blob: 7186382672b5eec605cba5ff491a7019914d304b [file] [log] [blame]
/*
* linux/arch/arm/mm/mmu.c
*
* Copyright (C) 1995-2005 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <linux/memblock.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
#include <linux/sizes.h>
#include <asm/cp15.h>
#include <asm/cputype.h>
#include <asm/sections.h>
#include <asm/cachetype.h>
#include <asm/fixmap.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp_plat.h>
#include <asm/tlb.h>
#include <asm/highmem.h>
#include <asm/system_info.h>
#include <asm/traps.h>
#include <asm/procinfo.h>
#include <asm/memory.h>
#include <asm/mach/arch.h>
#include <asm/mach/map.h>
#include <asm/mach/pci.h>
#include <asm/fixmap.h>
#include "mm.h"
#include "tcm.h"
/*
* empty_zero_page is a special page that is used for
* zero-initialized data and COW.
*/
struct page *empty_zero_page;
EXPORT_SYMBOL(empty_zero_page);
/*
* The pmd table for the upper-most set of pages.
*/
pmd_t *top_pmd;
pmdval_t user_pmd_table = _PAGE_USER_TABLE;
#define CPOLICY_UNCACHED 0
#define CPOLICY_BUFFERED 1
#define CPOLICY_WRITETHROUGH 2
#define CPOLICY_WRITEBACK 3
#define CPOLICY_WRITEALLOC 4
static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
pgprot_t pgprot_user;
pgprot_t pgprot_kernel;
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
EXPORT_SYMBOL(pgprot_user);
EXPORT_SYMBOL(pgprot_kernel);
struct cachepolicy {
const char policy[16];
unsigned int cr_mask;
pmdval_t pmd;
pteval_t pte;
pteval_t pte_s2;
};
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy) policy
#else
#define s2_policy(policy) 0
#endif
static struct cachepolicy cache_policies[] __initdata = {
{
.policy = "uncached",
.cr_mask = CR_W|CR_C,
.pmd = PMD_SECT_UNCACHED,
.pte = L_PTE_MT_UNCACHED,
.pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
}, {
.policy = "buffered",
.cr_mask = CR_C,
.pmd = PMD_SECT_BUFFERED,
.pte = L_PTE_MT_BUFFERABLE,
.pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
}, {
.policy = "writethrough",
.cr_mask = 0,
.pmd = PMD_SECT_WT,
.pte = L_PTE_MT_WRITETHROUGH,
.pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
}, {
.policy = "writeback",
.cr_mask = 0,
.pmd = PMD_SECT_WB,
.pte = L_PTE_MT_WRITEBACK,
.pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
}, {
.policy = "writealloc",
.cr_mask = 0,
.pmd = PMD_SECT_WBWA,
.pte = L_PTE_MT_WRITEALLOC,
.pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
}
};
#ifdef CONFIG_CPU_CP15
static unsigned long initial_pmd_value __initdata = 0;
/*
* Initialise the cache_policy variable with the initial state specified
* via the "pmd" value. This is used to ensure that on ARMv6 and later,
* the C code sets the page tables up with the same policy as the head
* assembly code, which avoids an illegal state where the TLBs can get
* confused. See comments in early_cachepolicy() for more information.
*/
void __init init_default_cache_policy(unsigned long pmd)
{
int i;
initial_pmd_value = pmd;
pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
if (cache_policies[i].pmd == pmd) {
cachepolicy = i;
break;
}
if (i == ARRAY_SIZE(cache_policies))
pr_err("ERROR: could not find cache policy\n");
}
/*
* These are useful for identifying cache coherency problems by allowing
* the cache or the cache and writebuffer to be turned off. (Note: the
* write buffer should not be on and the cache off).
*/
static int __init early_cachepolicy(char *p)
{
int i, selected = -1;
for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
int len = strlen(cache_policies[i].policy);
if (memcmp(p, cache_policies[i].policy, len) == 0) {
selected = i;
break;
}
}
if (selected == -1)
pr_err("ERROR: unknown or unsupported cache policy\n");
/*
* This restriction is partly to do with the way we boot; it is
* unpredictable to have memory mapped using two different sets of
* memory attributes (shared, type, and cache attribs). We can not
* change these attributes once the initial assembly has setup the
* page tables.
