| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Performance event support for the System z CPU-measurement Sampling Facility |
| * |
| * Copyright IBM Corp. 2013, 2018 |
| * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> |
| */ |
| #define KMSG_COMPONENT "cpum_sf" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/perf_event.h> |
| #include <linux/percpu.h> |
| #include <linux/pid.h> |
| #include <linux/notifier.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/moduleparam.h> |
| #include <asm/cpu_mf.h> |
| #include <asm/irq.h> |
| #include <asm/debug.h> |
| #include <asm/timex.h> |
| #include <linux/io.h> |
| |
| /* Minimum number of sample-data-block-tables: |
| * At least one table is required for the sampling buffer structure. |
| * A single table contains up to 511 pointers to sample-data-blocks. |
| */ |
| #define CPUM_SF_MIN_SDBT 1 |
| |
| /* Number of sample-data-blocks per sample-data-block-table (SDBT): |
| * A table contains SDB pointers (8 bytes) and one table-link entry |
| * that points to the origin of the next SDBT. |
| */ |
| #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) |
| |
| /* Maximum page offset for an SDBT table-link entry: |
| * If this page offset is reached, a table-link entry to the next SDBT |
| * must be added. |
| */ |
| #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) |
| static inline int require_table_link(const void *sdbt) |
| { |
| return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; |
| } |
| |
| /* Minimum and maximum sampling buffer sizes: |
| * |
| * This number represents the maximum size of the sampling buffer taking |
| * the number of sample-data-block-tables into account. Note that these |
| * numbers apply to the basic-sampling function only. |
| * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if |
| * the diagnostic-sampling function is active. |
| * |
| * Sampling buffer size Buffer characteristics |
| * --------------------------------------------------- |
| * 64KB == 16 pages (4KB per page) |
| * 1 page for SDB-tables |
| * 15 pages for SDBs |
| * |
| * 32MB == 8192 pages (4KB per page) |
| * 16 pages for SDB-tables |
| * 8176 pages for SDBs |
| */ |
| static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; |
| static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; |
| static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; |
| |
| struct sf_buffer { |
| unsigned long *sdbt; /* Sample-data-block-table origin */ |
| /* buffer characteristics (required for buffer increments) */ |
| unsigned long num_sdb; /* Number of sample-data-blocks */ |
| unsigned long num_sdbt; /* Number of sample-data-block-tables */ |
| unsigned long *tail; /* last sample-data-block-table */ |
| }; |
| |
| struct aux_buffer { |
| struct sf_buffer sfb; |
| unsigned long head; /* index of SDB of buffer head */ |
| unsigned long alert_mark; /* index of SDB of alert request position */ |
| unsigned long empty_mark; /* mark of SDB not marked full */ |
| unsigned long *sdb_index; /* SDB address for fast lookup */ |
| unsigned long *sdbt_index; /* SDBT address for fast lookup */ |
| }; |
| |
| struct cpu_hw_sf { |
| /* CPU-measurement sampling information block */ |
| struct hws_qsi_info_block qsi; |
| /* CPU-measurement sampling control block */ |
| struct hws_lsctl_request_block lsctl; |
| struct sf_buffer sfb; /* Sampling buffer */ |
| unsigned int flags; /* Status flags */ |
| struct perf_event *event; /* Scheduled perf event */ |
| struct perf_output_handle handle; /* AUX buffer output handle */ |
| }; |
| static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); |
| |
| /* Debug feature */ |
| static debug_info_t *sfdbg; |
| |
| /* Sampling control helper functions */ |
| static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi, |
| unsigned long freq) |
| { |
| return (USEC_PER_SEC / freq) * qsi->cpu_speed; |
| } |
| |
| static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi, |
| unsigned long rate) |
| { |
| return USEC_PER_SEC * qsi->cpu_speed / rate; |
| } |
| |
| /* Return TOD timestamp contained in an trailer entry */ |
| static inline unsigned long long trailer_timestamp(struct hws_trailer_entry *te) |
| { |
| /* TOD in STCKE format */ |
| if (te->header.t) |
| return *((unsigned long long *)&te->timestamp[1]); |
| |
| /* TOD in STCK format */ |
| return *((unsigned long long *)&te->timestamp[0]); |
| } |
| |
| /* Return pointer to trailer entry of an sample data block */ |
| static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v) |
| { |
| void *ret; |
| |
| ret = (void *)v; |
| ret += PAGE_SIZE; |
| ret -= sizeof(struct hws_trailer_entry); |
| |
| return ret; |
| } |
| |
| /* |
| * Return true if the entry in the sample data block table (sdbt) |
| * is a link to the next sdbt |
| */ |
| static inline int is_link_entry(unsigned long *s) |
| { |
| return *s & 0x1UL ? 1 : 0; |
| } |
| |
| /* Return pointer to the linked sdbt */ |
| static inline unsigned long *get_next_sdbt(unsigned long *s) |
| { |
| return phys_to_virt(*s & ~0x1UL); |
| } |
| |
| /* |
| * sf_disable() - Switch off sampling facility |
| */ |
| static int sf_disable(void) |
| { |
| struct hws_lsctl_request_block sreq; |
| |
| memset(&sreq, 0, sizeof(sreq)); |
| return lsctl(&sreq); |
| } |
| |
| /* |
| * sf_buffer_available() - Check for an allocated sampling buffer |
| */ |
| static int sf_buffer_available(struct cpu_hw_sf *cpuhw) |
| { |
| return !!cpuhw->sfb.sdbt; |
| } |
| |
| /* |
| * deallocate sampling facility buffer |
| */ |
| static void free_sampling_buffer(struct sf_buffer *sfb) |
| { |
| unsigned long *sdbt, *curr; |
| |
| if (!sfb->sdbt) |
| return; |
| |
| sdbt = sfb->sdbt; |
| curr = sdbt; |
| |
| /* Free the SDBT after all SDBs are processed... */ |
| while (1) { |
| if (!*curr || !sdbt) |
| break; |
| |
| /* Process table-link entries */ |
| if (is_link_entry(curr)) { |
| curr = get_next_sdbt(curr); |
| if (sdbt) |
| free_page((unsigned long)sdbt); |
| |
| /* If the origin is reached, sampling buffer is freed */ |
| if (curr == sfb->sdbt) |
| break; |
| else |
| sdbt = curr; |
| } else { |
| /* Process SDB pointer */ |
| if (*curr) { |
| free_page((unsigned long)phys_to_virt(*curr)); |
| curr++; |
| } |
| } |
| } |
| |
| debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__, |
| (unsigned long)sfb->sdbt); |
| memset(sfb, 0, sizeof(*sfb)); |
| } |
| |
| static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) |
| { |
| struct hws_trailer_entry *te; |
| unsigned long sdb; |
| |
| /* Allocate and initialize sample-data-block */ |
| sdb = get_zeroed_page(gfp_flags); |
| if (!sdb) |
| return -ENOMEM; |
| te = trailer_entry_ptr(sdb); |
| te->header.a = 1; |
| |
| /* Link SDB into the sample-data-block-table */ |
| *sdbt = virt_to_phys((void *)sdb); |
