| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * printk_safe.c - Safe printk for printk-deadlock-prone contexts |
| */ |
| |
| #include <linux/preempt.h> |
| #include <linux/spinlock.h> |
| #include <linux/debug_locks.h> |
| #include <linux/kdb.h> |
| #include <linux/smp.h> |
| #include <linux/cpumask.h> |
| #include <linux/irq_work.h> |
| #include <linux/printk.h> |
| #include <linux/kprobes.h> |
| |
| #include "internal.h" |
| |
| /* |
| * printk() could not take logbuf_lock in NMI context. Instead, |
| * it uses an alternative implementation that temporary stores |
| * the strings into a per-CPU buffer. The content of the buffer |
| * is later flushed into the main ring buffer via IRQ work. |
| * |
| * The alternative implementation is chosen transparently |
| * by examining current printk() context mask stored in @printk_context |
| * per-CPU variable. |
| * |
| * The implementation allows to flush the strings also from another CPU. |
| * There are situations when we want to make sure that all buffers |
| * were handled or when IRQs are blocked. |
| */ |
| |
| #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \ |
| sizeof(atomic_t) - \ |
| sizeof(atomic_t) - \ |
| sizeof(struct irq_work)) |
| |
| struct printk_safe_seq_buf { |
| atomic_t len; /* length of written data */ |
| atomic_t message_lost; |
| struct irq_work work; /* IRQ work that flushes the buffer */ |
| unsigned char buffer[SAFE_LOG_BUF_LEN]; |
| }; |
| |
| static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq); |
| static DEFINE_PER_CPU(int, printk_context); |
| |
| static DEFINE_RAW_SPINLOCK(safe_read_lock); |
| |
| #ifdef CONFIG_PRINTK_NMI |
| static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq); |
| #endif |
| |
| /* Get flushed in a more safe context. */ |
| static void queue_flush_work(struct printk_safe_seq_buf *s) |
| { |
| if (printk_percpu_data_ready()) |
| irq_work_queue(&s->work); |
| } |
| |
| /* |
| * Add a message to per-CPU context-dependent buffer. NMI and printk-safe |
| * have dedicated buffers, because otherwise printk-safe preempted by |
| * NMI-printk would have overwritten the NMI messages. |
| * |
| * The messages are flushed from irq work (or from panic()), possibly, |
| * from other CPU, concurrently with printk_safe_log_store(). Should this |
| * happen, printk_safe_log_store() will notice the buffer->len mismatch |
| * and repeat the write. |
| */ |
| static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s, |
| const char *fmt, va_list args) |
| { |
| int add; |
| size_t len; |
| va_list ap; |
| |
| again: |
| len = atomic_read(&s->len); |
| |
| /* The trailing '\0' is not counted into len. */ |
| if (len >= sizeof(s->buffer) - 1) { |
| atomic_inc(&s->message_lost); |
| queue_flush_work(s); |
| return 0; |
| } |
| |
| /* |
| * Make sure that all old data have been read before the buffer |
| * was reset. This is not needed when we just append data. |
| */ |
| if (!len) |
| smp_rmb(); |
| |
| va_copy(ap, args); |
| add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap); |
| va_end(ap); |
| if (!add) |
| return 0; |
| |
| /* |
| * Do it once again if the buffer has been flushed in the meantime. |
| * Note that atomic_cmpxchg() is an implicit memory barrier that |
| * makes sure that the data were written before updating s->len. |
| */ |
| if (atomic_cmpxchg(&s->len, len, len + add) != len) |
| goto again; |
| |
| queue_flush_work(s); |
| return add; |
| } |
| |
| static inline void printk_safe_flush_line(const char *text, int len) |
| { |
| /* |
| * Avoid any console drivers calls from here, because we may be |
| * in NMI or printk_safe context (when in panic). The messages |
| * must go only into the ring buffer at this stage. Consoles will |
| * get explicitly called later when a crashdump is not generated. |
| */ |
| printk_deferred("%.*s", len, text); |
| } |
| |
| /* printk part of the temporary buffer line by line */ |
| static int printk_safe_flush_buffer(const char *start, size_t len) |
| { |
| const char *c, *end; |
