| /* |
| * Netburst Performance Events (P4, old Xeon) |
| * |
| * Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org> |
| * Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com> |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/perf_event.h> |
| |
| #include <asm/perf_event_p4.h> |
| #include <asm/hardirq.h> |
| #include <asm/apic.h> |
| |
| #include "../perf_event.h" |
| |
| #define P4_CNTR_LIMIT 3 |
| /* |
| * array indices: 0,1 - HT threads, used with HT enabled cpu |
| */ |
| struct p4_event_bind { |
| unsigned int opcode; /* Event code and ESCR selector */ |
| unsigned int escr_msr[2]; /* ESCR MSR for this event */ |
| unsigned int escr_emask; /* valid ESCR EventMask bits */ |
| unsigned int shared; /* event is shared across threads */ |
| char cntr[2][P4_CNTR_LIMIT]; /* counter index (offset), -1 on abscence */ |
| }; |
| |
| struct p4_pebs_bind { |
| unsigned int metric_pebs; |
| unsigned int metric_vert; |
| }; |
| |
| /* it sets P4_PEBS_ENABLE_UOP_TAG as well */ |
| #define P4_GEN_PEBS_BIND(name, pebs, vert) \ |
| [P4_PEBS_METRIC__##name] = { \ |
| .metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG, \ |
| .metric_vert = vert, \ |
| } |
| |
| /* |
| * note we have P4_PEBS_ENABLE_UOP_TAG always set here |
| * |
| * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of |
| * event configuration to find out which values are to be |
| * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT |
| * resgisters |
| */ |
| static struct p4_pebs_bind p4_pebs_bind_map[] = { |
| P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired, 0x0000001, 0x0000001), |
| P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired, 0x0000002, 0x0000001), |
| P4_GEN_PEBS_BIND(dtlb_load_miss_retired, 0x0000004, 0x0000001), |
| P4_GEN_PEBS_BIND(dtlb_store_miss_retired, 0x0000004, 0x0000002), |
| P4_GEN_PEBS_BIND(dtlb_all_miss_retired, 0x0000004, 0x0000003), |
| P4_GEN_PEBS_BIND(tagged_mispred_branch, 0x0018000, 0x0000010), |
| P4_GEN_PEBS_BIND(mob_load_replay_retired, 0x0000200, 0x0000001), |
| P4_GEN_PEBS_BIND(split_load_retired, 0x0000400, 0x0000001), |
| P4_GEN_PEBS_BIND(split_store_retired, 0x0000400, 0x0000002), |
| }; |
| |
| /* |
| * Note that we don't use CCCR1 here, there is an |
| * exception for P4_BSQ_ALLOCATION but we just have |
| * no workaround |
| * |
| * consider this binding as resources which particular |
| * event may borrow, it doesn't contain EventMask, |
| * Tags and friends -- they are left to a caller |
| */ |
| static struct p4_event_bind p4_event_bind_map[] = { |
| [P4_EVENT_TC_DELIVER_MODE] = { |
| .opcode = P4_OPCODE(P4_EVENT_TC_DELIVER_MODE), |
| .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID), |
| .shared = 1, |
| .cntr = { {4, 5, -1}, {6, 7, -1} }, |
| }, |
| [P4_EVENT_BPU_FETCH_REQUEST] = { |
| .opcode = P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST), |
| .escr_msr = { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS), |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_ITLB_REFERENCE] = { |
| .opcode = P4_OPCODE(P4_EVENT_ITLB_REFERENCE), |
| .escr_msr = { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK), |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_MEMORY_CANCEL] = { |
| .opcode = P4_OPCODE(P4_EVENT_MEMORY_CANCEL), |
| .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF), |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_MEMORY_COMPLETE] = { |
| .opcode = P4_OPCODE(P4_EVENT_MEMORY_COMPLETE), |
| .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC), |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_LOAD_PORT_REPLAY] = { |
| .opcode = P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY), |
| .escr_msr = { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD), |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_STORE_PORT_REPLAY] = { |
| .opcode = P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY), |
| .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST), |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_MOB_LOAD_REPLAY] = { |
| .opcode = P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY), |