| |
| return 0; |
| } |
| |
| /* |
| * realloc_sampling_buffer() - extend sampler memory |
| * |
| * Allocates new sample-data-blocks and adds them to the specified sampling |
| * buffer memory. |
| * |
| * Important: This modifies the sampling buffer and must be called when the |
| * sampling facility is disabled. |
| * |
| * Returns zero on success, non-zero otherwise. |
| */ |
| static int realloc_sampling_buffer(struct sf_buffer *sfb, |
| unsigned long num_sdb, gfp_t gfp_flags) |
| { |
| int i, rc; |
| unsigned long *new, *tail, *tail_prev = NULL; |
| |
| if (!sfb->sdbt || !sfb->tail) |
| return -EINVAL; |
| |
| if (!is_link_entry(sfb->tail)) |
| return -EINVAL; |
| |
| /* Append to the existing sampling buffer, overwriting the table-link |
| * register. |
| * The tail variables always points to the "tail" (last and table-link) |
| * entry in an SDB-table. |
| */ |
| tail = sfb->tail; |
| |
| /* Do a sanity check whether the table-link entry points to |
| * the sampling buffer origin. |
| */ |
| if (sfb->sdbt != get_next_sdbt(tail)) { |
| debug_sprintf_event(sfdbg, 3, "%s: " |
| "sampling buffer is not linked: origin %#lx" |
| " tail %#lx\n", __func__, |
| (unsigned long)sfb->sdbt, |
| (unsigned long)tail); |
| return -EINVAL; |
| } |
| |
| /* Allocate remaining SDBs */ |
| rc = 0; |
| for (i = 0; i < num_sdb; i++) { |
| /* Allocate a new SDB-table if it is full. */ |
| if (require_table_link(tail)) { |
| new = (unsigned long *)get_zeroed_page(gfp_flags); |
| if (!new) { |
| rc = -ENOMEM; |
| break; |
| } |
| sfb->num_sdbt++; |
| /* Link current page to tail of chain */ |
| *tail = virt_to_phys((void *)new) + 1; |
| tail_prev = tail; |
| tail = new; |
| } |
| |
| /* Allocate a new sample-data-block. |
| * If there is not enough memory, stop the realloc process |
| * and simply use what was allocated. If this is a temporary |
| * issue, a new realloc call (if required) might succeed. |
| */ |
| rc = alloc_sample_data_block(tail, gfp_flags); |
| if (rc) { |
| /* Undo last SDBT. An SDBT with no SDB at its first |
| * entry but with an SDBT entry instead can not be |
| * handled by the interrupt handler code. |
| * Avoid this situation. |
| */ |
| if (tail_prev) { |
| sfb->num_sdbt--; |
| free_page((unsigned long)new); |
| tail = tail_prev; |
| } |
| break; |
| } |
| sfb->num_sdb++; |
| tail++; |
| tail_prev = new = NULL; /* Allocated at least one SBD */ |
| } |
| |
| /* Link sampling buffer to its origin */ |
| *tail = virt_to_phys(sfb->sdbt) + 1; |
| sfb->tail = tail; |
| |
| debug_sprintf_event(sfdbg, 4, "%s: new buffer" |
| " settings: sdbt %lu sdb %lu\n", __func__, |
| sfb->num_sdbt, sfb->num_sdb); |
| return rc; |
| } |
| |
| /* |
| * allocate_sampling_buffer() - allocate sampler memory |
| * |
| * Allocates and initializes a sampling buffer structure using the |
| * specified number of sample-data-blocks (SDB). For each allocation, |
| * a 4K page is used. The number of sample-data-block-tables (SDBT) |
| * are calculated from SDBs. |
| * Also set the ALERT_REQ mask in each SDBs trailer. |
| * |
| * Returns zero on success, non-zero otherwise. |
| */ |
| static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) |
| { |
| int rc; |
| |
| if (sfb->sdbt) |
| return -EINVAL; |
| |
| /* Allocate the sample-data-block-table origin */ |
| sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); |
| if (!sfb->sdbt) |
| return -ENOMEM; |
| sfb->num_sdb = 0; |
| sfb->num_sdbt = 1; |
| |
| /* Link the table origin to point to itself to prepare for |
| * realloc_sampling_buffer() invocation. |
| */ |
| sfb->tail = sfb->sdbt; |
| *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1; |
| |
| /* Allocate requested number of sample-data-blocks */ |
| rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); |
| if (rc) { |
| free_sampling_buffer(sfb); |
| debug_sprintf_event(sfdbg, 4, "%s: " |
| "realloc_sampling_buffer failed with rc %i\n", |
| __func__, rc); |
| } else |
| debug_sprintf_event(sfdbg, 4, |
| "%s: tear %#lx dear %#lx\n", __func__, |
| (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt); |
| return rc; |
| } |
| |
| static void sfb_set_limits(unsigned long min, unsigned long max) |
| { |
| struct hws_qsi_info_block si; |
| |
| CPUM_SF_MIN_SDB = min; |
| CPUM_SF_MAX_SDB = max; |
| |
| memset(&si, 0, sizeof(si)); |
| if (!qsi(&si)) |
| CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); |
| } |
| |
| static unsigned long sfb_max_limit(struct hw_perf_event *hwc) |
| { |
| return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR |
| : CPUM_SF_MAX_SDB; |
| } |
| |
| static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, |
| struct hw_perf_event *hwc) |
| { |
| if (!sfb->sdbt) |
| return SFB_ALLOC_REG(hwc); |
| if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) |
| return SFB_ALLOC_REG(hwc) - sfb->num_sdb; |
| return 0; |
| } |
| |
| static int sfb_has_pending_allocs(struct sf_buffer *sfb, |
| struct hw_perf_event *hwc) |
| { |
| return sfb_pending_allocs(sfb, hwc) > 0; |
| } |
| |
| static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) |
| { |
| /* Limit the number of SDBs to not exceed the maximum */ |
| num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); |
| if (num) |
| SFB_ALLOC_REG(hwc) += num; |
| } |
| |
| static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) |
| { |
| SFB_ALLOC_REG(hwc) = 0; |
| sfb_account_allocs(num, hwc); |
| } |
| |
| static void deallocate_buffers(struct cpu_hw_sf *cpuhw) |
| { |
| if (cpuhw->sfb.sdbt) |
| free_sampling_buffer(&cpuhw->sfb); |
| } |
| |
| static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) |
| { |
| unsigned long n_sdb, freq; |
| size_t sample_size; |
| |
| /* Calculate sampling buffers using 4K pages |
| * |
| * 1. The sampling size is 32 bytes for basic sampling. This size |
| * is the same for all machine types. Diagnostic |
| * sampling uses auxlilary data buffer setup which provides the |
| * memory for SDBs using linux common code auxiliary trace |
| * setup. |
| * |
| * 2. Function alloc_sampling_buffer() sets the Alert Request |
| * Control indicator to trigger a measurement-alert to harvest |
| * sample-data-blocks (SDB). This is done per SDB. This |
| * measurement alert interrupt fires quick enough to handle |
| * one SDB, on very high frequency and work loads there might |
| * be 2 to 3 SBDs available for sample processing. |
| * Currently there is no need for setup alert request on every |
| * n-th page. This is counterproductive as one IRQ triggers |
| * a very high number of samples to be processed at one IRQ. |
| * |
| * 3. Use the sampling frequency as input. |
| * Compute the number of SDBs and ensure a minimum |
| * of CPUM_SF_MIN_SDB. Depending on frequency add some more |