| bool header; |
| |
| c = start; |
| end = start + len; |
| header = true; |
| |
| /* Print line by line. */ |
| while (c < end) { |
| if (*c == '\n') { |
| printk_safe_flush_line(start, c - start + 1); |
| start = ++c; |
| header = true; |
| continue; |
| } |
| |
| /* Handle continuous lines or missing new line. */ |
| if ((c + 1 < end) && printk_get_level(c)) { |
| if (header) { |
| c = printk_skip_level(c); |
| continue; |
| } |
| |
| printk_safe_flush_line(start, c - start); |
| start = c++; |
| header = true; |
| continue; |
| } |
| |
| header = false; |
| c++; |
| } |
| |
| /* Check if there was a partial line. Ignore pure header. */ |
| if (start < end && !header) { |
| static const char newline[] = KERN_CONT "\n"; |
| |
| printk_safe_flush_line(start, end - start); |
| printk_safe_flush_line(newline, strlen(newline)); |
| } |
| |
| return len; |
| } |
| |
| static void report_message_lost(struct printk_safe_seq_buf *s) |
| { |
| int lost = atomic_xchg(&s->message_lost, 0); |
| |
| if (lost) |
| printk_deferred("Lost %d message(s)!\n", lost); |
| } |
| |
| /* |
| * Flush data from the associated per-CPU buffer. The function |
| * can be called either via IRQ work or independently. |
| */ |
| static void __printk_safe_flush(struct irq_work *work) |
| { |
| struct printk_safe_seq_buf *s = |
| container_of(work, struct printk_safe_seq_buf, work); |
| unsigned long flags; |
| size_t len; |
| int i; |
| |
| /* |
| * The lock has two functions. First, one reader has to flush all |
| * available message to make the lockless synchronization with |
| * writers easier. Second, we do not want to mix messages from |
| * different CPUs. This is especially important when printing |
| * a backtrace. |
| */ |
| raw_spin_lock_irqsave(&safe_read_lock, flags); |
| |
| i = 0; |
| more: |
| len = atomic_read(&s->len); |
| |
| /* |
| * This is just a paranoid check that nobody has manipulated |
| * the buffer an unexpected way. If we printed something then |
| * @len must only increase. Also it should never overflow the |
| * buffer size. |
| */ |
| if ((i && i >= len) || len > sizeof(s->buffer)) { |
| const char *msg = "printk_safe_flush: internal error\n"; |
| |
| printk_safe_flush_line(msg, strlen(msg)); |
| len = 0; |
| } |
| |
| if (!len) |
| goto out; /* Someone else has already flushed the buffer. */ |
| |
| /* Make sure that data has been written up to the @len */ |
| smp_rmb(); |
| i += printk_safe_flush_buffer(s->buffer + i, len - i); |
| |
| /* |
| * Check that nothing has got added in the meantime and truncate |
| * the buffer. Note that atomic_cmpxchg() is an implicit memory |
| * barrier that makes sure that the data were copied before |
| * updating s->len. |
| */ |
| if (atomic_cmpxchg(&s->len, len, 0) != len) |
| goto more; |
| |
| out: |
| report_message_lost(s); |
| raw_spin_unlock_irqrestore(&safe_read_lock, flags); |
| } |
| |
| /** |
| * printk_safe_flush - flush all per-cpu nmi buffers. |
| * |
| * The buffers are flushed automatically via IRQ work. This function |
| * is useful only when someone wants to be sure that all buffers have |
| * been flushed at some point. |
| */ |
| void printk_safe_flush(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| #ifdef CONFIG_PRINTK_NMI |
| __printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work); |
| #endif |
| __printk_safe_flush(&per_cpu(safe_print_seq, cpu).work); |
| } |
| } |
| |
| /** |
| * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system |
| * goes down. |
| * |
| * Similar to printk_safe_flush() but it can be called even in NMI context when |
| * the system goes down. It does the best effort to get NMI messages into |
| * the main ring buffer. |
| * |
| * Note that it could try harder when there is only one CPU online. |
| */ |
| void printk_safe_flush_on_panic(void) |
| { |
| /* |
| * Make sure that we could access the main ring buffer. |
| * Do not risk a double release when more CPUs are up. |
| */ |
| if (raw_spin_is_locked(&logbuf_lock)) { |
