| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/entry-kvm.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/kvm_host.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/fs.h> |
| #include <linux/mman.h> |
| #include <linux/sched.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_irqfd.h> |
| #include <linux/irqbypass.h> |
| #include <linux/sched/stat.h> |
| #include <linux/psci.h> |
| #include <trace/events/kvm.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace_arm.h" |
| |
| #include <linux/uaccess.h> |
| #include <asm/ptrace.h> |
| #include <asm/mman.h> |
| #include <asm/tlbflush.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cpufeature.h> |
| #include <asm/virt.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_nested.h> |
| #include <asm/kvm_pkvm.h> |
| #include <asm/kvm_ptrauth.h> |
| #include <asm/sections.h> |
| |
| #include <kvm/arm_hypercalls.h> |
| #include <kvm/arm_pmu.h> |
| #include <kvm/arm_psci.h> |
| |
| static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; |
| |
| enum kvm_wfx_trap_policy { |
| KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ |
| KVM_WFX_NOTRAP, |
| KVM_WFX_TRAP, |
| }; |
| |
| static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; |
| static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; |
| |
| DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); |
| |
| DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); |
| DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); |
| |
| DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); |
| |
| static bool vgic_present, kvm_arm_initialised; |
| |
| static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); |
| DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); |
| |
| bool is_kvm_arm_initialised(void) |
| { |
| return kvm_arm_initialised; |
| } |
| |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
| } |
| |
| /* |
| * This functions as an allow-list of protected VM capabilities. |
| * Features not explicitly allowed by this function are denied. |
| */ |
| static bool pkvm_ext_allowed(struct kvm *kvm, long ext) |
| { |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| case KVM_CAP_ARM_PSCI: |
| case KVM_CAP_ARM_PSCI_0_2: |
| case KVM_CAP_NR_VCPUS: |
| case KVM_CAP_MAX_VCPUS: |
| case KVM_CAP_MAX_VCPU_ID: |
| case KVM_CAP_MSI_DEVID: |
| case KVM_CAP_ARM_VM_IPA_SIZE: |
| case KVM_CAP_ARM_PMU_V3: |
| case KVM_CAP_ARM_SVE: |
| case KVM_CAP_ARM_PTRAUTH_ADDRESS: |
| case KVM_CAP_ARM_PTRAUTH_GENERIC: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
| struct kvm_enable_cap *cap) |
| { |
| int r = -EINVAL; |
| |
| if (cap->flags) |
| return -EINVAL; |
| |
| if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap)) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| case KVM_CAP_ARM_NISV_TO_USER: |
| r = 0; |
| set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, |
| &kvm->arch.flags); |
| break; |
| case KVM_CAP_ARM_MTE: |
| mutex_lock(&kvm->lock); |
| if (system_supports_mte() && !kvm->created_vcpus) { |
| r = 0; |
| set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); |
| } |
| mutex_unlock(&kvm->lock); |
| break; |
| case KVM_CAP_ARM_SYSTEM_SUSPEND: |
| r = 0; |
| set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); |
| break; |
| case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: |
| mutex_lock(&kvm->slots_lock); |
| /* |
| * To keep things simple, allow changing the chunk |
| * size only when no memory slots have been created. |
| */ |
| if (kvm_are_all_memslots_empty(kvm)) { |
| u64 new_cap = cap->args[0]; |
| |
| if (!new_cap || kvm_is_block_size_supported(new_cap)) { |
| r = 0; |
| kvm->arch.mmu.split_page_chunk_size = new_cap; |
| } |
| } |
| mutex_unlock(&kvm->slots_lock); |
| break; |
| default: |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_arm_default_max_vcpus(void) |
| { |
| return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; |
| } |
| |
| /** |
| * kvm_arch_init_vm - initializes a VM data structure |
| * @kvm: pointer to the KVM struct |
| */ |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| { |
| int ret; |
| |
| mutex_init(&kvm->arch.config_lock); |
| |
| #ifdef CONFIG_LOCKDEP |
| /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ |
| mutex_lock(&kvm->lock); |
| mutex_lock(&kvm->arch.config_lock); |
| mutex_unlock(&kvm->arch.config_lock); |
| mutex_unlock(&kvm->lock); |
| #endif |
| |
| kvm_init_nested(kvm); |
| |
| ret = kvm_share_hyp(kvm, kvm + 1); |
| if (ret) |
| return ret; |
| |
| ret = pkvm_init_host_vm(kvm); |
| if (ret) |
| goto err_unshare_kvm; |
| |
| if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { |
| ret = -ENOMEM; |
| goto err_unshare_kvm; |
| } |
| cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); |
| |
| ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); |
| if (ret) |
| goto err_free_cpumask; |
| |
| kvm_vgic_early_init(kvm); |
| |
| kvm_timer_init_vm(kvm); |
| |
| /* The maximum number of VCPUs is limited by the host's GIC model */ |
| kvm->max_vcpus = kvm_arm_default_max_vcpus(); |
| |
| kvm_arm_init_hypercalls(kvm); |
| |
| bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); |
| |
| return 0; |
| |
| err_free_cpumask: |
| free_cpumask_var(kvm->arch.supported_cpus); |
| err_unshare_kvm: |
| kvm_unshare_hyp(kvm, kvm + 1); |
| return ret; |
| } |
| |
| vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| { |
| return VM_FAULT_SIGBUS; |
| } |
| |
| void kvm_arch_create_vm_debugfs(struct kvm *kvm) |
| { |
| kvm_sys_regs_create_debugfs(kvm); |
| } |
| |
| static void kvm_destroy_mpidr_data(struct kvm *kvm) |
| { |
| struct kvm_mpidr_data *data; |
| |
| mutex_lock(&kvm->arch.config_lock); |
| |
| data = rcu_dereference_protected(kvm->arch.mpidr_data, |
| lockdep_is_held(&kvm->arch.config_lock)); |
| if (data) { |
| rcu_assign_pointer(kvm->arch.mpidr_data, NULL); |
| synchronize_rcu(); |
| kfree(data); |
| } |
| |
| mutex_unlock(&kvm->arch.config_lock); |
| } |
| |
| /** |
| * kvm_arch_destroy_vm - destroy the VM data structure |
| * @kvm: pointer to the KVM struct |
| */ |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| bitmap_free(kvm->arch.pmu_filter); |
| free_cpumask_var(kvm->arch.supported_cpus); |
| |
| kvm_vgic_destroy(kvm); |
| |
| if (is_protected_kvm_enabled()) |
| pkvm_destroy_hyp_vm(kvm); |
| |
| kvm_destroy_mpidr_data(kvm); |
| |
| kfree(kvm->arch.sysreg_masks); |
| kvm_destroy_vcpus(kvm); |
| |
| kvm_unshare_hyp(kvm, kvm + 1); |
| |
| kvm_arm_teardown_hypercalls(kvm); |
| } |
| |
| static bool kvm_has_full_ptr_auth(void) |
| { |
| bool apa, gpa, api, gpi, apa3, gpa3; |
| u64 isar1, isar2, val; |
| |
| /* |
| * Check that: |
| * |
| * - both Address and Generic auth are implemented for a given |
| * algorithm (Q5, IMPDEF or Q3) |
| * - only a single algorithm is implemented. |
| */ |
| if (!system_has_full_ptr_auth()) |
| return false; |
| |
| isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); |
| isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); |
| |
| apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); |
| val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); |
| gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); |
| |
| api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); |
| val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); |
| gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); |
| |
| apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); |
| val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); |
| gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); |
| |
| return (apa == gpa && api == gpi && apa3 == gpa3 && |
| (apa + api + apa3) == 1); |
| } |
| |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| { |
| int r; |
| |
| if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext)) |
| return 0; |
| |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| r = vgic_present; |
| break; |
| case KVM_CAP_IOEVENTFD: |
| case KVM_CAP_USER_MEMORY: |
| case KVM_CAP_SYNC_MMU: |
| case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: |
| case KVM_CAP_ONE_REG: |
| case KVM_CAP_ARM_PSCI: |
| case KVM_CAP_ARM_PSCI_0_2: |
| case KVM_CAP_READONLY_MEM: |
| case KVM_CAP_MP_STATE: |
| case KVM_CAP_IMMEDIATE_EXIT: |
| case KVM_CAP_VCPU_EVENTS: |
| case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: |
| case KVM_CAP_ARM_NISV_TO_USER: |
| case KVM_CAP_ARM_INJECT_EXT_DABT: |
| case KVM_CAP_SET_GUEST_DEBUG: |
| case KVM_CAP_VCPU_ATTRIBUTES: |
| case KVM_CAP_PTP_KVM: |
| case KVM_CAP_ARM_SYSTEM_SUSPEND: |
| case KVM_CAP_IRQFD_RESAMPLE: |
| case KVM_CAP_COUNTER_OFFSET: |
| r = 1; |
| break; |
| case KVM_CAP_SET_GUEST_DEBUG2: |
| return KVM_GUESTDBG_VALID_MASK; |
| case KVM_CAP_ARM_SET_DEVICE_ADDR: |
| r = 1; |
| break; |
| case KVM_CAP_NR_VCPUS: |
| /* |
| * ARM64 treats KVM_CAP_NR_CPUS differently from all other |
| * architectures, as it does not always bound it to |
| * KVM_CAP_MAX_VCPUS. It should not matter much because |
| * this is just an advisory value. |
| */ |
| r = min_t(unsigned int, num_online_cpus(), |
| kvm_arm_default_max_vcpus()); |
| break; |
| case KVM_CAP_MAX_VCPUS: |
| case KVM_CAP_MAX_VCPU_ID: |
| if (kvm) |
| r = kvm->max_vcpus; |
| else |
| r = kvm_arm_default_max_vcpus(); |
| break; |
| case KVM_CAP_MSI_DEVID: |
| if (!kvm) |
| r = -EINVAL; |
| else |
| r = kvm->arch.vgic.msis_require_devid; |
