| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright IBM Corporation 2001, 2005, 2006 |
| * Copyright Dave Engebretsen & Todd Inglett 2001 |
| * Copyright Linas Vepstas 2005, 2006 |
| * Copyright 2001-2012 IBM Corporation. |
| * |
| * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/iommu.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rbtree.h> |
| #include <linux/reboot.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <linux/export.h> |
| #include <linux/of.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/debugfs.h> |
| #include <asm/eeh.h> |
| #include <asm/eeh_event.h> |
| #include <asm/io.h> |
| #include <asm/iommu.h> |
| #include <asm/machdep.h> |
| #include <asm/ppc-pci.h> |
| #include <asm/rtas.h> |
| #include <asm/pte-walk.h> |
| |
| |
| /** Overview: |
| * EEH, or "Enhanced Error Handling" is a PCI bridge technology for |
| * dealing with PCI bus errors that can't be dealt with within the |
| * usual PCI framework, except by check-stopping the CPU. Systems |
| * that are designed for high-availability/reliability cannot afford |
| * to crash due to a "mere" PCI error, thus the need for EEH. |
| * An EEH-capable bridge operates by converting a detected error |
| * into a "slot freeze", taking the PCI adapter off-line, making |
| * the slot behave, from the OS'es point of view, as if the slot |
| * were "empty": all reads return 0xff's and all writes are silently |
| * ignored. EEH slot isolation events can be triggered by parity |
| * errors on the address or data busses (e.g. during posted writes), |
| * which in turn might be caused by low voltage on the bus, dust, |
| * vibration, humidity, radioactivity or plain-old failed hardware. |
| * |
| * Note, however, that one of the leading causes of EEH slot |
| * freeze events are buggy device drivers, buggy device microcode, |
| * or buggy device hardware. This is because any attempt by the |
| * device to bus-master data to a memory address that is not |
| * assigned to the device will trigger a slot freeze. (The idea |
| * is to prevent devices-gone-wild from corrupting system memory). |
| * Buggy hardware/drivers will have a miserable time co-existing |
| * with EEH. |
| * |
| * Ideally, a PCI device driver, when suspecting that an isolation |
| * event has occurred (e.g. by reading 0xff's), will then ask EEH |
| * whether this is the case, and then take appropriate steps to |
| * reset the PCI slot, the PCI device, and then resume operations. |
| * However, until that day, the checking is done here, with the |
| * eeh_check_failure() routine embedded in the MMIO macros. If |
| * the slot is found to be isolated, an "EEH Event" is synthesized |
| * and sent out for processing. |
| */ |
| |
| /* If a device driver keeps reading an MMIO register in an interrupt |
| * handler after a slot isolation event, it might be broken. |
| * This sets the threshold for how many read attempts we allow |
| * before printing an error message. |
| */ |
| #define EEH_MAX_FAILS 2100000 |
| |
| /* Time to wait for a PCI slot to report status, in milliseconds */ |
| #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000) |
| |
| /* |
| * EEH probe mode support, which is part of the flags, |
| * is to support multiple platforms for EEH. Some platforms |
| * like pSeries do PCI emunation based on device tree. |
| * However, other platforms like powernv probe PCI devices |
| * from hardware. The flag is used to distinguish that. |
| * In addition, struct eeh_ops::probe would be invoked for |
| * particular OF node or PCI device so that the corresponding |
| * PE would be created there. |
| */ |
| int eeh_subsystem_flags; |
| EXPORT_SYMBOL(eeh_subsystem_flags); |
| |
| /* |
| * EEH allowed maximal frozen times. If one particular PE's |
| * frozen count in last hour exceeds this limit, the PE will |
| * be forced to be offline permanently. |
| */ |
| u32 eeh_max_freezes = 5; |
| |
| /* |
| * Controls whether a recovery event should be scheduled when an |
| * isolated device is discovered. This is only really useful for |
| * debugging problems with the EEH core. |
| */ |
| bool eeh_debugfs_no_recover; |
| |
| /* Platform dependent EEH operations */ |
| struct eeh_ops *eeh_ops = NULL; |
| |
| /* Lock to avoid races due to multiple reports of an error */ |
| DEFINE_RAW_SPINLOCK(confirm_error_lock); |
| EXPORT_SYMBOL_GPL(confirm_error_lock); |
| |
| /* Lock to protect passed flags */ |
| static DEFINE_MUTEX(eeh_dev_mutex); |
| |
| /* Buffer for reporting pci register dumps. Its here in BSS, and |
| * not dynamically alloced, so that it ends up in RMO where RTAS |
| * can access it. |
| */ |
| #define EEH_PCI_REGS_LOG_LEN 8192 |
| static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN]; |
| |
| /* |
| * The struct is used to maintain the EEH global statistic |
| * information. Besides, the EEH global statistics will be |
| * exported to user space through procfs |
| */ |
| struct eeh_stats { |
| u64 no_device; /* PCI device not found */ |
| u64 no_dn; /* OF node not found */ |
| u64 no_cfg_addr; /* Config address not found */ |
| u64 ignored_check; /* EEH check skipped */ |
| u64 total_mmio_ffs; /* Total EEH checks */ |
| u64 false_positives; /* Unnecessary EEH checks */ |
| u64 slot_resets; /* PE reset */ |
| }; |
| |
| static struct eeh_stats eeh_stats; |
| |
| static int __init eeh_setup(char *str) |
| { |
| if (!strcmp(str, "off")) |
| eeh_add_flag(EEH_FORCE_DISABLED); |
| else if (!strcmp(str, "early_log")) |
| eeh_add_flag(EEH_EARLY_DUMP_LOG); |
| |
| return 1; |
| } |
| __setup("eeh=", eeh_setup); |
| |
| void eeh_show_enabled(void) |
| { |
| if (eeh_has_flag(EEH_FORCE_DISABLED)) |
| pr_info("EEH: Recovery disabled by kernel parameter.\n"); |
| else if (eeh_has_flag(EEH_ENABLED)) |
| pr_info("EEH: Capable adapter found: recovery enabled.\n"); |
| else |
| pr_info("EEH: No capable adapters found: recovery disabled.\n"); |
| } |
| |
| /* |
| * This routine captures assorted PCI configuration space data |
| * for the indicated PCI device, and puts them into a buffer |
| * for RTAS error logging. |
| */ |
| static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len) |
| { |
| u32 cfg; |
| int cap, i; |
| int n = 0, l = 0; |
| char buffer[128]; |
| |
| n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n", |
| edev->pe->phb->global_number, edev->bdfn >> 8, |
| PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn)); |
| pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n", |
| edev->pe->phb->global_number, edev->bdfn >> 8, |
| PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn)); |
| |
| eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg); |
| pr_warn("EEH: PCI device/vendor: %08x\n", cfg); |
| |
| eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg); |
| pr_warn("EEH: PCI cmd/status register: %08x\n", cfg); |
| |
| /* Gather bridge-specific registers */ |
| if (edev->mode & EEH_DEV_BRIDGE) { |
| eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg); |
| n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg); |
| pr_warn("EEH: Bridge secondary status: %04x\n", cfg); |
| |
| eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg); |
| n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg); |
| pr_warn("EEH: Bridge control: %04x\n", cfg); |
| } |
| |
| /* Dump out the PCI-X command and status regs */ |
| cap = edev->pcix_cap; |
| if (cap) { |
| eeh_ops->read_config(edev, cap, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg); |
| pr_warn("EEH: PCI-X cmd: %08x\n", cfg); |
| |
| eeh_ops->read_config(edev, cap+4, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg); |
| pr_warn("EEH: PCI-X status: %08x\n", cfg); |
| } |
| |
| /* If PCI-E capable, dump PCI-E cap 10 */ |
| cap = edev->pcie_cap; |
| if (cap) { |
| n += scnprintf(buf+n, len-n, "pci-e cap10:\n"); |
| pr_warn("EEH: PCI-E capabilities and status follow:\n"); |
| |
| for (i=0; i<=8; i++) { |
| eeh_ops->read_config(edev, cap+4*i, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); |
| |
| if ((i % 4) == 0) { |
| if (i != 0) |
| pr_warn("%s\n", buffer); |
| |
| l = scnprintf(buffer, sizeof(buffer), |
| "EEH: PCI-E %02x: %08x ", |
| 4*i, cfg); |
| } else { |
| l += scnprintf(buffer+l, sizeof(buffer)-l, |
| "%08x ", cfg); |
| } |
| |
| } |
| |
| pr_warn("%s\n", buffer); |
| } |
| |
| /* If AER capable, dump it */ |
| cap = edev->aer_cap; |
| if (cap) { |
| n += scnprintf(buf+n, len-n, "pci-e AER:\n"); |
| pr_warn("EEH: PCI-E AER capability register set follows:\n"); |
| |
| for (i=0; i<=13; i++) { |
| eeh_ops->read_config(edev, cap+4*i, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); |
| |
| if ((i % 4) == 0) { |
| if (i != 0) |
| pr_warn("%s\n", buffer); |
| |
| l = scnprintf(buffer, sizeof(buffer), |
| "EEH: PCI-E AER %02x: %08x ", |
| 4*i, cfg); |
| } else { |
| l += scnprintf(buffer+l, sizeof(buffer)-l, |
| "%08x ", cfg); |
| } |
| } |
| |
| pr_warn("%s\n", buffer); |
| } |
| |
| return n; |
| } |
| |
| static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag) |
| { |
| struct eeh_dev *edev, *tmp; |
| size_t *plen = flag; |
| |
| eeh_pe_for_each_dev(pe, edev, tmp) |
| *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen, |
| EEH_PCI_REGS_LOG_LEN - *plen); |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_slot_error_detail - Generate combined log including driver log and error log |
| * @pe: EEH PE |
| * @severity: temporary or permanent error log |
| * |
| * This routine should be called to generate the combined log, which |
| * is comprised of driver log and error log. The driver log is figured |
| * out from the config space of the corresponding PCI device, while |
| * the error log is fetched through platform dependent function call. |
| */ |
| void eeh_slot_error_detail(struct eeh_pe *pe, int severity) |
| { |
| size_t loglen = 0; |
| |
| /* |
| * When the PHB is fenced or dead, it's pointless to collect |
| * the data from PCI config space because it should return |
| * 0xFF's. For ER, we still retrieve the data from the PCI |
| * config space. |
| * |
| * For pHyp, we have to enable IO for log retrieval. Otherwise, |
| * 0xFF's is always returned from PCI config space. |
| * |
| * When the @severity is EEH_LOG_PERM, the PE is going to be |
| * removed. Prior to that, the drivers for devices included in |
| * the PE will be closed. The drivers rely on working IO path |
| * to bring the devices to quiet state. Otherwise, PCI traffic |
| * from those devices after they are removed is like to cause |
| * another unexpected EEH error. |
| */ |
| if (!(pe->type & EEH_PE_PHB)) { |
| if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) || |
| severity == EEH_LOG_PERM) |
| eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); |
| |
| /* |
| * The config space of some PCI devices can't be accessed |
| * when their PEs are in frozen state. Otherwise, fenced |
| * PHB might be seen. Those PEs are identified with flag |
| * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED |
| * is set automatically when the PE is put to EEH_PE_ISOLATED. |
| * |
| * Restoring BARs possibly triggers PCI config access in |
| * (OPAL) firmware and then causes fenced PHB. If the |
| * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's |
| * pointless to restore BARs and dump config space. |
| */ |
| eeh_ops->configure_bridge(pe); |
| if (!(pe->state & EEH_PE_CFG_BLOCKED)) { |
| eeh_pe_restore_bars(pe); |
| |
| pci_regs_buf[0] = 0; |
| eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen); |
| } |
| } |
| |
| eeh_ops->get_log(pe, severity, pci_regs_buf, loglen); |
| } |
| |
| /** |
| * eeh_token_to_phys - Convert EEH address token to phys address |
| * @token: I/O token, should be address in the form 0xA.... |
| * |
| * This routine should be called to convert virtual I/O address |
| * to physical one. |
| */ |
| static inline unsigned long eeh_token_to_phys(unsigned long token) |
| { |
| pte_t *ptep; |
| unsigned long pa; |
| int hugepage_shift; |
| |
| /* |
| * We won't find hugepages here(this is iomem). Hence we are not |
| * worried about _PAGE_SPLITTING/collapse. Also we will not hit |
| * page table free, because of init_mm. |
| */ |
| ptep = find_init_mm_pte(token, &hugepage_shift); |
| if (!ptep) |
| return token; |
| |
| pa = pte_pfn(*ptep); |
| |
| /* On radix we can do hugepage mappings for io, so handle that */ |
| if (hugepage_shift) { |
| pa <<= hugepage_shift; |
| pa |= token & ((1ul << hugepage_shift) - 1); |
| } else { |
| pa <<= PAGE_SHIFT; |
| pa |= token & (PAGE_SIZE - 1); |
| } |
| |
| return pa; |
| } |
| |
| /* |
| * On PowerNV platform, we might already have fenced PHB there. |
| * For that case, it's meaningless to recover frozen PE. Intead, |
| * We have to handle fenced PHB firstly. |
| */ |
| static int eeh_phb_check_failure(struct eeh_pe *pe) |
| { |
| struct eeh_pe *phb_pe; |
| unsigned long flags; |
| int ret; |
| |
| if (!eeh_has_flag(EEH_PROBE_MODE_DEV)) |
| return -EPERM; |
| |
| /* Find the PHB PE */ |
| phb_pe = eeh_phb_pe_get(pe->phb); |
| if (!phb_pe) { |
| pr_warn("%s Can't find PE for PHB#%x\n", |
| __func__, pe->phb->global_number); |
| return -EEXIST; |
| } |
| |
| /* If the PHB has been in problematic state */ |
| eeh_serialize_lock(&flags); |
| if (phb_pe->state & EEH_PE_ISOLATED) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* Check PHB state */ |
| ret = eeh_ops->get_state(phb_pe, NULL); |
| if ((ret < 0) || |