*/
if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
cache_policies[cachepolicy].policy);
return 0;
}
if (selected != cachepolicy) {
unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
cachepolicy = selected;
flush_cache_all();
set_cr(cr);
}
return 0;
}
early_param("cachepolicy", early_cachepolicy);
static int __init early_nocache(char *__unused)
{
char *p = "buffered";
pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
early_cachepolicy(p);
return 0;
}
early_param("nocache", early_nocache);
static int __init early_nowrite(char *__unused)
{
char *p = "uncached";
pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
early_cachepolicy(p);
return 0;
}
early_param("nowb", early_nowrite);
#ifndef CONFIG_ARM_LPAE
static int __init early_ecc(char *p)
{
if (memcmp(p, "on", 2) == 0)
ecc_mask = PMD_PROTECTION;
else if (memcmp(p, "off", 3) == 0)
ecc_mask = 0;
return 0;
}
early_param("ecc", early_ecc);
#endif
#else /* ifdef CONFIG_CPU_CP15 */
static int __init early_cachepolicy(char *p)
{
pr_warn("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);
static int __init noalign_setup(char *__unused)
{
pr_warn("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);
#endif /* ifdef CONFIG_CPU_CP15 / else */
#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
static struct mem_type mem_types[] = {
[MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
L_PTE_SHARED,
.prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
s2_policy(L_PTE_S2_MT_DEV_SHARED) |
L_PTE_SHARED,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
.domain = DOMAIN_IO,
},
[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PROT_SECT_DEVICE,
.domain = DOMAIN_IO,
},
[MT_DEVICE_CACHED] = { /* ioremap_cached */
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
.domain = DOMAIN_IO,
},
[MT_DEVICE_WC] = { /* ioremap_wc */
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PROT_SECT_DEVICE,
.domain = DOMAIN_IO,
},
[MT_UNCACHED] = {
.prot_pte = PROT_PTE_DEVICE,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
.domain = DOMAIN_IO,
},
[MT_CACHECLEAN] = {
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
.domain = DOMAIN_KERNEL,
},
#ifndef CONFIG_ARM_LPAE
[MT_MINICLEAN] = {
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
.domain = DOMAIN_KERNEL,
},
#endif
[MT_LOW_VECTORS] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_RDONLY,
.prot_l1 = PMD_TYPE_TABLE,
.domain = DOMAIN_USER,
},
[MT_HIGH_VECTORS] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_USER | L_PTE_RDONLY,
.prot_l1 = PMD_TYPE_TABLE,
.domain = DOMAIN_USER,
},
[MT_MEMORY_RWX] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
.domain = DOMAIN_KERNEL,
},
[MT_MEMORY_RW] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_XN,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
.domain = DOMAIN_KERNEL,
},
[MT_ROM] = {
.prot_sect = PMD_TYPE_SECT,
.domain = DOMAIN_KERNEL,
},
[MT_MEMORY_RWX_NONCACHED] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_MT_BUFFERABLE,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
.domain = DOMAIN_KERNEL,
},
[MT_MEMORY_RW_DTCM] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_XN,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
.domain = DOMAIN_KERNEL,
},
[MT_MEMORY_RWX_ITCM] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
.prot_l1 = PMD_TYPE_TABLE,
.domain = DOMAIN_KERNEL,
},
[MT_MEMORY_RW_SO] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_MT_UNCACHED | L_PTE_XN,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
PMD_SECT_UNCACHED | PMD_SECT_XN,
.domain = DOMAIN_KERNEL,
},
[MT_MEMORY_DMA_READY] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_XN,
.prot_l1 = PMD_TYPE_TABLE,
.domain = DOMAIN_KERNEL,
},
};
const struct mem_type *get_mem_type(unsigned int type)
{
return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
EXPORT_SYMBOL(get_mem_type);
/*
* To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
* As a result, this can only be called with preemption disabled, as under
* stop_machine().
*/
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
unsigned long vaddr = __fix_to_virt(idx);
pte_t *pte = pte_offset_kernel(pmd_off_k(vaddr), vaddr);
/* Make sure fixmap region does not exceed available allocation. */
BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
FIXADDR_END);
BUG_ON(idx >= __end_of_fixed_addresses);
if (pgprot_val(prot))
set_pte_at(NULL, vaddr, pte,
pfn_pte(phys >> PAGE_SHIFT, prot));
else
pte_clear(NULL, vaddr, pte);
local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}
/*
* Adjust the PMD section entries according to the CPU in use.