| break; |
| case KVM_CAP_ARM_USER_IRQ: |
| /* |
| * 1: EL1_VTIMER, EL1_PTIMER, and PMU. |
| * (bump this number if adding more devices) |
| */ |
| r = 1; |
| break; |
| case KVM_CAP_ARM_MTE: |
| r = system_supports_mte(); |
| break; |
| case KVM_CAP_STEAL_TIME: |
| r = kvm_arm_pvtime_supported(); |
| break; |
| case KVM_CAP_ARM_EL1_32BIT: |
| r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); |
| break; |
| case KVM_CAP_GUEST_DEBUG_HW_BPS: |
| r = get_num_brps(); |
| break; |
| case KVM_CAP_GUEST_DEBUG_HW_WPS: |
| r = get_num_wrps(); |
| break; |
| case KVM_CAP_ARM_PMU_V3: |
| r = kvm_arm_support_pmu_v3(); |
| break; |
| case KVM_CAP_ARM_INJECT_SERROR_ESR: |
| r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); |
| break; |
| case KVM_CAP_ARM_VM_IPA_SIZE: |
| r = get_kvm_ipa_limit(); |
| break; |
| case KVM_CAP_ARM_SVE: |
| r = system_supports_sve(); |
| break; |
| case KVM_CAP_ARM_PTRAUTH_ADDRESS: |
| case KVM_CAP_ARM_PTRAUTH_GENERIC: |
| r = kvm_has_full_ptr_auth(); |
| break; |
| case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: |
| if (kvm) |
| r = kvm->arch.mmu.split_page_chunk_size; |
| else |
| r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; |
| break; |
| case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: |
| r = kvm_supported_block_sizes(); |
| break; |
| case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: |
| r = BIT(0); |
| break; |
| default: |
| r = 0; |
| } |
| |
| return r; |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| return -EINVAL; |
| } |
| |
| struct kvm *kvm_arch_alloc_vm(void) |
| { |
| size_t sz = sizeof(struct kvm); |
| |
| if (!has_vhe()) |
| return kzalloc(sz, GFP_KERNEL_ACCOUNT); |
| |
| return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); |
| } |
| |
| int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) |
| { |
| if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) |
| return -EBUSY; |
| |
| if (id >= kvm->max_vcpus) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) |
| { |
| int err; |
| |
| spin_lock_init(&vcpu->arch.mp_state_lock); |
| |
| #ifdef CONFIG_LOCKDEP |
| /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ |
| mutex_lock(&vcpu->mutex); |
| mutex_lock(&vcpu->kvm->arch.config_lock); |
| mutex_unlock(&vcpu->kvm->arch.config_lock); |
| mutex_unlock(&vcpu->mutex); |
| #endif |
| |
| /* Force users to call KVM_ARM_VCPU_INIT */ |
| vcpu_clear_flag(vcpu, VCPU_INITIALIZED); |
| |
| vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; |
| |
| /* Set up the timer */ |
| kvm_timer_vcpu_init(vcpu); |
| |
| kvm_pmu_vcpu_init(vcpu); |
| |
| kvm_arm_reset_debug_ptr(vcpu); |
| |
| kvm_arm_pvtime_vcpu_init(&vcpu->arch); |
| |
| vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; |
| |
| /* |
| * This vCPU may have been created after mpidr_data was initialized. |
| * Throw out the pre-computed mappings if that is the case which forces |
| * KVM to fall back to iteratively searching the vCPUs. |
| */ |
| kvm_destroy_mpidr_data(vcpu->kvm); |
| |
| err = kvm_vgic_vcpu_init(vcpu); |
| if (err) |
| return err; |
| |
| return kvm_share_hyp(vcpu, vcpu + 1); |
| } |
| |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) |
| static_branch_dec(&userspace_irqchip_in_use); |
| |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); |
| kvm_timer_vcpu_terminate(vcpu); |
| kvm_pmu_vcpu_destroy(vcpu); |
| kvm_vgic_vcpu_destroy(vcpu); |
| kvm_arm_vcpu_destroy(vcpu); |
| } |
| |
| void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) |
| { |
| |
| } |
| |
| void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) |
| { |
| |
| } |
| |
| static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu_has_ptrauth(vcpu)) { |
| /* |
| * Either we're running running an L2 guest, and the API/APK |
| * bits come from L1's HCR_EL2, or API/APK are both set. |
| */ |
| if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { |
| u64 val; |
| |
| val = __vcpu_sys_reg(vcpu, HCR_EL2); |
| val &= (HCR_API | HCR_APK); |
| vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); |
| vcpu->arch.hcr_el2 |= val; |
| } else { |
| vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); |
| } |
| |
| /* |
| * Save the host keys if there is any chance for the guest |
| * to use pauth, as the entry code will reload the guest |
| * keys in that case. |
| * Protected mode is the exception to that rule, as the |
| * entry into the EL2 code eagerly switch back and forth |
| * between host and hyp keys (and kvm_hyp_ctxt is out of |
| * reach anyway). |
| */ |
| if (is_protected_kvm_enabled()) |
| return; |
| |
| if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { |
| struct kvm_cpu_context *ctxt; |
| ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); |
| ptrauth_save_keys(ctxt); |
| } |
| } |
| } |
| |
| static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) |
| { |
| if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) |
| return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; |
| |
| return single_task_running() && |
| (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || |
| vcpu->kvm->arch.vgic.nassgireq); |
| } |
| |
| static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) |
| { |
| if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) |
| return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; |
| |
| return single_task_running(); |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct kvm_s2_mmu *mmu; |
| int *last_ran; |
| |
| if (vcpu_has_nv(vcpu)) |
| kvm_vcpu_load_hw_mmu(vcpu); |
| |
| mmu = vcpu->arch.hw_mmu; |
| last_ran = this_cpu_ptr(mmu->last_vcpu_ran); |
| |
| /* |
| * We guarantee that both TLBs and I-cache are private to each |
| * vcpu. If detecting that a vcpu from the same VM has |
| * previously run on the same physical CPU, call into the |
| * hypervisor code to nuke the relevant contexts. |
| * |
| * We might get preempted before the vCPU actually runs, but |
| * over-invalidation doesn't affect correctness. |
| */ |
| if (*last_ran != vcpu->vcpu_idx) { |
| kvm_call_hyp(__kvm_flush_cpu_context, mmu); |
| *last_ran = vcpu->vcpu_idx; |
| } |
| |
| vcpu->cpu = cpu; |
| |
| kvm_vgic_load(vcpu); |
| kvm_timer_vcpu_load(vcpu); |
| if (has_vhe()) |
| kvm_vcpu_load_vhe(vcpu); |
| kvm_arch_vcpu_load_fp(vcpu); |
| kvm_vcpu_pmu_restore_guest(vcpu); |
| if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) |
| kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); |
| |
| if (kvm_vcpu_should_clear_twe(vcpu)) |
| vcpu->arch.hcr_el2 &= ~HCR_TWE; |
| else |
| vcpu->arch.hcr_el2 |= HCR_TWE; |
| |
| if (kvm_vcpu_should_clear_twi(vcpu)) |
| vcpu->arch.hcr_el2 &= ~HCR_TWI; |
| else |
| vcpu->arch.hcr_el2 |= HCR_TWI; |
| |
| vcpu_set_pauth_traps(vcpu); |
| |
| kvm_arch_vcpu_load_debug_state_flags(vcpu); |
| |
| if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) |
| vcpu_set_on_unsupported_cpu(vcpu); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| kvm_arch_vcpu_put_debug_state_flags(vcpu); |
| kvm_arch_vcpu_put_fp(vcpu); |
| if (has_vhe()) |
| kvm_vcpu_put_vhe(vcpu); |
| kvm_timer_vcpu_put(vcpu); |
| kvm_vgic_put(vcpu); |
| kvm_vcpu_pmu_restore_host(vcpu); |
| if (vcpu_has_nv(vcpu)) |
| kvm_vcpu_put_hw_mmu(vcpu); |
| kvm_arm_vmid_clear_active(); |
| |
| vcpu_clear_on_unsupported_cpu(vcpu); |
| vcpu->cpu = -1; |
| } |
| |
| static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) |
| { |
| WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); |
| kvm_make_request(KVM_REQ_SLEEP, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) |
| { |
| spin_lock(&vcpu->arch.mp_state_lock); |
| __kvm_arm_vcpu_power_off(vcpu); |
| spin_unlock(&vcpu->arch.mp_state_lock); |
| } |
| |
| bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) |
| { |
| return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; |
| } |
| |
| static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) |
| { |
| WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); |
| kvm_make_request(KVM_REQ_SUSPEND, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) |
| { |
| return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| *mp_state = READ_ONCE(vcpu->arch.mp_state); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| int ret = 0; |
| |
| spin_lock(&vcpu->arch.mp_state_lock); |
| |
| switch (mp_state->mp_state) { |
| case KVM_MP_STATE_RUNNABLE: |
| WRITE_ONCE(vcpu->arch.mp_state, *mp_state); |
| break; |
| case KVM_MP_STATE_STOPPED: |
| __kvm_arm_vcpu_power_off(vcpu); |
| break; |
| case KVM_MP_STATE_SUSPENDED: |
| kvm_arm_vcpu_suspend(vcpu); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| spin_unlock(&vcpu->arch.mp_state_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled |
| * @v: The VCPU pointer |
| * |
| * If the guest CPU is not waiting for interrupts or an interrupt line is |
| * asserted, the CPU is by definition runnable. |
| */ |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) |
| { |
| bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); |
| return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) |
| && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); |
| } |
| |
| bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
| { |
| return vcpu_mode_priv(vcpu); |
| } |
| |
| #ifdef CONFIG_GUEST_PERF_EVENTS |
| unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) |
| { |
