQI_CONFIG_TABLE_SECTION_FIRMWARE_FEATURES:
pqi_process_firmware_features_section(&section_info);
break;
case PQI_CONFIG_TABLE_SECTION_HEARTBEAT:
if (pqi_disable_heartbeat)
dev_warn(&ctrl_info->pci_dev->dev,
"heartbeat disabled by module parameter\n");
else
ctrl_info->heartbeat_counter =
table_iomem_addr +
section_offset +
offsetof(
struct pqi_config_table_heartbeat,
heartbeat_counter);
break;
case PQI_CONFIG_TABLE_SECTION_SOFT_RESET:
ctrl_info->soft_reset_status =
table_iomem_addr +
section_offset +
offsetof(struct pqi_config_table_soft_reset,
soft_reset_status);
break;
}
section_offset =
get_unaligned_le16(&section->next_section_offset);
}
kfree(config_table);
return 0;
}
/* Switches the controller from PQI mode back into SIS mode. */
static int pqi_revert_to_sis_mode(struct pqi_ctrl_info *ctrl_info)
{
int rc;
pqi_change_irq_mode(ctrl_info, IRQ_MODE_NONE);
rc = pqi_reset(ctrl_info);
if (rc)
return rc;
rc = sis_reenable_sis_mode(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"re-enabling SIS mode failed with error %d\n", rc);
return rc;
}
pqi_save_ctrl_mode(ctrl_info, SIS_MODE);
return 0;
}
/*
* If the controller isn't already in SIS mode, this function forces it into
* SIS mode.
*/
static int pqi_force_sis_mode(struct pqi_ctrl_info *ctrl_info)
{
if (!sis_is_firmware_running(ctrl_info))
return -ENXIO;
if (pqi_get_ctrl_mode(ctrl_info) == SIS_MODE)
return 0;
if (sis_is_kernel_up(ctrl_info)) {
pqi_save_ctrl_mode(ctrl_info, SIS_MODE);
return 0;
}
return pqi_revert_to_sis_mode(ctrl_info);
}
#define PQI_POST_RESET_DELAY_B4_MSGU_READY 5000
static int pqi_ctrl_init(struct pqi_ctrl_info *ctrl_info)
{
int rc;
if (reset_devices) {
sis_soft_reset(ctrl_info);
msleep(PQI_POST_RESET_DELAY_B4_MSGU_READY);
} else {
rc = pqi_force_sis_mode(ctrl_info);
if (rc)
return rc;
}
/*
* Wait until the controller is ready to start accepting SIS
* commands.
*/
rc = sis_wait_for_ctrl_ready(ctrl_info);
if (rc)
return rc;
/*
* Get the controller properties. This allows us to determine
* whether or not it supports PQI mode.
*/
rc = sis_get_ctrl_properties(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error obtaining controller properties\n");
return rc;
}
rc = sis_get_pqi_capabilities(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error obtaining controller capabilities\n");
return rc;
}
if (reset_devices) {
if (ctrl_info->max_outstanding_requests >
PQI_MAX_OUTSTANDING_REQUESTS_KDUMP)
ctrl_info->max_outstanding_requests =
PQI_MAX_OUTSTANDING_REQUESTS_KDUMP;
} else {
if (ctrl_info->max_outstanding_requests >
PQI_MAX_OUTSTANDING_REQUESTS)
ctrl_info->max_outstanding_requests =
PQI_MAX_OUTSTANDING_REQUESTS;
}
pqi_calculate_io_resources(ctrl_info);
rc = pqi_alloc_error_buffer(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to allocate PQI error buffer\n");
return rc;
}
/*
* If the function we are about to call succeeds, the
* controller will transition from legacy SIS mode
* into PQI mode.
*/
rc = sis_init_base_struct_addr(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error initializing PQI mode\n");
return rc;
}
/* Wait for the controller to complete the SIS -> PQI transition. */
rc = pqi_wait_for_pqi_mode_ready(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"transition to PQI mode failed\n");
return rc;
}
/* From here on, we are running in PQI mode. */
ctrl_info->pqi_mode_enabled = true;
pqi_save_ctrl_mode(ctrl_info, PQI_MODE);
rc = pqi_alloc_admin_queues(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to allocate admin queues\n");
return rc;
}
rc = pqi_create_admin_queues(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error creating admin queues\n");
return rc;
}
rc = pqi_report_device_capability(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"obtaining device capability failed\n");
return rc;
}
rc = pqi_validate_device_capability(ctrl_info);
if (rc)
return rc;
pqi_calculate_queue_resources(ctrl_info);
rc = pqi_enable_msix_interrupts(ctrl_info);
if (rc)
return rc;
if (ctrl_info->num_msix_vectors_enabled < ctrl_info->num_queue_groups) {
ctrl_info->max_msix_vectors =
ctrl_info->num_msix_vectors_enabled;
pqi_calculate_queue_resources(ctrl_info);
}
rc = pqi_alloc_io_resources(ctrl_info);
if (rc)
return rc;
rc = pqi_alloc_operational_queues(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to allocate operational queues\n");
return rc;
}
pqi_init_operational_queues(ctrl_info);
rc = pqi_request_irqs(ctrl_info);
if (rc)
return rc;
rc = pqi_create_queues(ctrl_info);
if (rc)
return rc;
pqi_change_irq_mode(ctrl_info, IRQ_MODE_MSIX);
ctrl_info->controller_online = true;
rc = pqi_process_config_table(ctrl_info);
if (rc)
return rc;
pqi_start_heartbeat_timer(ctrl_info);
rc = pqi_enable_events(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error enabling events\n");
return rc;
}
/* Register with the SCSI subsystem. */
rc = pqi_register_scsi(ctrl_info);
if (rc)
return rc;
rc = pqi_get_ctrl_product_details(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error obtaining product details\n");
return rc;
}
rc = pqi_get_ctrl_serial_number(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error obtaining ctrl serial number\n");
return rc;
}
rc = pqi_set_diag_rescan(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error enabling multi-lun rescan\n");
return rc;
}
rc = pqi_write_driver_version_to_host_wellness(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error updating host wellness\n");
return rc;
}
pqi_schedule_update_time_worker(ctrl_info);
pqi_scan_scsi_devices(ctrl_info);
return 0;
}
static void pqi_reinit_queues(struct pqi_ctrl_info *ctrl_info)
{
unsigned int i;
struct pqi_admin_queues *admin_queues;
struct pqi_event_queue *event_queue;
admin_queues = &ctrl_info->admin_queues;
admin_queues->iq_pi_copy = 0;
admin_queues->oq_ci_copy = 0;
writel(0, admin_queues->oq_pi);
for (i = 0; i < ctrl_info->num_queue_groups; i++) {
ctrl_info->queue_groups[i].iq_pi_copy[RAID_PATH] = 0;
ctrl_info->queue_groups[i].iq_pi_copy[AIO_PATH] = 0;
ctrl_info->queue_groups[i].oq_ci_copy = 0;
writel(0, ctrl_info->queue_groups[i].iq_ci[RAID_PATH]);
writel(0, ctrl_info->queue_groups[i].iq_ci[AIO_PATH]);
writel(0, ctrl_info->queue_groups[i].oq_pi);
}
event_queue = &ctrl_info->event_queue;
writel(0, event_queue->oq_pi);
event_queue->oq_ci_copy = 0;
}
static int pqi_ctrl_init_resume(struct pqi_ctrl_info *ctrl_info)
{
int rc;
rc = pqi_force_sis_mode(ctrl_info);
if (rc)
return rc;
/*
* Wait until the controller is ready to start accepting SIS
* commands.