*/
static void __init build_mem_type_table(void)
{
struct cachepolicy *cp;
unsigned int cr = get_cr();
pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
int cpu_arch = cpu_architecture();
int i;
if (cpu_arch < CPU_ARCH_ARMv6) {
#if defined(CONFIG_CPU_DCACHE_DISABLE)
if (cachepolicy > CPOLICY_BUFFERED)
cachepolicy = CPOLICY_BUFFERED;
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
if (cachepolicy > CPOLICY_WRITETHROUGH)
cachepolicy = CPOLICY_WRITETHROUGH;
#endif
}
if (cpu_arch < CPU_ARCH_ARMv5) {
if (cachepolicy >= CPOLICY_WRITEALLOC)
cachepolicy = CPOLICY_WRITEBACK;
ecc_mask = 0;
}
if (is_smp()) {
if (cachepolicy != CPOLICY_WRITEALLOC) {
pr_warn("Forcing write-allocate cache policy for SMP\n");
cachepolicy = CPOLICY_WRITEALLOC;
}
if (!(initial_pmd_value & PMD_SECT_S)) {
pr_warn("Forcing shared mappings for SMP\n");
initial_pmd_value |= PMD_SECT_S;
}
}
/*
* Strip out features not present on earlier architectures.
* Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
* without extended page tables don't have the 'Shared' bit.
*/
if (cpu_arch < CPU_ARCH_ARMv5)
for (i = 0; i < ARRAY_SIZE(mem_types); i++)
mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
for (i = 0; i < ARRAY_SIZE(mem_types); i++)
mem_types[i].prot_sect &= ~PMD_SECT_S;
/*
* ARMv5 and lower, bit 4 must be set for page tables (was: cache
* "update-able on write" bit on ARM610). However, Xscale and
* Xscale3 require this bit to be cleared.
*/
if (cpu_is_xscale() || cpu_is_xsc3()) {
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
mem_types[i].prot_sect &= ~PMD_BIT4;
mem_types[i].prot_l1 &= ~PMD_BIT4;
}
} else if (cpu_arch < CPU_ARCH_ARMv6) {
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
if (mem_types[i].prot_l1)
mem_types[i].prot_l1 |= PMD_BIT4;
if (mem_types[i].prot_sect)
mem_types[i].prot_sect |= PMD_BIT4;
}
}
/*
* Mark the device areas according to the CPU/architecture.
*/
if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
if (!cpu_is_xsc3()) {
/*
* Mark device regions on ARMv6+ as execute-never
* to prevent speculative instruction fetches.
*/
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
/* Also setup NX memory mapping */
mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
}
if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
/*
* For ARMv7 with TEX remapping,
* - shared device is SXCB=1100
* - nonshared device is SXCB=0100
* - write combine device mem is SXCB=0001
* (Uncached Normal memory)
*/
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
} else if (cpu_is_xsc3()) {
/*
* For Xscale3,
* - shared device is TEXCB=00101
* - nonshared device is TEXCB=01000
* - write combine device mem is TEXCB=00100
* (Inner/Outer Uncacheable in xsc3 parlance)
*/
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
} else {
/*
* For ARMv6 and ARMv7 without TEX remapping,
* - shared device is TEXCB=00001
* - nonshared device is TEXCB=01000
* - write combine device mem is TEXCB=00100
* (Uncached Normal in ARMv6 parlance).
*/
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
}
} else {
/*
* On others, write combining is "Uncached/Buffered"
*/
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
}
/*
* Now deal with the memory-type mappings
*/
cp = &cache_policies[cachepolicy];
vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
s2_pgprot = cp->pte_s2;
hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
#ifndef CONFIG_ARM_LPAE
/*
* We don't use domains on ARMv6 (since this causes problems with
* v6/v7 kernels), so we must use a separate memory type for user
* r/o, kernel r/w to map the vectors page.
*/
if (cpu_arch == CPU_ARCH_ARMv6)
vecs_pgprot |= L_PTE_MT_VECTORS;
/*
* Check is it with support for the PXN bit
* in the Short-descriptor translation table format descriptors.
*/
if (cpu_arch == CPU_ARCH_ARMv7 &&
(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
user_pmd_table |= PMD_PXNTABLE;
}
#endif
/*
* ARMv6 and above have extended page tables.
*/
if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
#ifndef CONFIG_ARM_LPAE
/*
* Mark cache clean areas and XIP ROM read only
* from SVC mode and no access from userspace.
*/
mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
#endif
/*
* If the initial page tables were created with the S bit
* set, then we need to do the same here for the same
* reasons given in early_cachepolicy().