| return *vcpu_pc(vcpu); |
| } |
| #endif |
| |
| static void kvm_init_mpidr_data(struct kvm *kvm) |
| { |
| struct kvm_mpidr_data *data = NULL; |
| unsigned long c, mask, nr_entries; |
| u64 aff_set = 0, aff_clr = ~0UL; |
| struct kvm_vcpu *vcpu; |
| |
| mutex_lock(&kvm->arch.config_lock); |
| |
| if (rcu_access_pointer(kvm->arch.mpidr_data) || |
| atomic_read(&kvm->online_vcpus) == 1) |
| goto out; |
| |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); |
| aff_set |= aff; |
| aff_clr &= aff; |
| } |
| |
| /* |
| * A significant bit can be either 0 or 1, and will only appear in |
| * aff_set. Use aff_clr to weed out the useless stuff. |
| */ |
| mask = aff_set ^ aff_clr; |
| nr_entries = BIT_ULL(hweight_long(mask)); |
| |
| /* |
| * Don't let userspace fool us. If we need more than a single page |
| * to describe the compressed MPIDR array, just fall back to the |
| * iterative method. Single vcpu VMs do not need this either. |
| */ |
| if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) |
| data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), |
| GFP_KERNEL_ACCOUNT); |
| |
| if (!data) |
| goto out; |
| |
| data->mpidr_mask = mask; |
| |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); |
| u16 index = kvm_mpidr_index(data, aff); |
| |
| data->cmpidr_to_idx[index] = c; |
| } |
| |
| rcu_assign_pointer(kvm->arch.mpidr_data, data); |
| out: |
| mutex_unlock(&kvm->arch.config_lock); |
| } |
| |
| /* |
| * Handle both the initialisation that is being done when the vcpu is |
| * run for the first time, as well as the updates that must be |
| * performed each time we get a new thread dealing with this vcpu. |
| */ |
| int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int ret; |
| |
| if (!kvm_vcpu_initialized(vcpu)) |
| return -ENOEXEC; |
| |
| if (!kvm_arm_vcpu_is_finalized(vcpu)) |
| return -EPERM; |
| |
| ret = kvm_arch_vcpu_run_map_fp(vcpu); |
| if (ret) |
| return ret; |
| |
| if (likely(vcpu_has_run_once(vcpu))) |
| return 0; |
| |
| kvm_init_mpidr_data(kvm); |
| |
| kvm_arm_vcpu_init_debug(vcpu); |
| |
| if (likely(irqchip_in_kernel(kvm))) { |
| /* |
| * Map the VGIC hardware resources before running a vcpu the |
| * first time on this VM. |
| */ |
| ret = kvm_vgic_map_resources(kvm); |
| if (ret) |
| return ret; |
| } |
| |
| if (vcpu_has_nv(vcpu)) { |
| ret = kvm_init_nv_sysregs(vcpu->kvm); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * This needs to happen after NV has imposed its own restrictions on |
| * the feature set |
| */ |
| kvm_calculate_traps(vcpu); |
| |
| ret = kvm_timer_enable(vcpu); |
| if (ret) |
| return ret; |
| |
| ret = kvm_arm_pmu_v3_enable(vcpu); |
| if (ret) |
| return ret; |
| |
| if (is_protected_kvm_enabled()) { |
| ret = pkvm_create_hyp_vm(kvm); |
| if (ret) |
| return ret; |
| } |
| |
| if (!irqchip_in_kernel(kvm)) { |
| /* |
| * Tell the rest of the code that there are userspace irqchip |
| * VMs in the wild. |
| */ |
| static_branch_inc(&userspace_irqchip_in_use); |
| } |
| |
| /* |
| * Initialize traps for protected VMs. |
| * NOTE: Move to run in EL2 directly, rather than via a hypercall, once |
| * the code is in place for first run initialization at EL2. |
| */ |
| if (kvm_vm_is_protected(kvm)) |
| kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); |
| |
| mutex_lock(&kvm->arch.config_lock); |
| set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); |
| mutex_unlock(&kvm->arch.config_lock); |
| |
| return ret; |
| } |
| |
| bool kvm_arch_intc_initialized(struct kvm *kvm) |
| { |
| return vgic_initialized(kvm); |
| } |
| |
| void kvm_arm_halt_guest(struct kvm *kvm) |
| { |
| unsigned long i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| vcpu->arch.pause = true; |
| kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); |
| } |
| |
| void kvm_arm_resume_guest(struct kvm *kvm) |
| { |
| unsigned long i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| vcpu->arch.pause = false; |
| __kvm_vcpu_wake_up(vcpu); |
| } |
| } |
| |
| static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) |
| { |
| struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); |
| |
| rcuwait_wait_event(wait, |
| (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), |
| TASK_INTERRUPTIBLE); |
| |
| if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { |
| /* Awaken to handle a signal, request we sleep again later. */ |
| kvm_make_request(KVM_REQ_SLEEP, vcpu); |
| } |
| |
| /* |
| * Make sure we will observe a potential reset request if we've |
| * observed a change to the power state. Pairs with the smp_wmb() in |
| * kvm_psci_vcpu_on(). |
| */ |
| smp_rmb(); |
| } |
| |
| /** |
| * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior |
| * @vcpu: The VCPU pointer |
| * |
| * Suspend execution of a vCPU until a valid wake event is detected, i.e. until |
| * the vCPU is runnable. The vCPU may or may not be scheduled out, depending |
| * on when a wake event arrives, e.g. there may already be a pending wake event. |
| */ |
| void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Sync back the state of the GIC CPU interface so that we have |
| * the latest PMR and group enables. This ensures that |
| * kvm_arch_vcpu_runnable has up-to-date data to decide whether |
| * we have pending interrupts, e.g. when determining if the |
| * vCPU should block. |
| * |
| * For the same reason, we want to tell GICv4 that we need |
| * doorbells to be signalled, should an interrupt become pending. |
| */ |
| preempt_disable(); |
| vcpu_set_flag(vcpu, IN_WFI); |
| kvm_vgic_put(vcpu); |
| preempt_enable(); |
| |
| kvm_vcpu_halt(vcpu); |
| vcpu_clear_flag(vcpu, IN_WFIT); |
| |
| preempt_disable(); |
| vcpu_clear_flag(vcpu, IN_WFI); |
| kvm_vgic_load(vcpu); |
| preempt_enable(); |
| } |
| |
| static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) |
| { |
| if (!kvm_arm_vcpu_suspended(vcpu)) |
| return 1; |
| |
| kvm_vcpu_wfi(vcpu); |
| |
| /* |
| * The suspend state is sticky; we do not leave it until userspace |
| * explicitly marks the vCPU as runnable. Request that we suspend again |
| * later. |
| */ |
| kvm_make_request(KVM_REQ_SUSPEND, vcpu); |
| |
| /* |
| * Check to make sure the vCPU is actually runnable. If so, exit to |
| * userspace informing it of the wakeup condition. |
| */ |
| if (kvm_arch_vcpu_runnable(vcpu)) { |
| memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); |
| vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; |
| vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| return 0; |
| } |
| |
| /* |
| * Otherwise, we were unblocked to process a different event, such as a |
| * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to |
| * process the event. |
| */ |
| return 1; |
| } |
| |
| /** |
| * check_vcpu_requests - check and handle pending vCPU requests |
| * @vcpu: the VCPU pointer |
| * |
| * Return: 1 if we should enter the guest |
| * 0 if we should exit to userspace |
| * < 0 if we should exit to userspace, where the return value indicates |
| * an error |
| */ |
| static int check_vcpu_requests(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_request_pending(vcpu)) { |
| if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) |
| kvm_vcpu_sleep(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) |
| kvm_reset_vcpu(vcpu); |
| |
| /* |
| * Clear IRQ_PENDING requests that were made to guarantee |
| * that a VCPU sees new virtual interrupts. |
| */ |
| kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); |
| |
| if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) |
| kvm_update_stolen_time(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { |
| /* The distributor enable bits were changed */ |
| preempt_disable(); |
| vgic_v4_put(vcpu); |
| vgic_v4_load(vcpu); |
| preempt_enable(); |
| } |
| |
| if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) |
| kvm_vcpu_reload_pmu(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) |
| kvm_vcpu_pmu_restore_guest(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) |
| return kvm_vcpu_suspend(vcpu); |
| |
| if (kvm_dirty_ring_check_request(vcpu)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) |
| { |
| if (likely(!vcpu_mode_is_32bit(vcpu))) |
| return false; |
| |
| if (vcpu_has_nv(vcpu)) |
| return true; |
| |
| return !kvm_supports_32bit_el0(); |
| } |
| |
| /** |
| * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest |
| * @vcpu: The VCPU pointer |
| * @ret: Pointer to write optional return code |
| * |
| * Returns: true if the VCPU needs to return to a preemptible + interruptible |
| * and skip guest entry. |
| * |
| * This function disambiguates between two different types of exits: exits to a |
| * preemptible + interruptible kernel context and exits to userspace. For an |
| * exit to userspace, this function will write the return code to ret and return |
| * true. For an exit to preemptible + interruptible kernel context (i.e. check |
| * for pending work and re-enter), return true without writing to ret. |
| */ |
| static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) |
| { |
| struct kvm_run *run = vcpu->run; |
| |
| /* |
| * If we're using a userspace irqchip, then check if we need |
| * to tell a userspace irqchip about timer or PMU level |
| * changes and if so, exit to userspace (the actual level |
| * state gets updated in kvm_timer_update_run and |
