| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * TI Camera Access Layer (CAL) - CAMERARX |
| * |
| * Copyright (c) 2015-2020 Texas Instruments Inc. |
| * |
| * Authors: |
| * Benoit Parrot <bparrot@ti.com> |
| * Laurent Pinchart <laurent.pinchart@ideasonboard.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/module.h> |
| #include <linux/of_graph.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| |
| #include <media/v4l2-ctrls.h> |
| #include <media/v4l2-fwnode.h> |
| #include <media/v4l2-subdev.h> |
| |
| #include "cal.h" |
| #include "cal_regs.h" |
| |
| /* ------------------------------------------------------------------ |
| * I/O Register Accessors |
| * ------------------------------------------------------------------ |
| */ |
| |
| static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset) |
| { |
| return ioread32(phy->base + offset); |
| } |
| |
| static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val) |
| { |
| iowrite32(val, phy->base + offset); |
| } |
| |
| /* ------------------------------------------------------------------ |
| * CAMERARX Management |
| * ------------------------------------------------------------------ |
| */ |
| |
| static s64 cal_camerarx_get_external_rate(struct cal_camerarx *phy) |
| { |
| struct v4l2_ctrl *ctrl; |
| s64 rate; |
| |
| ctrl = v4l2_ctrl_find(phy->sensor->ctrl_handler, V4L2_CID_PIXEL_RATE); |
| if (!ctrl) { |
| phy_err(phy, "no pixel rate control in subdev: %s\n", |
| phy->sensor->name); |
| return -EPIPE; |
| } |
| |
| rate = v4l2_ctrl_g_ctrl_int64(ctrl); |
| phy_dbg(3, phy, "sensor Pixel Rate: %llu\n", rate); |
| |
| return rate; |
| } |
| |
| static void cal_camerarx_lane_config(struct cal_camerarx *phy) |
| { |
| u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)); |
| u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK; |
| u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK; |
| struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 = |
| &phy->endpoint.bus.mipi_csi2; |
| int lane; |
| |
| cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask); |
| cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask); |
| for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) { |
| /* |
| * Every lane are one nibble apart starting with the |
| * clock followed by the data lanes so shift masks by 4. |
| */ |
| lane_mask <<= 4; |
| polarity_mask <<= 4; |
| cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask); |
| cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1], |
| polarity_mask); |
| } |
| |
| cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val); |
| phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n", |
| phy->instance, val); |
| } |
| |
| static void cal_camerarx_enable(struct cal_camerarx *phy) |
| { |
| u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes; |
| |
| regmap_field_write(phy->fields[F_CAMMODE], 0); |
| /* Always enable all lanes at the phy control level */ |
| regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1); |
| /* F_CSI_MODE is not present on every architecture */ |
| if (phy->fields[F_CSI_MODE]) |
| regmap_field_write(phy->fields[F_CSI_MODE], 1); |
| regmap_field_write(phy->fields[F_CTRLCLKEN], 1); |
| } |
| |
| void cal_camerarx_disable(struct cal_camerarx *phy) |
| { |
| regmap_field_write(phy->fields[F_CTRLCLKEN], 0); |
| } |
| |
| /* |
| * TCLK values are OK at their reset values |
| */ |
| #define TCLK_TERM 0 |
| #define TCLK_MISS 1 |
| #define TCLK_SETTLE 14 |
| |
| static void cal_camerarx_config(struct cal_camerarx *phy, s64 external_rate, |
| const struct cal_fmt *fmt) |
| { |
| unsigned int reg0, reg1; |
| unsigned int ths_term, ths_settle; |
| unsigned int csi2_ddrclk_khz; |
| struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 = |
| &phy->endpoint.bus.mipi_csi2; |
| u32 num_lanes = mipi_csi2->num_data_lanes; |
| |
| /* DPHY timing configuration */ |
| |
| /* |
| * CSI-2 is DDR and we only count used lanes. |
| * |
| * csi2_ddrclk_khz = external_rate / 1000 |
| * / (2 * num_lanes) * fmt->bpp; |
| */ |
| csi2_ddrclk_khz = div_s64(external_rate * fmt->bpp, |
| 2 * num_lanes * 1000); |
| |
| phy_dbg(1, phy, "csi2_ddrclk_khz: %d\n", csi2_ddrclk_khz); |
| |
| /* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */ |
| ths_term = 20 * csi2_ddrclk_khz / 1000000; |
| phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term); |
| |
| /* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */ |
| ths_settle = (105 * csi2_ddrclk_khz / 1000000) + 4; |
| phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle); |
| |
| reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0); |
| cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE, |
| CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK); |
| cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK); |
| cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK); |
| |
| phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0); |
| camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0); |