| (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* Isolate the PHB and send event */ |
| eeh_pe_mark_isolated(phb_pe); |
| eeh_serialize_unlock(flags); |
| |
| pr_debug("EEH: PHB#%x failure detected, location: %s\n", |
| phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe)); |
| eeh_send_failure_event(phb_pe); |
| return 1; |
| out: |
| eeh_serialize_unlock(flags); |
| return ret; |
| } |
| |
| /** |
| * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze |
| * @edev: eeh device |
| * |
| * Check for an EEH failure for the given device node. Call this |
| * routine if the result of a read was all 0xff's and you want to |
| * find out if this is due to an EEH slot freeze. This routine |
| * will query firmware for the EEH status. |
| * |
| * Returns 0 if there has not been an EEH error; otherwise returns |
| * a non-zero value and queues up a slot isolation event notification. |
| * |
| * It is safe to call this routine in an interrupt context. |
| */ |
| int eeh_dev_check_failure(struct eeh_dev *edev) |
| { |
| int ret; |
| unsigned long flags; |
| struct device_node *dn; |
| struct pci_dev *dev; |
| struct eeh_pe *pe, *parent_pe; |
| int rc = 0; |
| const char *location = NULL; |
| |
| eeh_stats.total_mmio_ffs++; |
| |
| if (!eeh_enabled()) |
| return 0; |
| |
| if (!edev) { |
| eeh_stats.no_dn++; |
| return 0; |
| } |
| dev = eeh_dev_to_pci_dev(edev); |
| pe = eeh_dev_to_pe(edev); |
| |
| /* Access to IO BARs might get this far and still not want checking. */ |
| if (!pe) { |
| eeh_stats.ignored_check++; |
| eeh_edev_dbg(edev, "Ignored check\n"); |
| return 0; |
| } |
| |
| /* |
| * On PowerNV platform, we might already have fenced PHB |
| * there and we need take care of that firstly. |
| */ |
| ret = eeh_phb_check_failure(pe); |
| if (ret > 0) |
| return ret; |
| |
| /* |
| * If the PE isn't owned by us, we shouldn't check the |
| * state. Instead, let the owner handle it if the PE has |
| * been frozen. |
| */ |
| if (eeh_pe_passed(pe)) |
| return 0; |
| |
| /* If we already have a pending isolation event for this |
| * slot, we know it's bad already, we don't need to check. |
| * Do this checking under a lock; as multiple PCI devices |
| * in one slot might report errors simultaneously, and we |
| * only want one error recovery routine running. |
| */ |
| eeh_serialize_lock(&flags); |
| rc = 1; |
| if (pe->state & EEH_PE_ISOLATED) { |
| pe->check_count++; |
| if (pe->check_count == EEH_MAX_FAILS) { |
| dn = pci_device_to_OF_node(dev); |
| if (dn) |
| location = of_get_property(dn, "ibm,loc-code", |
| NULL); |
| eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n", |
| pe->check_count, |
| location ? location : "unknown", |
| eeh_driver_name(dev)); |
| eeh_edev_err(edev, "Might be infinite loop in %s driver\n", |
| eeh_driver_name(dev)); |
| dump_stack(); |
| } |
| goto dn_unlock; |
| } |
| |
| /* |
| * Now test for an EEH failure. This is VERY expensive. |
| * Note that the eeh_config_addr may be a parent device |
| * in the case of a device behind a bridge, or it may be |
| * function zero of a multi-function device. |
| * In any case they must share a common PHB. |
| */ |
| ret = eeh_ops->get_state(pe, NULL); |
| |
| /* Note that config-io to empty slots may fail; |
| * they are empty when they don't have children. |
| * We will punt with the following conditions: Failure to get |
| * PE's state, EEH not support and Permanently unavailable |
| * state, PE is in good state. |
| */ |
| if ((ret < 0) || |
| (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) { |
| eeh_stats.false_positives++; |
| pe->false_positives++; |
| rc = 0; |
| goto dn_unlock; |
| } |
| |
| /* |
| * It should be corner case that the parent PE has been |
| * put into frozen state as well. We should take care |
| * that at first. |
| */ |
| parent_pe = pe->parent; |
| while (parent_pe) { |
| /* Hit the ceiling ? */ |
| if (parent_pe->type & EEH_PE_PHB) |
| break; |
| |
| /* Frozen parent PE ? */ |
| ret = eeh_ops->get_state(parent_pe, NULL); |
| if (ret > 0 && !eeh_state_active(ret)) { |
| pe = parent_pe; |
| pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n", |
| pe->phb->global_number, pe->addr, |
| pe->phb->global_number, parent_pe->addr); |
| } |
| |
| /* Next parent level */ |
| parent_pe = parent_pe->parent; |
| } |
| |
| eeh_stats.slot_resets++; |
| |
| /* Avoid repeated reports of this failure, including problems |
| * with other functions on this device, and functions under |
| * bridges. |
| */ |
| eeh_pe_mark_isolated(pe); |
| eeh_serialize_unlock(flags); |
| |
| /* Most EEH events are due to device driver bugs. Having |
| * a stack trace will help the device-driver authors figure |
| * out what happened. So print that out. |
| */ |
| pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n", |
| __func__, pe->phb->global_number, pe->addr); |
| eeh_send_failure_event(pe); |
| |
| return 1; |
| |
| dn_unlock: |
| eeh_serialize_unlock(flags); |
| return rc; |
| } |
| |
| EXPORT_SYMBOL_GPL(eeh_dev_check_failure); |
| |
| /** |
| * eeh_check_failure - Check if all 1's data is due to EEH slot freeze |
| * @token: I/O address |
| * |
| * Check for an EEH failure at the given I/O address. Call this |
| * routine if the result of a read was all 0xff's and you want to |
| * find out if this is due to an EEH slot freeze event. This routine |
| * will query firmware for the EEH status. |
| * |
| * Note this routine is safe to call in an interrupt context. |
| */ |
| int eeh_check_failure(const volatile void __iomem *token) |
| { |
| unsigned long addr; |
| struct eeh_dev *edev; |
| |
| /* Finding the phys addr + pci device; this is pretty quick. */ |
| addr = eeh_token_to_phys((unsigned long __force) token); |
| edev = eeh_addr_cache_get_dev(addr); |
| if (!edev) { |
| eeh_stats.no_device++; |
| return 0; |
| } |
| |
| return eeh_dev_check_failure(edev); |
| } |
| EXPORT_SYMBOL(eeh_check_failure); |
| |
| |
| /** |
| * eeh_pci_enable - Enable MMIO or DMA transfers for this slot |
| * @pe: EEH PE |
| * |
| * This routine should be called to reenable frozen MMIO or DMA |
| * so that it would work correctly again. It's useful while doing |
| * recovery or log collection on the indicated device. |
| */ |
| int eeh_pci_enable(struct eeh_pe *pe, int function) |
| { |
| int active_flag, rc; |
| |
| /* |
| * pHyp doesn't allow to enable IO or DMA on unfrozen PE. |
| * Also, it's pointless to enable them on unfrozen PE. So |
| * we have to check before enabling IO or DMA. |
| */ |
| switch (function) { |
| case EEH_OPT_THAW_MMIO: |
| active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED; |
| break; |
| case EEH_OPT_THAW_DMA: |
| active_flag = EEH_STATE_DMA_ACTIVE; |
| break; |
| case EEH_OPT_DISABLE: |
| case EEH_OPT_ENABLE: |