| * kvm_pmu_update_run below). |
| */ |
| if (static_branch_unlikely(&userspace_irqchip_in_use)) { |
| if (kvm_timer_should_notify_user(vcpu) || |
| kvm_pmu_should_notify_user(vcpu)) { |
| *ret = -EINTR; |
| run->exit_reason = KVM_EXIT_INTR; |
| return true; |
| } |
| } |
| |
| if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { |
| run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; |
| run->fail_entry.cpu = smp_processor_id(); |
| *ret = 0; |
| return true; |
| } |
| |
| return kvm_request_pending(vcpu) || |
| xfer_to_guest_mode_work_pending(); |
| } |
| |
| /* |
| * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while |
| * the vCPU is running. |
| * |
| * This must be noinstr as instrumentation may make use of RCU, and this is not |
| * safe during the EQS. |
| */ |
| static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| |
| guest_state_enter_irqoff(); |
| ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); |
| guest_state_exit_irqoff(); |
| |
| return ret; |
| } |
| |
| /** |
| * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code |
| * @vcpu: The VCPU pointer |
| * |
| * This function is called through the VCPU_RUN ioctl called from user space. It |
| * will execute VM code in a loop until the time slice for the process is used |
| * or some emulation is needed from user space in which case the function will |
| * return with return value 0 and with the kvm_run structure filled in with the |
| * required data for the requested emulation. |
| */ |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| int ret; |
| |
| if (run->exit_reason == KVM_EXIT_MMIO) { |
| ret = kvm_handle_mmio_return(vcpu); |
| if (ret <= 0) |
| return ret; |
| } |
| |
| vcpu_load(vcpu); |
| |
| if (!vcpu->wants_to_run) { |
| ret = -EINTR; |
| goto out; |
| } |
| |
| kvm_sigset_activate(vcpu); |
| |
| ret = 1; |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| run->flags = 0; |
| while (ret > 0) { |
| /* |
| * Check conditions before entering the guest |
| */ |
| ret = xfer_to_guest_mode_handle_work(vcpu); |
| if (!ret) |
| ret = 1; |
| |
| if (ret > 0) |
| ret = check_vcpu_requests(vcpu); |
| |
| /* |
| * Preparing the interrupts to be injected also |
| * involves poking the GIC, which must be done in a |
| * non-preemptible context. |
| */ |
| preempt_disable(); |
| |
| /* |
| * The VMID allocator only tracks active VMIDs per |
| * physical CPU, and therefore the VMID allocated may not be |
| * preserved on VMID roll-over if the task was preempted, |
| * making a thread's VMID inactive. So we need to call |
| * kvm_arm_vmid_update() in non-premptible context. |
| */ |
| if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && |
| has_vhe()) |
| __load_stage2(vcpu->arch.hw_mmu, |
| vcpu->arch.hw_mmu->arch); |
| |
| kvm_pmu_flush_hwstate(vcpu); |
| |
| local_irq_disable(); |
| |
| kvm_vgic_flush_hwstate(vcpu); |
| |
| kvm_pmu_update_vcpu_events(vcpu); |
| |
| /* |
| * Ensure we set mode to IN_GUEST_MODE after we disable |
| * interrupts and before the final VCPU requests check. |
| * See the comment in kvm_vcpu_exiting_guest_mode() and |
| * Documentation/virt/kvm/vcpu-requests.rst |
| */ |
| smp_store_mb(vcpu->mode, IN_GUEST_MODE); |
| |
| if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| isb(); /* Ensure work in x_flush_hwstate is committed */ |
| kvm_pmu_sync_hwstate(vcpu); |
| if (static_branch_unlikely(&userspace_irqchip_in_use)) |
| kvm_timer_sync_user(vcpu); |
| kvm_vgic_sync_hwstate(vcpu); |
| local_irq_enable(); |
| preempt_enable(); |
| continue; |
| } |
| |
| kvm_arm_setup_debug(vcpu); |
| kvm_arch_vcpu_ctxflush_fp(vcpu); |
| |
| /************************************************************** |
| * Enter the guest |
| */ |
| trace_kvm_entry(*vcpu_pc(vcpu)); |
| guest_timing_enter_irqoff(); |
| |
| ret = kvm_arm_vcpu_enter_exit(vcpu); |
| |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| vcpu->stat.exits++; |
| /* |
| * Back from guest |
| *************************************************************/ |
| |
| kvm_arm_clear_debug(vcpu); |
| |
| /* |
| * We must sync the PMU state before the vgic state so |
| * that the vgic can properly sample the updated state of the |
| * interrupt line. |
| */ |
| kvm_pmu_sync_hwstate(vcpu); |
| |
| /* |
| * Sync the vgic state before syncing the timer state because |
| * the timer code needs to know if the virtual timer |
| * interrupts are active. |
| */ |
| kvm_vgic_sync_hwstate(vcpu); |
| |
| /* |
| * Sync the timer hardware state before enabling interrupts as |
| * we don't want vtimer interrupts to race with syncing the |
| * timer virtual interrupt state. |
| */ |
| if (static_branch_unlikely(&userspace_irqchip_in_use)) |
| kvm_timer_sync_user(vcpu); |
| |
| kvm_arch_vcpu_ctxsync_fp(vcpu); |
| |
| /* |
| * We must ensure that any pending interrupts are taken before |
| * we exit guest timing so that timer ticks are accounted as |
| * guest time. Transiently unmask interrupts so that any |
| * pending interrupts are taken. |
| * |
| * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other |
| * context synchronization event) is necessary to ensure that |
| * pending interrupts are taken. |
| */ |
| if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { |
| local_irq_enable(); |
| isb(); |
| local_irq_disable(); |
| } |
| |
| guest_timing_exit_irqoff(); |
| |
| local_irq_enable(); |
| |
| trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); |
| |
| /* Exit types that need handling before we can be preempted */ |
| handle_exit_early(vcpu, ret); |
| |
| preempt_enable(); |
| |
| /* |
| * The ARMv8 architecture doesn't give the hypervisor |
| * a mechanism to prevent a guest from dropping to AArch32 EL0 |
| * if implemented by the CPU. If we spot the guest in such |
| * state and that we decided it wasn't supposed to do so (like |
| * with the asymmetric AArch32 case), return to userspace with |
| * a fatal error. |
| */ |
| if (vcpu_mode_is_bad_32bit(vcpu)) { |
| /* |
| * As we have caught the guest red-handed, decide that |
| * it isn't fit for purpose anymore by making the vcpu |
| * invalid. The VMM can try and fix it by issuing a |
| * KVM_ARM_VCPU_INIT if it really wants to. |
| */ |
| vcpu_clear_flag(vcpu, VCPU_INITIALIZED); |
| ret = ARM_EXCEPTION_IL; |
| } |
| |
| ret = handle_exit(vcpu, ret); |
| } |
| |
| /* Tell userspace about in-kernel device output levels */ |
| if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { |
| kvm_timer_update_run(vcpu); |
| kvm_pmu_update_run(vcpu); |
| } |
| |
| kvm_sigset_deactivate(vcpu); |
| |
| out: |
| /* |
| * In the unlikely event that we are returning to userspace |
| * with pending exceptions or PC adjustment, commit these |
| * adjustments in order to give userspace a consistent view of |
| * the vcpu state. Note that this relies on __kvm_adjust_pc() |
| * being preempt-safe on VHE. |
| */ |
| if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || |
| vcpu_get_flag(vcpu, INCREMENT_PC))) |
| kvm_call_hyp(__kvm_adjust_pc, vcpu); |
| |
| vcpu_put(vcpu); |
| return ret; |
| } |
| |
| static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) |
| { |
| int bit_index; |
| bool set; |
| unsigned long *hcr; |
| |
| if (number == KVM_ARM_IRQ_CPU_IRQ) |
| bit_index = __ffs(HCR_VI); |
| else /* KVM_ARM_IRQ_CPU_FIQ */ |
| bit_index = __ffs(HCR_VF); |
| |
| hcr = vcpu_hcr(vcpu); |
| if (level) |
| set = test_and_set_bit(bit_index, hcr); |
| else |
| set = test_and_clear_bit(bit_index, hcr); |
| |
| /* |
| * If we didn't change anything, no need to wake up or kick other CPUs |
| */ |
| if (set == level) |
| return 0; |
| |
| /* |
| * The vcpu irq_lines field was updated, wake up sleeping VCPUs and |
| * trigger a world-switch round on the running physical CPU to set the |
| * virtual IRQ/FIQ fields in the HCR appropriately. |
| */ |
| kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); |
| kvm_vcpu_kick(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, |
| bool line_status) |
| { |
| u32 irq = irq_level->irq; |
| unsigned int irq_type, vcpu_id, irq_num; |
| struct kvm_vcpu *vcpu = NULL; |
| bool level = irq_level->level; |
| |
| irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; |
| vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; |
| vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); |
| irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; |
| |
| trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); |
| |
| switch (irq_type) { |
| case KVM_ARM_IRQ_TYPE_CPU: |
| if (irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); |
| if (!vcpu) |
| return -EINVAL; |
| |
| if (irq_num > KVM_ARM_IRQ_CPU_FIQ) |
| return -EINVAL; |
| |
| return vcpu_interrupt_line(vcpu, irq_num, level); |
| case KVM_ARM_IRQ_TYPE_PPI: |
| if (!irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); |
| if (!vcpu) |
| return -EINVAL; |
| |
| if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) |
| return -EINVAL; |
| |
| return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); |
| case KVM_ARM_IRQ_TYPE_SPI: |
| if (!irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| if (irq_num < VGIC_NR_PRIVATE_IRQS) |
| return -EINVAL; |
| |
| return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static unsigned long system_supported_vcpu_features(void) |
| { |
| unsigned long features = KVM_VCPU_VALID_FEATURES; |