| .escr_msr = { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR), |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_PAGE_WALK_TYPE] = { |
| .opcode = P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE), |
| .escr_msr = { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS), |
| .shared = 1, |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_BSQ_CACHE_REFERENCE] = { |
| .opcode = P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE), |
| .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS), |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_IOQ_ALLOCATION] = { |
| .opcode = P4_OPCODE(P4_EVENT_IOQ_ALLOCATION), |
| .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH), |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_IOQ_ACTIVE_ENTRIES] = { /* shared ESCR */ |
| .opcode = P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES), |
| .escr_msr = { MSR_P4_FSB_ESCR1, MSR_P4_FSB_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH), |
| .cntr = { {2, -1, -1}, {3, -1, -1} }, |
| }, |
| [P4_EVENT_FSB_DATA_ACTIVITY] = { |
| .opcode = P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY), |
| .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER), |
| .shared = 1, |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_BSQ_ALLOCATION] = { /* shared ESCR, broken CCCR1 */ |
| .opcode = P4_OPCODE(P4_EVENT_BSQ_ALLOCATION), |
| .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2), |
| .cntr = { {0, -1, -1}, {1, -1, -1} }, |
| }, |
| [P4_EVENT_BSQ_ACTIVE_ENTRIES] = { /* shared ESCR */ |
| .opcode = P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES), |
| .escr_msr = { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2), |
| .cntr = { {2, -1, -1}, {3, -1, -1} }, |
| }, |
| [P4_EVENT_SSE_INPUT_ASSIST] = { |
| .opcode = P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST), |
| .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_PACKED_SP_UOP] = { |
| .opcode = P4_OPCODE(P4_EVENT_PACKED_SP_UOP), |
| .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_PACKED_DP_UOP] = { |
| .opcode = P4_OPCODE(P4_EVENT_PACKED_DP_UOP), |
| .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_SCALAR_SP_UOP] = { |
| .opcode = P4_OPCODE(P4_EVENT_SCALAR_SP_UOP), |
| .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_SCALAR_DP_UOP] = { |
| .opcode = P4_OPCODE(P4_EVENT_SCALAR_DP_UOP), |
| .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_64BIT_MMX_UOP] = { |
| .opcode = P4_OPCODE(P4_EVENT_64BIT_MMX_UOP), |
| .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_128BIT_MMX_UOP] = { |
| .opcode = P4_OPCODE(P4_EVENT_128BIT_MMX_UOP), |
| .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_X87_FP_UOP] = { |
| .opcode = P4_OPCODE(P4_EVENT_X87_FP_UOP), |
| .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_TC_MISC] = { |
| .opcode = P4_OPCODE(P4_EVENT_TC_MISC), |
| .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH), |
| .cntr = { {4, 5, -1}, {6, 7, -1} }, |
| }, |
| [P4_EVENT_GLOBAL_POWER_EVENTS] = { |
| .opcode = P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS), |
| .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING), |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_TC_MS_XFER] = { |
| .opcode = P4_OPCODE(P4_EVENT_TC_MS_XFER), |
| .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC), |
| .cntr = { {4, 5, -1}, {6, 7, -1} }, |
| }, |
| [P4_EVENT_UOP_QUEUE_WRITES] = { |
| .opcode = P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES), |
| .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM), |
| .cntr = { {4, 5, -1}, {6, 7, -1} }, |
| }, |
| [P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = { |
| .opcode = P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE), |
| .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT), |
| .cntr = { {4, 5, -1}, {6, 7, -1} }, |
| }, |
| [P4_EVENT_RETIRED_BRANCH_TYPE] = { |
| .opcode = P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE), |
| .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT), |
| .cntr = { {4, 5, -1}, {6, 7, -1} }, |
| }, |
| [P4_EVENT_RESOURCE_STALL] = { |
| .opcode = P4_OPCODE(P4_EVENT_RESOURCE_STALL), |
| .escr_msr = { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_WC_BUFFER] = { |