*/
rc = sis_wait_for_ctrl_ready_resume(ctrl_info);
if (rc)
return rc;
/*
* Get the controller properties. This allows us to determine
* whether or not it supports PQI mode.
*/
rc = sis_get_ctrl_properties(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error obtaining controller properties\n");
return rc;
}
rc = sis_get_pqi_capabilities(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error obtaining controller capabilities\n");
return rc;
}
/*
* If the function we are about to call succeeds, the
* controller will transition from legacy SIS mode
* into PQI mode.
*/
rc = sis_init_base_struct_addr(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error initializing PQI mode\n");
return rc;
}
/* Wait for the controller to complete the SIS -> PQI transition. */
rc = pqi_wait_for_pqi_mode_ready(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"transition to PQI mode failed\n");
return rc;
}
/* From here on, we are running in PQI mode. */
ctrl_info->pqi_mode_enabled = true;
pqi_save_ctrl_mode(ctrl_info, PQI_MODE);
pqi_reinit_queues(ctrl_info);
rc = pqi_create_admin_queues(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error creating admin queues\n");
return rc;
}
rc = pqi_create_queues(ctrl_info);
if (rc)
return rc;
pqi_change_irq_mode(ctrl_info, IRQ_MODE_MSIX);
ctrl_info->controller_online = true;
pqi_ctrl_unblock_requests(ctrl_info);
rc = pqi_process_config_table(ctrl_info);
if (rc)
return rc;
pqi_start_heartbeat_timer(ctrl_info);
rc = pqi_enable_events(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error enabling events\n");
return rc;
}
rc = pqi_get_ctrl_product_details(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error obtaining product details\n");
return rc;
}
rc = pqi_set_diag_rescan(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error enabling multi-lun rescan\n");
return rc;
}
rc = pqi_write_driver_version_to_host_wellness(ctrl_info);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"error updating host wellness\n");
return rc;
}
pqi_schedule_update_time_worker(ctrl_info);
pqi_scan_scsi_devices(ctrl_info);
return 0;
}
static inline int pqi_set_pcie_completion_timeout(struct pci_dev *pci_dev,
u16 timeout)
{
int rc;
rc = pcie_capability_clear_and_set_word(pci_dev, PCI_EXP_DEVCTL2,
PCI_EXP_DEVCTL2_COMP_TIMEOUT, timeout);
return pcibios_err_to_errno(rc);
}
static int pqi_pci_init(struct pqi_ctrl_info *ctrl_info)
{
int rc;
u64 mask;
rc = pci_enable_device(ctrl_info->pci_dev);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to enable PCI device\n");
return rc;
}
if (sizeof(dma_addr_t) > 4)
mask = DMA_BIT_MASK(64);
else
mask = DMA_BIT_MASK(32);
rc = dma_set_mask_and_coherent(&ctrl_info->pci_dev->dev, mask);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev, "failed to set DMA mask\n");
goto disable_device;
}
rc = pci_request_regions(ctrl_info->pci_dev, DRIVER_NAME_SHORT);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to obtain PCI resources\n");
goto disable_device;
}
ctrl_info->iomem_base = ioremap(pci_resource_start(
ctrl_info->pci_dev, 0),
sizeof(struct pqi_ctrl_registers));
if (!ctrl_info->iomem_base) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to map memory for controller registers\n");
rc = -ENOMEM;
goto release_regions;
}
#define PCI_EXP_COMP_TIMEOUT_65_TO_210_MS 0x6
/* Increase the PCIe completion timeout. */
rc = pqi_set_pcie_completion_timeout(ctrl_info->pci_dev,
PCI_EXP_COMP_TIMEOUT_65_TO_210_MS);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"failed to set PCIe completion timeout\n");
goto release_regions;
}
/* Enable bus mastering. */
pci_set_master(ctrl_info->pci_dev);
ctrl_info->registers = ctrl_info->iomem_base;
ctrl_info->pqi_registers = &ctrl_info->registers->pqi_registers;
pci_set_drvdata(ctrl_info->pci_dev, ctrl_info);
return 0;
release_regions:
pci_release_regions(ctrl_info->pci_dev);
disable_device:
pci_disable_device(ctrl_info->pci_dev);
return rc;
}
static void pqi_cleanup_pci_init(struct pqi_ctrl_info *ctrl_info)
{
iounmap(ctrl_info->iomem_base);
pci_release_regions(ctrl_info->pci_dev);
if (pci_is_enabled(ctrl_info->pci_dev))
pci_disable_device(ctrl_info->pci_dev);
pci_set_drvdata(ctrl_info->pci_dev, NULL);
}
static struct pqi_ctrl_info *pqi_alloc_ctrl_info(int numa_node)
{
struct pqi_ctrl_info *ctrl_info;