| |
| if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) |
| clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); |
| |
| if (!kvm_arm_support_pmu_v3()) |
| clear_bit(KVM_ARM_VCPU_PMU_V3, &features); |
| |
| if (!system_supports_sve()) |
| clear_bit(KVM_ARM_VCPU_SVE, &features); |
| |
| if (!kvm_has_full_ptr_auth()) { |
| clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); |
| clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); |
| } |
| |
| if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) |
| clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); |
| |
| return features; |
| } |
| |
| static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, |
| const struct kvm_vcpu_init *init) |
| { |
| unsigned long features = init->features[0]; |
| int i; |
| |
| if (features & ~KVM_VCPU_VALID_FEATURES) |
| return -ENOENT; |
| |
| for (i = 1; i < ARRAY_SIZE(init->features); i++) { |
| if (init->features[i]) |
| return -ENOENT; |
| } |
| |
| if (features & ~system_supported_vcpu_features()) |
| return -EINVAL; |
| |
| /* |
| * For now make sure that both address/generic pointer authentication |
| * features are requested by the userspace together. |
| */ |
| if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != |
| test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) |
| return -EINVAL; |
| |
| if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) |
| return 0; |
| |
| /* MTE is incompatible with AArch32 */ |
| if (kvm_has_mte(vcpu->kvm)) |
| return -EINVAL; |
| |
| /* NV is incompatible with AArch32 */ |
| if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, |
| const struct kvm_vcpu_init *init) |
| { |
| unsigned long features = init->features[0]; |
| |
| return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, |
| KVM_VCPU_MAX_FEATURES); |
| } |
| |
| static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int ret = 0; |
| |
| /* |
| * When the vCPU has a PMU, but no PMU is set for the guest |
| * yet, set the default one. |
| */ |
| if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) |
| ret = kvm_arm_set_default_pmu(kvm); |
| |
| /* Prepare for nested if required */ |
| if (!ret && vcpu_has_nv(vcpu)) |
| ret = kvm_vcpu_init_nested(vcpu); |
| |
| return ret; |
| } |
| |
| static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, |
| const struct kvm_vcpu_init *init) |
| { |
| unsigned long features = init->features[0]; |
| struct kvm *kvm = vcpu->kvm; |
| int ret = -EINVAL; |
| |
| mutex_lock(&kvm->arch.config_lock); |
| |
| if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && |
| kvm_vcpu_init_changed(vcpu, init)) |
| goto out_unlock; |
| |
| bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); |
| |
| ret = kvm_setup_vcpu(vcpu); |
| if (ret) |
| goto out_unlock; |
| |
| /* Now we know what it is, we can reset it. */ |
| kvm_reset_vcpu(vcpu); |
| |
| set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); |
| vcpu_set_flag(vcpu, VCPU_INITIALIZED); |
| ret = 0; |
| out_unlock: |
| mutex_unlock(&kvm->arch.config_lock); |
| return ret; |
| } |
| |
| static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, |
| const struct kvm_vcpu_init *init) |
| { |
| int ret; |
| |
| if (init->target != KVM_ARM_TARGET_GENERIC_V8 && |
| init->target != kvm_target_cpu()) |
| return -EINVAL; |
| |
| ret = kvm_vcpu_init_check_features(vcpu, init); |
| if (ret) |
| return ret; |
| |
| if (!kvm_vcpu_initialized(vcpu)) |
| return __kvm_vcpu_set_target(vcpu, init); |
| |
| if (kvm_vcpu_init_changed(vcpu, init)) |
| return -EINVAL; |
| |
| kvm_reset_vcpu(vcpu); |
| return 0; |
| } |
| |
| static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_init *init) |
| { |
| bool power_off = false; |
| int ret; |
| |
| /* |
| * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid |
| * reflecting it in the finalized feature set, thus limiting its scope |
| * to a single KVM_ARM_VCPU_INIT call. |
| */ |
| if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { |
| init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); |
| power_off = true; |
| } |
| |
| ret = kvm_vcpu_set_target(vcpu, init); |
| if (ret) |
| return ret; |
| |
| /* |
| * Ensure a rebooted VM will fault in RAM pages and detect if the |
| * guest MMU is turned off and flush the caches as needed. |
| * |
| * S2FWB enforces all memory accesses to RAM being cacheable, |
| * ensuring that the data side is always coherent. We still |
| * need to invalidate the I-cache though, as FWB does *not* |
| * imply CTR_EL0.DIC. |
| */ |
| if (vcpu_has_run_once(vcpu)) { |
| if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) |
| stage2_unmap_vm(vcpu->kvm); |
| else |
| icache_inval_all_pou(); |
| } |
| |
| vcpu_reset_hcr(vcpu); |
| vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); |
| |
| /* |
| * Handle the "start in power-off" case. |
| */ |
| spin_lock(&vcpu->arch.mp_state_lock); |
| |
| if (power_off) |
| __kvm_arm_vcpu_power_off(vcpu); |
| else |
| WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); |
| |
| spin_unlock(&vcpu->arch.mp_state_lock); |
| |
| return 0; |
| } |
| |
| static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| memset(events, 0, sizeof(*events)); |
| |
| return __kvm_arm_vcpu_get_events(vcpu, events); |
| } |
| |
| static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| int i; |
| |
| /* check whether the reserved field is zero */ |
| for (i = 0; i < ARRAY_SIZE(events->reserved); i++) |
| if (events->reserved[i]) |
| return -EINVAL; |
| |
| /* check whether the pad field is zero */ |
| for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) |
| if (events->exception.pad[i]) |
| return -EINVAL; |
| |
| return __kvm_arm_vcpu_set_events(vcpu, events); |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| struct kvm_device_attr attr; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_ARM_VCPU_INIT: { |
| struct kvm_vcpu_init init; |
| |
| r = -EFAULT; |
| if (copy_from_user(&init, argp, sizeof(init))) |
| break; |
| |
| r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); |
| break; |
| } |
| case KVM_SET_ONE_REG: |
| case KVM_GET_ONE_REG: { |
| struct kvm_one_reg reg; |
| |
| r = -ENOEXEC; |
| if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| break; |
| |
| r = -EFAULT; |
| if (copy_from_user(®, argp, sizeof(reg))) |
| break; |
| |
| /* |
| * We could owe a reset due to PSCI. Handle the pending reset |
| * here to ensure userspace register accesses are ordered after |
| * the reset. |
| */ |
| if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) |
| kvm_reset_vcpu(vcpu); |
| |
| if (ioctl == KVM_SET_ONE_REG) |
| r = kvm_arm_set_reg(vcpu, ®); |
| else |
| r = kvm_arm_get_reg(vcpu, ®); |
| break; |
| } |
| case KVM_GET_REG_LIST: { |
| struct kvm_reg_list __user *user_list = argp; |
| struct kvm_reg_list reg_list; |
| unsigned n; |
| |
| r = -ENOEXEC; |
| if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| break; |
| |
| r = -EPERM; |
| if (!kvm_arm_vcpu_is_finalized(vcpu)) |
| break; |
| |
| r = -EFAULT; |
| if (copy_from_user(®_list, user_list, sizeof(reg_list))) |
| break; |
| n = reg_list.n; |
| reg_list.n = kvm_arm_num_regs(vcpu); |
| if (copy_to_user(user_list, ®_list, sizeof(reg_list))) |
| break; |
| r = -E2BIG; |
| if (n < reg_list.n) |
| break; |
| r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); |
| break; |
| } |
| case KVM_SET_DEVICE_ATTR: { |
| r = -EFAULT; |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| break; |
| r = kvm_arm_vcpu_set_attr(vcpu, &attr); |
| break; |
| } |
| case KVM_GET_DEVICE_ATTR: { |
| r = -EFAULT; |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| break; |
| r = kvm_arm_vcpu_get_attr(vcpu, &attr); |
| break; |
| } |
| case KVM_HAS_DEVICE_ATTR: { |
| r = -EFAULT; |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| break; |
| r = kvm_arm_vcpu_has_attr(vcpu, &attr); |
| break; |
| } |
| case KVM_GET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| if (kvm_arm_vcpu_get_events(vcpu, &events)) |
| return -EINVAL; |
| |
| if (copy_to_user(argp, &events, sizeof(events))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| case KVM_SET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| if (copy_from_user(&events, argp, sizeof(events))) |
| return -EFAULT; |
| |
| return kvm_arm_vcpu_set_events(vcpu, &events); |
| } |
| case KVM_ARM_VCPU_FINALIZE: { |
| int what; |
| |
| if (!kvm_vcpu_initialized(vcpu)) |
| return -ENOEXEC; |
| |
| if (get_user(what, (const int __user *)argp)) |
| return -EFAULT; |
| |
| return kvm_arm_vcpu_finalize(vcpu, what); |
| } |
| default: |
| r = -EINVAL; |
| } |
| |
| return r; |
| } |
| |
| void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) |
| { |
| |
| } |
| |
| static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, |
| struct kvm_arm_device_addr *dev_addr) |
| { |
| switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { |
| case KVM_ARM_DEVICE_VGIC_V2: |
| if (!vgic_present) |
| return -ENXIO; |
| return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); |
| default: |
| return -ENODEV; |
| } |
| } |
| |
| static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) |
| { |
| switch (attr->group) { |
| case KVM_ARM_VM_SMCCC_CTRL: |
| return kvm_vm_smccc_has_attr(kvm, attr); |
| default: |
| return -ENXIO; |
| } |
| } |
| |