| case EEH_OPT_FREEZE_PE: |
| active_flag = 0; |
| break; |
| default: |
| pr_warn("%s: Invalid function %d\n", |
| __func__, function); |
| return -EINVAL; |
| } |
| |
| /* |
| * Check if IO or DMA has been enabled before |
| * enabling them. |
| */ |
| if (active_flag) { |
| rc = eeh_ops->get_state(pe, NULL); |
| if (rc < 0) |
| return rc; |
| |
| /* Needn't enable it at all */ |
| if (rc == EEH_STATE_NOT_SUPPORT) |
| return 0; |
| |
| /* It's already enabled */ |
| if (rc & active_flag) |
| return 0; |
| } |
| |
| |
| /* Issue the request */ |
| rc = eeh_ops->set_option(pe, function); |
| if (rc) |
| pr_warn("%s: Unexpected state change %d on " |
| "PHB#%x-PE#%x, err=%d\n", |
| __func__, function, pe->phb->global_number, |
| pe->addr, rc); |
| |
| /* Check if the request is finished successfully */ |
| if (active_flag) { |
| rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); |
| if (rc < 0) |
| return rc; |
| |
| if (rc & active_flag) |
| return 0; |
| |
| return -EIO; |
| } |
| |
| return rc; |
| } |
| |
| static void eeh_disable_and_save_dev_state(struct eeh_dev *edev, |
| void *userdata) |
| { |
| struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); |
| struct pci_dev *dev = userdata; |
| |
| /* |
| * The caller should have disabled and saved the |
| * state for the specified device |
| */ |
| if (!pdev || pdev == dev) |
| return; |
| |
| /* Ensure we have D0 power state */ |
| pci_set_power_state(pdev, PCI_D0); |
| |
| /* Save device state */ |
| pci_save_state(pdev); |
| |
| /* |
| * Disable device to avoid any DMA traffic and |
| * interrupt from the device |
| */ |
| pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); |
| } |
| |
| static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata) |
| { |
| struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); |
| struct pci_dev *dev = userdata; |
| |
| if (!pdev) |
| return; |
| |
| /* Apply customization from firmware */ |
| if (eeh_ops->restore_config) |
| eeh_ops->restore_config(edev); |
| |
| /* The caller should restore state for the specified device */ |
| if (pdev != dev) |
| pci_restore_state(pdev); |
| } |
| |
| /** |
| * pcibios_set_pcie_reset_state - Set PCI-E reset state |
| * @dev: pci device struct |
| * @state: reset state to enter |
| * |
| * Return value: |
| * 0 if success |
| */ |
| int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) |
| { |
| struct eeh_dev *edev = pci_dev_to_eeh_dev(dev); |
| struct eeh_pe *pe = eeh_dev_to_pe(edev); |
| |
| if (!pe) { |
| pr_err("%s: No PE found on PCI device %s\n", |
| __func__, pci_name(dev)); |
| return -EINVAL; |
| } |
| |
| switch (state) { |
| case pcie_deassert_reset: |
| eeh_ops->reset(pe, EEH_RESET_DEACTIVATE); |
| eeh_unfreeze_pe(pe); |
| if (!(pe->type & EEH_PE_VF)) |
| eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true); |
| eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev); |
| eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true); |
| break; |
| case pcie_hot_reset: |
| eeh_pe_mark_isolated(pe); |
| eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true); |
| eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); |
| if (!(pe->type & EEH_PE_VF)) |
| eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| eeh_ops->reset(pe, EEH_RESET_HOT); |
| break; |
| case pcie_warm_reset: |
| eeh_pe_mark_isolated(pe); |
| eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true); |
| eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); |
| if (!(pe->type & EEH_PE_VF)) |
| eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL); |
| break; |
| default: |
| eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true); |
| return -EINVAL; |
| }; |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_set_pe_freset - Check the required reset for the indicated device |
| * @data: EEH device |
| * @flag: return value |
| * |
| * Each device might have its preferred reset type: fundamental or |
| * hot reset. The routine is used to collected the information for |
| * the indicated device and its children so that the bunch of the |
| * devices could be reset properly. |
| */ |
| static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag) |
| { |
| struct pci_dev *dev; |
| unsigned int *freset = (unsigned int *)flag; |
| |
| dev = eeh_dev_to_pci_dev(edev); |
| if (dev) |
| *freset |= dev->needs_freset; |
| } |
| |
| static void eeh_pe_refreeze_passed(struct eeh_pe *root) |
| { |
| struct eeh_pe *pe; |
| int state; |
| |
| eeh_for_each_pe(root, pe) { |
| if (eeh_pe_passed(pe)) { |
| state = eeh_ops->get_state(pe, NULL); |
| if (state & |
| (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) { |
| pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n", |
| pe->phb->global_number, pe->addr); |
| eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE); |
| } |
| } |
| } |
| } |
| |
| /** |
| * eeh_pe_reset_full - Complete a full reset process on the indicated PE |
| * @pe: EEH PE |
| * |
| * This function executes a full reset procedure on a PE, including setting |
| * the appropriate flags, performing a fundamental or hot reset, and then |
| * deactivating the reset status. It is designed to be used within the EEH |
| * subsystem, as opposed to eeh_pe_reset which is exported to drivers and |
| * only performs a single operation at a time. |
| * |
| * This function will attempt to reset a PE three times before failing. |
| */ |
| int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed) |
| { |
| int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED); |
| int type = EEH_RESET_HOT; |
| unsigned int freset = 0; |
| int i, state = 0, ret; |
| |
| /* |
| * Determine the type of reset to perform - hot or fundamental. |
| * Hot reset is the default operation, unless any device under the |
| * PE requires a fundamental reset. |
| */ |
| eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset); |
| |
| if (freset) |
| type = EEH_RESET_FUNDAMENTAL; |
| |
| /* Mark the PE as in reset state and block config space accesses */ |
| eeh_pe_state_mark(pe, reset_state); |
| |
| /* Make three attempts at resetting the bus */ |
| for (i = 0; i < 3; i++) { |
| ret = eeh_pe_reset(pe, type, include_passed); |
| if (!ret) |
| ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE, |
| include_passed); |
| if (ret) { |
| ret = -EIO; |
| pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n", |
| state, pe->phb->global_number, pe->addr, i + 1); |
| continue; |
| } |
| if (i) |
| pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n", |
| pe->phb->global_number, pe->addr, i + 1); |
| |
| /* Wait until the PE is in a functioning state */ |
| state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); |
| if (state < 0) { |
| pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x", |
| pe->phb->global_number, pe->addr); |
| ret = -ENOTRECOVERABLE; |
| break; |
| } |
| if (eeh_state_active(state)) |
| break; |
| else |
| pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n", |
| pe->phb->global_number, pe->addr, state, i + 1); |
| } |
| |
| /* Resetting the PE may have unfrozen child PEs. If those PEs have been |
| * (potentially) passed through to a guest, re-freeze them: |
| */ |
| if (!include_passed) |
| eeh_pe_refreeze_passed(pe); |
| |
| eeh_pe_state_clear(pe, reset_state, true); |
| return ret; |
| } |
| |
| /** |
| * eeh_save_bars - Save device bars |
| * @edev: PCI device associated EEH device |
| * |
| * Save the values of the device bars. Unlike the restore |
| * routine, this routine is *not* recursive. This is because |
| * PCI devices are added individually; but, for the restore, |
| * an entire slot is reset at a time. |
| */ |
| void eeh_save_bars(struct eeh_dev *edev) |
| { |
| int i; |
| |
| if (!edev) |
| return; |
| |
| for (i = 0; i < 16; i++) |
| eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]); |
| |
| /* |
| * For PCI bridges including root port, we need enable bus |
| * master explicitly. Otherwise, it can't fetch IODA table |
| * entries correctly. So we cache the bit in advance so that |
| * we can restore it after reset, either PHB range or PE range. |
| */ |
| if (edev->mode & EEH_DEV_BRIDGE) |
| edev->config_space[1] |= PCI_COMMAND_MASTER; |
| } |
| |
| static int eeh_reboot_notifier(struct notifier_block *nb, |
| unsigned long action, void *unused) |
| { |
| eeh_clear_flag(EEH_ENABLED); |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block eeh_reboot_nb = { |
| .notifier_call = eeh_reboot_notifier, |
| }; |
| |
| static int eeh_device_notifier(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct device *dev = data; |
| |
| switch (action) { |
| /* |
| * Note: It's not possible to perform EEH device addition (i.e. |
| * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on |
| * the device's resources, which have not yet been set up. |
| */ |
| case BUS_NOTIFY_DEL_DEVICE: |
| eeh_remove_device(to_pci_dev(dev)); |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block eeh_device_nb = { |
| .notifier_call = eeh_device_notifier, |
| }; |
| |
| /** |
| * eeh_init - System wide EEH initialization |
| * |
| * It's the platform's job to call this from an arch_initcall(). |
| */ |
| int eeh_init(struct eeh_ops *ops) |
| { |
| struct pci_controller *hose, *tmp; |
| int ret = 0; |
| |
| /* the platform should only initialise EEH once */ |
| if (WARN_ON(eeh_ops)) |
| return -EEXIST; |
| if (WARN_ON(!ops)) |
| return -ENOENT; |
| eeh_ops = ops; |
| |
| /* Register reboot notifier */ |
| ret = register_reboot_notifier(&eeh_reboot_nb); |
| if (ret) { |
| pr_warn("%s: Failed to register reboot notifier (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb); |
| if (ret) { |
| pr_warn("%s: Failed to register bus notifier (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* Initialize PHB PEs */ |
| list_for_each_entry_safe(hose, tmp, &hose_list, list_node) |
| eeh_phb_pe_create(hose); |
| |
| eeh_addr_cache_init(); |
| |
| /* Initialize EEH event */ |
| return eeh_event_init(); |
| } |
| |
| /** |
| * eeh_probe_device() - Perform EEH initialization for the indicated pci device |
| * @dev: pci device for which to set up EEH |
| * |
| * This routine must be used to complete EEH initialization for PCI |
| * devices that were added after system boot (e.g. hotplug, dlpar). |
| */ |
| void eeh_probe_device(struct pci_dev *dev) |
| { |
| struct eeh_dev *edev; |
| |
| pr_debug("EEH: Adding device %s\n", pci_name(dev)); |
| |
| /* |
| * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was |
| * already called for this device. |
| */ |
| if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) { |
| pci_dbg(dev, "Already bound to an eeh_dev!\n"); |
| return; |
| } |
| |
| edev = eeh_ops->probe(dev); |
| if (!edev) { |
| pr_debug("EEH: Adding device failed\n"); |
| return; |
| } |
| |
| /* |
| * FIXME: We rely on pcibios_release_device() to remove the |
| * existing EEH state. The release function is only called if |
| * the pci_dev's refcount drops to zero so if something is |
| * keeping a ref to a device (e.g. a filesystem) we need to |
| * remove the old EEH state. |
| * |
| * FIXME: HEY MA, LOOK AT ME, NO LOCKING! |
| */ |
| if (edev->pdev && edev->pdev != dev) { |
| eeh_pe_tree_remove(edev); |
| eeh_addr_cache_rmv_dev(edev->pdev); |
| eeh_sysfs_remove_device(edev->pdev); |
| |
| /* |
| * We definitely should have the PCI device removed |
| * though it wasn't correctly. So we needn't call |
| * into error handler afterwards. |
| */ |
| edev->mode |= EEH_DEV_NO_HANDLER; |
| } |
| |
| /* bind the pdev and the edev together */ |
| edev->pdev = dev; |
| dev->dev.archdata.edev = edev; |
| eeh_addr_cache_insert_dev(dev); |
| eeh_sysfs_add_device(dev); |
| } |
| |
| /** |
| * eeh_remove_device - Undo EEH setup for the indicated pci device |
| * @dev: pci device to be removed |
| * |
| * This routine should be called when a device is removed from |
| * a running system (e.g. by hotplug or dlpar). It unregisters |
| * the PCI device from the EEH subsystem. I/O errors affecting |
| * this device will no longer be detected after this call; thus, |
| * i/o errors affecting this slot may leave this device unusable. |
| */ |
| void eeh_remove_device(struct pci_dev *dev) |
| { |
| struct eeh_dev *edev; |
| |
| if (!dev || !eeh_enabled()) |
| return; |
| edev = pci_dev_to_eeh_dev(dev); |
| |
| /* Unregister the device with the EEH/PCI address search system */ |
| dev_dbg(&dev->dev, "EEH: Removing device\n"); |
| |
| if (!edev || !edev->pdev || !edev->pe) { |
| dev_dbg(&dev->dev, "EEH: Device not referenced!\n"); |
| return; |
| } |
| |
| /* |
| * During the hotplug for EEH error recovery, we need the EEH |
| * device attached to the parent PE in order for BAR restore |
| * a bit later. So we keep it for BAR restore and remove it |
| * from the parent PE during the BAR resotre. |
| */ |
| edev->pdev = NULL; |
| |
| /* |
| * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to |
| * remove the sysfs files before clearing dev.archdata.edev |
| */ |
| if (edev->mode & EEH_DEV_SYSFS) |
| eeh_sysfs_remove_device(dev); |
| |
| /* |
| * We're removing from the PCI subsystem, that means |
| * the PCI device driver can't support EEH or not |
| * well. So we rely on hotplug completely to do recovery |
| * for the specific PCI device. |
| */ |
| edev->mode |= EEH_DEV_NO_HANDLER; |
| |
| eeh_addr_cache_rmv_dev(dev); |
| |
| /* |
| * The flag "in_error" is used to trace EEH devices for VFs |