| .opcode = P4_OPCODE(P4_EVENT_WC_BUFFER), |
| .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS), |
| .shared = 1, |
| .cntr = { {8, 9, -1}, {10, 11, -1} }, |
| }, |
| [P4_EVENT_B2B_CYCLES] = { |
| .opcode = P4_OPCODE(P4_EVENT_B2B_CYCLES), |
| .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, |
| .escr_emask = 0, |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_BNR] = { |
| .opcode = P4_OPCODE(P4_EVENT_BNR), |
| .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, |
| .escr_emask = 0, |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_SNOOP] = { |
| .opcode = P4_OPCODE(P4_EVENT_SNOOP), |
| .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, |
| .escr_emask = 0, |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_RESPONSE] = { |
| .opcode = P4_OPCODE(P4_EVENT_RESPONSE), |
| .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, |
| .escr_emask = 0, |
| .cntr = { {0, -1, -1}, {2, -1, -1} }, |
| }, |
| [P4_EVENT_FRONT_END_EVENT] = { |
| .opcode = P4_OPCODE(P4_EVENT_FRONT_END_EVENT), |
| .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_EXECUTION_EVENT] = { |
| .opcode = P4_OPCODE(P4_EVENT_EXECUTION_EVENT), |
| .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_REPLAY_EVENT] = { |
| .opcode = P4_OPCODE(P4_EVENT_REPLAY_EVENT), |
| .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_INSTR_RETIRED] = { |
| .opcode = P4_OPCODE(P4_EVENT_INSTR_RETIRED), |
| .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_UOPS_RETIRED] = { |
| .opcode = P4_OPCODE(P4_EVENT_UOPS_RETIRED), |
| .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_UOP_TYPE] = { |
| .opcode = P4_OPCODE(P4_EVENT_UOP_TYPE), |
| .escr_msr = { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_BRANCH_RETIRED] = { |
| .opcode = P4_OPCODE(P4_EVENT_BRANCH_RETIRED), |
| .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_MISPRED_BRANCH_RETIRED] = { |
| .opcode = P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED), |
| .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_X87_ASSIST] = { |
| .opcode = P4_OPCODE(P4_EVENT_X87_ASSIST), |
| .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_MACHINE_CLEAR] = { |
| .opcode = P4_OPCODE(P4_EVENT_MACHINE_CLEAR), |
| .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| [P4_EVENT_INSTR_COMPLETED] = { |
| .opcode = P4_OPCODE(P4_EVENT_INSTR_COMPLETED), |
| .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, |
| .escr_emask = |
| P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS), |
| .cntr = { {12, 13, 16}, {14, 15, 17} }, |
| }, |
| }; |
| |
| #define P4_GEN_CACHE_EVENT(event, bit, metric) \ |
| p4_config_pack_escr(P4_ESCR_EVENT(event) | \ |
| P4_ESCR_EMASK_BIT(event, bit)) | \ |
| p4_config_pack_cccr(metric | \ |
| P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event)))) |
| |
| static __initconst const u64 p4_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, |
| P4_PEBS_METRIC__1stl_cache_load_miss_retired), |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, |
| P4_PEBS_METRIC__2ndl_cache_load_miss_retired), |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, |
| P4_PEBS_METRIC__dtlb_load_miss_retired), |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, |
| P4_PEBS_METRIC__dtlb_store_miss_retired), |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT, |
| P4_PEBS_METRIC__none), |
| [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS, |
| P4_PEBS_METRIC__none), |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| /* |
| * Because of Netburst being quite restricted in how many |
| * identical events may run simultaneously, we introduce event aliases, |
| * ie the different events which have the same functionality but |
| * utilize non-intersected resources (ESCR/CCCR/counter registers). |
| * |
| * This allow us to relax restrictions a bit and run two or more |
| * identical events together. |
| * |
| * Never set any custom internal bits such as P4_CONFIG_HT, |
| * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are |
| * either up to date automatically or not applicable at all. |
| */ |
| static struct p4_event_alias { |
