| /* |
| * This contains encryption functions for per-file encryption. |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * Copyright (C) 2015, Motorola Mobility |
| * |
| * Written by Michael Halcrow, 2014. |
| * |
| * Filename encryption additions |
| * Uday Savagaonkar, 2014 |
| * Encryption policy handling additions |
| * Ildar Muslukhov, 2014 |
| * Add fscrypt_pullback_bio_page() |
| * Jaegeuk Kim, 2015. |
| * |
| * This has not yet undergone a rigorous security audit. |
| * |
| * The usage of AES-XTS should conform to recommendations in NIST |
| * Special Publication 800-38E and IEEE P1619/D16. |
| */ |
| |
| #include <linux/pagemap.h> |
| #include <linux/mempool.h> |
| #include <linux/module.h> |
| #include <linux/scatterlist.h> |
| #include <linux/ratelimit.h> |
| #include <linux/dcache.h> |
| #include <linux/namei.h> |
| #include <crypto/aes.h> |
| #include <crypto/skcipher.h> |
| #include "fscrypt_private.h" |
| |
| static unsigned int num_prealloc_crypto_pages = 32; |
| static unsigned int num_prealloc_crypto_ctxs = 128; |
| |
| module_param(num_prealloc_crypto_pages, uint, 0444); |
| MODULE_PARM_DESC(num_prealloc_crypto_pages, |
| "Number of crypto pages to preallocate"); |
| module_param(num_prealloc_crypto_ctxs, uint, 0444); |
| MODULE_PARM_DESC(num_prealloc_crypto_ctxs, |
| "Number of crypto contexts to preallocate"); |
| |
| static mempool_t *fscrypt_bounce_page_pool = NULL; |
| |
| static LIST_HEAD(fscrypt_free_ctxs); |
| static DEFINE_SPINLOCK(fscrypt_ctx_lock); |
| |
| static struct workqueue_struct *fscrypt_read_workqueue; |
| static DEFINE_MUTEX(fscrypt_init_mutex); |
| |
| static struct kmem_cache *fscrypt_ctx_cachep; |
| struct kmem_cache *fscrypt_info_cachep; |
| |
| void fscrypt_enqueue_decrypt_work(struct work_struct *work) |
| { |
| queue_work(fscrypt_read_workqueue, work); |
| } |
| EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work); |
| |
| /** |
| * fscrypt_release_ctx() - Releases an encryption context |
| * @ctx: The encryption context to release. |
| * |
| * If the encryption context was allocated from the pre-allocated pool, returns |
| * it to that pool. Else, frees it. |
| * |
| * If there's a bounce page in the context, this frees that. |
| */ |
| void fscrypt_release_ctx(struct fscrypt_ctx *ctx) |
| { |
| unsigned long flags; |
| |
| if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { |
| mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); |
| ctx->w.bounce_page = NULL; |
| } |
| ctx->w.control_page = NULL; |
| if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { |
| kmem_cache_free(fscrypt_ctx_cachep, ctx); |
| } else { |
| spin_lock_irqsave(&fscrypt_ctx_lock, flags); |
| list_add(&ctx->free_list, &fscrypt_free_ctxs); |
| spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); |
| } |
| } |
| EXPORT_SYMBOL(fscrypt_release_ctx); |
| |
| /** |
| * fscrypt_get_ctx() - Gets an encryption context |
| * @inode: The inode for which we are doing the crypto |
| * @gfp_flags: The gfp flag for memory allocation |
| * |
| * Allocates and initializes an encryption context. |
| * |
| * Return: An allocated and initialized encryption context on success; error |
| * value or NULL otherwise. |
| */ |
| struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) |
| { |
| struct fscrypt_ctx *ctx = NULL; |
| struct fscrypt_info *ci = inode->i_crypt_info; |
| unsigned long flags; |
| |
| if (ci == NULL) |
| return ERR_PTR(-ENOKEY); |
| |
| /* |
| * We first try getting the ctx from a free list because in |
| * the common case the ctx will have an allocated and |
| * initialized crypto tfm, so it's probably a worthwhile |
| * optimization. For the bounce page, we first try getting it |
| * from the kernel allocator because that's just about as fast |
| * as getting it from a list and because a cache of free pages |
| * should generally be a "last resort" option for a filesystem |