| * in error state or not. It's set in eeh_report_error(). If |
| * it's not set, eeh_report_{reset,resume}() won't be called |
| * for the VF EEH device. |
| */ |
| edev->in_error = false; |
| dev->dev.archdata.edev = NULL; |
| if (!(edev->pe->state & EEH_PE_KEEP)) |
| eeh_pe_tree_remove(edev); |
| else |
| edev->mode |= EEH_DEV_DISCONNECTED; |
| } |
| |
| int eeh_unfreeze_pe(struct eeh_pe *pe) |
| { |
| int ret; |
| |
| ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); |
| if (ret) { |
| pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n", |
| __func__, ret, pe->phb->global_number, pe->addr); |
| return ret; |
| } |
| |
| ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA); |
| if (ret) { |
| pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n", |
| __func__, ret, pe->phb->global_number, pe->addr); |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| |
| static struct pci_device_id eeh_reset_ids[] = { |
| { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */ |
| { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */ |
| { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */ |
| { 0 } |
| }; |
| |
| static int eeh_pe_change_owner(struct eeh_pe *pe) |
| { |
| struct eeh_dev *edev, *tmp; |
| struct pci_dev *pdev; |
| struct pci_device_id *id; |
| int ret; |
| |
| /* Check PE state */ |
| ret = eeh_ops->get_state(pe, NULL); |
| if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT) |
| return 0; |
| |
| /* Unfrozen PE, nothing to do */ |
| if (eeh_state_active(ret)) |
| return 0; |
| |
| /* Frozen PE, check if it needs PE level reset */ |
| eeh_pe_for_each_dev(pe, edev, tmp) { |
| pdev = eeh_dev_to_pci_dev(edev); |
| if (!pdev) |
| continue; |
| |
| for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) { |
| if (id->vendor != PCI_ANY_ID && |
| id->vendor != pdev->vendor) |
| continue; |
| if (id->device != PCI_ANY_ID && |
| id->device != pdev->device) |
| continue; |
| if (id->subvendor != PCI_ANY_ID && |
| id->subvendor != pdev->subsystem_vendor) |
| continue; |
| if (id->subdevice != PCI_ANY_ID && |
| id->subdevice != pdev->subsystem_device) |
| continue; |
| |
| return eeh_pe_reset_and_recover(pe); |
| } |
| } |
| |
| ret = eeh_unfreeze_pe(pe); |
| if (!ret) |
| eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true); |
| return ret; |
| } |
| |
| /** |
| * eeh_dev_open - Increase count of pass through devices for PE |
| * @pdev: PCI device |
| * |
| * Increase count of passed through devices for the indicated |
| * PE. In the result, the EEH errors detected on the PE won't be |
| * reported. The PE owner will be responsible for detection |
| * and recovery. |
| */ |
| int eeh_dev_open(struct pci_dev *pdev) |
| { |
| struct eeh_dev *edev; |
| int ret = -ENODEV; |
| |
| mutex_lock(&eeh_dev_mutex); |
| |
| /* No PCI device ? */ |
| if (!pdev) |
| goto out; |
| |
| /* No EEH device or PE ? */ |
| edev = pci_dev_to_eeh_dev(pdev); |
| if (!edev || !edev->pe) |
| goto out; |
| |
| /* |
| * The PE might have been put into frozen state, but we |
| * didn't detect that yet. The passed through PCI devices |
| * in frozen PE won't work properly. Clear the frozen state |
| * in advance. |
| */ |
| ret = eeh_pe_change_owner(edev->pe); |
| if (ret) |
| goto out; |
| |
| /* Increase PE's pass through count */ |
| atomic_inc(&edev->pe->pass_dev_cnt); |
| mutex_unlock(&eeh_dev_mutex); |
| |
| return 0; |
| out: |
| mutex_unlock(&eeh_dev_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_dev_open); |
| |
| /** |
| * eeh_dev_release - Decrease count of pass through devices for PE |
| * @pdev: PCI device |
| * |
| * Decrease count of pass through devices for the indicated PE. If |
| * there is no passed through device in PE, the EEH errors detected |
| * on the PE will be reported and handled as usual. |
| */ |
| void eeh_dev_release(struct pci_dev *pdev) |
| { |
| struct eeh_dev *edev; |
| |
| mutex_lock(&eeh_dev_mutex); |
| |
| /* No PCI device ? */ |
| if (!pdev) |
| goto out; |
| |
| /* No EEH device ? */ |
| edev = pci_dev_to_eeh_dev(pdev); |
| if (!edev || !edev->pe || !eeh_pe_passed(edev->pe)) |
| goto out; |
| |
| /* Decrease PE's pass through count */ |
| WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0); |
| eeh_pe_change_owner(edev->pe); |
| out: |
| mutex_unlock(&eeh_dev_mutex); |
| } |
| EXPORT_SYMBOL(eeh_dev_release); |
| |
| #ifdef CONFIG_IOMMU_API |
| |
| static int dev_has_iommu_table(struct device *dev, void *data) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct pci_dev **ppdev = data; |
| |
| if (!dev) |
| return 0; |
| |
| if (device_iommu_mapped(dev)) { |
| *ppdev = pdev; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE |
| * @group: IOMMU group |
| * |
| * The routine is called to convert IOMMU group to EEH PE. |
| */ |
| struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group) |
| { |
| struct pci_dev *pdev = NULL; |
| struct eeh_dev *edev; |
| int ret; |
| |
| /* No IOMMU group ? */ |
| if (!group) |
| return NULL; |
| |
| ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table); |
| if (!ret || !pdev) |
| return NULL; |
| |
| /* No EEH device or PE ? */ |
| edev = pci_dev_to_eeh_dev(pdev); |
| if (!edev || !edev->pe) |
| return NULL; |
| |
| return edev->pe; |
| } |
| EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe); |
| |
| #endif /* CONFIG_IOMMU_API */ |
| |
| /** |
| * eeh_pe_set_option - Set options for the indicated PE |
| * @pe: EEH PE |
| * @option: requested option |
| * |
| * The routine is called to enable or disable EEH functionality |
| * on the indicated PE, to enable IO or DMA for the frozen PE. |
| */ |
| int eeh_pe_set_option(struct eeh_pe *pe, int option) |
| { |
| int ret = 0; |
| |
| /* Invalid PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| /* |
| * EEH functionality could possibly be disabled, just |
| * return error for the case. And the EEH functinality |
| * isn't expected to be disabled on one specific PE. |
| */ |
| switch (option) { |
| case EEH_OPT_ENABLE: |
| if (eeh_enabled()) { |
| ret = eeh_pe_change_owner(pe); |
| break; |
| } |
| ret = -EIO; |
| break; |
| case EEH_OPT_DISABLE: |
| break; |
| case EEH_OPT_THAW_MMIO: |
| case EEH_OPT_THAW_DMA: |
| case EEH_OPT_FREEZE_PE: |
| if (!eeh_ops || !eeh_ops->set_option) { |
| ret = -ENOENT; |
| break; |
| } |
| |
| ret = eeh_pci_enable(pe, option); |
| break; |
| default: |
| pr_debug("%s: Option %d out of range (%d, %d)\n", |
| __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_set_option); |
| |
| /** |
| * eeh_pe_get_state - Retrieve PE's state |
| * @pe: EEH PE |
| * |
| * Retrieve the PE's state, which includes 3 aspects: enabled |
| * DMA, enabled IO and asserted reset. |
| */ |
| int eeh_pe_get_state(struct eeh_pe *pe) |