| u64 original; |
| u64 alternative; |
| } p4_event_aliases[] = { |
| { |
| /* |
| * Non-halted cycles can be substituted with non-sleeping cycles (see |
| * Intel SDM Vol3b for details). We need this alias to be able |
| * to run nmi-watchdog and 'perf top' (or any other user space tool |
| * which is interested in running PERF_COUNT_HW_CPU_CYCLES) |
| * simultaneously. |
| */ |
| .original = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)), |
| .alternative = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)| |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)| |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)| |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)| |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))| |
| p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT | |
| P4_CCCR_COMPARE), |
| }, |
| }; |
| |
| static u64 p4_get_alias_event(u64 config) |
| { |
| u64 config_match; |
| int i; |
| |
| /* |
| * Only event with special mark is allowed, |
| * we're to be sure it didn't come as malformed |
| * RAW event. |
| */ |
| if (!(config & P4_CONFIG_ALIASABLE)) |
| return 0; |
| |
| config_match = config & P4_CONFIG_EVENT_ALIAS_MASK; |
| |
| for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) { |
| if (config_match == p4_event_aliases[i].original) { |
| config_match = p4_event_aliases[i].alternative; |
| break; |
| } else if (config_match == p4_event_aliases[i].alternative) { |
| config_match = p4_event_aliases[i].original; |
| break; |
| } |
| } |
| |
| if (i >= ARRAY_SIZE(p4_event_aliases)) |
| return 0; |
| |
| return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS); |
| } |
| |
| static u64 p4_general_events[PERF_COUNT_HW_MAX] = { |
| /* non-halted CPU clocks */ |
| [PERF_COUNT_HW_CPU_CYCLES] = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)) | |
| P4_CONFIG_ALIASABLE, |
| |
| /* |
| * retired instructions |
| * in a sake of simplicity we don't use the FSB tagging |
| */ |
| [PERF_COUNT_HW_INSTRUCTIONS] = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)), |
| |
| /* cache hits */ |
| [PERF_COUNT_HW_CACHE_REFERENCES] = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)), |
| |
| /* cache misses */ |
| [PERF_COUNT_HW_CACHE_MISSES] = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)), |
| |
| /* branch instructions retired */ |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)), |
| |
| /* mispredicted branches retired */ |
| [PERF_COUNT_HW_BRANCH_MISSES] = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)), |
| |
| /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN): */ |
| [PERF_COUNT_HW_BUS_CYCLES] = |
| p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) | |
| P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)) | |
| p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE), |
| }; |
| |
| static struct p4_event_bind *p4_config_get_bind(u64 config) |
| { |
| unsigned int evnt = p4_config_unpack_event(config); |
| struct p4_event_bind *bind = NULL; |
| |
| if (evnt < ARRAY_SIZE(p4_event_bind_map)) |
| bind = &p4_event_bind_map[evnt]; |
| |
| return bind; |
| } |
| |
| static u64 p4_pmu_event_map(int hw_event) |
| { |
| struct p4_event_bind *bind; |
| unsigned int esel; |
| u64 config; |
| |
| config = p4_general_events[hw_event]; |
| bind = p4_config_get_bind(config); |
| esel = P4_OPCODE_ESEL(bind->opcode); |
| config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel)); |
| |
| return config; |
| } |
| |
| /* check cpu model specifics */ |
| static bool p4_event_match_cpu_model(unsigned int event_idx) |
| { |
| /* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */ |
| if (event_idx == P4_EVENT_INSTR_COMPLETED) { |
| if (boot_cpu_data.x86_model != 3 && |
| boot_cpu_data.x86_model != 4 && |
| boot_cpu_data.x86_model != 6) |
| return false; |
| } |
| |
| /* |
| * For info |
| * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2 |
| */ |
| |
| return true; |
| } |
| |
| static int p4_validate_raw_event(struct perf_event *event) |
| { |
| unsigned int v, emask; |
| |
| /* User data may have out-of-bound event index */ |
| v = p4_config_unpack_event(event->attr.config); |