*/
if (initial_pmd_value & PMD_SECT_S) {
user_pgprot |= L_PTE_SHARED;
kern_pgprot |= L_PTE_SHARED;
vecs_pgprot |= L_PTE_SHARED;
s2_pgprot |= L_PTE_SHARED;
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
}
}
/*
* Non-cacheable Normal - intended for memory areas that must
* not cause dirty cache line writebacks when used
*/
if (cpu_arch >= CPU_ARCH_ARMv6) {
if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
/* Non-cacheable Normal is XCB = 001 */
mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
PMD_SECT_BUFFERED;
} else {
/* For both ARMv6 and non-TEX-remapping ARMv7 */
mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
PMD_SECT_TEX(1);
}
} else {
mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
}
#ifdef CONFIG_ARM_LPAE
/*
* Do not generate access flag faults for the kernel mappings.
*/
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
mem_types[i].prot_pte |= PTE_EXT_AF;
if (mem_types[i].prot_sect)
mem_types[i].prot_sect |= PMD_SECT_AF;
}
kern_pgprot |= PTE_EXT_AF;
vecs_pgprot |= PTE_EXT_AF;
/*
* Set PXN for user mappings
*/
user_pgprot |= PTE_EXT_PXN;
#endif
for (i = 0; i < 16; i++) {
pteval_t v = pgprot_val(protection_map[i]);
protection_map[i] = __pgprot(v | user_pgprot);
}
mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
L_PTE_DIRTY | kern_pgprot);
pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
pgprot_s2_device = __pgprot(s2_device_pgprot);
pgprot_hyp_device = __pgprot(hyp_device_pgprot);
mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
mem_types[MT_ROM].prot_sect |= cp->pmd;
switch (cp->pmd) {
case PMD_SECT_WT:
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
break;
case PMD_SECT_WB:
case PMD_SECT_WBWA:
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
break;
}
pr_info("Memory policy: %sData cache %s\n",
ecc_mask ? "ECC enabled, " : "", cp->policy);
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
struct mem_type *t = &mem_types[i];
if (t->prot_l1)
t->prot_l1 |= PMD_DOMAIN(t->domain);
if (t->prot_sect)
t->prot_sect |= PMD_DOMAIN(t->domain);
}
}
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
if (!pfn_valid(pfn))
return pgprot_noncached(vma_prot);
else if (file->f_flags & O_SYNC)
return pgprot_writecombine(vma_prot);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif
#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
{
void *ptr = __va(memblock_alloc(sz, align));
memset(ptr, 0, sz);
return ptr;
}
static void __init *early_alloc(unsigned long sz)
{
return early_alloc_aligned(sz, sz);
}
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
{
if (pmd_none(*pmd)) {
pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
__pmd_populate(pmd, __pa(pte), prot);
}
BUG_ON(pmd_bad(*pmd));
return pte_offset_kernel(pmd, addr);
}
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
unsigned long end, unsigned long pfn,
const struct mem_type *type)
{
pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
do {
set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
pfn++;
} while (pte++, addr += PAGE_SIZE, addr != end);
}
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
unsigned long end, phys_addr_t phys,
const struct mem_type *type)
{
pmd_t *p = pmd;
#ifndef CONFIG_ARM_LPAE
/*
* In classic MMU format, puds and pmds are folded in to
* the pgds. pmd_offset gives the PGD entry. PGDs refer to a
* group of L1 entries making up one logical pointer to
* an L2 table (2MB), where as PMDs refer to the individual
* L1 entries (1MB). Hence increment to get the correct
* offset for odd 1MB sections.
* (See arch/arm/include/asm/pgtable-2level.h)
*/
if (addr & SECTION_SIZE)
pmd++;
#endif
do {
*pmd = __pmd(phys | type->prot_sect);
phys += SECTION_SIZE;
} while (pmd++, addr += SECTION_SIZE, addr != end);
flush_pmd_entry(p);
}
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
unsigned long end, phys_addr_t phys,
const struct mem_type *type)
{
pmd_t *pmd = pmd_offset(pud, addr);
unsigned long next;
do {
/*
* With LPAE, we must loop over to map
* all the pmds for the given range.
*/
next = pmd_addr_end(addr, end);
/*
* Try a section mapping - addr, next and phys must all be
* aligned to a section boundary.
*/
if (type->prot_sect &&
((addr | next | phys) & ~SECTION_MASK) == 0) {
__map_init_section(pmd, addr, next, phys, type);
} else {
alloc_init_pte(pmd, addr, next,
__phys_to_pfn(phys), type);
}
phys += next - addr;
} while (pmd++, addr = next, addr != end);
}
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
unsigned long end, phys_addr_t phys,
const struct mem_type *type)
{
pud_t *pud = pud_offset(pgd, addr);
unsigned long next;
do {
next = pud_addr_end(addr, end);
alloc_init_pmd(pud, addr, next, phys, type);
phys += next - addr;
} while (pud++, addr = next, addr != end);
}
#ifndef CONFIG_ARM_LPAE
static void __init create_36bit_mapping(struct map_desc *md,
const struct mem_type *type)
{
unsigned long addr, length, end;
phys_addr_t phys;
pgd_t *pgd;
addr = md->virtual;
phys = __pfn_to_phys(md->pfn);
length = PAGE_ALIGN(md->length);
if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
(long long)__pfn_to_phys((u64)md->pfn), addr);
return;
}
/* N.B. ARMv6 supersections are only defined to work with domain 0.