ctrl_info = kzalloc_node(sizeof(struct pqi_ctrl_info),
GFP_KERNEL, numa_node);
if (!ctrl_info)
return NULL;
mutex_init(&ctrl_info->scan_mutex);
mutex_init(&ctrl_info->lun_reset_mutex);
mutex_init(&ctrl_info->ofa_mutex);
INIT_LIST_HEAD(&ctrl_info->scsi_device_list);
spin_lock_init(&ctrl_info->scsi_device_list_lock);
INIT_WORK(&ctrl_info->event_work, pqi_event_worker);
atomic_set(&ctrl_info->num_interrupts, 0);
atomic_set(&ctrl_info->sync_cmds_outstanding, 0);
INIT_DELAYED_WORK(&ctrl_info->rescan_work, pqi_rescan_worker);
INIT_DELAYED_WORK(&ctrl_info->update_time_work, pqi_update_time_worker);
timer_setup(&ctrl_info->heartbeat_timer, pqi_heartbeat_timer_handler, 0);
INIT_WORK(&ctrl_info->ctrl_offline_work, pqi_ctrl_offline_worker);
sema_init(&ctrl_info->sync_request_sem,
PQI_RESERVED_IO_SLOTS_SYNCHRONOUS_REQUESTS);
init_waitqueue_head(&ctrl_info->block_requests_wait);
INIT_LIST_HEAD(&ctrl_info->raid_bypass_retry_list);
spin_lock_init(&ctrl_info->raid_bypass_retry_list_lock);
INIT_WORK(&ctrl_info->raid_bypass_retry_work,
pqi_raid_bypass_retry_worker);
ctrl_info->ctrl_id = atomic_inc_return(&pqi_controller_count) - 1;
ctrl_info->irq_mode = IRQ_MODE_NONE;
ctrl_info->max_msix_vectors = PQI_MAX_MSIX_VECTORS;
return ctrl_info;
}
static inline void pqi_free_ctrl_info(struct pqi_ctrl_info *ctrl_info)
{
kfree(ctrl_info);
}
static void pqi_free_interrupts(struct pqi_ctrl_info *ctrl_info)
{
pqi_free_irqs(ctrl_info);
pqi_disable_msix_interrupts(ctrl_info);
}
static void pqi_free_ctrl_resources(struct pqi_ctrl_info *ctrl_info)
{
pqi_stop_heartbeat_timer(ctrl_info);
pqi_free_interrupts(ctrl_info);
if (ctrl_info->queue_memory_base)
dma_free_coherent(&ctrl_info->pci_dev->dev,
ctrl_info->queue_memory_length,
ctrl_info->queue_memory_base,
ctrl_info->queue_memory_base_dma_handle);
if (ctrl_info->admin_queue_memory_base)
dma_free_coherent(&ctrl_info->pci_dev->dev,
ctrl_info->admin_queue_memory_length,
ctrl_info->admin_queue_memory_base,
ctrl_info->admin_queue_memory_base_dma_handle);
pqi_free_all_io_requests(ctrl_info);
if (ctrl_info->error_buffer)
dma_free_coherent(&ctrl_info->pci_dev->dev,
ctrl_info->error_buffer_length,
ctrl_info->error_buffer,
ctrl_info->error_buffer_dma_handle);
if (ctrl_info->iomem_base)
pqi_cleanup_pci_init(ctrl_info);
pqi_free_ctrl_info(ctrl_info);
}
static void pqi_remove_ctrl(struct pqi_ctrl_info *ctrl_info)
{
pqi_cancel_rescan_worker(ctrl_info);
pqi_cancel_update_time_worker(ctrl_info);
pqi_unregister_scsi(ctrl_info);
if (ctrl_info->pqi_mode_enabled)
pqi_revert_to_sis_mode(ctrl_info);
pqi_free_ctrl_resources(ctrl_info);
}
static void pqi_ofa_ctrl_quiesce(struct pqi_ctrl_info *ctrl_info)
{
pqi_cancel_update_time_worker(ctrl_info);
pqi_cancel_rescan_worker(ctrl_info);
pqi_wait_until_lun_reset_finished(ctrl_info);
pqi_wait_until_scan_finished(ctrl_info);
pqi_ctrl_ofa_start(ctrl_info);
pqi_ctrl_block_requests(ctrl_info);
pqi_ctrl_wait_until_quiesced(ctrl_info);
pqi_ctrl_wait_for_pending_io(ctrl_info, PQI_PENDING_IO_TIMEOUT_SECS);
pqi_fail_io_queued_for_all_devices(ctrl_info);
pqi_wait_until_inbound_queues_empty(ctrl_info);
pqi_stop_heartbeat_timer(ctrl_info);
ctrl_info->pqi_mode_enabled = false;
pqi_save_ctrl_mode(ctrl_info, SIS_MODE);
}
static void pqi_ofa_ctrl_unquiesce(struct pqi_ctrl_info *ctrl_info)
{
pqi_ofa_free_host_buffer(ctrl_info);
ctrl_info->pqi_mode_enabled = true;
pqi_save_ctrl_mode(ctrl_info, PQI_MODE);
ctrl_info->controller_online = true;
pqi_ctrl_unblock_requests(ctrl_info);
pqi_start_heartbeat_timer(ctrl_info);
pqi_schedule_update_time_worker(ctrl_info);
pqi_clear_soft_reset_status(ctrl_info,
PQI_SOFT_RESET_ABORT);
pqi_scan_scsi_devices(ctrl_info);
}
static int pqi_ofa_alloc_mem(struct pqi_ctrl_info *ctrl_info,
u32 total_size, u32 chunk_size)
{
u32 sg_count;
u32 size;
int i;
struct pqi_sg_descriptor *mem_descriptor = NULL;
struct device *dev;
struct pqi_ofa_memory *ofap;
dev = &ctrl_info->pci_dev->dev;
sg_count = (total_size + chunk_size - 1);
sg_count /= chunk_size;
ofap = ctrl_info->pqi_ofa_mem_virt_addr;
if (sg_count*chunk_size < total_size)
goto out;
ctrl_info->pqi_ofa_chunk_virt_addr =
kcalloc(sg_count, sizeof(void *), GFP_KERNEL);
if (!ctrl_info->pqi_ofa_chunk_virt_addr)
goto out;
for (size = 0, i = 0; size < total_size; size += chunk_size, i++) {
dma_addr_t dma_handle;