| * SDBs to handle a higher sampling rate. |
| * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples |
| * (one SDB) for every 10000 HZ frequency increment. |
| * |
| * 4. Compute the number of sample-data-block-tables (SDBT) and |
| * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up |
| * to 511 SDBs). |
| */ |
| sample_size = sizeof(struct hws_basic_entry); |
| freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); |
| n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000); |
| |
| /* If there is already a sampling buffer allocated, it is very likely |
| * that the sampling facility is enabled too. If the event to be |
| * initialized requires a greater sampling buffer, the allocation must |
| * be postponed. Changing the sampling buffer requires the sampling |
| * facility to be in the disabled state. So, account the number of |
| * required SDBs and let cpumsf_pmu_enable() resize the buffer just |
| * before the event is started. |
| */ |
| sfb_init_allocs(n_sdb, hwc); |
| if (sf_buffer_available(cpuhw)) |
| return 0; |
| |
| debug_sprintf_event(sfdbg, 3, |
| "%s: rate %lu f %lu sdb %lu/%lu" |
| " sample_size %lu cpuhw %p\n", __func__, |
| SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc), |
| sample_size, cpuhw); |
| |
| return alloc_sampling_buffer(&cpuhw->sfb, |
| sfb_pending_allocs(&cpuhw->sfb, hwc)); |
| } |
| |
| static unsigned long min_percent(unsigned int percent, unsigned long base, |
| unsigned long min) |
| { |
| return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); |
| } |
| |
| static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) |
| { |
| /* Use a percentage-based approach to extend the sampling facility |
| * buffer. Accept up to 5% sample data loss. |
| * Vary the extents between 1% to 5% of the current number of |
| * sample-data-blocks. |
| */ |
| if (ratio <= 5) |
| return 0; |
| if (ratio <= 25) |
| return min_percent(1, base, 1); |
| if (ratio <= 50) |
| return min_percent(1, base, 1); |
| if (ratio <= 75) |
| return min_percent(2, base, 2); |
| if (ratio <= 100) |
| return min_percent(3, base, 3); |
| if (ratio <= 250) |
| return min_percent(4, base, 4); |
| |
| return min_percent(5, base, 8); |
| } |
| |
| static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, |
| struct hw_perf_event *hwc) |
| { |
| unsigned long ratio, num; |
| |
| if (!OVERFLOW_REG(hwc)) |
| return; |
| |
| /* The sample_overflow contains the average number of sample data |
| * that has been lost because sample-data-blocks were full. |
| * |
| * Calculate the total number of sample data entries that has been |
| * discarded. Then calculate the ratio of lost samples to total samples |
| * per second in percent. |
| */ |
| ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, |
| sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); |
| |
| /* Compute number of sample-data-blocks */ |
| num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); |
| if (num) |
| sfb_account_allocs(num, hwc); |
| |
| debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n", |
| __func__, OVERFLOW_REG(hwc), ratio, num); |
| OVERFLOW_REG(hwc) = 0; |
| } |
| |
| /* extend_sampling_buffer() - Extend sampling buffer |
| * @sfb: Sampling buffer structure (for local CPU) |
| * @hwc: Perf event hardware structure |
| * |
| * Use this function to extend the sampling buffer based on the overflow counter |
| * and postponed allocation extents stored in the specified Perf event hardware. |
| * |
| * Important: This function disables the sampling facility in order to safely |
| * change the sampling buffer structure. Do not call this function |
| * when the PMU is active. |
| */ |
| static void extend_sampling_buffer(struct sf_buffer *sfb, |
| struct hw_perf_event *hwc) |
| { |
| unsigned long num, num_old; |
| int rc; |
| |
| num = sfb_pending_allocs(sfb, hwc); |
| if (!num) |
| return; |
| num_old = sfb->num_sdb; |
| |
| /* Disable the sampling facility to reset any states and also |
| * clear pending measurement alerts. |
| */ |
| sf_disable(); |
| |
| /* Extend the sampling buffer. |
| * This memory allocation typically happens in an atomic context when |
| * called by perf. Because this is a reallocation, it is fine if the |
| * new SDB-request cannot be satisfied immediately. |
| */ |
| rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC); |
| if (rc) |
| debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n", |
| __func__, rc); |
| |
| if (sfb_has_pending_allocs(sfb, hwc)) |
| debug_sprintf_event(sfdbg, 5, "%s: " |
| "req %lu alloc %lu remaining %lu\n", |
| __func__, num, sfb->num_sdb - num_old, |
| sfb_pending_allocs(sfb, hwc)); |
| } |
| |
| /* Number of perf events counting hardware events */ |
| static atomic_t num_events; |
| /* Used to avoid races in calling reserve/release_cpumf_hardware */ |
| static DEFINE_MUTEX(pmc_reserve_mutex); |
| |
| #define PMC_INIT 0 |
| #define PMC_RELEASE 1 |
| #define PMC_FAILURE 2 |
| static void setup_pmc_cpu(void *flags) |
| { |
| struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf); |
| int err = 0; |
| |
| switch (*((int *)flags)) { |
| case PMC_INIT: |
| memset(cpusf, 0, sizeof(*cpusf)); |
| err = qsi(&cpusf->qsi); |
| if (err) |
| break; |
| cpusf->flags |= PMU_F_RESERVED; |
| err = sf_disable(); |
| break; |
| case PMC_RELEASE: |
| cpusf->flags &= ~PMU_F_RESERVED; |
| err = sf_disable(); |
| if (!err) |
| deallocate_buffers(cpusf); |
| break; |
| } |
| if (err) { |
| *((int *)flags) |= PMC_FAILURE; |
| pr_err("Switching off the sampling facility failed with rc %i\n", err); |
| } |
| } |
| |
| static void release_pmc_hardware(void) |
| { |
| int flags = PMC_RELEASE; |
| |
| irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); |
| on_each_cpu(setup_pmc_cpu, &flags, 1); |
| } |
| |
| static int reserve_pmc_hardware(void) |
| { |
| int flags = PMC_INIT; |
| |
| on_each_cpu(setup_pmc_cpu, &flags, 1); |
| if (flags & PMC_FAILURE) { |
| release_pmc_hardware(); |
| return -ENODEV; |
| } |
| irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); |
| |
| return 0; |
| } |
| |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| /* Release PMC if this is the last perf event */ |
| if (!atomic_add_unless(&num_events, -1, 1)) { |
| mutex_lock(&pmc_reserve_mutex); |
| if (atomic_dec_return(&num_events) == 0) |
| release_pmc_hardware(); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| } |
| |
| static void hw_init_period(struct hw_perf_event *hwc, u64 period) |
| { |
| hwc->sample_period = period; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, |
| unsigned long rate) |
| { |
| return clamp_t(unsigned long, rate, |
| si->min_sampl_rate, si->max_sampl_rate); |
| } |
| |
| static u32 cpumsf_pid_type(struct perf_event *event, |
| u32 pid, enum pid_type type) |