| if (v >= ARRAY_SIZE(p4_event_bind_map)) |
| return -EINVAL; |
| |
| /* It may be unsupported: */ |
| if (!p4_event_match_cpu_model(v)) |
| return -EINVAL; |
| |
| /* |
| * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as |
| * in Architectural Performance Monitoring, it means not |
| * on _which_ logical cpu to count but rather _when_, ie it |
| * depends on logical cpu state -- count event if one cpu active, |
| * none, both or any, so we just allow user to pass any value |
| * desired. |
| * |
| * In turn we always set Tx_OS/Tx_USR bits bound to logical |
| * cpu without their propagation to another cpu |
| */ |
| |
| /* |
| * if an event is shared across the logical threads |
| * the user needs special permissions to be able to use it |
| */ |
| if (p4_ht_active() && p4_event_bind_map[v].shared) { |
| if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| } |
| |
| /* ESCR EventMask bits may be invalid */ |
| emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK; |
| if (emask & ~p4_event_bind_map[v].escr_emask) |
| return -EINVAL; |
| |
| /* |
| * it may have some invalid PEBS bits |
| */ |
| if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE)) |
| return -EINVAL; |
| |
| v = p4_config_unpack_metric(event->attr.config); |
| if (v >= ARRAY_SIZE(p4_pebs_bind_map)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int p4_hw_config(struct perf_event *event) |
| { |
| int cpu = get_cpu(); |
| int rc = 0; |
| u32 escr, cccr; |
| |
| /* |
| * the reason we use cpu that early is that: if we get scheduled |
| * first time on the same cpu -- we will not need swap thread |
| * specific flags in config (and will save some cpu cycles) |
| */ |
| |
| cccr = p4_default_cccr_conf(cpu); |
| escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel, |
| event->attr.exclude_user); |
| event->hw.config = p4_config_pack_escr(escr) | |
| p4_config_pack_cccr(cccr); |
| |
| if (p4_ht_active() && p4_ht_thread(cpu)) |
| event->hw.config = p4_set_ht_bit(event->hw.config); |
| |
| if (event->attr.type == PERF_TYPE_RAW) { |
| struct p4_event_bind *bind; |
| unsigned int esel; |
| /* |
| * Clear bits we reserve to be managed by kernel itself |
| * and never allowed from a user space |
| */ |
| event->attr.config &= P4_CONFIG_MASK; |
| |
| rc = p4_validate_raw_event(event); |
| if (rc) |
| goto out; |
| |
| /* |
| * Note that for RAW events we allow user to use P4_CCCR_RESERVED |
| * bits since we keep additional info here (for cache events and etc) |
| */ |
| event->hw.config |= event->attr.config; |
| bind = p4_config_get_bind(event->attr.config); |
| if (!bind) { |
| rc = -EINVAL; |
| goto out; |
| } |
| esel = P4_OPCODE_ESEL(bind->opcode); |
| event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel)); |
| } |
| |
| rc = x86_setup_perfctr(event); |
| out: |
| put_cpu(); |
| return rc; |
| } |
| |
| static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc) |
| { |
| u64 v; |
| |
| /* an official way for overflow indication */ |
| rdmsrl(hwc->config_base, v); |
| if (v & P4_CCCR_OVF) { |
| wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF); |
| return 1; |
| } |
| |
| /* |
| * In some circumstances the overflow might issue an NMI but did |
| * not set P4_CCCR_OVF bit. Because a counter holds a negative value |
| * we simply check for high bit being set, if it's cleared it means |
| * the counter has reached zero value and continued counting before |
| * real NMI signal was received: |
| */ |
| rdmsrl(hwc->event_base, v); |
| if (!(v & ARCH_P4_UNFLAGGED_BIT)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void p4_pmu_disable_pebs(void) |
| { |
| /* |
| * FIXME |
| * |
| * It's still allowed that two threads setup same cache |
| * events so we can't simply clear metrics until we knew |
| * no one is depending on us, so we need kind of counter |
| * for "ReplayEvent" users. |
| * |
| * What is more complex -- RAW events, if user (for some |
| * reason) will pass some cache event metric with improper |
| * event opcode -- it's fine from hardware point of view |
| * but completely nonsense from "meaning" of such action. |
| * |