| |
| reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1); |
| cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK); |
| cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK); |
| cal_set_field(®1, TCLK_MISS, |
| CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK); |
| cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK); |
| |
| phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1); |
| camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1); |
| } |
| |
| static void cal_camerarx_power(struct cal_camerarx *phy, bool enable) |
| { |
| u32 target_state; |
| unsigned int i; |
| |
| target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON : |
| CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF; |
| |
| cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK); |
| |
| for (i = 0; i < 10; i++) { |
| u32 current_state; |
| |
| current_state = cal_read_field(phy->cal, |
| CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK); |
| |
| if (current_state == target_state) |
| break; |
| |
| usleep_range(1000, 1100); |
| } |
| |
| if (i == 10) |
| phy_err(phy, "Failed to power %s complexio\n", |
| enable ? "up" : "down"); |
| } |
| |
| static void cal_camerarx_wait_reset(struct cal_camerarx *phy) |
| { |
| unsigned long timeout; |
| |
| timeout = jiffies + msecs_to_jiffies(750); |
| while (time_before(jiffies, timeout)) { |
| if (cal_read_field(phy->cal, |
| CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) == |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) |
| break; |
| usleep_range(500, 5000); |
| } |
| |
| if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) != |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) |
| phy_err(phy, "Timeout waiting for Complex IO reset done\n"); |
| } |
| |
| static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy) |
| { |
| unsigned long timeout; |
| |
| timeout = jiffies + msecs_to_jiffies(750); |
| while (time_before(jiffies, timeout)) { |
| if (cal_read_field(phy->cal, |
| CAL_CSI2_TIMING(phy->instance), |
| CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0) |
| break; |
| usleep_range(500, 5000); |
| } |
| |
| if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance), |
| CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0) |
| phy_err(phy, "Timeout waiting for stop state\n"); |
| } |
| |
| int cal_camerarx_start(struct cal_camerarx *phy, const struct cal_fmt *fmt) |
| { |
| s64 external_rate; |
| u32 sscounter; |
| u32 val; |
| int ret; |
| |
| external_rate = cal_camerarx_get_external_rate(phy); |
| if (external_rate < 0) |
| return external_rate; |
| |
| ret = v4l2_subdev_call(phy->sensor, core, s_power, 1); |
| if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) { |
| phy_err(phy, "power on failed in subdev\n"); |
| return ret; |
| } |
| |
| /* |
| * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP / |
| * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x / |
| * DRA80xM TRMs have a a slightly simplified sequence. |
| */ |
| |
| /* |
| * 1. Configure all CSI-2 low level protocol registers to be ready to |
| * receive signals/data from the CSI-2 PHY. |
| * |
| * i.-v. Configure the lanes position and polarity. |
| */ |
| cal_camerarx_lane_config(phy); |
| |
| /* |
| * vi.-vii. Configure D-PHY mode, enable the required lanes and |
| * enable the CAMERARX clock. |
| */ |
| cal_camerarx_enable(phy); |
| |
| /* |
| * 2. CSI PHY and link initialization sequence. |
| * |
| * a. Deassert the CSI-2 PHY reset. Do not wait for reset completion |
| * at this point, as it requires the external sensor to send the |
| * CSI-2 HS clock. |
| */ |
| cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL, |
| CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); |
| phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n", |
| phy->instance, |
| cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance))); |
| |
| /* Dummy read to allow SCP reset to complete. */ |
| camerarx_read(phy, CAL_CSI2_PHY_REG0); |
| |
| /* Program the PHY timing parameters. */ |
| cal_camerarx_config(phy, external_rate, fmt); |
| |
| /* |
| * b. Assert the FORCERXMODE signal. |
| * |
| * The stop-state-counter is based on fclk cycles, and we always use |
| * the x16 and x4 settings, so stop-state-timeout = |
| * fclk-cycle * 16 * 4 * counter. |
| * |
| * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we |
| * calculate a timeout that's 100us (rounding up). |
| */ |
| sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4); |
| |
| val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)); |
| cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK); |
| cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK); |
| cal_set_field(&val, sscounter, |
| CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK); |
| cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val); |
| phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n", |
| phy->instance, |
| cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance))); |
| |
| /* Assert the FORCERXMODE signal. */ |
| cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance), |
| 1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK); |
| phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n", |
| phy->instance, |
| cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance))); |
| |
| /* |
| * c. Connect pull-down on CSI-2 PHY link (using pad control). |
| * |
| * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not |
| * implemented. |
| */ |
| |
| /* |
| * d. Power up the CSI-2 PHY. |
| * e. Check whether the state status reaches the ON state. |
| */ |
| cal_camerarx_power(phy, true); |
| |
| /* |
| * Start the sensor to enable the CSI-2 HS clock. We can now wait for |
| * CSI-2 PHY reset to complete. |
| */ |
| ret = v4l2_subdev_call(phy->sensor, video, s_stream, 1); |
| if (ret) { |
| v4l2_subdev_call(phy->sensor, core, s_power, 0); |
| phy_err(phy, "stream on failed in subdev\n"); |
| return ret; |
| } |
| |
| cal_camerarx_wait_reset(phy); |
| |
| /* f. Wait for STOPSTATE=1 for all enabled lane modules. */ |
| cal_camerarx_wait_stop_state(phy); |
| |
| phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n", |
| phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1)); |
| |
| /* |
| * g. Disable pull-down on CSI-2 PHY link (using pad control). |
| * |
| * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not |
| * implemented. |
| */ |
| |
| return 0; |
| } |
| |
| void cal_camerarx_stop(struct cal_camerarx *phy) |
| { |
| unsigned int i; |
| int ret; |
| |
| cal_camerarx_power(phy, false); |
| |
| /* Assert Complex IO Reset */ |
| cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL, |
| CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); |
| |
| /* Wait for power down completion */ |
| for (i = 0; i < 10; i++) { |
| if (cal_read_field(phy->cal, |
| CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) == |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETONGOING) |
| break; |
| usleep_range(1000, 1100); |
| } |
| phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset (%d) %s\n", |
| phy->instance, |
| cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)), i, |
| (i >= 10) ? "(timeout)" : ""); |
| |
| /* Disable the phy */ |
| cal_camerarx_disable(phy); |
| |
| if (v4l2_subdev_call(phy->sensor, video, s_stream, 0)) |
| phy_err(phy, "stream off failed in subdev\n"); |
| |
| ret = v4l2_subdev_call(phy->sensor, core, s_power, 0); |
| if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) |
| phy_err(phy, "power off failed in subdev\n"); |
| } |
| |
| /* |
| * Errata i913: CSI2 LDO Needs to be disabled when module is powered on |
| * |
| * Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2 |
| * LDOs on the device are disabled if CSI-2 module is powered on |
| * (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304 |
| * | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high |
| * current draw on the module supply in active mode. |
| * |
| * Errata does not apply when CSI-2 module is powered off |
| * (0x4845 B304 | 0x4845 B384 [28:27] = 0x0). |
| * |
| * SW Workaround: |
| * Set the following register bits to disable the LDO, |
| * which is essentially CSI2 REG10 bit 6: |
| * |
| * Core 0: 0x4845 B828 = 0x0000 0040 |
| * Core 1: 0x4845 B928 = 0x0000 0040 |
| */ |
| void cal_camerarx_i913_errata(struct cal_camerarx *phy) |
| { |
| u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10); |
| |
| cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK); |
| |
| phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10); |
| camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10); |
| } |
| |
| /* |
| * Enable the expected IRQ sources |
| */ |
| void cal_camerarx_enable_irqs(struct cal_camerarx *phy) |
| { |
| u32 val; |
| |
| const u32 cio_err_mask = |
| CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK | |
| CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK | |
| CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK | |
| CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK; |
| |
| /* Enable CIO error irqs */ |
| cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0), |
| CAL_HL_IRQ_CIO_MASK(phy->instance)); |
| cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), |
| cio_err_mask); |
| |
| /* Always enable OCPO error */ |
| cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_OCPO_ERR_MASK); |
| |
| /* Enable IRQ_WDMA_END 0/1 */ |
| val = 0; |
| cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance)); |
| cal_write(phy->cal, CAL_HL_IRQENABLE_SET(1), val); |
| /* Enable IRQ_WDMA_START 0/1 */ |
| val = 0; |
| cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance)); |
| cal_write(phy->cal, CAL_HL_IRQENABLE_SET(2), val); |
| /* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */ |
| cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(0), 0xFF000000); |
| } |
| |
| void cal_camerarx_disable_irqs(struct cal_camerarx *phy) |