| { |
| struct task_struct *tsk; |
| |
| /* Idle process */ |
| if (!pid) |
| goto out; |
| |
| tsk = find_task_by_pid_ns(pid, &init_pid_ns); |
| pid = -1; |
| if (tsk) { |
| /* |
| * Only top level events contain the pid namespace in which |
| * they are created. |
| */ |
| if (event->parent) |
| event = event->parent; |
| pid = __task_pid_nr_ns(tsk, type, event->ns); |
| /* |
| * See also 1d953111b648 |
| * "perf/core: Don't report zero PIDs for exiting tasks". |
| */ |
| if (!pid && !pid_alive(tsk)) |
| pid = -1; |
| } |
| out: |
| return pid; |
| } |
| |
| static void cpumsf_output_event_pid(struct perf_event *event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| u32 pid; |
| struct perf_event_header header; |
| struct perf_output_handle handle; |
| |
| /* |
| * Obtain the PID from the basic-sampling data entry and |
| * correct the data->tid_entry.pid value. |
| */ |
| pid = data->tid_entry.pid; |
| |
| /* Protect callchain buffers, tasks */ |
| rcu_read_lock(); |
| |
| perf_prepare_sample(data, event, regs); |
| perf_prepare_header(&header, data, event, regs); |
| if (perf_output_begin(&handle, data, event, header.size)) |
| goto out; |
| |
| /* Update the process ID (see also kernel/events/core.c) */ |
| data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID); |
| data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID); |
| |
| perf_output_sample(&handle, &header, data, event); |
| perf_output_end(&handle); |
| out: |
| rcu_read_unlock(); |
| } |
| |
| static unsigned long getrate(bool freq, unsigned long sample, |
| struct hws_qsi_info_block *si) |
| { |
| unsigned long rate; |
| |
| if (freq) { |
| rate = freq_to_sample_rate(si, sample); |
| rate = hw_limit_rate(si, rate); |
| } else { |
| /* The min/max sampling rates specifies the valid range |
| * of sample periods. If the specified sample period is |
| * out of range, limit the period to the range boundary. |
| */ |
| rate = hw_limit_rate(si, sample); |
| |
| /* The perf core maintains a maximum sample rate that is |
| * configurable through the sysctl interface. Ensure the |
| * sampling rate does not exceed this value. This also helps |
| * to avoid throttling when pushing samples with |
| * perf_event_overflow(). |
| */ |
| if (sample_rate_to_freq(si, rate) > |
| sysctl_perf_event_sample_rate) { |
| debug_sprintf_event(sfdbg, 1, "%s: " |
| "Sampling rate exceeds maximum " |
| "perf sample rate\n", __func__); |
| rate = 0; |
| } |
| } |
| return rate; |
| } |
| |
| /* The sampling information (si) contains information about the |
| * min/max sampling intervals and the CPU speed. So calculate the |
| * correct sampling interval and avoid the whole period adjust |
| * feedback loop. |
| * |
| * Since the CPU Measurement sampling facility can not handle frequency |
| * calculate the sampling interval when frequency is specified using |
| * this formula: |
| * interval := cpu_speed * 1000000 / sample_freq |
| * |
| * Returns errno on bad input and zero on success with parameter interval |
| * set to the correct sampling rate. |
| * |
| * Note: This function turns off freq bit to avoid calling function |
| * perf_adjust_period(). This causes frequency adjustment in the common |
| * code part which causes tremendous variations in the counter values. |
| */ |
| static int __hw_perf_event_init_rate(struct perf_event *event, |
| struct hws_qsi_info_block *si) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| struct hw_perf_event *hwc = &event->hw; |
| unsigned long rate; |
| |
| if (attr->freq) { |
| if (!attr->sample_freq) |
| return -EINVAL; |
| rate = getrate(attr->freq, attr->sample_freq, si); |
| attr->freq = 0; /* Don't call perf_adjust_period() */ |
| SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE; |
| } else { |
| rate = getrate(attr->freq, attr->sample_period, si); |
| if (!rate) |
| return -EINVAL; |
| } |
| attr->sample_period = rate; |
| SAMPL_RATE(hwc) = rate; |
| hw_init_period(hwc, SAMPL_RATE(hwc)); |
| debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n", |
| __func__, event->cpu, event->attr.sample_period, |
| event->attr.freq, SAMPLE_FREQ_MODE(hwc)); |
| return 0; |
| } |
| |
| static int __hw_perf_event_init(struct perf_event *event) |
| { |
| struct cpu_hw_sf *cpuhw; |
| struct hws_qsi_info_block si; |
| struct perf_event_attr *attr = &event->attr; |
| struct hw_perf_event *hwc = &event->hw; |
| int cpu, err; |
| |
| /* Reserve CPU-measurement sampling facility */ |
| err = 0; |
| if (!atomic_inc_not_zero(&num_events)) { |
| mutex_lock(&pmc_reserve_mutex); |
| if (atomic_read(&num_events) == 0 && reserve_pmc_hardware()) |
| err = -EBUSY; |
| else |
| atomic_inc(&num_events); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| event->destroy = hw_perf_event_destroy; |
| |
| if (err) |
| goto out; |
| |
| /* Access per-CPU sampling information (query sampling info) */ |
| /* |
| * The event->cpu value can be -1 to count on every CPU, for example, |
| * when attaching to a task. If this is specified, use the query |
| * sampling info from the current CPU, otherwise use event->cpu to |
| * retrieve the per-CPU information. |
| * Later, cpuhw indicates whether to allocate sampling buffers for a |
| * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). |
| */ |
| memset(&si, 0, sizeof(si)); |
| cpuhw = NULL; |
| if (event->cpu == -1) |
| qsi(&si); |
| else { |
| /* Event is pinned to a particular CPU, retrieve the per-CPU |
| * sampling structure for accessing the CPU-specific QSI. |
| */ |
| cpuhw = &per_cpu(cpu_hw_sf, event->cpu); |
| si = cpuhw->qsi; |
| } |
| |
| /* Check sampling facility authorization and, if not authorized, |
| * fall back to other PMUs. It is safe to check any CPU because |
| * the authorization is identical for all configured CPUs. |
| */ |
| if (!si.as) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| if (si.ribm & CPU_MF_SF_RIBM_NOTAV) { |
| pr_warn("CPU Measurement Facility sampling is temporarily not available\n"); |
| err = -EBUSY; |
| goto out; |
| } |
| |
| /* Always enable basic sampling */ |
| SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; |
| |
| /* Check if diagnostic sampling is requested. Deny if the required |
| * sampling authorization is missing. |
| */ |
| if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { |
| if (!si.ad) { |
| err = -EPERM; |
| goto out; |
| } |
| SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; |
| } |
| |
| err = __hw_perf_event_init_rate(event, &si); |
| if (err) |
| goto out; |
| |
| /* Initialize sample data overflow accounting */ |
| hwc->extra_reg.reg = REG_OVERFLOW; |
| OVERFLOW_REG(hwc) = 0; |
| |
| /* Use AUX buffer. No need to allocate it by ourself */ |
| if (attr->config == PERF_EVENT_CPUM_SF_DIAG) |
| return 0; |
| |