| static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) |
| { |
| switch (attr->group) { |
| case KVM_ARM_VM_SMCCC_CTRL: |
| return kvm_vm_smccc_set_attr(kvm, attr); |
| default: |
| return -ENXIO; |
| } |
| } |
| |
| int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| struct kvm_device_attr attr; |
| |
| switch (ioctl) { |
| case KVM_CREATE_IRQCHIP: { |
| int ret; |
| if (!vgic_present) |
| return -ENXIO; |
| mutex_lock(&kvm->lock); |
| ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| case KVM_ARM_SET_DEVICE_ADDR: { |
| struct kvm_arm_device_addr dev_addr; |
| |
| if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) |
| return -EFAULT; |
| return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); |
| } |
| case KVM_ARM_PREFERRED_TARGET: { |
| struct kvm_vcpu_init init = { |
| .target = KVM_ARM_TARGET_GENERIC_V8, |
| }; |
| |
| if (copy_to_user(argp, &init, sizeof(init))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| case KVM_ARM_MTE_COPY_TAGS: { |
| struct kvm_arm_copy_mte_tags copy_tags; |
| |
| if (copy_from_user(©_tags, argp, sizeof(copy_tags))) |
| return -EFAULT; |
| return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); |
| } |
| case KVM_ARM_SET_COUNTER_OFFSET: { |
| struct kvm_arm_counter_offset offset; |
| |
| if (copy_from_user(&offset, argp, sizeof(offset))) |
| return -EFAULT; |
| return kvm_vm_ioctl_set_counter_offset(kvm, &offset); |
| } |
| case KVM_HAS_DEVICE_ATTR: { |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| return -EFAULT; |
| |
| return kvm_vm_has_attr(kvm, &attr); |
| } |
| case KVM_SET_DEVICE_ATTR: { |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| return -EFAULT; |
| |
| return kvm_vm_set_attr(kvm, &attr); |
| } |
| case KVM_ARM_GET_REG_WRITABLE_MASKS: { |
| struct reg_mask_range range; |
| |
| if (copy_from_user(&range, argp, sizeof(range))) |
| return -EFAULT; |
| return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* unlocks vcpus from @vcpu_lock_idx and smaller */ |
| static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) |
| { |
| struct kvm_vcpu *tmp_vcpu; |
| |
| for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { |
| tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); |
| mutex_unlock(&tmp_vcpu->mutex); |
| } |
| } |
| |
| void unlock_all_vcpus(struct kvm *kvm) |
| { |
| lockdep_assert_held(&kvm->lock); |
| |
| unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); |
| } |
| |
| /* Returns true if all vcpus were locked, false otherwise */ |
| bool lock_all_vcpus(struct kvm *kvm) |
| { |
| struct kvm_vcpu *tmp_vcpu; |
| unsigned long c; |
| |
| lockdep_assert_held(&kvm->lock); |
| |
| /* |
| * Any time a vcpu is in an ioctl (including running), the |
| * core KVM code tries to grab the vcpu->mutex. |
| * |
| * By grabbing the vcpu->mutex of all VCPUs we ensure that no |
| * other VCPUs can fiddle with the state while we access it. |
| */ |
| kvm_for_each_vcpu(c, tmp_vcpu, kvm) { |
| if (!mutex_trylock(&tmp_vcpu->mutex)) { |
| unlock_vcpus(kvm, c - 1); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static unsigned long nvhe_percpu_size(void) |
| { |
| return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - |
| (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); |
| } |
| |
| static unsigned long nvhe_percpu_order(void) |
| { |
| unsigned long size = nvhe_percpu_size(); |
| |
| return size ? get_order(size) : 0; |
| } |
| |
| static size_t pkvm_host_sve_state_order(void) |
| { |
| return get_order(pkvm_host_sve_state_size()); |
| } |
| |
| /* A lookup table holding the hypervisor VA for each vector slot */ |
| static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; |
| |
| static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) |
| { |
| hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); |
| } |
| |
| static int kvm_init_vector_slots(void) |
| { |
| int err; |
| void *base; |
| |
| base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); |
| kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); |
| |
| base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); |
| kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); |
| |
| if (kvm_system_needs_idmapped_vectors() && |
| !is_protected_kvm_enabled()) { |
| err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), |
| __BP_HARDEN_HYP_VECS_SZ, &base); |
| if (err) |
| return err; |
| } |
| |
| kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); |
| kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); |
| return 0; |
| } |
| |
| static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) |
| { |
| struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); |
| u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); |
| unsigned long tcr; |
| |
| /* |
| * Calculate the raw per-cpu offset without a translation from the |
| * kernel's mapping to the linear mapping, and store it in tpidr_el2 |
| * so that we can use adr_l to access per-cpu variables in EL2. |
| * Also drop the KASAN tag which gets in the way... |
| */ |
| params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - |
| (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); |
| |
| params->mair_el2 = read_sysreg(mair_el1); |
| |
| tcr = read_sysreg(tcr_el1); |
| if (cpus_have_final_cap(ARM64_KVM_HVHE)) { |
| tcr |= TCR_EPD1_MASK; |
| } else { |
| tcr &= TCR_EL2_MASK; |
| tcr |= TCR_EL2_RES1; |
| } |
| tcr &= ~TCR_T0SZ_MASK; |
| tcr |= TCR_T0SZ(hyp_va_bits); |
| tcr &= ~TCR_EL2_PS_MASK; |
| tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); |
| if (kvm_lpa2_is_enabled()) |
| tcr |= TCR_EL2_DS; |
| params->tcr_el2 = tcr; |
| |
| params->pgd_pa = kvm_mmu_get_httbr(); |
| if (is_protected_kvm_enabled()) |
| params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; |
| else |
| params->hcr_el2 = HCR_HOST_NVHE_FLAGS; |
| if (cpus_have_final_cap(ARM64_KVM_HVHE)) |
| params->hcr_el2 |= HCR_E2H; |
| params->vttbr = params->vtcr = 0; |
| |
| /* |
| * Flush the init params from the data cache because the struct will |
| * be read while the MMU is off. |
| */ |
| kvm_flush_dcache_to_poc(params, sizeof(*params)); |
| } |
| |
| static void hyp_install_host_vector(void) |
| { |
| struct kvm_nvhe_init_params *params; |
| struct arm_smccc_res res; |
| |
| /* Switch from the HYP stub to our own HYP init vector */ |
| __hyp_set_vectors(kvm_get_idmap_vector()); |
| |
| /* |
| * Call initialization code, and switch to the full blown HYP code. |
| * If the cpucaps haven't been finalized yet, something has gone very |
| * wrong, and hyp will crash and burn when it uses any |
| * cpus_have_*_cap() wrapper. |
| */ |
| BUG_ON(!system_capabilities_finalized()); |
| params = this_cpu_ptr_nvhe_sym(kvm_init_params); |
| arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); |
| WARN_ON(res.a0 != SMCCC_RET_SUCCESS); |
| } |
| |
| static void cpu_init_hyp_mode(void) |
| { |
| hyp_install_host_vector(); |
| |
| /* |
| * Disabling SSBD on a non-VHE system requires us to enable SSBS |
| * at EL2. |
| */ |
| if (this_cpu_has_cap(ARM64_SSBS) && |
| arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { |
| kvm_call_hyp_nvhe(__kvm_enable_ssbs); |
| } |
| } |
| |
| static void cpu_hyp_reset(void) |
| { |
| if (!is_kernel_in_hyp_mode()) |
| __hyp_reset_vectors(); |
| } |
| |
| /* |
| * EL2 vectors can be mapped and rerouted in a number of ways, |
| * depending on the kernel configuration and CPU present: |
| * |
| * - If the CPU is affected by Spectre-v2, the hardening sequence is |
| * placed in one of the vector slots, which is executed before jumping |
| * to the real vectors. |
| * |
| * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot |
| * containing the hardening sequence is mapped next to the idmap page, |
| * and executed before jumping to the real vectors. |
| * |
| * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an |
| * empty slot is selected, mapped next to the idmap page, and |
| * executed before jumping to the real vectors. |
| * |
| * Note that ARM64_SPECTRE_V3A is somewhat incompatible with |
| * VHE, as we don't have hypervisor-specific mappings. If the system |
| * is VHE and yet selects this capability, it will be ignored. |
| */ |
| static void cpu_set_hyp_vector(void) |
| { |
| struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); |
| void *vector = hyp_spectre_vector_selector[data->slot]; |
| |
| if (!is_protected_kvm_enabled()) |
| *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; |
| else |
| kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); |
| } |
| |
| static void cpu_hyp_init_context(void) |
| { |
| kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); |
| |
| if (!is_kernel_in_hyp_mode()) |
| cpu_init_hyp_mode(); |
| } |
| |
| static void cpu_hyp_init_features(void) |
| { |
| cpu_set_hyp_vector(); |
| kvm_arm_init_debug(); |
| |
| if (is_kernel_in_hyp_mode()) |
| kvm_timer_init_vhe(); |
| |
| if (vgic_present) |
| kvm_vgic_init_cpu_hardware(); |
| } |
| |
| static void cpu_hyp_reinit(void) |
| { |
| cpu_hyp_reset(); |
| cpu_hyp_init_context(); |
| cpu_hyp_init_features(); |
| } |
| |
| static void cpu_hyp_init(void *discard) |
| { |
| if (!__this_cpu_read(kvm_hyp_initialized)) { |
| cpu_hyp_reinit(); |
| __this_cpu_write(kvm_hyp_initialized, 1); |
| } |
| } |
| |
| static void cpu_hyp_uninit(void *discard) |
| { |
| if (__this_cpu_read(kvm_hyp_initialized)) { |