| * So at moment let leave metrics turned on forever -- it's |
| * ok for now but need to be revisited! |
| * |
| * (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, 0); |
| * (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, 0); |
| */ |
| } |
| |
| static inline void p4_pmu_disable_event(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* |
| * If event gets disabled while counter is in overflowed |
| * state we need to clear P4_CCCR_OVF, otherwise interrupt get |
| * asserted again and again |
| */ |
| (void)wrmsrl_safe(hwc->config_base, |
| p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED); |
| } |
| |
| static void p4_pmu_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int idx; |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| struct perf_event *event = cpuc->events[idx]; |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| p4_pmu_disable_event(event); |
| } |
| |
| p4_pmu_disable_pebs(); |
| } |
| |
| /* configuration must be valid */ |
| static void p4_pmu_enable_pebs(u64 config) |
| { |
| struct p4_pebs_bind *bind; |
| unsigned int idx; |
| |
| BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK); |
| |
| idx = p4_config_unpack_metric(config); |
| if (idx == P4_PEBS_METRIC__none) |
| return; |
| |
| bind = &p4_pebs_bind_map[idx]; |
| |
| (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, (u64)bind->metric_pebs); |
| (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, (u64)bind->metric_vert); |
| } |
| |
| static void p4_pmu_enable_event(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int thread = p4_ht_config_thread(hwc->config); |
| u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config)); |
| unsigned int idx = p4_config_unpack_event(hwc->config); |
| struct p4_event_bind *bind; |
| u64 escr_addr, cccr; |
| |
| bind = &p4_event_bind_map[idx]; |
| escr_addr = bind->escr_msr[thread]; |
| |
| /* |
| * - we dont support cascaded counters yet |
| * - and counter 1 is broken (erratum) |
| */ |
| WARN_ON_ONCE(p4_is_event_cascaded(hwc->config)); |
| WARN_ON_ONCE(hwc->idx == 1); |
| |
| /* we need a real Event value */ |
| escr_conf &= ~P4_ESCR_EVENT_MASK; |
| escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode)); |
| |
| cccr = p4_config_unpack_cccr(hwc->config); |
| |
| /* |
| * it could be Cache event so we need to write metrics |
| * into additional MSRs |
| */ |
| p4_pmu_enable_pebs(hwc->config); |
| |
| (void)wrmsrl_safe(escr_addr, escr_conf); |
| (void)wrmsrl_safe(hwc->config_base, |
| (cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE); |
| } |
| |
| static void p4_pmu_enable_all(int added) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int idx; |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| struct perf_event *event = cpuc->events[idx]; |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| p4_pmu_enable_event(event); |
| } |
| } |
| |
| static int p4_pmu_handle_irq(struct pt_regs *regs) |
| { |
| struct perf_sample_data data; |
| struct cpu_hw_events *cpuc; |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| int idx, handled = 0; |
| u64 val; |
| |
| cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| int overflow; |
| |
| if (!test_bit(idx, cpuc->active_mask)) { |
| /* catch in-flight IRQs */ |
| if (__test_and_clear_bit(idx, cpuc->running)) |
| handled++; |
| continue; |
| } |
| |
| event = cpuc->events[idx]; |
| hwc = &event->hw; |
| |
| WARN_ON_ONCE(hwc->idx != idx); |
| |
| /* it might be unflagged overflow */ |
| overflow = p4_pmu_clear_cccr_ovf(hwc); |
| |
| val = x86_perf_event_update(event); |
| if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1)))) |
| continue; |
| |
| handled += overflow; |
| |
| /* event overflow for sure */ |
| perf_sample_data_init(&data, 0, hwc->last_period); |
| |
| if (!x86_perf_event_set_period(event)) |
| continue; |
| |
| |
| if (perf_event_overflow(event, &data, regs)) |
| x86_pmu_stop(event, 0); |
| } |
| |
| if (handled) |
| inc_irq_stat(apic_perf_irqs); |
| |
| /* |
| * When dealing with the unmasking of the LVTPC on P4 perf hw, it has |
| * been observed that the OVF bit flag has to be cleared first _before_ |