| * to be able to do its job. |
| */ |
| spin_lock_irqsave(&fscrypt_ctx_lock, flags); |
| ctx = list_first_entry_or_null(&fscrypt_free_ctxs, |
| struct fscrypt_ctx, free_list); |
| if (ctx) |
| list_del(&ctx->free_list); |
| spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); |
| if (!ctx) { |
| ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); |
| if (!ctx) |
| return ERR_PTR(-ENOMEM); |
| ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| } else { |
| ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| } |
| ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; |
| return ctx; |
| } |
| EXPORT_SYMBOL(fscrypt_get_ctx); |
| |
| int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, |
| u64 lblk_num, struct page *src_page, |
| struct page *dest_page, unsigned int len, |
| unsigned int offs, gfp_t gfp_flags) |
| { |
| struct { |
| __le64 index; |
| u8 padding[FS_IV_SIZE - sizeof(__le64)]; |
| } iv; |
| struct skcipher_request *req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| struct scatterlist dst, src; |
| struct fscrypt_info *ci = inode->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_ctfm; |
| int res = 0; |
| |
| BUG_ON(len == 0); |
| |
| BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE); |
| BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE); |
| iv.index = cpu_to_le64(lblk_num); |
| memset(iv.padding, 0, sizeof(iv.padding)); |
| |
| if (ci->ci_essiv_tfm != NULL) { |
| crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv, |
| (u8 *)&iv); |
| } |
| |
| req = skcipher_request_alloc(tfm, gfp_flags); |
| if (!req) |
| return -ENOMEM; |
| |
| skcipher_request_set_callback( |
| req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| |
| sg_init_table(&dst, 1); |
| sg_set_page(&dst, dest_page, len, offs); |
| sg_init_table(&src, 1); |
| sg_set_page(&src, src_page, len, offs); |
| skcipher_request_set_crypt(req, &src, &dst, len, &iv); |
| if (rw == FS_DECRYPT) |
| res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); |
| else |
| res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| skcipher_request_free(req); |
| if (res) { |
| fscrypt_err(inode->i_sb, |
| "%scryption failed for inode %lu, block %llu: %d", |
| (rw == FS_DECRYPT ? "de" : "en"), |
| inode->i_ino, lblk_num, res); |
| return res; |
| } |
| return 0; |
| } |
| |
| struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, |
| gfp_t gfp_flags) |
| { |
| ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); |
| if (ctx->w.bounce_page == NULL) |
| return ERR_PTR(-ENOMEM); |
| ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; |
| return ctx->w.bounce_page; |
| } |
| |
| /** |
| * fscypt_encrypt_page() - Encrypts a page |
| * @inode: The inode for which the encryption should take place |
| * @page: The page to encrypt. Must be locked for bounce-page |
| * encryption. |
| * @len: Length of data to encrypt in @page and encrypted |
| * data in returned page. |
| * @offs: Offset of data within @page and returned |
| * page holding encrypted data. |
| * @lblk_num: Logical block number. This must be unique for multiple |
| * calls with same inode, except when overwriting |
| * previously written data. |
| * @gfp_flags: The gfp flag for memory allocation |
| * |
| * Encrypts @page using the ctx encryption context. Performs encryption |
| * either in-place or into a newly allocated bounce page. |
| * Called on the page write path. |
| * |
| * Bounce page allocation is the default. |
| * In this case, the contents of @page are encrypted and stored in an |
| * allocated bounce page. @page has to be locked and the caller must call |
| * fscrypt_restore_control_page() on the returned ciphertext page to |
| * release the bounce buffer and the encryption context. |
| * |
| * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in |
| * fscrypt_operations. Here, the input-page is returned with its content |