| cpu_hyp_reset(); |
| __this_cpu_write(kvm_hyp_initialized, 0); |
| } |
| } |
| |
| int kvm_arch_hardware_enable(void) |
| { |
| /* |
| * Most calls to this function are made with migration |
| * disabled, but not with preemption disabled. The former is |
| * enough to ensure correctness, but most of the helpers |
| * expect the later and will throw a tantrum otherwise. |
| */ |
| preempt_disable(); |
| |
| cpu_hyp_init(NULL); |
| |
| kvm_vgic_cpu_up(); |
| kvm_timer_cpu_up(); |
| |
| preempt_enable(); |
| |
| return 0; |
| } |
| |
| void kvm_arch_hardware_disable(void) |
| { |
| kvm_timer_cpu_down(); |
| kvm_vgic_cpu_down(); |
| |
| if (!is_protected_kvm_enabled()) |
| cpu_hyp_uninit(NULL); |
| } |
| |
| #ifdef CONFIG_CPU_PM |
| static int hyp_init_cpu_pm_notifier(struct notifier_block *self, |
| unsigned long cmd, |
| void *v) |
| { |
| /* |
| * kvm_hyp_initialized is left with its old value over |
| * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should |
| * re-enable hyp. |
| */ |
| switch (cmd) { |
| case CPU_PM_ENTER: |
| if (__this_cpu_read(kvm_hyp_initialized)) |
| /* |
| * don't update kvm_hyp_initialized here |
| * so that the hyp will be re-enabled |
| * when we resume. See below. |
| */ |
| cpu_hyp_reset(); |
| |
| return NOTIFY_OK; |
| case CPU_PM_ENTER_FAILED: |
| case CPU_PM_EXIT: |
| if (__this_cpu_read(kvm_hyp_initialized)) |
| /* The hyp was enabled before suspend. */ |
| cpu_hyp_reinit(); |
| |
| return NOTIFY_OK; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| } |
| |
| static struct notifier_block hyp_init_cpu_pm_nb = { |
| .notifier_call = hyp_init_cpu_pm_notifier, |
| }; |
| |
| static void __init hyp_cpu_pm_init(void) |
| { |
| if (!is_protected_kvm_enabled()) |
| cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); |
| } |
| static void __init hyp_cpu_pm_exit(void) |
| { |
| if (!is_protected_kvm_enabled()) |
| cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); |
| } |
| #else |
| static inline void __init hyp_cpu_pm_init(void) |
| { |
| } |
| static inline void __init hyp_cpu_pm_exit(void) |
| { |
| } |
| #endif |
| |
| static void __init init_cpu_logical_map(void) |
| { |
| unsigned int cpu; |
| |
| /* |
| * Copy the MPIDR <-> logical CPU ID mapping to hyp. |
| * Only copy the set of online CPUs whose features have been checked |
| * against the finalized system capabilities. The hypervisor will not |
| * allow any other CPUs from the `possible` set to boot. |
| */ |
| for_each_online_cpu(cpu) |
| hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); |
| } |
| |
| #define init_psci_0_1_impl_state(config, what) \ |
| config.psci_0_1_ ## what ## _implemented = psci_ops.what |
| |
| static bool __init init_psci_relay(void) |
| { |
| /* |
| * If PSCI has not been initialized, protected KVM cannot install |
| * itself on newly booted CPUs. |
| */ |
| if (!psci_ops.get_version) { |
| kvm_err("Cannot initialize protected mode without PSCI\n"); |
| return false; |
| } |
| |
| kvm_host_psci_config.version = psci_ops.get_version(); |
| kvm_host_psci_config.smccc_version = arm_smccc_get_version(); |
| |
| if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { |
| kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); |
| init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); |
| init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); |
| init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); |
| init_psci_0_1_impl_state(kvm_host_psci_config, migrate); |
| } |
| return true; |
| } |
| |
| static int __init init_subsystems(void) |
| { |
| int err = 0; |
| |
| /* |
| * Enable hardware so that subsystem initialisation can access EL2. |
| */ |
| on_each_cpu(cpu_hyp_init, NULL, 1); |
| |
| /* |
| * Register CPU lower-power notifier |
| */ |
| hyp_cpu_pm_init(); |
| |
| /* |
| * Init HYP view of VGIC |
| */ |
| err = kvm_vgic_hyp_init(); |
| switch (err) { |
| case 0: |
| vgic_present = true; |
| break; |
| case -ENODEV: |
| case -ENXIO: |
| vgic_present = false; |
| err = 0; |
| break; |
| default: |
| goto out; |
| } |
| |
| /* |
| * Init HYP architected timer support |
| */ |
| err = kvm_timer_hyp_init(vgic_present); |
| if (err) |
| goto out; |
| |
| kvm_register_perf_callbacks(NULL); |
| |
| out: |
| if (err) |
| hyp_cpu_pm_exit(); |
| |
| if (err || !is_protected_kvm_enabled()) |
| on_each_cpu(cpu_hyp_uninit, NULL, 1); |
| |
| return err; |
| } |
| |
| static void __init teardown_subsystems(void) |
| { |
| kvm_unregister_perf_callbacks(); |
| hyp_cpu_pm_exit(); |
| } |
| |
| static void __init teardown_hyp_mode(void) |
| { |
| bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); |
| int cpu; |
| |
| free_hyp_pgds(); |
| for_each_possible_cpu(cpu) { |
| free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); |
| free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); |
| |
| if (free_sve) { |
| struct cpu_sve_state *sve_state; |
| |
| sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; |
| free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); |
| } |
| } |
| } |
| |
| static int __init do_pkvm_init(u32 hyp_va_bits) |
| { |
| void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); |
| int ret; |
| |
| preempt_disable(); |
| cpu_hyp_init_context(); |
| ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, |
| num_possible_cpus(), kern_hyp_va(per_cpu_base), |
| hyp_va_bits); |
| cpu_hyp_init_features(); |
| |
| /* |
| * The stub hypercalls are now disabled, so set our local flag to |
| * prevent a later re-init attempt in kvm_arch_hardware_enable(). |
| */ |
| __this_cpu_write(kvm_hyp_initialized, 1); |
| preempt_enable(); |
| |
| return ret; |
| } |
| |
| static u64 get_hyp_id_aa64pfr0_el1(void) |
| { |
| /* |
| * Track whether the system isn't affected by spectre/meltdown in the |
| * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. |
| * Although this is per-CPU, we make it global for simplicity, e.g., not |
| * to have to worry about vcpu migration. |
| * |
| * Unlike for non-protected VMs, userspace cannot override this for |
| * protected VMs. |
| */ |
| u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); |
| |
| val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | |
| ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); |
| |
| val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), |
| arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); |
| val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), |
| arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); |
| |
| return val; |
| } |
| |
| static void kvm_hyp_init_symbols(void) |
| { |
| kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); |
| kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); |
| kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); |
| kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); |
| kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); |
| kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); |
| kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
| kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); |
| kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); |
| kvm_nvhe_sym(__icache_flags) = __icache_flags; |
| kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; |
| } |
| |
| static int __init kvm_hyp_init_protection(u32 hyp_va_bits) |
| { |
| void *addr = phys_to_virt(hyp_mem_base); |
| int ret; |
| |
| ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); |
| if (ret) |
| return ret; |
| |
| ret = do_pkvm_init(hyp_va_bits); |
| if (ret) |
| return ret; |
| |
| free_hyp_pgds(); |
| |
| return 0; |
| } |
| |
| static int init_pkvm_host_sve_state(void) |
| { |
| int cpu; |
| |
| if (!system_supports_sve()) |
| return 0; |
| |
| /* Allocate pages for host sve state in protected mode. */ |
| for_each_possible_cpu(cpu) { |
| struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); |
| |
| if (!page) |
| return -ENOMEM; |
| |
| per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); |
| } |
| |
| /* |
| * Don't map the pages in hyp since these are only used in protected |
| * mode, which will (re)create its own mapping when initialized. |
| */ |
| |
| return 0; |
| } |
| |
| /* |
| * Finalizes the initialization of hyp mode, once everything else is initialized |
| * and the initialziation process cannot fail. |
| */ |
| static void finalize_init_hyp_mode(void) |
| { |
| int cpu; |
| |
| if (system_supports_sve() && is_protected_kvm_enabled()) { |
| for_each_possible_cpu(cpu) { |
| struct cpu_sve_state *sve_state; |
| |
| sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; |
| per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = |
| kern_hyp_va(sve_state); |
| } |
| } else { |
| for_each_possible_cpu(cpu) { |
| struct user_fpsimd_state *fpsimd_state; |
| |
| fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs; |
| per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state = |
| kern_hyp_va(fpsimd_state); |
| } |
| } |
| } |
| |
| static void pkvm_hyp_init_ptrauth(void) |
| { |
| struct kvm_cpu_context *hyp_ctxt; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); |
| hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); |
| hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); |
| } |
| } |
| |
| /* Inits Hyp-mode on all online CPUs */ |
| static int __init init_hyp_mode(void) |