ctrl_info->pqi_ofa_chunk_virt_addr[i] =
dma_alloc_coherent(dev, chunk_size, &dma_handle,
GFP_KERNEL);
if (!ctrl_info->pqi_ofa_chunk_virt_addr[i])
break;
mem_descriptor = &ofap->sg_descriptor[i];
put_unaligned_le64 ((u64) dma_handle, &mem_descriptor->address);
put_unaligned_le32 (chunk_size, &mem_descriptor->length);
}
if (!size || size < total_size)
goto out_free_chunks;
put_unaligned_le32(CISS_SG_LAST, &mem_descriptor->flags);
put_unaligned_le16(sg_count, &ofap->num_memory_descriptors);
put_unaligned_le32(size, &ofap->bytes_allocated);
return 0;
out_free_chunks:
while (--i >= 0) {
mem_descriptor = &ofap->sg_descriptor[i];
dma_free_coherent(dev, chunk_size,
ctrl_info->pqi_ofa_chunk_virt_addr[i],
get_unaligned_le64(&mem_descriptor->address));
}
kfree(ctrl_info->pqi_ofa_chunk_virt_addr);
out:
put_unaligned_le32 (0, &ofap->bytes_allocated);
return -ENOMEM;
}
static int pqi_ofa_alloc_host_buffer(struct pqi_ctrl_info *ctrl_info)
{
u32 total_size;
u32 min_chunk_size;
u32 chunk_sz;
total_size = le32_to_cpu(
ctrl_info->pqi_ofa_mem_virt_addr->bytes_allocated);
min_chunk_size = total_size / PQI_OFA_MAX_SG_DESCRIPTORS;
for (chunk_sz = total_size; chunk_sz >= min_chunk_size; chunk_sz /= 2)
if (!pqi_ofa_alloc_mem(ctrl_info, total_size, chunk_sz))
return 0;
return -ENOMEM;
}
static void pqi_ofa_setup_host_buffer(struct pqi_ctrl_info *ctrl_info,
u32 bytes_requested)
{
struct pqi_ofa_memory *pqi_ofa_memory;
struct device *dev;
dev = &ctrl_info->pci_dev->dev;
pqi_ofa_memory = dma_alloc_coherent(dev,
PQI_OFA_MEMORY_DESCRIPTOR_LENGTH,
&ctrl_info->pqi_ofa_mem_dma_handle,
GFP_KERNEL);
if (!pqi_ofa_memory)
return;
put_unaligned_le16(PQI_OFA_VERSION, &pqi_ofa_memory->version);
memcpy(&pqi_ofa_memory->signature, PQI_OFA_SIGNATURE,
sizeof(pqi_ofa_memory->signature));
pqi_ofa_memory->bytes_allocated = cpu_to_le32(bytes_requested);
ctrl_info->pqi_ofa_mem_virt_addr = pqi_ofa_memory;
if (pqi_ofa_alloc_host_buffer(ctrl_info) < 0) {
dev_err(dev, "Failed to allocate host buffer of size = %u",
bytes_requested);
}
return;
}
static void pqi_ofa_free_host_buffer(struct pqi_ctrl_info *ctrl_info)
{
int i;
struct pqi_sg_descriptor *mem_descriptor;
struct pqi_ofa_memory *ofap;
ofap = ctrl_info->pqi_ofa_mem_virt_addr;
if (!ofap)
return;
if (!ofap->bytes_allocated)
goto out;
mem_descriptor = ofap->sg_descriptor;
for (i = 0; i < get_unaligned_le16(&ofap->num_memory_descriptors);
i++) {
dma_free_coherent(&ctrl_info->pci_dev->dev,
get_unaligned_le32(&mem_descriptor[i].length),
ctrl_info->pqi_ofa_chunk_virt_addr[i],
get_unaligned_le64(&mem_descriptor[i].address));
}
kfree(ctrl_info->pqi_ofa_chunk_virt_addr);
out:
dma_free_coherent(&ctrl_info->pci_dev->dev,
PQI_OFA_MEMORY_DESCRIPTOR_LENGTH, ofap,
ctrl_info->pqi_ofa_mem_dma_handle);
ctrl_info->pqi_ofa_mem_virt_addr = NULL;
}
static int pqi_ofa_host_memory_update(struct pqi_ctrl_info *ctrl_info)
{
struct pqi_vendor_general_request request;
size_t size;
struct pqi_ofa_memory *ofap;
memset(&request, 0, sizeof(request));
ofap = ctrl_info->pqi_ofa_mem_virt_addr;
request.header.iu_type = PQI_REQUEST_IU_VENDOR_GENERAL;
put_unaligned_le16(sizeof(request) - PQI_REQUEST_HEADER_LENGTH,
&request.header.iu_length);
put_unaligned_le16(PQI_VENDOR_GENERAL_HOST_MEMORY_UPDATE,
&request.function_code);
if (ofap) {
size = offsetof(struct pqi_ofa_memory, sg_descriptor) +
get_unaligned_le16(&ofap->num_memory_descriptors) *
sizeof(struct pqi_sg_descriptor);
put_unaligned_le64((u64)ctrl_info->pqi_ofa_mem_dma_handle,
&request.data.ofa_memory_allocation.buffer_address);
put_unaligned_le32(size,
&request.data.ofa_memory_allocation.buffer_length);
}
return pqi_submit_raid_request_synchronous(ctrl_info, &request.header,
0, NULL, NO_TIMEOUT);
}
static int pqi_ofa_ctrl_restart(struct pqi_ctrl_info *ctrl_info)
{
msleep(PQI_POST_RESET_DELAY_B4_MSGU_READY);
return pqi_ctrl_init_resume(ctrl_info);
}
static void pqi_perform_lockup_action(void)
{
switch (pqi_lockup_action) {
case PANIC:
panic("FATAL: Smart Family Controller lockup detected");
break;
case REBOOT:
emergency_restart();
break;
case NONE:
default:
break;
}
}
static struct pqi_raid_error_info pqi_ctrl_offline_raid_error_info = {
.data_out_result = PQI_DATA_IN_OUT_HARDWARE_ERROR,
.status = SAM_STAT_CHECK_CONDITION,
};
static void pqi_fail_all_outstanding_requests(struct pqi_ctrl_info *ctrl_info)