| * the LVTPC can be unmasked. |
| * |
| * The reason is the NMI line will continue to be asserted while the OVF |
| * bit is set. This causes a second NMI to generate if the LVTPC is |
| * unmasked before the OVF bit is cleared, leading to unknown NMI |
| * messages. |
| */ |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| |
| return handled; |
| } |
| |
| /* |
| * swap thread specific fields according to a thread |
| * we are going to run on |
| */ |
| static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu) |
| { |
| u32 escr, cccr; |
| |
| /* |
| * we either lucky and continue on same cpu or no HT support |
| */ |
| if (!p4_should_swap_ts(hwc->config, cpu)) |
| return; |
| |
| /* |
| * the event is migrated from an another logical |
| * cpu, so we need to swap thread specific flags |
| */ |
| |
| escr = p4_config_unpack_escr(hwc->config); |
| cccr = p4_config_unpack_cccr(hwc->config); |
| |
| if (p4_ht_thread(cpu)) { |
| cccr &= ~P4_CCCR_OVF_PMI_T0; |
| cccr |= P4_CCCR_OVF_PMI_T1; |
| if (escr & P4_ESCR_T0_OS) { |
| escr &= ~P4_ESCR_T0_OS; |
| escr |= P4_ESCR_T1_OS; |
| } |
| if (escr & P4_ESCR_T0_USR) { |
| escr &= ~P4_ESCR_T0_USR; |
| escr |= P4_ESCR_T1_USR; |
| } |
| hwc->config = p4_config_pack_escr(escr); |
| hwc->config |= p4_config_pack_cccr(cccr); |
| hwc->config |= P4_CONFIG_HT; |
| } else { |
| cccr &= ~P4_CCCR_OVF_PMI_T1; |
| cccr |= P4_CCCR_OVF_PMI_T0; |
| if (escr & P4_ESCR_T1_OS) { |
| escr &= ~P4_ESCR_T1_OS; |
| escr |= P4_ESCR_T0_OS; |
| } |
| if (escr & P4_ESCR_T1_USR) { |
| escr &= ~P4_ESCR_T1_USR; |
| escr |= P4_ESCR_T0_USR; |
| } |
| hwc->config = p4_config_pack_escr(escr); |
| hwc->config |= p4_config_pack_cccr(cccr); |
| hwc->config &= ~P4_CONFIG_HT; |
| } |
| } |
| |
| /* |
| * ESCR address hashing is tricky, ESCRs are not sequential |
| * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and |
| * the metric between any ESCRs is laid in range [0xa0,0xe1] |
| * |
| * so we make ~70% filled hashtable |
| */ |
| |
| #define P4_ESCR_MSR_BASE 0x000003a0 |
| #define P4_ESCR_MSR_MAX 0x000003e1 |
| #define P4_ESCR_MSR_TABLE_SIZE (P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1) |
| #define P4_ESCR_MSR_IDX(msr) (msr - P4_ESCR_MSR_BASE) |
| #define P4_ESCR_MSR_TABLE_ENTRY(msr) [P4_ESCR_MSR_IDX(msr)] = msr |
| |
| static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = { |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0), |
| P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1), |
| }; |
| |
| static int p4_get_escr_idx(unsigned int addr) |
| { |
| unsigned int idx = P4_ESCR_MSR_IDX(addr); |
| |
| if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE || |
| !p4_escr_table[idx] || |
| p4_escr_table[idx] != addr)) { |
| WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr); |
| return -1; |
| } |
| |
| return idx; |
| } |
| |
| static int p4_next_cntr(int thread, unsigned long *used_mask, |
| struct p4_event_bind *bind) |
| { |
| int i, j; |
| |
| for (i = 0; i < P4_CNTR_LIMIT; i++) { |
| j = bind->cntr[thread][i]; |
| if (j != -1 && !test_bit(j, used_mask)) |
| return j; |
| } |
| |
| return -1; |
| } |
| |
| static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) |
| { |
| unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; |
| unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)]; |
| int cpu = smp_processor_id(); |
| struct hw_perf_event *hwc; |
| struct p4_event_bind *bind; |
| unsigned int i, thread, num; |
| int cntr_idx, escr_idx; |
| u64 config_alias; |
| int pass; |
| |
| bitmap_zero(used_mask, X86_PMC_IDX_MAX); |
| bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE); |
| |
| for (i = 0, num = n; i < n; i++, num--) { |
| |
| hwc = &cpuc->event_list[i]->hw; |
| thread = p4_ht_thread(cpu); |
| pass = 0; |
| |
| again: |
| /* |
| * It's possible to hit a circular lock |
| * between original and alternative events |
| * if both are scheduled already. |
| */ |
| if (pass > 2) |
| goto done; |
| |
| bind = p4_config_get_bind(hwc->config); |
| escr_idx = p4_get_escr_idx(bind->escr_msr[thread]); |
| if (unlikely(escr_idx == -1)) |
| goto done; |
| |
| if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) { |