| /* Allocate the per-CPU sampling buffer using the CPU information |
| * from the event. If the event is not pinned to a particular |
| * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling |
| * buffers for each online CPU. |
| */ |
| if (cpuhw) |
| /* Event is pinned to a particular CPU */ |
| err = allocate_buffers(cpuhw, hwc); |
| else { |
| /* Event is not pinned, allocate sampling buffer on |
| * each online CPU |
| */ |
| for_each_online_cpu(cpu) { |
| cpuhw = &per_cpu(cpu_hw_sf, cpu); |
| err = allocate_buffers(cpuhw, hwc); |
| if (err) |
| break; |
| } |
| } |
| |
| /* If PID/TID sampling is active, replace the default overflow |
| * handler to extract and resolve the PIDs from the basic-sampling |
| * data entries. |
| */ |
| if (event->attr.sample_type & PERF_SAMPLE_TID) |
| if (is_default_overflow_handler(event)) |
| event->overflow_handler = cpumsf_output_event_pid; |
| out: |
| return err; |
| } |
| |
| static bool is_callchain_event(struct perf_event *event) |
| { |
| u64 sample_type = event->attr.sample_type; |
| |
| return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | |
| PERF_SAMPLE_STACK_USER); |
| } |
| |
| static int cpumsf_pmu_event_init(struct perf_event *event) |
| { |
| int err; |
| |
| /* No support for taken branch sampling */ |
| /* No support for callchain, stacks and registers */ |
| if (has_branch_stack(event) || is_callchain_event(event)) |
| return -EOPNOTSUPP; |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_RAW: |
| if ((event->attr.config != PERF_EVENT_CPUM_SF) && |
| (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) |
| return -ENOENT; |
| break; |
| case PERF_TYPE_HARDWARE: |
| /* Support sampling of CPU cycles in addition to the |
| * counter facility. However, the counter facility |
| * is more precise and, hence, restrict this PMU to |
| * sampling events only. |
| */ |
| if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) |
| return -ENOENT; |
| if (!is_sampling_event(event)) |
| return -ENOENT; |
| break; |
| default: |
| return -ENOENT; |
| } |
| |
| /* Force reset of idle/hv excludes regardless of what the |
| * user requested. |
| */ |
| if (event->attr.exclude_hv) |
| event->attr.exclude_hv = 0; |
| if (event->attr.exclude_idle) |
| event->attr.exclude_idle = 0; |
| |
| err = __hw_perf_event_init(event); |
| if (unlikely(err)) |
| if (event->destroy) |
| event->destroy(event); |
| return err; |
| } |
| |
| static void cpumsf_pmu_enable(struct pmu *pmu) |
| { |
| struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); |
| struct hw_perf_event *hwc; |
| int err; |
| |
| if (cpuhw->flags & PMU_F_ENABLED) |
| return; |
| |
| if (cpuhw->flags & PMU_F_ERR_MASK) |
| return; |
| |
| /* Check whether to extent the sampling buffer. |
| * |
| * Two conditions trigger an increase of the sampling buffer for a |
| * perf event: |
| * 1. Postponed buffer allocations from the event initialization. |
| * 2. Sampling overflows that contribute to pending allocations. |
| * |
| * Note that the extend_sampling_buffer() function disables the sampling |
| * facility, but it can be fully re-enabled using sampling controls that |
| * have been saved in cpumsf_pmu_disable(). |
| */ |
| if (cpuhw->event) { |
| hwc = &cpuhw->event->hw; |
| if (!(SAMPL_DIAG_MODE(hwc))) { |
| /* |
| * Account number of overflow-designated |
| * buffer extents |
| */ |
| sfb_account_overflows(cpuhw, hwc); |
| extend_sampling_buffer(&cpuhw->sfb, hwc); |
| } |
| /* Rate may be adjusted with ioctl() */ |
| cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw); |
| } |
| |
| /* (Re)enable the PMU and sampling facility */ |
| cpuhw->flags |= PMU_F_ENABLED; |
| barrier(); |
| |
| err = lsctl(&cpuhw->lsctl); |
| if (err) { |
| cpuhw->flags &= ~PMU_F_ENABLED; |
| pr_err("Loading sampling controls failed: op 1 err %i\n", err); |
| return; |
| } |
| |
| /* Load current program parameter */ |
| lpp(&get_lowcore()->lpp); |
| |
| debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i " |
| "interval %#lx tear %#lx dear %#lx\n", __func__, |
| cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed, |
| cpuhw->lsctl.cd, cpuhw->lsctl.interval, |
| cpuhw->lsctl.tear, cpuhw->lsctl.dear); |
| } |
| |
| static void cpumsf_pmu_disable(struct pmu *pmu) |
| { |
| struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); |
| struct hws_lsctl_request_block inactive; |
| struct hws_qsi_info_block si; |
| int err; |
| |
| if (!(cpuhw->flags & PMU_F_ENABLED)) |
| return; |
| |
| if (cpuhw->flags & PMU_F_ERR_MASK) |
| return; |
| |
| /* Switch off sampling activation control */ |
| inactive = cpuhw->lsctl; |
| inactive.cs = 0; |
| inactive.cd = 0; |
| |
| err = lsctl(&inactive); |
| if (err) { |
| pr_err("Loading sampling controls failed: op 2 err %i\n", err); |
| return; |
| } |
| |
| /* Save state of TEAR and DEAR register contents */ |
| err = qsi(&si); |
| if (!err) { |
| /* TEAR/DEAR values are valid only if the sampling facility is |
| * enabled. Note that cpumsf_pmu_disable() might be called even |
| * for a disabled sampling facility because cpumsf_pmu_enable() |
| * controls the enable/disable state. |
| */ |
| if (si.es) { |
| cpuhw->lsctl.tear = si.tear; |
| cpuhw->lsctl.dear = si.dear; |
| } |
| } else |
| debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n", |
| __func__, err); |
| |
| cpuhw->flags &= ~PMU_F_ENABLED; |
| } |
| |
| /* perf_exclude_event() - Filter event |
| * @event: The perf event |
| * @regs: pt_regs structure |
| * @sde_regs: Sample-data-entry (sde) regs structure |
| * |
| * Filter perf events according to their exclude specification. |
| * |
| * Return non-zero if the event shall be excluded. |
| */ |
| static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, |
| struct perf_sf_sde_regs *sde_regs) |
| { |
| if (event->attr.exclude_user && user_mode(regs)) |
| return 1; |
| if (event->attr.exclude_kernel && !user_mode(regs)) |
| return 1; |
| if (event->attr.exclude_guest && sde_regs->in_guest) |
| return 1; |
| if (event->attr.exclude_host && !sde_regs->in_guest) |
| return 1; |
| return 0; |
| } |
| |
| /* perf_push_sample() - Push samples to perf |
| * @event: The perf event |
| * @sample: Hardware sample data |
| * |
| * Use the hardware sample data to create perf event sample. The sample |
| * is the pushed to the event subsystem and the function checks for |
| * possible event overflows. If an event overflow occurs, the PMU is |
| * stopped. |
| * |
| * Return non-zero if an event overflow occurred. |
| */ |
| static int perf_push_sample(struct perf_event *event, |
| struct hws_basic_entry *basic) |
| { |
| int overflow; |
| struct pt_regs regs; |
| struct perf_sf_sde_regs *sde_regs; |
| struct perf_sample_data data; |
| |
| /* Setup perf sample */ |