{
unsigned int i;
struct pqi_io_request *io_request;
struct scsi_cmnd *scmd;
for (i = 0; i < ctrl_info->max_io_slots; i++) {
io_request = &ctrl_info->io_request_pool[i];
if (atomic_read(&io_request->refcount) == 0)
continue;
scmd = io_request->scmd;
if (scmd) {
set_host_byte(scmd, DID_NO_CONNECT);
} else {
io_request->status = -ENXIO;
io_request->error_info =
&pqi_ctrl_offline_raid_error_info;
}
io_request->io_complete_callback(io_request,
io_request->context);
}
}
static void pqi_take_ctrl_offline_deferred(struct pqi_ctrl_info *ctrl_info)
{
pqi_perform_lockup_action();
pqi_stop_heartbeat_timer(ctrl_info);
pqi_free_interrupts(ctrl_info);
pqi_cancel_rescan_worker(ctrl_info);
pqi_cancel_update_time_worker(ctrl_info);
pqi_ctrl_wait_until_quiesced(ctrl_info);
pqi_fail_all_outstanding_requests(ctrl_info);
pqi_clear_all_queued_raid_bypass_retries(ctrl_info);
pqi_ctrl_unblock_requests(ctrl_info);
}
static void pqi_ctrl_offline_worker(struct work_struct *work)
{
struct pqi_ctrl_info *ctrl_info;
ctrl_info = container_of(work, struct pqi_ctrl_info, ctrl_offline_work);
pqi_take_ctrl_offline_deferred(ctrl_info);
}
static void pqi_take_ctrl_offline(struct pqi_ctrl_info *ctrl_info)
{
if (!ctrl_info->controller_online)
return;
ctrl_info->controller_online = false;
ctrl_info->pqi_mode_enabled = false;
pqi_ctrl_block_requests(ctrl_info);
if (!pqi_disable_ctrl_shutdown)
sis_shutdown_ctrl(ctrl_info);
pci_disable_device(ctrl_info->pci_dev);
dev_err(&ctrl_info->pci_dev->dev, "controller offline\n");
schedule_work(&ctrl_info->ctrl_offline_work);
}
static void pqi_print_ctrl_info(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
char *ctrl_description;
if (id->driver_data)
ctrl_description = (char *)id->driver_data;
else
ctrl_description = "Microsemi Smart Family Controller";
dev_info(&pci_dev->dev, "%s found\n", ctrl_description);
}
static int pqi_pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
int rc;
int node, cp_node;
struct pqi_ctrl_info *ctrl_info;
pqi_print_ctrl_info(pci_dev, id);
if (pqi_disable_device_id_wildcards &&
id->subvendor == PCI_ANY_ID &&
id->subdevice == PCI_ANY_ID) {
dev_warn(&pci_dev->dev,
"controller not probed because device ID wildcards are disabled\n");
return -ENODEV;
}
if (id->subvendor == PCI_ANY_ID || id->subdevice == PCI_ANY_ID)
dev_warn(&pci_dev->dev,
"controller device ID matched using wildcards\n");
node = dev_to_node(&pci_dev->dev);
if (node == NUMA_NO_NODE) {
cp_node = cpu_to_node(0);
if (cp_node == NUMA_NO_NODE)
cp_node = 0;
set_dev_node(&pci_dev->dev, cp_node);
}
ctrl_info = pqi_alloc_ctrl_info(node);
if (!ctrl_info) {
dev_err(&pci_dev->dev,
"failed to allocate controller info block\n");
return -ENOMEM;
}
ctrl_info->pci_dev = pci_dev;
rc = pqi_pci_init(ctrl_info);
if (rc)
goto error;
rc = pqi_ctrl_init(ctrl_info);
if (rc)
goto error;
return 0;
error:
pqi_remove_ctrl(ctrl_info);
return rc;
}
static void pqi_pci_remove(struct pci_dev *pci_dev)
{
struct pqi_ctrl_info *ctrl_info;
ctrl_info = pci_get_drvdata(pci_dev);
if (!ctrl_info)
return;
pqi_remove_ctrl(ctrl_info);
}
static void pqi_crash_if_pending_command(struct pqi_ctrl_info *ctrl_info)
{
unsigned int i;
struct pqi_io_request *io_request;
struct scsi_cmnd *scmd;
for (i = 0; i < ctrl_info->max_io_slots; i++) {
io_request = &ctrl_info->io_request_pool[i];
if (atomic_read(&io_request->refcount) == 0)
continue;
scmd = io_request->scmd;
WARN_ON(scmd != NULL); /* IO command from SML */
WARN_ON(scmd == NULL); /* Non-IO cmd or driver initiated*/
}
}
static void pqi_shutdown(struct pci_dev *pci_dev)
{
int rc;
struct pqi_ctrl_info *ctrl_info;
ctrl_info = pci_get_drvdata(pci_dev);
if (!ctrl_info) {
dev_err(&pci_dev->dev,
"cache could not be flushed\n");
return;
}
pqi_disable_events(ctrl_info);
pqi_wait_until_ofa_finished(ctrl_info);
pqi_cancel_update_time_worker(ctrl_info);
pqi_cancel_rescan_worker(ctrl_info);
pqi_cancel_event_worker(ctrl_info);
pqi_ctrl_shutdown_start(ctrl_info);
pqi_ctrl_wait_until_quiesced(ctrl_info);
rc = pqi_ctrl_wait_for_pending_io(ctrl_info, NO_TIMEOUT);
if (rc) {
dev_err(&pci_dev->dev,
"wait for pending I/O failed\n");
return;
}
pqi_ctrl_block_device_reset(ctrl_info);
pqi_wait_until_lun_reset_finished(ctrl_info);
/*
* Write all data in the controller's battery-backed cache to
* storage.