| { |
| u32 val; |
| |
| /* Disable CIO error irqs */ |
| cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0), |
| CAL_HL_IRQ_CIO_MASK(phy->instance)); |
| cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0); |
| |
| /* Disable IRQ_WDMA_END 0/1 */ |
| val = 0; |
| cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance)); |
| cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(1), val); |
| /* Disable IRQ_WDMA_START 0/1 */ |
| val = 0; |
| cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance)); |
| cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(2), val); |
| /* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */ |
| cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(0), 0); |
| } |
| |
| void cal_camerarx_ppi_enable(struct cal_camerarx *phy) |
| { |
| cal_write(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), BIT(3)); |
| cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), |
| 1, CAL_CSI2_PPI_CTRL_IF_EN_MASK); |
| } |
| |
| void cal_camerarx_ppi_disable(struct cal_camerarx *phy) |
| { |
| cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), |
| 0, CAL_CSI2_PPI_CTRL_IF_EN_MASK); |
| } |
| |
| static int cal_camerarx_regmap_init(struct cal_dev *cal, |
| struct cal_camerarx *phy) |
| { |
| const struct cal_camerarx_data *phy_data; |
| unsigned int i; |
| |
| if (!cal->data) |
| return -EINVAL; |
| |
| phy_data = &cal->data->camerarx[phy->instance]; |
| |
| for (i = 0; i < F_MAX_FIELDS; i++) { |
| struct reg_field field = { |
| .reg = cal->syscon_camerrx_offset, |
| .lsb = phy_data->fields[i].lsb, |
| .msb = phy_data->fields[i].msb, |
| }; |
| |
| /* |
| * Here we update the reg offset with the |
| * value found in DT |
| */ |
| phy->fields[i] = devm_regmap_field_alloc(cal->dev, |
| cal->syscon_camerrx, |
| field); |
| if (IS_ERR(phy->fields[i])) { |
| cal_err(cal, "Unable to allocate regmap fields\n"); |
| return PTR_ERR(phy->fields[i]); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int cal_camerarx_parse_dt(struct cal_camerarx *phy) |
| { |
| struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint; |
| struct device_node *ep_node; |
| char data_lanes[V4L2_FWNODE_CSI2_MAX_DATA_LANES * 2]; |
| unsigned int i; |
| int ret; |
| |
| /* |
| * Find the endpoint node for the port corresponding to the PHY |
| * instance, and parse its CSI-2-related properties. |
| */ |
| ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node, |
| phy->instance, 0); |
| if (!ep_node) { |
| /* |
| * The endpoint is not mandatory, not all PHY instances need to |
| * be connected in DT. |
| */ |
| phy_dbg(3, phy, "Port has no endpoint\n"); |
| return 0; |
| } |
| |
| endpoint->bus_type = V4L2_MBUS_CSI2_DPHY; |
| ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint); |
| if (ret < 0) { |
| phy_err(phy, "Failed to parse endpoint\n"); |
| goto done; |
| } |
| |
| for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) { |
| unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i]; |
| |
| if (lane > 4) { |
| phy_err(phy, "Invalid position %u for data lane %u\n", |
| lane, i); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| data_lanes[i*2] = '0' + lane; |
| data_lanes[i*2+1] = ' '; |
| } |
| |
| data_lanes[i*2-1] = '\0'; |
| |
| phy_dbg(3, phy, |
| "CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n", |
| endpoint->bus.mipi_csi2.clock_lane, data_lanes, |
| endpoint->bus.mipi_csi2.flags); |
| |
| /* Retrieve the connected device and store it for later use. */ |
| phy->sensor_node = of_graph_get_remote_port_parent(ep_node); |
| if (!phy->sensor_node) { |
| phy_dbg(3, phy, "Can't get remote parent\n"); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| phy_dbg(1, phy, "Found connected device %pOFn\n", phy->sensor_node); |
| |
| done: |
| of_node_put(ep_node); |
| return ret; |
| } |
| |
| struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal, |
| unsigned int instance) |
| { |
| struct platform_device *pdev = to_platform_device(cal->dev); |
| struct cal_camerarx *phy; |
| int ret; |
| |
| phy = kzalloc(sizeof(*phy), GFP_KERNEL); |
| if (!phy) |
| return ERR_PTR(-ENOMEM); |
| |
| phy->cal = cal; |
| phy->instance = instance; |
| |
| phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| (instance == 0) ? |
| "cal_rx_core0" : |
| "cal_rx_core1"); |
| phy->base = devm_ioremap_resource(cal->dev, phy->res); |
| if (IS_ERR(phy->base)) { |
| cal_err(cal, "failed to ioremap\n"); |
| ret = PTR_ERR(phy->base); |
| goto error; |
| } |
| |
| cal_dbg(1, cal, "ioresource %s at %pa - %pa\n", |
| phy->res->name, &phy->res->start, &phy->res->end); |
| |
| ret = cal_camerarx_regmap_init(cal, phy); |
| if (ret) |
| goto error; |
| |
| ret = cal_camerarx_parse_dt(phy); |
| if (ret) |
| goto error; |
| |
| return phy; |
| |
| error: |
| kfree(phy); |
| return ERR_PTR(ret); |
| } |
| |
| void cal_camerarx_destroy(struct cal_camerarx *phy) |
| { |
| if (!phy) |
| return; |
| |
| of_node_put(phy->sensor_node); |
| kfree(phy); |
| } |