| perf_sample_data_init(&data, 0, event->hw.last_period); |
| |
| /* Setup pt_regs to look like an CPU-measurement external interrupt |
| * using the Program Request Alert code. The regs.int_parm_long |
| * field which is unused contains additional sample-data-entry related |
| * indicators. |
| */ |
| memset(®s, 0, sizeof(regs)); |
| regs.int_code = 0x1407; |
| regs.int_parm = CPU_MF_INT_SF_PRA; |
| sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; |
| |
| psw_bits(regs.psw).ia = basic->ia; |
| psw_bits(regs.psw).dat = basic->T; |
| psw_bits(regs.psw).wait = basic->W; |
| psw_bits(regs.psw).pstate = basic->P; |
| psw_bits(regs.psw).as = basic->AS; |
| |
| /* |
| * Use the hardware provided configuration level to decide if the |
| * sample belongs to a guest or host. If that is not available, |
| * fall back to the following heuristics: |
| * A non-zero guest program parameter always indicates a guest |
| * sample. Some early samples or samples from guests without |
| * lpp usage would be misaccounted to the host. We use the asn |
| * value as an addon heuristic to detect most of these guest samples. |
| * If the value differs from 0xffff (the host value), we assume to |
| * be a KVM guest. |
| */ |
| switch (basic->CL) { |
| case 1: /* logical partition */ |
| sde_regs->in_guest = 0; |
| break; |
| case 2: /* virtual machine */ |
| sde_regs->in_guest = 1; |
| break; |
| default: /* old machine, use heuristics */ |
| if (basic->gpp || basic->prim_asn != 0xffff) |
| sde_regs->in_guest = 1; |
| break; |
| } |
| |
| /* |
| * Store the PID value from the sample-data-entry to be |
| * processed and resolved by cpumsf_output_event_pid(). |
| */ |
| data.tid_entry.pid = basic->hpp & LPP_PID_MASK; |
| |
| overflow = 0; |
| if (perf_exclude_event(event, ®s, sde_regs)) |
| goto out; |
| if (perf_event_overflow(event, &data, ®s)) { |
| overflow = 1; |
| event->pmu->stop(event, 0); |
| } |
| perf_event_update_userpage(event); |
| out: |
| return overflow; |
| } |
| |
| static void perf_event_count_update(struct perf_event *event, u64 count) |
| { |
| local64_add(count, &event->count); |
| } |
| |
| /* hw_collect_samples() - Walk through a sample-data-block and collect samples |
| * @event: The perf event |
| * @sdbt: Sample-data-block table |
| * @overflow: Event overflow counter |
| * |
| * Walks through a sample-data-block and collects sampling data entries that are |
| * then pushed to the perf event subsystem. Depending on the sampling function, |
| * there can be either basic-sampling or combined-sampling data entries. A |
| * combined-sampling data entry consists of a basic- and a diagnostic-sampling |
| * data entry. The sampling function is determined by the flags in the perf |
| * event hardware structure. The function always works with a combined-sampling |
| * data entry but ignores the the diagnostic portion if it is not available. |
| * |
| * Note that the implementation focuses on basic-sampling data entries and, if |
| * such an entry is not valid, the entire combined-sampling data entry is |
| * ignored. |
| * |
| * The overflow variables counts the number of samples that has been discarded |
| * due to a perf event overflow. |
| */ |
| static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, |
| unsigned long long *overflow) |
| { |
| struct hws_trailer_entry *te; |
| struct hws_basic_entry *sample; |
| |
| te = trailer_entry_ptr((unsigned long)sdbt); |
| sample = (struct hws_basic_entry *)sdbt; |
| while ((unsigned long *)sample < (unsigned long *)te) { |
| /* Check for an empty sample */ |
| if (!sample->def || sample->LS) |
| break; |
| |
| /* Update perf event period */ |
| perf_event_count_update(event, SAMPL_RATE(&event->hw)); |
| |
| /* Check whether sample is valid */ |
| if (sample->def == 0x0001) { |
| /* If an event overflow occurred, the PMU is stopped to |
| * throttle event delivery. Remaining sample data is |
| * discarded. |
| */ |
| if (!*overflow) { |
| /* Check whether sample is consistent */ |
| if (sample->I == 0 && sample->W == 0) { |
| /* Deliver sample data to perf */ |
| *overflow = perf_push_sample(event, |
| sample); |
| } |
| } else |
| /* Count discarded samples */ |
| *overflow += 1; |
| } else { |
| debug_sprintf_event(sfdbg, 4, |
| "%s: Found unknown" |
| " sampling data entry: te->f %i" |
| " basic.def %#4x (%p)\n", __func__, |
| te->header.f, sample->def, sample); |
| /* Sample slot is not yet written or other record. |
| * |
| * This condition can occur if the buffer was reused |
| * from a combined basic- and diagnostic-sampling. |
| * If only basic-sampling is then active, entries are |
| * written into the larger diagnostic entries. |
| * This is typically the case for sample-data-blocks |
| * that are not full. Stop processing if the first |
| * invalid format was detected. |
| */ |
| if (!te->header.f) |
| break; |
| } |
| |
| /* Reset sample slot and advance to next sample */ |
| sample->def = 0; |
| sample++; |
| } |
| } |
| |
| /* hw_perf_event_update() - Process sampling buffer |
| * @event: The perf event |
| * @flush_all: Flag to also flush partially filled sample-data-blocks |
| * |
| * Processes the sampling buffer and create perf event samples. |
| * The sampling buffer position are retrieved and saved in the TEAR_REG |
| * register of the specified perf event. |
| * |
| * Only full sample-data-blocks are processed. Specify the flush_all flag |
| * to also walk through partially filled sample-data-blocks. |
| */ |
| static void hw_perf_event_update(struct perf_event *event, int flush_all) |
| { |
| unsigned long long event_overflow, sampl_overflow, num_sdb; |
| union hws_trailer_header old, prev, new; |
| struct hw_perf_event *hwc = &event->hw; |
| struct hws_trailer_entry *te; |
| unsigned long *sdbt, sdb; |
| int done; |
| |
| /* |
| * AUX buffer is used when in diagnostic sampling mode. |
| * No perf events/samples are created. |
| */ |
| if (SAMPL_DIAG_MODE(&event->hw)) |
| return; |
| |
| sdbt = (unsigned long *)TEAR_REG(hwc); |
| done = event_overflow = sampl_overflow = num_sdb = 0; |
| while (!done) { |
| /* Get the trailer entry of the sample-data-block */ |
| sdb = (unsigned long)phys_to_virt(*sdbt); |
| te = trailer_entry_ptr(sdb); |
| |
| /* Leave loop if no more work to do (block full indicator) */ |
| if (!te->header.f) { |
| done = 1; |
| if (!flush_all) |
| break; |
| } |
| |
| /* Check the sample overflow count */ |
| if (te->header.overflow) |
| /* Account sample overflows and, if a particular limit |
| * is reached, extend the sampling buffer. |
| * For details, see sfb_account_overflows(). |
| */ |
| sampl_overflow += te->header.overflow; |
| |
| /* Timestamps are valid for full sample-data-blocks only */ |
| debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx/%#lx " |