*/
rc = pqi_flush_cache(ctrl_info, SHUTDOWN);
if (rc)
dev_err(&pci_dev->dev,
"unable to flush controller cache\n");
pqi_ctrl_block_requests(ctrl_info);
rc = pqi_ctrl_wait_for_pending_sync_cmds(ctrl_info);
if (rc) {
dev_err(&pci_dev->dev,
"wait for pending sync cmds failed\n");
return;
}
pqi_crash_if_pending_command(ctrl_info);
pqi_reset(ctrl_info);
}
static void pqi_process_lockup_action_param(void)
{
unsigned int i;
if (!pqi_lockup_action_param)
return;
for (i = 0; i < ARRAY_SIZE(pqi_lockup_actions); i++) {
if (strcmp(pqi_lockup_action_param,
pqi_lockup_actions[i].name) == 0) {
pqi_lockup_action = pqi_lockup_actions[i].action;
return;
}
}
pr_warn("%s: invalid lockup action setting \"%s\" - supported settings: none, reboot, panic\n",
DRIVER_NAME_SHORT, pqi_lockup_action_param);
}
static void pqi_process_module_params(void)
{
pqi_process_lockup_action_param();
}
static __maybe_unused int pqi_suspend(struct pci_dev *pci_dev, pm_message_t state)
{
struct pqi_ctrl_info *ctrl_info;
ctrl_info = pci_get_drvdata(pci_dev);
pqi_disable_events(ctrl_info);
pqi_cancel_update_time_worker(ctrl_info);
pqi_cancel_rescan_worker(ctrl_info);
pqi_wait_until_scan_finished(ctrl_info);
pqi_wait_until_lun_reset_finished(ctrl_info);
pqi_wait_until_ofa_finished(ctrl_info);
pqi_flush_cache(ctrl_info, SUSPEND);
pqi_ctrl_block_requests(ctrl_info);
pqi_ctrl_wait_until_quiesced(ctrl_info);
pqi_wait_until_inbound_queues_empty(ctrl_info);
pqi_ctrl_wait_for_pending_io(ctrl_info, NO_TIMEOUT);
pqi_stop_heartbeat_timer(ctrl_info);
if (state.event == PM_EVENT_FREEZE)
return 0;
pci_save_state(pci_dev);
pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
ctrl_info->controller_online = false;
ctrl_info->pqi_mode_enabled = false;
return 0;
}
static __maybe_unused int pqi_resume(struct pci_dev *pci_dev)
{
int rc;
struct pqi_ctrl_info *ctrl_info;
ctrl_info = pci_get_drvdata(pci_dev);
if (pci_dev->current_state != PCI_D0) {
ctrl_info->max_hw_queue_index = 0;
pqi_free_interrupts(ctrl_info);
pqi_change_irq_mode(ctrl_info, IRQ_MODE_INTX);
rc = request_irq(pci_irq_vector(pci_dev, 0), pqi_irq_handler,
IRQF_SHARED, DRIVER_NAME_SHORT,
&ctrl_info->queue_groups[0]);
if (rc) {
dev_err(&ctrl_info->pci_dev->dev,
"irq %u init failed with error %d\n",
pci_dev->irq, rc);
return rc;
}
pqi_start_heartbeat_timer(ctrl_info);
pqi_ctrl_unblock_requests(ctrl_info);
return 0;
}
pci_set_power_state(pci_dev, PCI_D0);
pci_restore_state(pci_dev);
return pqi_ctrl_init_resume(ctrl_info);
}
/* Define the PCI IDs for the controllers that we support. */
static const struct pci_device_id pqi_pci_id_table[] = {
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x105b, 0x1211)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x105b, 0x1321)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x152d, 0x8a22)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x152d, 0x8a23)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x152d, 0x8a24)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x152d, 0x8a36)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x152d, 0x8a37)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0x1104)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0x1105)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0x1106)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0x1107)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0x8460)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0x8461)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0xc460)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0xc461)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0xf460)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x193d, 0xf461)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1bd4, 0x0045)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1bd4, 0x0046)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1bd4, 0x0047)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1bd4, 0x0048)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1bd4, 0x004a)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1bd4, 0x004b)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1bd4, 0x004c)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1bd4, 0x004f)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x19e5, 0xd227)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x19e5, 0xd228)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x19e5, 0xd229)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x19e5, 0xd22a)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x19e5, 0xd22b)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x19e5, 0xd22c)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0110)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0608)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0800)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0801)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0802)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0803)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0804)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0805)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0806)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0807)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0808)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0809)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x080a)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0900)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0901)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0902)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0903)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0904)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0905)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0906)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0907)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x0908)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x090a)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1200)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1201)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1202)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1280)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1281)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1282)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1300)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1301)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1302)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1303)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADAPTEC2, 0x1380)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_ADVANTECH, 0x8312)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_DELL, 0x1fe0)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0600)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0601)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0602)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0603)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0609)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0650)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0651)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0652)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0653)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0654)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0655)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0700)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x0701)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x1001)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x1100)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_HP, 0x1101)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1d8d, 0x0800)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1d8d, 0x0908)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1d8d, 0x0806)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
0x1d8d, 0x0916)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_VENDOR_ID_GIGABYTE, 0x1000)
},
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f,
PCI_ANY_ID, PCI_ANY_ID)
},
{ 0 }
};
MODULE_DEVICE_TABLE(pci, pqi_pci_id_table);
static struct pci_driver pqi_pci_driver = {
.name = DRIVER_NAME_SHORT,
.id_table = pqi_pci_id_table,
.probe = pqi_pci_probe,
.remove = pqi_pci_remove,
.shutdown = pqi_shutdown,
#if defined(CONFIG_PM)
.suspend = pqi_suspend,
.resume = pqi_resume,
#endif
};
static int __init pqi_init(void)
{
int rc;
pr_info(DRIVER_NAME "\n");
pqi_sas_transport_template = sas_attach_transport(&pqi_sas_transport_functions);