| { |
| int result, ret = 0; |
| bool rst_active, dma_en, mmio_en; |
| |
| /* Existing PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| if (!eeh_ops || !eeh_ops->get_state) |
| return -ENOENT; |
| |
| /* |
| * If the parent PE is owned by the host kernel and is undergoing |
| * error recovery, we should return the PE state as temporarily |
| * unavailable so that the error recovery on the guest is suspended |
| * until the recovery completes on the host. |
| */ |
| if (pe->parent && |
| !(pe->state & EEH_PE_REMOVED) && |
| (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING))) |
| return EEH_PE_STATE_UNAVAIL; |
| |
| result = eeh_ops->get_state(pe, NULL); |
| rst_active = !!(result & EEH_STATE_RESET_ACTIVE); |
| dma_en = !!(result & EEH_STATE_DMA_ENABLED); |
| mmio_en = !!(result & EEH_STATE_MMIO_ENABLED); |
| |
| if (rst_active) |
| ret = EEH_PE_STATE_RESET; |
| else if (dma_en && mmio_en) |
| ret = EEH_PE_STATE_NORMAL; |
| else if (!dma_en && !mmio_en) |
| ret = EEH_PE_STATE_STOPPED_IO_DMA; |
| else if (!dma_en && mmio_en) |
| ret = EEH_PE_STATE_STOPPED_DMA; |
| else |
| ret = EEH_PE_STATE_UNAVAIL; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_get_state); |
| |
| static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed) |
| { |
| struct eeh_dev *edev, *tmp; |
| struct pci_dev *pdev; |
| int ret = 0; |
| |
| eeh_pe_restore_bars(pe); |
| |
| /* |
| * Reenable PCI devices as the devices passed |
| * through are always enabled before the reset. |
| */ |
| eeh_pe_for_each_dev(pe, edev, tmp) { |
| pdev = eeh_dev_to_pci_dev(edev); |
| if (!pdev) |
| continue; |
| |
| ret = pci_reenable_device(pdev); |
| if (ret) { |
| pr_warn("%s: Failure %d reenabling %s\n", |
| __func__, ret, pci_name(pdev)); |
| return ret; |
| } |
| } |
| |
| /* The PE is still in frozen state */ |
| if (include_passed || !eeh_pe_passed(pe)) { |
| ret = eeh_unfreeze_pe(pe); |
| } else |
| pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n", |
| pe->phb->global_number, pe->addr); |
| if (!ret) |
| eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed); |
| return ret; |
| } |
| |
| |
| /** |
| * eeh_pe_reset - Issue PE reset according to specified type |
| * @pe: EEH PE |
| * @option: reset type |
| * |
| * The routine is called to reset the specified PE with the |
| * indicated type, either fundamental reset or hot reset. |
| * PE reset is the most important part for error recovery. |
| */ |
| int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed) |
| { |
| int ret = 0; |
| |
| /* Invalid PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset) |
| return -ENOENT; |
| |
| switch (option) { |
| case EEH_RESET_DEACTIVATE: |
| ret = eeh_ops->reset(pe, option); |
| eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed); |
| if (ret) |
| break; |
| |
| ret = eeh_pe_reenable_devices(pe, include_passed); |
| break; |
| case EEH_RESET_HOT: |
| case EEH_RESET_FUNDAMENTAL: |
| /* |
| * Proactively freeze the PE to drop all MMIO access |
| * during reset, which should be banned as it's always |
| * cause recursive EEH error. |
| */ |
| eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| |
| eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| ret = eeh_ops->reset(pe, option); |
| break; |
| default: |
| pr_debug("%s: Unsupported option %d\n", |
| __func__, option); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_reset); |
| |
| /** |
| * eeh_pe_configure - Configure PCI bridges after PE reset |
| * @pe: EEH PE |
| * |
| * The routine is called to restore the PCI config space for |
| * those PCI devices, especially PCI bridges affected by PE |
| * reset issued previously. |
| */ |
| int eeh_pe_configure(struct eeh_pe *pe) |
| { |
| int ret = 0; |
| |
| /* Invalid PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_configure); |
| |
| /** |
| * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE |
| * @pe: the indicated PE |
| * @type: error type |
| * @function: error function |
| * @addr: address |
| * @mask: address mask |
| * |
| * The routine is called to inject the specified PCI error, which |
| * is determined by @type and @function, to the indicated PE for |
| * testing purpose. |
| */ |
| int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func, |
| unsigned long addr, unsigned long mask) |
| { |
| /* Invalid PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| /* Unsupported operation ? */ |
| if (!eeh_ops || !eeh_ops->err_inject) |
| return -ENOENT; |
| |
| /* Check on PCI error type */ |
| if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64) |
| return -EINVAL; |
| |
| /* Check on PCI error function */ |
| if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX) |
| return -EINVAL; |
| |
| return eeh_ops->err_inject(pe, type, func, addr, mask); |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_inject_err); |
| |
| static int proc_eeh_show(struct seq_file *m, void *v) |
| { |
| if (!eeh_enabled()) { |
| seq_printf(m, "EEH Subsystem is globally disabled\n"); |
| seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs); |
| } else { |
| seq_printf(m, "EEH Subsystem is enabled\n"); |
| seq_printf(m, |
| "no device=%llu\n" |
| "no device node=%llu\n" |
| "no config address=%llu\n" |
| "check not wanted=%llu\n" |
| "eeh_total_mmio_ffs=%llu\n" |
| "eeh_false_positives=%llu\n" |
| "eeh_slot_resets=%llu\n", |
| eeh_stats.no_device, |
| eeh_stats.no_dn, |
| eeh_stats.no_cfg_addr, |
| eeh_stats.ignored_check, |
| eeh_stats.total_mmio_ffs, |
| eeh_stats.false_positives, |
| eeh_stats.slot_resets); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int eeh_enable_dbgfs_set(void *data, u64 val) |
| { |
| if (val) |
| eeh_clear_flag(EEH_FORCE_DISABLED); |
| else |
| eeh_add_flag(EEH_FORCE_DISABLED); |
| |
| return 0; |
| } |
| |
| static int eeh_enable_dbgfs_get(void *data, u64 *val) |
| { |
| if (eeh_enabled()) |
| *val = 0x1ul; |
| else |
| *val = 0x0ul; |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get, |
| eeh_enable_dbgfs_set, "0x%llx\n"); |
| |
| static ssize_t eeh_force_recover_write(struct file *filp, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct pci_controller *hose; |
| uint32_t phbid, pe_no; |
| struct eeh_pe *pe; |
| char buf[20]; |
| int ret; |
| |
| ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); |
| if (!ret) |
| return -EFAULT; |
| |
| /* |
| * When PE is NULL the event is a "special" event. Rather than |
| * recovering a specific PE it forces the EEH core to scan for failed |
| * PHBs and recovers each. This needs to be done before any device |
| * recoveries can occur. |
| */ |
| if (!strncmp(buf, "hwcheck", 7)) { |
| __eeh_send_failure_event(NULL); |
| return count; |
| } |
| |
| ret = sscanf(buf, "%x:%x", &phbid, &pe_no); |