| "overflow %llu timestamp %#llx\n", |
| __func__, sdb, (unsigned long)sdbt, |
| te->header.overflow, |
| (te->header.f) ? trailer_timestamp(te) : 0ULL); |
| |
| /* Collect all samples from a single sample-data-block and |
| * flag if an (perf) event overflow happened. If so, the PMU |
| * is stopped and remaining samples will be discarded. |
| */ |
| hw_collect_samples(event, (unsigned long *)sdb, &event_overflow); |
| num_sdb++; |
| |
| /* Reset trailer (using compare-double-and-swap) */ |
| prev.val = READ_ONCE_ALIGNED_128(te->header.val); |
| do { |
| old.val = prev.val; |
| new.val = prev.val; |
| new.f = 0; |
| new.a = 1; |
| new.overflow = 0; |
| prev.val = cmpxchg128(&te->header.val, old.val, new.val); |
| } while (prev.val != old.val); |
| |
| /* Advance to next sample-data-block */ |
| sdbt++; |
| if (is_link_entry(sdbt)) |
| sdbt = get_next_sdbt(sdbt); |
| |
| /* Update event hardware registers */ |
| TEAR_REG(hwc) = (unsigned long) sdbt; |
| |
| /* Stop processing sample-data if all samples of the current |
| * sample-data-block were flushed even if it was not full. |
| */ |
| if (flush_all && done) |
| break; |
| } |
| |
| /* Account sample overflows in the event hardware structure */ |
| if (sampl_overflow) |
| OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + |
| sampl_overflow, 1 + num_sdb); |
| |
| /* Perf_event_overflow() and perf_event_account_interrupt() limit |
| * the interrupt rate to an upper limit. Roughly 1000 samples per |
| * task tick. |
| * Hitting this limit results in a large number |
| * of throttled REF_REPORT_THROTTLE entries and the samples |
| * are dropped. |
| * Slightly increase the interval to avoid hitting this limit. |
| */ |
| if (event_overflow) { |
| SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10); |
| debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n", |
| __func__, |
| DIV_ROUND_UP(SAMPL_RATE(hwc), 10)); |
| } |
| |
| if (sampl_overflow || event_overflow) |
| debug_sprintf_event(sfdbg, 4, "%s: " |
| "overflows: sample %llu event %llu" |
| " total %llu num_sdb %llu\n", |
| __func__, sampl_overflow, event_overflow, |
| OVERFLOW_REG(hwc), num_sdb); |
| } |
| |
| static inline unsigned long aux_sdb_index(struct aux_buffer *aux, |
| unsigned long i) |
| { |
| return i % aux->sfb.num_sdb; |
| } |
| |
| static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end) |
| { |
| return end >= start ? end - start + 1 : 0; |
| } |
| |
| static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux) |
| { |
| return aux_sdb_num(aux->head, aux->alert_mark); |
| } |
| |
| static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux) |
| { |
| return aux_sdb_num(aux->head, aux->empty_mark); |
| } |
| |
| /* |
| * Get trailer entry by index of SDB. |
| */ |
| static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux, |
| unsigned long index) |
| { |
| unsigned long sdb; |
| |
| index = aux_sdb_index(aux, index); |
| sdb = aux->sdb_index[index]; |
| return trailer_entry_ptr(sdb); |
| } |
| |
| /* |
| * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu |
| * disabled. Collect the full SDBs in AUX buffer which have not reached |
| * the point of alert indicator. And ignore the SDBs which are not |
| * full. |
| * |
| * 1. Scan SDBs to see how much data is there and consume them. |
| * 2. Remove alert indicator in the buffer. |
| */ |
| static void aux_output_end(struct perf_output_handle *handle) |
| { |
| unsigned long i, range_scan, idx; |
| struct aux_buffer *aux; |
| struct hws_trailer_entry *te; |
| |
| aux = perf_get_aux(handle); |
| if (!aux) |
| return; |
| |
| range_scan = aux_sdb_num_alert(aux); |
| for (i = 0, idx = aux->head; i < range_scan; i++, idx++) { |
| te = aux_sdb_trailer(aux, idx); |
| if (!te->header.f) |
| break; |
| } |
| /* i is num of SDBs which are full */ |
| perf_aux_output_end(handle, i << PAGE_SHIFT); |
| |
| /* Remove alert indicators in the buffer */ |
| te = aux_sdb_trailer(aux, aux->alert_mark); |
| te->header.a = 0; |
| |
| debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n", |
| __func__, i, range_scan, aux->head); |
| } |
| |
| /* |
| * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event |
| * is first added to the CPU or rescheduled again to the CPU. It is called |
| * with pmu disabled. |
| * |
| * 1. Reset the trailer of SDBs to get ready for new data. |
| * 2. Tell the hardware where to put the data by reset the SDBs buffer |
| * head(tear/dear). |
| */ |
| static int aux_output_begin(struct perf_output_handle *handle, |
| struct aux_buffer *aux, |
| struct cpu_hw_sf *cpuhw) |
| { |
| unsigned long range, i, range_scan, idx, head, base, offset; |
| struct hws_trailer_entry *te; |
| |
| if (WARN_ON_ONCE(handle->head & ~PAGE_MASK)) |
| return -EINVAL; |
| |
| aux->head = handle->head >> PAGE_SHIFT; |
| range = (handle->size + 1) >> PAGE_SHIFT; |
| if (range <= 1) |
| return -ENOMEM; |
| |
| /* |
| * SDBs between aux->head and aux->empty_mark are already ready |
| * for new data. range_scan is num of SDBs not within them. |
| */ |
| debug_sprintf_event(sfdbg, 6, |
| "%s: range %ld head %ld alert %ld empty %ld\n", |
| __func__, range, aux->head, aux->alert_mark, |
| aux->empty_mark); |
| if (range > aux_sdb_num_empty(aux)) { |
| range_scan = range - aux_sdb_num_empty(aux); |
| idx = aux->empty_mark + 1; |
| for (i = 0; i < range_scan; i++, idx++) { |
| te = aux_sdb_trailer(aux, idx); |
| te->header.f = 0; |
| te->header.a = 0; |
| te->header.overflow = 0; |
| } |
| /* Save the position of empty SDBs */ |
| aux->empty_mark = aux->head + range - 1; |
| } |
| |
| /* Set alert indicator */ |
| aux->alert_mark = aux->head + range/2 - 1; |
| te = aux_sdb_trailer(aux, aux->alert_mark); |
| te->header.a = 1; |
| |
| /* Reset hardware buffer head */ |
| head = aux_sdb_index(aux, aux->head); |
| base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE]; |
| offset = head % CPUM_SF_SDB_PER_TABLE; |
| cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long); |
| cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]); |
| |
| debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld " |
| "index %ld tear %#lx dear %#lx\n", __func__, |
| aux->head, aux->alert_mark, aux->empty_mark, |
| head / CPUM_SF_SDB_PER_TABLE, |
| cpuhw->lsctl.tear, cpuhw->lsctl.dear); |
| |
| return 0; |
| } |
| |
| /* |
| * Set alert indicator on SDB at index @alert_index while sampler is running. |
| * |
| * Return true if successfully. |
| * Return false if full indicator is already set by hardware sampler. |
| */ |
| static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index, |
| unsigned long long *overflow) |
| { |
| union hws_trailer_header old, prev, new; |
| struct hws_trailer_entry *te; |
| |
| te = aux_sdb_trailer(aux, alert_index); |