if (!pqi_sas_transport_template)
return -ENODEV;
pqi_process_module_params();
rc = pci_register_driver(&pqi_pci_driver);
if (rc)
sas_release_transport(pqi_sas_transport_template);
return rc;
}
static void __exit pqi_cleanup(void)
{
pci_unregister_driver(&pqi_pci_driver);
sas_release_transport(pqi_sas_transport_template);
}
module_init(pqi_init);
module_exit(pqi_cleanup);
static void __attribute__((unused)) verify_structures(void)
{
BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers,
sis_host_to_ctrl_doorbell) != 0x20);
BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers,
sis_interrupt_mask) != 0x34);
BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers,
sis_ctrl_to_host_doorbell) != 0x9c);
BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers,
sis_ctrl_to_host_doorbell_clear) != 0xa0);
BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers,
sis_driver_scratch) != 0xb0);
BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers,
sis_firmware_status) != 0xbc);
BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers,
sis_mailbox) != 0x1000);
BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers,
pqi_registers) != 0x4000);
BUILD_BUG_ON(offsetof(struct pqi_iu_header,
iu_type) != 0x0);
BUILD_BUG_ON(offsetof(struct pqi_iu_header,
iu_length) != 0x2);
BUILD_BUG_ON(offsetof(struct pqi_iu_header,
response_queue_id) != 0x4);
BUILD_BUG_ON(offsetof(struct pqi_iu_header,
work_area) != 0x6);
BUILD_BUG_ON(sizeof(struct pqi_iu_header) != 0x8);
BUILD_BUG_ON(offsetof(struct pqi_aio_error_info,
status) != 0x0);
BUILD_BUG_ON(offsetof(struct pqi_aio_error_info,
service_response) != 0x1);
BUILD_BUG_ON(offsetof(struct pqi_aio_error_info,
data_present) != 0x2);
BUILD_BUG_ON(offsetof(struct pqi_aio_error_info,
reserved) != 0x3);
BUILD_BUG_ON(offsetof(struct pqi_aio_error_info,
residual_count) != 0x4);
BUILD_BUG_ON(offsetof(struct pqi_aio_error_info,
data_length) != 0x8);
BUILD_BUG_ON(offsetof(struct pqi_aio_error_info,
reserved1) != 0xa);
BUILD_BUG_ON(offsetof(struct pqi_aio_error_info,
data) != 0xc);
BUILD_BUG_ON(sizeof(struct pqi_aio_error_info) != 0x10c);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
data_in_result) != 0x0);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
data_out_result) != 0x1);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
reserved) != 0x2);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
status) != 0x5);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
status_qualifier) != 0x6);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
sense_data_length) != 0x8);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
response_data_length) != 0xa);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
data_in_transferred) != 0xc);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
data_out_transferred) != 0x10);
BUILD_BUG_ON(offsetof(struct pqi_raid_error_info,
data) != 0x14);
BUILD_BUG_ON(sizeof(struct pqi_raid_error_info) != 0x114);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
signature) != 0x0);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
function_and_status_code) != 0x8);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
max_admin_iq_elements) != 0x10);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
max_admin_oq_elements) != 0x11);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_iq_element_length) != 0x12);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_oq_element_length) != 0x13);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
max_reset_timeout) != 0x14);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
legacy_intx_status) != 0x18);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
legacy_intx_mask_set) != 0x1c);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
legacy_intx_mask_clear) != 0x20);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
device_status) != 0x40);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_iq_pi_offset) != 0x48);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_oq_ci_offset) != 0x50);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_iq_element_array_addr) != 0x58);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_oq_element_array_addr) != 0x60);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_iq_ci_addr) != 0x68);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_oq_pi_addr) != 0x70);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_iq_num_elements) != 0x78);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_oq_num_elements) != 0x79);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
admin_queue_int_msg_num) != 0x7a);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
device_error) != 0x80);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
error_details) != 0x88);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
device_reset) != 0x90);
BUILD_BUG_ON(offsetof(struct pqi_device_registers,
power_action) != 0x94);
BUILD_BUG_ON(sizeof(struct pqi_device_registers) != 0x100);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
header.work_area) != 6);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
request_id) != 8);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
function_code) != 10);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.report_device_capability.buffer_length) != 44);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.report_device_capability.sg_descriptor) != 48);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_iq.queue_id) != 12);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_iq.element_array_addr) != 16);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_iq.ci_addr) != 24);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_iq.num_elements) != 32);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_iq.element_length) != 34);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_iq.queue_protocol) != 36);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.queue_id) != 12);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.element_array_addr) != 16);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.pi_addr) != 24);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.num_elements) != 32);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.element_length) != 34);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.queue_protocol) != 36);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.int_msg_num) != 40);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.coalescing_count) != 42);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.min_coalescing_time) != 44);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.create_operational_oq.max_coalescing_time) != 48);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_request,
data.delete_operational_queue.queue_id) != 12);
BUILD_BUG_ON(sizeof(struct pqi_general_admin_request) != 64);
BUILD_BUG_ON(sizeof_field(struct pqi_general_admin_request,
data.create_operational_iq) != 64 - 11);
BUILD_BUG_ON(sizeof_field(struct pqi_general_admin_request,
data.create_operational_oq) != 64 - 11);
BUILD_BUG_ON(sizeof_field(struct pqi_general_admin_request,
data.delete_operational_queue) != 64 - 11);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
header.work_area) != 6);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
request_id) != 8);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
function_code) != 10);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
status) != 11);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
data.create_operational_iq.status_descriptor) != 12);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
data.create_operational_iq.iq_pi_offset) != 16);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
data.create_operational_oq.status_descriptor) != 12);
BUILD_BUG_ON(offsetof(struct pqi_general_admin_response,
data.create_operational_oq.oq_ci_offset) != 16);
BUILD_BUG_ON(sizeof(struct pqi_general_admin_response) != 64);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
header.response_queue_id) != 4);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
header.work_area) != 6);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
request_id) != 8);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
nexus_id) != 10);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
buffer_length) != 12);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
lun_number) != 16);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
protocol_specific) != 24);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