* Since domain assignments can in fact be arbitrary, the
* 'domain == 0' check below is required to insure that ARMv6
* supersections are only allocated for domain 0 regardless
* of the actual domain assignments in use.
*/
if (type->domain) {
pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
(long long)__pfn_to_phys((u64)md->pfn), addr);
return;
}
if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
(long long)__pfn_to_phys((u64)md->pfn), addr);
return;
}
/*
* Shift bits [35:32] of address into bits [23:20] of PMD
* (See ARMv6 spec).
*/
phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
pgd = pgd_offset_k(addr);
end = addr + length;
do {
pud_t *pud = pud_offset(pgd, addr);
pmd_t *pmd = pmd_offset(pud, addr);
int i;
for (i = 0; i < 16; i++)
*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
addr += SUPERSECTION_SIZE;
phys += SUPERSECTION_SIZE;
pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
} while (addr != end);
}
#endif /* !CONFIG_ARM_LPAE */
/*
* Create the page directory entries and any necessary
* page tables for the mapping specified by `md'. We
* are able to cope here with varying sizes and address
* offsets, and we take full advantage of sections and
* supersections.
*/
static void __init create_mapping(struct map_desc *md)
{
unsigned long addr, length, end;
phys_addr_t phys;
const struct mem_type *type;
pgd_t *pgd;
if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
return;
}
if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
md->virtual >= PAGE_OFFSET &&
(md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
}
type = &mem_types[md->type];
#ifndef CONFIG_ARM_LPAE
/*
* Catch 36-bit addresses
*/
if (md->pfn >= 0x100000) {
create_36bit_mapping(md, type);
return;
}
#endif
addr = md->virtual & PAGE_MASK;
phys = __pfn_to_phys(md->pfn);
length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
(long long)__pfn_to_phys(md->pfn), addr);
return;
}
pgd = pgd_offset_k(addr);
end = addr + length;
do {
unsigned long next = pgd_addr_end(addr, end);
alloc_init_pud(pgd, addr, next, phys, type);
phys += next - addr;
addr = next;
} while (pgd++, addr != end);
}
/*
* Create the architecture specific mappings
*/
void __init iotable_init(struct map_desc *io_desc, int nr)
{
struct map_desc *md;
struct vm_struct *vm;
struct static_vm *svm;
if (!nr)
return;
svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
for (md = io_desc; nr; md++, nr--) {
create_mapping(md);
vm = &svm->vm;
vm->addr = (void *)(md->virtual & PAGE_MASK);
vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
vm->phys_addr = __pfn_to_phys(md->pfn);
vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
vm->flags |= VM_ARM_MTYPE(md->type);
vm->caller = iotable_init;
add_static_vm_early(svm++);
}
}
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
void *caller)
{
struct vm_struct *vm;
struct static_vm *svm;
svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
vm = &svm->vm;
vm->addr = (void *)addr;
vm->size = size;
vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
vm->caller = caller;
add_static_vm_early(svm);
}
#ifndef CONFIG_ARM_LPAE
/*
* The Linux PMD is made of two consecutive section entries covering 2MB
* (see definition in include/asm/pgtable-2level.h). However a call to
* create_mapping() may optimize static mappings by using individual
* 1MB section mappings. This leaves the actual PMD potentially half
* initialized if the top or bottom section entry isn't used, leaving it
* open to problems if a subsequent ioremap() or vmalloc() tries to use
* the virtual space left free by that unused section entry.
*
* Let's avoid the issue by inserting dummy vm entries covering the unused
* PMD halves once the static mappings are in place.
*/
static void __init pmd_empty_section_gap(unsigned long addr)
{
vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
}
static void __init fill_pmd_gaps(void)
{
struct static_vm *svm;
struct vm_struct *vm;
unsigned long addr, next = 0;
pmd_t *pmd;
list_for_each_entry(svm, &static_vmlist, list) {
vm = &svm->vm;
addr = (unsigned long)vm->addr;
if (addr < next)
continue;
/*
* Check if this vm starts on an odd section boundary.
* If so and the first section entry for this PMD is free
* then we block the corresponding virtual address.