| if (num_online_cpus() > 1) |
| return; |
| |
| debug_locks_off(); |
| raw_spin_lock_init(&logbuf_lock); |
| } |
| |
| if (raw_spin_is_locked(&safe_read_lock)) { |
| if (num_online_cpus() > 1) |
| return; |
| |
| debug_locks_off(); |
| raw_spin_lock_init(&safe_read_lock); |
| } |
| |
| printk_safe_flush(); |
| } |
| |
| #ifdef CONFIG_PRINTK_NMI |
| /* |
| * Safe printk() for NMI context. It uses a per-CPU buffer to |
| * store the message. NMIs are not nested, so there is always only |
| * one writer running. But the buffer might get flushed from another |
| * CPU, so we need to be careful. |
| */ |
| static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) |
| { |
| struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq); |
| |
| return printk_safe_log_store(s, fmt, args); |
| } |
| |
| void noinstr printk_nmi_enter(void) |
| { |
| this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET); |
| } |
| |
| void noinstr printk_nmi_exit(void) |
| { |
| this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET); |
| } |
| |
| /* |
| * Marks a code that might produce many messages in NMI context |
| * and the risk of losing them is more critical than eventual |
| * reordering. |
| * |
| * It has effect only when called in NMI context. Then printk() |
| * will try to store the messages into the main logbuf directly |
| * and use the per-CPU buffers only as a fallback when the lock |
| * is not available. |
| */ |
| void printk_nmi_direct_enter(void) |
| { |
| if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) |
| this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK); |
| } |
| |
| void printk_nmi_direct_exit(void) |
| { |
| this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK); |
| } |
| |
| #else |
| |
| static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_PRINTK_NMI */ |
| |
| /* |
| * Lock-less printk(), to avoid deadlocks should the printk() recurse |
| * into itself. It uses a per-CPU buffer to store the message, just like |
| * NMI. |
| */ |
| static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args) |
| { |
| struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq); |
| |
| return printk_safe_log_store(s, fmt, args); |
| } |
| |
| /* Can be preempted by NMI. */ |
| void __printk_safe_enter(void) |
| { |
| this_cpu_inc(printk_context); |
| } |
| |
| /* Can be preempted by NMI. */ |
| void __printk_safe_exit(void) |
| { |
| this_cpu_dec(printk_context); |
| } |
| |
| __printf(1, 0) int vprintk_func(const char *fmt, va_list args) |
| { |
| #ifdef CONFIG_KGDB_KDB |
| /* Allow to pass printk() to kdb but avoid a recursion. */ |
| if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) |
| return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); |
| #endif |
| |
| /* |
| * Try to use the main logbuf even in NMI. But avoid calling console |
| * drivers that might have their own locks. |
| */ |
| if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) && |
| raw_spin_trylock(&logbuf_lock)) { |
| int len; |
| |
| len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args); |
| raw_spin_unlock(&logbuf_lock); |
| defer_console_output(); |
| return len; |
| } |
| |
| /* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */ |
| if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) |
| return vprintk_nmi(fmt, args); |
| |
| /* Use extra buffer to prevent a recursion deadlock in safe mode. */ |
| if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK) |
| return vprintk_safe(fmt, args); |
| |
| /* No obstacles. */ |
| return vprintk_default(fmt, args); |
| } |
| |
| void __init printk_safe_init(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct printk_safe_seq_buf *s; |
| |
| s = &per_cpu(safe_print_seq, cpu); |
| init_irq_work(&s->work, __printk_safe_flush); |
| |
| #ifdef CONFIG_PRINTK_NMI |
| s = &per_cpu(nmi_print_seq, cpu); |
| init_irq_work(&s->work, __printk_safe_flush); |
| #endif |
| } |
| |
| /* Flush pending messages that did not have scheduled IRQ works. */ |
| printk_safe_flush(); |
| } |