| * encrypted. |
| * |
| * Return: A page with the encrypted content on success. Else, an |
| * error value or NULL. |
| */ |
| struct page *fscrypt_encrypt_page(const struct inode *inode, |
| struct page *page, |
| unsigned int len, |
| unsigned int offs, |
| u64 lblk_num, gfp_t gfp_flags) |
| |
| { |
| struct fscrypt_ctx *ctx; |
| struct page *ciphertext_page = page; |
| int err; |
| |
| BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); |
| |
| if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { |
| /* with inplace-encryption we just encrypt the page */ |
| err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, |
| ciphertext_page, len, offs, |
| gfp_flags); |
| if (err) |
| return ERR_PTR(err); |
| |
| return ciphertext_page; |
| } |
| |
| BUG_ON(!PageLocked(page)); |
| |
| ctx = fscrypt_get_ctx(inode, gfp_flags); |
| if (IS_ERR(ctx)) |
| return (struct page *)ctx; |
| |
| /* The encryption operation will require a bounce page. */ |
| ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); |
| if (IS_ERR(ciphertext_page)) |
| goto errout; |
| |
| ctx->w.control_page = page; |
| err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, |
| page, ciphertext_page, len, offs, |
| gfp_flags); |
| if (err) { |
| ciphertext_page = ERR_PTR(err); |
| goto errout; |
| } |
| SetPagePrivate(ciphertext_page); |
| set_page_private(ciphertext_page, (unsigned long)ctx); |
| lock_page(ciphertext_page); |
| return ciphertext_page; |
| |
| errout: |
| fscrypt_release_ctx(ctx); |
| return ciphertext_page; |
| } |
| EXPORT_SYMBOL(fscrypt_encrypt_page); |
| |
| /** |
| * fscrypt_decrypt_page() - Decrypts a page in-place |
| * @inode: The corresponding inode for the page to decrypt. |
| * @page: The page to decrypt. Must be locked in case |
| * it is a writeback page (FS_CFLG_OWN_PAGES unset). |
| * @len: Number of bytes in @page to be decrypted. |
| * @offs: Start of data in @page. |
| * @lblk_num: Logical block number. |
| * |
| * Decrypts page in-place using the ctx encryption context. |
| * |
| * Called from the read completion callback. |
| * |
| * Return: Zero on success, non-zero otherwise. |
| */ |
| int fscrypt_decrypt_page(const struct inode *inode, struct page *page, |
| unsigned int len, unsigned int offs, u64 lblk_num) |
| { |
| if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) |
| BUG_ON(!PageLocked(page)); |
| |
| return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, |
| len, offs, GFP_NOFS); |
| } |
| EXPORT_SYMBOL(fscrypt_decrypt_page); |
| |
| /* |
| * Validate dentries for encrypted directories to make sure we aren't |
| * potentially caching stale data after a key has been added or |
| * removed. |
| */ |
| static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) |
| { |
| struct dentry *dir; |
| int dir_has_key, cached_with_key; |
| |
| if (flags & LOOKUP_RCU) |
| return -ECHILD; |
| |
| dir = dget_parent(dentry); |
| if (!IS_ENCRYPTED(d_inode(dir))) { |
| dput(dir); |
| return 0; |
| } |
| |
| spin_lock(&dentry->d_lock); |
| cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; |
| spin_unlock(&dentry->d_lock); |
| dir_has_key = (d_inode(dir)->i_crypt_info != NULL); |
| dput(dir); |
| |
| /* |
| * If the dentry was cached without the key, and it is a |
| * negative dentry, it might be a valid name. We can't check |
| * if the key has since been made available due to locking |
| * reasons, so we fail the validation so ext4_lookup() can do |
| * this check. |
| * |
| * We also fail the validation if the dentry was created with |
| * the key present, but we no longer have the key, or vice versa. |
| */ |
| if ((!cached_with_key && d_is_negative(dentry)) || |
| (!cached_with_key && dir_has_key) || |
| (cached_with_key && !dir_has_key)) |
| return 0; |
| return 1; |
| } |
| |
| const struct dentry_operations fscrypt_d_ops = { |
| .d_revalidate = fscrypt_d_revalidate, |