*/
if ((addr & ~PMD_MASK) == SECTION_SIZE) {
pmd = pmd_off_k(addr);
if (pmd_none(*pmd))
pmd_empty_section_gap(addr & PMD_MASK);
}
/*
* Then check if this vm ends on an odd section boundary.
* If so and the second section entry for this PMD is empty
* then we block the corresponding virtual address.
*/
addr += vm->size;
if ((addr & ~PMD_MASK) == SECTION_SIZE) {
pmd = pmd_off_k(addr) + 1;
if (pmd_none(*pmd))
pmd_empty_section_gap(addr);
}
/* no need to look at any vm entry until we hit the next PMD */
next = (addr + PMD_SIZE - 1) & PMD_MASK;
}
}
#else
#define fill_pmd_gaps() do { } while (0)
#endif
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
struct static_vm *svm;
svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
if (svm)
return;
vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
struct map_desc map;
debug_ll_addr(&map.pfn, &map.virtual);
if (!map.pfn || !map.virtual)
return;
map.pfn = __phys_to_pfn(map.pfn);
map.virtual &= PAGE_MASK;
map.length = PAGE_SIZE;
map.type = MT_DEVICE;
iotable_init(&map, 1);
}
#endif
static void * __initdata vmalloc_min =
(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
/*
* vmalloc=size forces the vmalloc area to be exactly 'size'
* bytes. This can be used to increase (or decrease) the vmalloc
* area - the default is 240m.
*/
static int __init early_vmalloc(char *arg)
{
unsigned long vmalloc_reserve = memparse(arg, NULL);
if (vmalloc_reserve < SZ_16M) {
vmalloc_reserve = SZ_16M;
pr_warn("vmalloc area too small, limiting to %luMB\n",
vmalloc_reserve >> 20);
}
if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
pr_warn("vmalloc area is too big, limiting to %luMB\n",
vmalloc_reserve >> 20);
}
vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
return 0;
}
early_param("vmalloc", early_vmalloc);
phys_addr_t arm_lowmem_limit __initdata = 0;
void __init sanity_check_meminfo(void)
{
phys_addr_t memblock_limit = 0;
int highmem = 0;
phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
struct memblock_region *reg;
for_each_memblock(memory, reg) {
phys_addr_t block_start = reg->base;
phys_addr_t block_end = reg->base + reg->size;
phys_addr_t size_limit = reg->size;
if (reg->base >= vmalloc_limit)
highmem = 1;
else
size_limit = vmalloc_limit - reg->base;
if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
if (highmem) {
pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
&block_start, &block_end);
memblock_remove(reg->base, reg->size);
continue;
}
if (reg->size > size_limit) {
phys_addr_t overlap_size = reg->size - size_limit;
pr_notice("Truncating RAM at %pa-%pa to -%pa",
&block_start, &block_end, &vmalloc_limit);
memblock_remove(vmalloc_limit, overlap_size);
block_end = vmalloc_limit;
}
}
if (!highmem) {
if (block_end > arm_lowmem_limit) {
if (reg->size > size_limit)
arm_lowmem_limit = vmalloc_limit;
else
arm_lowmem_limit = block_end;
}
/*
* Find the first non-pmd-aligned page, and point
* memblock_limit at it. This relies on rounding the
* limit down to be pmd-aligned, which happens at the
* end of this function.
*
* With this algorithm, the start or end of almost any
* bank can be non-pmd-aligned. The only exception is
* that the start of the bank 0 must be section-
* aligned, since otherwise memory would need to be
* allocated when mapping the start of bank 0, which
* occurs before any free memory is mapped.
*/
if (!memblock_limit) {
if (!IS_ALIGNED(block_start, PMD_SIZE))
memblock_limit = block_start;
else if (!IS_ALIGNED(block_end, PMD_SIZE))
memblock_limit = arm_lowmem_limit;
}
}
}
high_memory = __va(arm_lowmem_limit - 1) + 1;
/*
* Round the memblock limit down to a pmd size. This
* helps to ensure that we will allocate memory from the
* last full pmd, which should be mapped.
*/
if (memblock_limit)
memblock_limit = round_down(memblock_limit, PMD_SIZE);
if (!memblock_limit)
memblock_limit = arm_lowmem_limit;
memblock_set_current_limit(memblock_limit);
}
static inline void prepare_page_table(void)
{
unsigned long addr;
phys_addr_t end;
/*
* Clear out all the mappings below the kernel image.
*/
for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
#ifdef CONFIG_XIP_KERNEL
/* The XIP kernel is mapped in the module area -- skip over it */
addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
#endif
for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
/*
* Find the end of the first block of lowmem.