| if (ret != 2) |
| return -EINVAL; |
| |
| hose = pci_find_controller_for_domain(phbid); |
| if (!hose) |
| return -ENODEV; |
| |
| /* Retrieve PE */ |
| pe = eeh_pe_get(hose, pe_no); |
| if (!pe) |
| return -ENODEV; |
| |
| /* |
| * We don't do any state checking here since the detection |
| * process is async to the recovery process. The recovery |
| * thread *should* not break even if we schedule a recovery |
| * from an odd state (e.g. PE removed, or recovery of a |
| * non-isolated PE) |
| */ |
| __eeh_send_failure_event(pe); |
| |
| return ret < 0 ? ret : count; |
| } |
| |
| static const struct file_operations eeh_force_recover_fops = { |
| .open = simple_open, |
| .llseek = no_llseek, |
| .write = eeh_force_recover_write, |
| }; |
| |
| static ssize_t eeh_debugfs_dev_usage(struct file *filp, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n"; |
| |
| return simple_read_from_buffer(user_buf, count, ppos, |
| usage, sizeof(usage) - 1); |
| } |
| |
| static ssize_t eeh_dev_check_write(struct file *filp, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| uint32_t domain, bus, dev, fn; |
| struct pci_dev *pdev; |
| struct eeh_dev *edev; |
| char buf[20]; |
| int ret; |
| |
| memset(buf, 0, sizeof(buf)); |
| ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count); |
| if (!ret) |
| return -EFAULT; |
| |
| ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn); |
| if (ret != 4) { |
| pr_err("%s: expected 4 args, got %d\n", __func__, ret); |
| return -EINVAL; |
| } |
| |
| pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn); |
| if (!pdev) |
| return -ENODEV; |
| |
| edev = pci_dev_to_eeh_dev(pdev); |
| if (!edev) { |
| pci_err(pdev, "No eeh_dev for this device!\n"); |
| pci_dev_put(pdev); |
| return -ENODEV; |
| } |
| |
| ret = eeh_dev_check_failure(edev); |
| pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n", |
| domain, bus, dev, fn, ret); |
| |
| pci_dev_put(pdev); |
| |
| return count; |
| } |
| |
| static const struct file_operations eeh_dev_check_fops = { |
| .open = simple_open, |
| .llseek = no_llseek, |
| .write = eeh_dev_check_write, |
| .read = eeh_debugfs_dev_usage, |
| }; |
| |
| static int eeh_debugfs_break_device(struct pci_dev *pdev) |
| { |
| struct resource *bar = NULL; |
| void __iomem *mapped; |
| u16 old, bit; |
| int i, pos; |
| |
| /* Do we have an MMIO BAR to disable? */ |
| for (i = 0; i <= PCI_STD_RESOURCE_END; i++) { |
| struct resource *r = &pdev->resource[i]; |
| |
| if (!r->flags || !r->start) |
| continue; |
| if (r->flags & IORESOURCE_IO) |
| continue; |
| if (r->flags & IORESOURCE_UNSET) |
| continue; |
| |
| bar = r; |
| break; |
| } |
| |
| if (!bar) { |
| pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n"); |
| return -ENXIO; |
| } |
| |
| pci_err(pdev, "Going to break: %pR\n", bar); |
| |
| if (pdev->is_virtfn) { |
| #ifndef CONFIG_PCI_IOV |
| return -ENXIO; |
| #else |
| /* |
| * VFs don't have a per-function COMMAND register, so the best |
| * we can do is clear the Memory Space Enable bit in the PF's |
| * SRIOV control reg. |
| * |
| * Unfortunately, this requires that we have a PF (i.e doesn't |
| * work for a passed-through VF) and it has the potential side |
| * effect of also causing an EEH on every other VF under the |
| * PF. Oh well. |
| */ |
| pdev = pdev->physfn; |
| if (!pdev) |
| return -ENXIO; /* passed through VFs have no PF */ |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); |
| pos += PCI_SRIOV_CTRL; |
| bit = PCI_SRIOV_CTRL_MSE; |
| #endif /* !CONFIG_PCI_IOV */ |
| } else { |
| bit = PCI_COMMAND_MEMORY; |
| pos = PCI_COMMAND; |
| } |
| |
| /* |
| * Process here is: |
| * |
| * 1. Disable Memory space. |
| * |
| * 2. Perform an MMIO to the device. This should result in an error |
| * (CA / UR) being raised by the device which results in an EEH |
| * PE freeze. Using the in_8() accessor skips the eeh detection hook |
| * so the freeze hook so the EEH Detection machinery won't be |
| * triggered here. This is to match the usual behaviour of EEH |
| * where the HW will asyncronously freeze a PE and it's up to |
| * the kernel to notice and deal with it. |
| * |
| * 3. Turn Memory space back on. This is more important for VFs |
| * since recovery will probably fail if we don't. For normal |
| * the COMMAND register is reset as a part of re-initialising |
| * the device. |
| * |
| * Breaking stuff is the point so who cares if it's racy ;) |
| */ |
| pci_read_config_word(pdev, pos, &old); |
| |
| mapped = ioremap(bar->start, PAGE_SIZE); |
| if (!mapped) { |
| pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar); |
| return -ENXIO; |
| } |
| |
| pci_write_config_word(pdev, pos, old & ~bit); |
| in_8(mapped); |
| pci_write_config_word(pdev, pos, old); |
| |
| iounmap(mapped); |
| |
| return 0; |
| } |
| |
| static ssize_t eeh_dev_break_write(struct file *filp, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| uint32_t domain, bus, dev, fn; |
| struct pci_dev *pdev; |
| char buf[20]; |
| int ret; |
| |
| memset(buf, 0, sizeof(buf)); |
| ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count); |
| if (!ret) |
| return -EFAULT; |
| |
| ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn); |
| if (ret != 4) { |
| pr_err("%s: expected 4 args, got %d\n", __func__, ret); |
| return -EINVAL; |
| } |
| |
| pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn); |
| if (!pdev) |
| return -ENODEV; |
| |
| ret = eeh_debugfs_break_device(pdev); |
| pci_dev_put(pdev); |
| |
| if (ret < 0) |
| return ret; |
| |
| return count; |
| } |
| |
| static const struct file_operations eeh_dev_break_fops = { |
| .open = simple_open, |
| .llseek = no_llseek, |
| .write = eeh_dev_break_write, |
| .read = eeh_debugfs_dev_usage, |
| }; |
| |
| #endif |
| |
| static int __init eeh_init_proc(void) |
| { |
| if (machine_is(pseries) || machine_is(powernv)) { |
| proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show); |
| #ifdef CONFIG_DEBUG_FS |
| debugfs_create_file_unsafe("eeh_enable", 0600, |
| powerpc_debugfs_root, NULL, |
| &eeh_enable_dbgfs_ops); |
| debugfs_create_u32("eeh_max_freezes", 0600, |
| powerpc_debugfs_root, &eeh_max_freezes); |
| debugfs_create_bool("eeh_disable_recovery", 0600, |
| powerpc_debugfs_root, |
| &eeh_debugfs_no_recover); |
| debugfs_create_file_unsafe("eeh_dev_check", 0600, |
| powerpc_debugfs_root, NULL, |
| &eeh_dev_check_fops); |
| debugfs_create_file_unsafe("eeh_dev_break", 0600, |
| powerpc_debugfs_root, NULL, |
| &eeh_dev_break_fops); |
| debugfs_create_file_unsafe("eeh_force_recover", 0600, |
| powerpc_debugfs_root, NULL, |
| &eeh_force_recover_fops); |
| eeh_cache_debugfs_init(); |
| #endif |
| } |
| |
| return 0; |
| } |
| __initcall(eeh_init_proc); |