error_index) != 27);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
cdb) != 32);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
timeout) != 60);
BUILD_BUG_ON(offsetof(struct pqi_raid_path_request,
sg_descriptors) != 64);
BUILD_BUG_ON(sizeof(struct pqi_raid_path_request) !=
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
header.response_queue_id) != 4);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
header.work_area) != 6);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
request_id) != 8);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
nexus_id) != 12);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
buffer_length) != 16);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
data_encryption_key_index) != 22);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
encrypt_tweak_lower) != 24);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
encrypt_tweak_upper) != 28);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
cdb) != 32);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
error_index) != 48);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
num_sg_descriptors) != 50);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
cdb_length) != 51);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
lun_number) != 52);
BUILD_BUG_ON(offsetof(struct pqi_aio_path_request,
sg_descriptors) != 64);
BUILD_BUG_ON(sizeof(struct pqi_aio_path_request) !=
PQI_OPERATIONAL_IQ_ELEMENT_LENGTH);
BUILD_BUG_ON(offsetof(struct pqi_io_response,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_io_response,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_io_response,
request_id) != 8);
BUILD_BUG_ON(offsetof(struct pqi_io_response,
error_index) != 10);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
header.response_queue_id) != 4);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
request_id) != 8);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
data.report_event_configuration.buffer_length) != 12);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
data.report_event_configuration.sg_descriptors) != 16);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
data.set_event_configuration.global_event_oq_id) != 10);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
data.set_event_configuration.buffer_length) != 12);
BUILD_BUG_ON(offsetof(struct pqi_general_management_request,
data.set_event_configuration.sg_descriptors) != 16);
BUILD_BUG_ON(offsetof(struct pqi_iu_layer_descriptor,
max_inbound_iu_length) != 6);
BUILD_BUG_ON(offsetof(struct pqi_iu_layer_descriptor,
max_outbound_iu_length) != 14);
BUILD_BUG_ON(sizeof(struct pqi_iu_layer_descriptor) != 16);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
data_length) != 0);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
iq_arbitration_priority_support_bitmask) != 8);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
maximum_aw_a) != 9);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
maximum_aw_b) != 10);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
maximum_aw_c) != 11);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
max_inbound_queues) != 16);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
max_elements_per_iq) != 18);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
max_iq_element_length) != 24);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
min_iq_element_length) != 26);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
max_outbound_queues) != 30);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
max_elements_per_oq) != 32);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
intr_coalescing_time_granularity) != 34);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
max_oq_element_length) != 36);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
min_oq_element_length) != 38);
BUILD_BUG_ON(offsetof(struct pqi_device_capability,
iu_layer_descriptors) != 64);
BUILD_BUG_ON(sizeof(struct pqi_device_capability) != 576);
BUILD_BUG_ON(offsetof(struct pqi_event_descriptor,
event_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_event_descriptor,
oq_id) != 2);
BUILD_BUG_ON(sizeof(struct pqi_event_descriptor) != 4);
BUILD_BUG_ON(offsetof(struct pqi_event_config,
num_event_descriptors) != 2);
BUILD_BUG_ON(offsetof(struct pqi_event_config,
descriptors) != 4);
BUILD_BUG_ON(PQI_NUM_SUPPORTED_EVENTS !=
ARRAY_SIZE(pqi_supported_event_types));
BUILD_BUG_ON(offsetof(struct pqi_event_response,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_event_response,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_event_response,
event_type) != 8);
BUILD_BUG_ON(offsetof(struct pqi_event_response,
event_id) != 10);
BUILD_BUG_ON(offsetof(struct pqi_event_response,
additional_event_id) != 12);
BUILD_BUG_ON(offsetof(struct pqi_event_response,
data) != 16);
BUILD_BUG_ON(sizeof(struct pqi_event_response) != 32);
BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request,
event_type) != 8);
BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request,
event_id) != 10);
BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request,
additional_event_id) != 12);
BUILD_BUG_ON(sizeof(struct pqi_event_acknowledge_request) != 16);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
request_id) != 8);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
nexus_id) != 10);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
timeout) != 14);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
lun_number) != 16);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
protocol_specific) != 24);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
outbound_queue_id_to_manage) != 26);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
request_id_to_manage) != 28);
BUILD_BUG_ON(offsetof(struct pqi_task_management_request,
task_management_function) != 30);
BUILD_BUG_ON(sizeof(struct pqi_task_management_request) != 32);
BUILD_BUG_ON(offsetof(struct pqi_task_management_response,
header.iu_type) != 0);
BUILD_BUG_ON(offsetof(struct pqi_task_management_response,
header.iu_length) != 2);
BUILD_BUG_ON(offsetof(struct pqi_task_management_response,
request_id) != 8);
BUILD_BUG_ON(offsetof(struct pqi_task_management_response,
nexus_id) != 10);
BUILD_BUG_ON(offsetof(struct pqi_task_management_response,
additional_response_info) != 12);
BUILD_BUG_ON(offsetof(struct pqi_task_management_response,
response_code) != 15);
BUILD_BUG_ON(sizeof(struct pqi_task_management_response) != 16);
BUILD_BUG_ON(offsetof(struct bmic_identify_controller,
configured_logical_drive_count) != 0);
BUILD_BUG_ON(offsetof(struct bmic_identify_controller,
configuration_signature) != 1);
BUILD_BUG_ON(offsetof(struct bmic_identify_controller,
firmware_version) != 5);
BUILD_BUG_ON(offsetof(struct bmic_identify_controller,
extended_logical_unit_count) != 154);
BUILD_BUG_ON(offsetof(struct bmic_identify_controller,
firmware_build_number) != 190);
BUILD_BUG_ON(offsetof(struct bmic_identify_controller,
controller_mode) != 292);
BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device,
phys_bay_in_box) != 115);
BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device,
device_type) != 120);
BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device,
redundant_path_present_map) != 1736);
BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device,
active_path_number) != 1738);
BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device,
alternate_paths_phys_connector) != 1739);
BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device,
alternate_paths_phys_box_on_port) != 1755);
BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device,
current_queue_depth_limit) != 1796);
BUILD_BUG_ON(sizeof(struct bmic_identify_physical_device) != 2560);
BUILD_BUG_ON(PQI_ADMIN_IQ_NUM_ELEMENTS > 255);
BUILD_BUG_ON(PQI_ADMIN_OQ_NUM_ELEMENTS > 255);
BUILD_BUG_ON(PQI_ADMIN_IQ_ELEMENT_LENGTH %
PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0);
BUILD_BUG_ON(PQI_ADMIN_OQ_ELEMENT_LENGTH %
PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0);
BUILD_BUG_ON(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH > 1048560);
BUILD_BUG_ON(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH %
PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0);
BUILD_BUG_ON(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH > 1048560);
BUILD_BUG_ON(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH %
PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0);
BUILD_BUG_ON(PQI_RESERVED_IO_SLOTS >= PQI_MAX_OUTSTANDING_REQUESTS);
BUILD_BUG_ON(PQI_RESERVED_IO_SLOTS >=
PQI_MAX_OUTSTANDING_REQUESTS_KDUMP);
}