*/
end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
if (end >= arm_lowmem_limit)
end = arm_lowmem_limit;
/*
* Clear out all the kernel space mappings, except for the first
* memory bank, up to the vmalloc region.
*/
for (addr = __phys_to_virt(end);
addr < VMALLOC_START; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
}
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
#endif
/*
* Reserve the special regions of memory
*/
void __init arm_mm_memblock_reserve(void)
{
/*
* Reserve the page tables. These are already in use,
* and can only be in node 0.
*/
memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
#ifdef CONFIG_SA1111
/*
* Because of the SA1111 DMA bug, we want to preserve our
* precious DMA-able memory...
*/
memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
#endif
}
/*
* Set up the device mappings. Since we clear out the page tables for all
* mappings above VMALLOC_START, we will remove any debug device mappings.
* This means you have to be careful how you debug this function, or any
* called function. This means you can't use any function or debugging
* method which may touch any device, otherwise the kernel _will_ crash.
*/
static void __init devicemaps_init(const struct machine_desc *mdesc)
{
struct map_desc map;
unsigned long addr;
void *vectors;
/*
* Allocate the vector page early.
*/
vectors = early_alloc(PAGE_SIZE * 2);
early_trap_init(vectors);
for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
/*
* Map the kernel if it is XIP.
* It is always first in the modulearea.
*/
#ifdef CONFIG_XIP_KERNEL
map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
map.virtual = MODULES_VADDR;
map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
map.type = MT_ROM;
create_mapping(&map);
#endif
/*
* Map the cache flushing regions.
*/
#ifdef FLUSH_BASE
map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
map.virtual = FLUSH_BASE;
map.length = SZ_1M;
map.type = MT_CACHECLEAN;
create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
map.virtual = FLUSH_BASE_MINICACHE;
map.length = SZ_1M;
map.type = MT_MINICLEAN;
create_mapping(&map);
#endif
/*
* Create a mapping for the machine vectors at the high-vectors
* location (0xffff0000). If we aren't using high-vectors, also
* create a mapping at the low-vectors virtual address.
*/
map.pfn = __phys_to_pfn(virt_to_phys(vectors));
map.virtual = 0xffff0000;
map.length = PAGE_SIZE;
#ifdef CONFIG_KUSER_HELPERS
map.type = MT_HIGH_VECTORS;
#else
map.type = MT_LOW_VECTORS;
#endif
create_mapping(&map);
if (!vectors_high()) {
map.virtual = 0;
map.length = PAGE_SIZE * 2;
map.type = MT_LOW_VECTORS;
create_mapping(&map);
}
/* Now create a kernel read-only mapping */
map.pfn += 1;
map.virtual = 0xffff0000 + PAGE_SIZE;
map.length = PAGE_SIZE;
map.type = MT_LOW_VECTORS;
create_mapping(&map);
/*
* Ask the machine support to map in the statically mapped devices.
*/
if (mdesc->map_io)
mdesc->map_io();
else
debug_ll_io_init();
fill_pmd_gaps();
/* Reserve fixed i/o space in VMALLOC region */
pci_reserve_io();
/*
* Finally flush the caches and tlb to ensure that we're in a
* consistent state wrt the writebuffer. This also ensures that
* any write-allocated cache lines in the vector page are written
* back. After this point, we can start to touch devices again.