| { |
| u32 hyp_va_bits; |
| int cpu; |
| int err = -ENOMEM; |
| |
| /* |
| * The protected Hyp-mode cannot be initialized if the memory pool |
| * allocation has failed. |
| */ |
| if (is_protected_kvm_enabled() && !hyp_mem_base) |
| goto out_err; |
| |
| /* |
| * Allocate Hyp PGD and setup Hyp identity mapping |
| */ |
| err = kvm_mmu_init(&hyp_va_bits); |
| if (err) |
| goto out_err; |
| |
| /* |
| * Allocate stack pages for Hypervisor-mode |
| */ |
| for_each_possible_cpu(cpu) { |
| unsigned long stack_page; |
| |
| stack_page = __get_free_page(GFP_KERNEL); |
| if (!stack_page) { |
| err = -ENOMEM; |
| goto out_err; |
| } |
| |
| per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; |
| } |
| |
| /* |
| * Allocate and initialize pages for Hypervisor-mode percpu regions. |
| */ |
| for_each_possible_cpu(cpu) { |
| struct page *page; |
| void *page_addr; |
| |
| page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); |
| if (!page) { |
| err = -ENOMEM; |
| goto out_err; |
| } |
| |
| page_addr = page_address(page); |
| memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); |
| kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; |
| } |
| |
| /* |
| * Map the Hyp-code called directly from the host |
| */ |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), |
| kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); |
| if (err) { |
| kvm_err("Cannot map world-switch code\n"); |
| goto out_err; |
| } |
| |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), |
| kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); |
| if (err) { |
| kvm_err("Cannot map .hyp.rodata section\n"); |
| goto out_err; |
| } |
| |
| err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), |
| kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); |
| if (err) { |
| kvm_err("Cannot map rodata section\n"); |
| goto out_err; |
| } |
| |
| /* |
| * .hyp.bss is guaranteed to be placed at the beginning of the .bss |
| * section thanks to an assertion in the linker script. Map it RW and |
| * the rest of .bss RO. |
| */ |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), |
| kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); |
| if (err) { |
| kvm_err("Cannot map hyp bss section: %d\n", err); |
| goto out_err; |
| } |
| |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), |
| kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); |
| if (err) { |
| kvm_err("Cannot map bss section\n"); |
| goto out_err; |
| } |
| |
| /* |
| * Map the Hyp stack pages |
| */ |
| for_each_possible_cpu(cpu) { |
| struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); |
| char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); |
| |
| err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); |
| if (err) { |
| kvm_err("Cannot map hyp stack\n"); |
| goto out_err; |
| } |
| |
| /* |
| * Save the stack PA in nvhe_init_params. This will be needed |
| * to recreate the stack mapping in protected nVHE mode. |
| * __hyp_pa() won't do the right thing there, since the stack |
| * has been mapped in the flexible private VA space. |
| */ |
| params->stack_pa = __pa(stack_page); |
| } |
| |
| for_each_possible_cpu(cpu) { |
| char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; |
| char *percpu_end = percpu_begin + nvhe_percpu_size(); |
| |
| /* Map Hyp percpu pages */ |
| err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); |
| if (err) { |
| kvm_err("Cannot map hyp percpu region\n"); |
| goto out_err; |
| } |
| |
| /* Prepare the CPU initialization parameters */ |
| cpu_prepare_hyp_mode(cpu, hyp_va_bits); |
| } |
| |
| kvm_hyp_init_symbols(); |
| |
| if (is_protected_kvm_enabled()) { |
| if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && |
| cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) |
| pkvm_hyp_init_ptrauth(); |
| |
| init_cpu_logical_map(); |
| |
| if (!init_psci_relay()) { |
| err = -ENODEV; |
| goto out_err; |
| } |
| |
| err = init_pkvm_host_sve_state(); |
| if (err) |
| goto out_err; |
| |
| err = kvm_hyp_init_protection(hyp_va_bits); |
| if (err) { |
| kvm_err("Failed to init hyp memory protection\n"); |
| goto out_err; |
| } |
| } |
| |
| return 0; |
| |
| out_err: |
| teardown_hyp_mode(); |
| kvm_err("error initializing Hyp mode: %d\n", err); |
| return err; |
| } |
| |
| struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) |
| { |
| struct kvm_vcpu *vcpu = NULL; |
| struct kvm_mpidr_data *data; |
| unsigned long i; |
| |
| mpidr &= MPIDR_HWID_BITMASK; |
| |
| rcu_read_lock(); |
| data = rcu_dereference(kvm->arch.mpidr_data); |
| |
| if (data) { |
| u16 idx = kvm_mpidr_index(data, mpidr); |
| |
| vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); |
| if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) |
| vcpu = NULL; |
| } |
| |
| rcu_read_unlock(); |
| |
| if (vcpu) |
| return vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) |
| return vcpu; |
| } |
| return NULL; |
| } |
| |
| bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) |
| { |
| return irqchip_in_kernel(kvm); |
| } |
| |
| bool kvm_arch_has_irq_bypass(void) |
| { |
| return true; |
| } |
| |
| int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, |
| &irqfd->irq_entry); |
| } |
| void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, |
| &irqfd->irq_entry); |
| } |
| |
| void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| kvm_arm_halt_guest(irqfd->kvm); |
| } |
| |
| void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| kvm_arm_resume_guest(irqfd->kvm); |
| } |
| |
| /* Initialize Hyp-mode and memory mappings on all CPUs */ |
| static __init int kvm_arm_init(void) |
| { |
| int err; |
| bool in_hyp_mode; |
| |
| if (!is_hyp_mode_available()) { |
| kvm_info("HYP mode not available\n"); |
| return -ENODEV; |
| } |
| |
| if (kvm_get_mode() == KVM_MODE_NONE) { |
| kvm_info("KVM disabled from command line\n"); |
| return -ENODEV; |
| } |
| |
| err = kvm_sys_reg_table_init(); |
| if (err) { |
| kvm_info("Error initializing system register tables"); |
| return err; |
| } |
| |
| in_hyp_mode = is_kernel_in_hyp_mode(); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || |
| cpus_have_final_cap(ARM64_WORKAROUND_1508412)) |
| kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ |
| "Only trusted guests should be used on this system.\n"); |
| |
| err = kvm_set_ipa_limit(); |
| if (err) |
| return err; |
| |
| err = kvm_arm_init_sve(); |
| if (err) |
| return err; |
| |
| err = kvm_arm_vmid_alloc_init(); |
| if (err) { |
| kvm_err("Failed to initialize VMID allocator.\n"); |
| return err; |
| } |
| |
| if (!in_hyp_mode) { |
| err = init_hyp_mode(); |
| if (err) |
| goto out_err; |
| } |
| |
| err = kvm_init_vector_slots(); |
| if (err) { |
| kvm_err("Cannot initialise vector slots\n"); |
| goto out_hyp; |
| } |
| |
| err = init_subsystems(); |
| if (err) |
| goto out_hyp; |
| |
| kvm_info("%s%sVHE mode initialized successfully\n", |
| in_hyp_mode ? "" : (is_protected_kvm_enabled() ? |
| "Protected " : "Hyp "), |
| in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? |
| "h" : "n")); |
| |
| /* |
| * FIXME: Do something reasonable if kvm_init() fails after pKVM |
| * hypervisor protection is finalized. |
| */ |
| err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| if (err) |
| goto out_subs; |
| |
| /* |
| * This should be called after initialization is done and failure isn't |
| * possible anymore. |
| */ |
| if (!in_hyp_mode) |
| finalize_init_hyp_mode(); |
| |
| kvm_arm_initialised = true; |
| |
| return 0; |
| |
| out_subs: |
| teardown_subsystems(); |
| out_hyp: |
| if (!in_hyp_mode) |
| teardown_hyp_mode(); |
| out_err: |
| kvm_arm_vmid_alloc_free(); |
| return err; |
| } |
| |
| static int __init early_kvm_mode_cfg(char *arg) |
| { |
| if (!arg) |
| return -EINVAL; |
| |
| if (strcmp(arg, "none") == 0) { |
| kvm_mode = KVM_MODE_NONE; |
| return 0; |
| } |
| |
| if (!is_hyp_mode_available()) { |
| pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); |
| return 0; |
| } |
| |
| if (strcmp(arg, "protected") == 0) { |
| if (!is_kernel_in_hyp_mode()) |
| kvm_mode = KVM_MODE_PROTECTED; |
| else |
| pr_warn_once("Protected KVM not available with VHE\n"); |
| |
| return 0; |
| } |
| |
| if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { |
| kvm_mode = KVM_MODE_DEFAULT; |
| return 0; |
| } |
| |
| if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { |
| kvm_mode = KVM_MODE_NV; |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| early_param("kvm-arm.mode", early_kvm_mode_cfg); |
| |
| static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) |
| { |
| if (!arg) |
| return -EINVAL; |
| |
| if (strcmp(arg, "trap") == 0) { |
| *p = KVM_WFX_TRAP; |
| return 0; |
| } |
| |
| if (strcmp(arg, "notrap") == 0) { |
| *p = KVM_WFX_NOTRAP; |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int __init early_kvm_wfi_trap_policy_cfg(char *arg) |
| { |
| return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); |
| } |
| early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); |
| |
| static int __init early_kvm_wfe_trap_policy_cfg(char *arg) |
| { |
| return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); |
| } |
| early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); |
| |
| enum kvm_mode kvm_get_mode(void) |
| { |
| return kvm_mode; |
| } |
| |
| module_init(kvm_arm_init); |