| cntr_idx = hwc->idx; |
| if (assign) |
| assign[i] = hwc->idx; |
| goto reserve; |
| } |
| |
| cntr_idx = p4_next_cntr(thread, used_mask, bind); |
| if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) { |
| /* |
| * Check whether an event alias is still available. |
| */ |
| config_alias = p4_get_alias_event(hwc->config); |
| if (!config_alias) |
| goto done; |
| hwc->config = config_alias; |
| pass++; |
| goto again; |
| } |
| /* |
| * Perf does test runs to see if a whole group can be assigned |
| * together succesfully. There can be multiple rounds of this. |
| * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config |
| * bits, such that the next round of group assignments will |
| * cause the above p4_should_swap_ts to pass instead of fail. |
| * This leads to counters exclusive to thread0 being used by |
| * thread1. |
| * |
| * Solve this with a cheap hack, reset the idx back to -1 to |
| * force a new lookup (p4_next_cntr) to get the right counter |
| * for the right thread. |
| * |
| * This probably doesn't comply with the general spirit of how |
| * perf wants to work, but P4 is special. :-( |
| */ |
| if (p4_should_swap_ts(hwc->config, cpu)) |
| hwc->idx = -1; |
| p4_pmu_swap_config_ts(hwc, cpu); |
| if (assign) |
| assign[i] = cntr_idx; |
| reserve: |
| set_bit(cntr_idx, used_mask); |
| set_bit(escr_idx, escr_mask); |
| } |
| |
| done: |
| return num ? -EINVAL : 0; |
| } |
| |
| PMU_FORMAT_ATTR(cccr, "config:0-31" ); |
| PMU_FORMAT_ATTR(escr, "config:32-62"); |
| PMU_FORMAT_ATTR(ht, "config:63" ); |
| |
| static struct attribute *intel_p4_formats_attr[] = { |
| &format_attr_cccr.attr, |
| &format_attr_escr.attr, |
| &format_attr_ht.attr, |
| NULL, |
| }; |
| |
| static __initconst const struct x86_pmu p4_pmu = { |
| .name = "Netburst P4/Xeon", |
| .handle_irq = p4_pmu_handle_irq, |
| .disable_all = p4_pmu_disable_all, |
| .enable_all = p4_pmu_enable_all, |
| .enable = p4_pmu_enable_event, |
| .disable = p4_pmu_disable_event, |
| .eventsel = MSR_P4_BPU_CCCR0, |
| .perfctr = MSR_P4_BPU_PERFCTR0, |
| .event_map = p4_pmu_event_map, |
| .max_events = ARRAY_SIZE(p4_general_events), |
| .get_event_constraints = x86_get_event_constraints, |
| /* |
| * IF HT disabled we may need to use all |
| * ARCH_P4_MAX_CCCR counters simulaneously |
| * though leave it restricted at moment assuming |
| * HT is on |
| */ |
| .num_counters = ARCH_P4_MAX_CCCR, |
| .apic = 1, |
| .cntval_bits = ARCH_P4_CNTRVAL_BITS, |
| .cntval_mask = ARCH_P4_CNTRVAL_MASK, |
| .max_period = (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1, |
| .hw_config = p4_hw_config, |
| .schedule_events = p4_pmu_schedule_events, |
| /* |
| * This handles erratum N15 in intel doc 249199-029, |
| * the counter may not be updated correctly on write |
| * so we need a second write operation to do the trick |
| * (the official workaround didn't work) |
| * |
| * the former idea is taken from OProfile code |
| */ |
| .perfctr_second_write = 1, |
| |
| .format_attrs = intel_p4_formats_attr, |
| }; |
| |
| __init int p4_pmu_init(void) |
| { |
| unsigned int low, high; |
| int i, reg; |
| |
| /* If we get stripped -- indexing fails */ |
| BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC); |
| |
| rdmsr(MSR_IA32_MISC_ENABLE, low, high); |
| if (!(low & (1 << 7))) { |
| pr_cont("unsupported Netburst CPU model %d ", |
| boot_cpu_data.x86_model); |
| return -ENODEV; |
| } |
| |
| memcpy(hw_cache_event_ids, p4_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| pr_cont("Netburst events, "); |
| |
| x86_pmu = p4_pmu; |
| |
| /* |
| * Even though the counters are configured to interrupt a particular |
| * logical processor when an overflow happens, testing has shown that |
| * on kdump kernels (which uses a single cpu), thread1's counter |
| * continues to run and will report an NMI on thread0. Due to the |
| * overflow bug, this leads to a stream of unknown NMIs. |
| * |
| * Solve this by zero'ing out the registers to mimic a reset. |
| */ |
| for (i = 0; i < x86_pmu.num_counters; i++) { |
| reg = x86_pmu_config_addr(i); |
| wrmsrl_safe(reg, 0ULL); |
| } |
| |
| return 0; |
| } |