*/
local_flush_tlb_all();
flush_cache_all();
}
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
PKMAP_BASE, _PAGE_KERNEL_TABLE);
#endif
early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
_PAGE_KERNEL_TABLE);
}
static void __init map_lowmem(void)
{
struct memblock_region *reg;
phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
/* Map all the lowmem memory banks. */
for_each_memblock(memory, reg) {
phys_addr_t start = reg->base;
phys_addr_t end = start + reg->size;
struct map_desc map;
if (end > arm_lowmem_limit)
end = arm_lowmem_limit;
if (start >= end)
break;
if (end < kernel_x_start) {
map.pfn = __phys_to_pfn(start);
map.virtual = __phys_to_virt(start);
map.length = end - start;
map.type = MT_MEMORY_RWX;
create_mapping(&map);
} else if (start >= kernel_x_end) {
map.pfn = __phys_to_pfn(start);
map.virtual = __phys_to_virt(start);
map.length = end - start;
map.type = MT_MEMORY_RW;
create_mapping(&map);
} else {
/* This better cover the entire kernel */
if (start < kernel_x_start) {
map.pfn = __phys_to_pfn(start);
map.virtual = __phys_to_virt(start);
map.length = kernel_x_start - start;
map.type = MT_MEMORY_RW;
create_mapping(&map);
}
map.pfn = __phys_to_pfn(kernel_x_start);
map.virtual = __phys_to_virt(kernel_x_start);
map.length = kernel_x_end - kernel_x_start;
map.type = MT_MEMORY_RWX;
create_mapping(&map);
if (kernel_x_end < end) {
map.pfn = __phys_to_pfn(kernel_x_end);
map.virtual = __phys_to_virt(kernel_x_end);
map.length = end - kernel_x_end;
map.type = MT_MEMORY_RW;
create_mapping(&map);
}
}
}
}
#ifdef CONFIG_ARM_LPAE
/*
* early_paging_init() recreates boot time page table setup, allowing machines
* to switch over to a high (>4G) address space on LPAE systems
*/
void __init early_paging_init(const struct machine_desc *mdesc,
struct proc_info_list *procinfo)
{
pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
unsigned long map_start, map_end;
pgd_t *pgd0, *pgdk;
pud_t *pud0, *pudk, *pud_start;
pmd_t *pmd0, *pmdk;
phys_addr_t phys;
int i;
if (!(mdesc->init_meminfo))
return;
/* remap kernel code and data */
map_start = init_mm.start_code & PMD_MASK;
map_end = ALIGN(init_mm.brk, PMD_SIZE);
/* get a handle on things... */
pgd0 = pgd_offset_k(0);
pud_start = pud0 = pud_offset(pgd0, 0);
pmd0 = pmd_offset(pud0, 0);
pgdk = pgd_offset_k(map_start);
pudk = pud_offset(pgdk, map_start);
pmdk = pmd_offset(pudk, map_start);
mdesc->init_meminfo();
/* Run the patch stub to update the constants */
fixup_pv_table(&__pv_table_begin,
(&__pv_table_end - &__pv_table_begin) << 2);
/*
* Cache cleaning operations for self-modifying code
* We should clean the entries by MVA but running a
* for loop over every pv_table entry pointer would
* just complicate the code.
*/
flush_cache_louis();
dsb(ishst);
isb();
/*
* FIXME: This code is not architecturally compliant: we modify
* the mappings in-place, indeed while they are in use by this
* very same code. This may lead to unpredictable behaviour of
* the CPU.
*
* Even modifying the mappings in a separate page table does
* not resolve this.
*
* The architecture strongly recommends that when a mapping is
* changed, that it is changed by first going via an invalid
* mapping and back to the new mapping. This is to ensure that
* no TLB conflicts (caused by the TLB having more than one TLB
* entry match a translation) can occur. However, doing that
* here will result in unmapping the code we are running.
*/
pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
/*
* Remap level 1 table. This changes the physical addresses
* used to refer to the level 2 page tables to the high
* physical address alias, leaving everything else the same.
*/
for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
set_pud(pud0,
__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
pmd0 += PTRS_PER_PMD;
}
/*
* Remap the level 2 table, pointing the mappings at the high
* physical address alias of these pages.
*/
phys = __pa(map_start);
do {
*pmdk++ = __pmd(phys | pmdprot);
phys += PMD_SIZE;
} while (phys < map_end);
/*
* Ensure that the above updates are flushed out of the cache.
* This is not strictly correct; on a system where the caches
* are coherent with each other, but the MMU page table walks
* may not be coherent, flush_cache_all() may be a no-op, and
* this will fail.
*/
flush_cache_all();
/*
* Re-write the TTBR values to point them at the high physical
* alias of the page tables. We expect __va() will work on
* cpu_get_pgd(), which returns the value of TTBR0.
*/
cpu_switch_mm(pgd0, &init_mm);
cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
/* Finally flush any stale TLB values. */
local_flush_bp_all();
local_flush_tlb_all();
}
#else
void __init early_paging_init(const struct machine_desc *mdesc,
struct proc_info_list *procinfo)
{
if (mdesc->init_meminfo)
mdesc->init_meminfo();
}
#endif
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps, and sets up the zero page, bad page and bad page tables.
*/
void __init paging_init(const struct machine_desc *mdesc)
{
void *zero_page;
build_mem_type_table();
prepare_page_table();
map_lowmem();
dma_contiguous_remap();
devicemaps_init(mdesc);
kmap_init();
tcm_init();
top_pmd = pmd_off_k(0xffff0000);
/* allocate the zero page. */
zero_page = early_alloc(PAGE_SIZE);
bootmem_init();
empty_zero_page = virt_to_page(zero_page);
__flush_dcache_page(NULL, empty_zero_page);
}