| }; |
| |
| void fscrypt_restore_control_page(struct page *page) |
| { |
| struct fscrypt_ctx *ctx; |
| |
| ctx = (struct fscrypt_ctx *)page_private(page); |
| set_page_private(page, (unsigned long)NULL); |
| ClearPagePrivate(page); |
| unlock_page(page); |
| fscrypt_release_ctx(ctx); |
| } |
| EXPORT_SYMBOL(fscrypt_restore_control_page); |
| |
| static void fscrypt_destroy(void) |
| { |
| struct fscrypt_ctx *pos, *n; |
| |
| list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) |
| kmem_cache_free(fscrypt_ctx_cachep, pos); |
| INIT_LIST_HEAD(&fscrypt_free_ctxs); |
| mempool_destroy(fscrypt_bounce_page_pool); |
| fscrypt_bounce_page_pool = NULL; |
| } |
| |
| /** |
| * fscrypt_initialize() - allocate major buffers for fs encryption. |
| * @cop_flags: fscrypt operations flags |
| * |
| * We only call this when we start accessing encrypted files, since it |
| * results in memory getting allocated that wouldn't otherwise be used. |
| * |
| * Return: Zero on success, non-zero otherwise. |
| */ |
| int fscrypt_initialize(unsigned int cop_flags) |
| { |
| int i, res = -ENOMEM; |
| |
| /* No need to allocate a bounce page pool if this FS won't use it. */ |
| if (cop_flags & FS_CFLG_OWN_PAGES) |
| return 0; |
| |
| mutex_lock(&fscrypt_init_mutex); |
| if (fscrypt_bounce_page_pool) |
| goto already_initialized; |
| |
| for (i = 0; i < num_prealloc_crypto_ctxs; i++) { |
| struct fscrypt_ctx *ctx; |
| |
| ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); |
| if (!ctx) |
| goto fail; |
| list_add(&ctx->free_list, &fscrypt_free_ctxs); |
| } |
| |
| fscrypt_bounce_page_pool = |
| mempool_create_page_pool(num_prealloc_crypto_pages, 0); |
| if (!fscrypt_bounce_page_pool) |
| goto fail; |
| |
| already_initialized: |
| mutex_unlock(&fscrypt_init_mutex); |
| return 0; |
| fail: |
| fscrypt_destroy(); |
| mutex_unlock(&fscrypt_init_mutex); |
| return res; |
| } |
| |
| void fscrypt_msg(struct super_block *sb, const char *level, |
| const char *fmt, ...) |
| { |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| struct va_format vaf; |
| va_list args; |
| |
| if (!__ratelimit(&rs)) |
| return; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| if (sb) |
| printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf); |
| else |
| printk("%sfscrypt: %pV\n", level, &vaf); |
| va_end(args); |
| } |
| |
| /** |
| * fscrypt_init() - Set up for fs encryption. |
| */ |
| static int __init fscrypt_init(void) |
| { |
| /* |
| * Use an unbound workqueue to allow bios to be decrypted in parallel |
| * even when they happen to complete on the same CPU. This sacrifices |
| * locality, but it's worthwhile since decryption is CPU-intensive. |
| * |
| * Also use a high-priority workqueue to prioritize decryption work, |
| * which blocks reads from completing, over regular application tasks. |
| */ |
| fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", |
| WQ_UNBOUND | WQ_HIGHPRI, |
| num_online_cpus()); |
| if (!fscrypt_read_workqueue) |
| goto fail; |
| |
| fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); |
| if (!fscrypt_ctx_cachep) |
| goto fail_free_queue; |
| |
| fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); |
| if (!fscrypt_info_cachep) |
| goto fail_free_ctx; |
| |
| return 0; |
| |
| fail_free_ctx: |
| kmem_cache_destroy(fscrypt_ctx_cachep); |
| fail_free_queue: |
| destroy_workqueue(fscrypt_read_workqueue); |
| fail: |
| return -ENOMEM; |
| } |
| module_init(fscrypt_init) |
| |
| /** |
| * fscrypt_exit() - Shutdown the fs encryption system |
| */ |
| static void __exit fscrypt_exit(void) |
| { |
| fscrypt_destroy(); |
| |
| if (fscrypt_read_workqueue) |
| destroy_workqueue(fscrypt_read_workqueue); |
| kmem_cache_destroy(fscrypt_ctx_cachep); |
| kmem_cache_destroy(fscrypt_info_cachep); |
| |
| fscrypt_essiv_cleanup(); |
| } |
| module_exit(fscrypt_exit); |
| |
| MODULE_LICENSE("GPL"); |