| prev.val = READ_ONCE_ALIGNED_128(te->header.val); |
| do { |
| old.val = prev.val; |
| new.val = prev.val; |
| *overflow = old.overflow; |
| if (old.f) { |
| /* |
| * SDB is already set by hardware. |
| * Abort and try to set somewhere |
| * behind. |
| */ |
| return false; |
| } |
| new.a = 1; |
| new.overflow = 0; |
| prev.val = cmpxchg128(&te->header.val, old.val, new.val); |
| } while (prev.val != old.val); |
| return true; |
| } |
| |
| /* |
| * aux_reset_buffer() - Scan and setup SDBs for new samples |
| * @aux: The AUX buffer to set |
| * @range: The range of SDBs to scan started from aux->head |
| * @overflow: Set to overflow count |
| * |
| * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is |
| * marked as empty, check if it is already set full by the hardware sampler. |
| * If yes, that means new data is already there before we can set an alert |
| * indicator. Caller should try to set alert indicator to some position behind. |
| * |
| * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used |
| * previously and have already been consumed by user space. Reset these SDBs |
| * (clear full indicator and alert indicator) for new data. |
| * If aux->alert_mark fall in this area, just set it. Overflow count is |
| * recorded while scanning. |
| * |
| * SDBs between aux->head and aux->empty_mark are already reset at last time. |
| * and ready for new samples. So scanning on this area could be skipped. |
| * |
| * Return true if alert indicator is set successfully and false if not. |
| */ |
| static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range, |
| unsigned long long *overflow) |
| { |
| unsigned long i, range_scan, idx, idx_old; |
| union hws_trailer_header old, prev, new; |
| unsigned long long orig_overflow; |
| struct hws_trailer_entry *te; |
| |
| debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld " |
| "empty %ld\n", __func__, range, aux->head, |
| aux->alert_mark, aux->empty_mark); |
| if (range <= aux_sdb_num_empty(aux)) |
| /* |
| * No need to scan. All SDBs in range are marked as empty. |
| * Just set alert indicator. Should check race with hardware |
| * sampler. |
| */ |
| return aux_set_alert(aux, aux->alert_mark, overflow); |
| |
| if (aux->alert_mark <= aux->empty_mark) |
| /* |
| * Set alert indicator on empty SDB. Should check race |
| * with hardware sampler. |
| */ |
| if (!aux_set_alert(aux, aux->alert_mark, overflow)) |
| return false; |
| |
| /* |
| * Scan the SDBs to clear full and alert indicator used previously. |
| * Start scanning from one SDB behind empty_mark. If the new alert |
| * indicator fall into this range, set it. |
| */ |
| range_scan = range - aux_sdb_num_empty(aux); |
| idx_old = idx = aux->empty_mark + 1; |
| for (i = 0; i < range_scan; i++, idx++) { |
| te = aux_sdb_trailer(aux, idx); |
| prev.val = READ_ONCE_ALIGNED_128(te->header.val); |
| do { |
| old.val = prev.val; |
| new.val = prev.val; |
| orig_overflow = old.overflow; |
| new.f = 0; |
| new.overflow = 0; |
| if (idx == aux->alert_mark) |
| new.a = 1; |
| else |
| new.a = 0; |
| prev.val = cmpxchg128(&te->header.val, old.val, new.val); |
| } while (prev.val != old.val); |
| *overflow += orig_overflow; |
| } |
| |
| /* Update empty_mark to new position */ |
| aux->empty_mark = aux->head + range - 1; |
| |
| debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld " |
| "empty %ld\n", __func__, range_scan, idx_old, |
| idx - 1, aux->empty_mark); |
| return true; |
| } |
| |
| /* |
| * Measurement alert handler for diagnostic mode sampling. |
| */ |
| static void hw_collect_aux(struct cpu_hw_sf *cpuhw) |
| { |
| struct aux_buffer *aux; |
| int done = 0; |
| unsigned long range = 0, size; |
| unsigned long long overflow = 0; |
| struct perf_output_handle *handle = &cpuhw->handle; |
| unsigned long num_sdb; |
| |
| aux = perf_get_aux(handle); |
| if (WARN_ON_ONCE(!aux)) |
| return; |
| |
| /* Inform user space new data arrived */ |
| size = aux_sdb_num_alert(aux) << PAGE_SHIFT; |
| debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__, |
| size >> PAGE_SHIFT); |
| perf_aux_output_end(handle, size); |
| |
| num_sdb = aux->sfb.num_sdb; |
| while (!done) { |
| /* Get an output handle */ |
| aux = perf_aux_output_begin(handle, cpuhw->event); |
| if (handle->size == 0) { |
| pr_err("The AUX buffer with %lu pages for the " |
| "diagnostic-sampling mode is full\n", |
| num_sdb); |
| break; |
| } |
| if (WARN_ON_ONCE(!aux)) |
| return; |
| |
| /* Update head and alert_mark to new position */ |
| aux->head = handle->head >> PAGE_SHIFT; |
| range = (handle->size + 1) >> PAGE_SHIFT; |
| if (range == 1) |
| aux->alert_mark = aux->head; |
| else |
| aux->alert_mark = aux->head + range/2 - 1; |
| |
| if (aux_reset_buffer(aux, range, &overflow)) { |
| if (!overflow) { |
| done = 1; |
| break; |
| } |
| size = range << PAGE_SHIFT; |
| perf_aux_output_end(&cpuhw->handle, size); |
| pr_err("Sample data caused the AUX buffer with %lu " |
| "pages to overflow\n", aux->sfb.num_sdb); |
| debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld " |
| "overflow %lld\n", __func__, |
| aux->head, range, overflow); |
| } else { |
| size = aux_sdb_num_alert(aux) << PAGE_SHIFT; |
| perf_aux_output_end(&cpuhw->handle, size); |
| debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld " |
| "already full, try another\n", |
| __func__, |
| aux->head, aux->alert_mark); |
| } |
| } |
| |
| if (done) |
| debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld " |
| "empty %ld\n", __func__, aux->head, |
| aux->alert_mark, aux->empty_mark); |
| } |
| |
| /* |
| * Callback when freeing AUX buffers. |
| */ |
| static void aux_buffer_free(void *data) |
| { |
| struct aux_buffer *aux = data; |
| unsigned long i, num_sdbt; |
| |
| if (!aux) |
| return; |
| |
| /* Free SDBT. SDB is freed by the caller */ |
| num_sdbt = aux->sfb.num_sdbt; |
| for (i = 0; i < num_sdbt; i++) |
| free_page(aux->sdbt_index[i]); |
| |
| kfree(aux->sdbt_index); |
| kfree(aux->sdb_index); |
| kfree(aux); |
| |
| debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt); |
| } |
| |
| static void aux_sdb_init(unsigned long sdb) |
| { |
| struct hws_trailer_entry *te; |
| |
| te = trailer_entry_ptr(sdb); |
| |
| /* Save clock base */ |
| te->clock_base = 1; |
| te->progusage2 = tod_clock_base.tod; |
| } |
| |
| /* |
| * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling |
| * @event: Event the buffer is setup for, event->cpu == -1 means current |
| * @pages: Array of pointers to buffer pages passed from perf core |
| * @nr_pages: Total pages |
| * @snapshot: Flag for snapshot mode |
| * |
| * This is the callback when setup an event using AUX buffer. Perf tool can |
| * trigger this by an additional mmap() call on the event. Unlike the buffer |
| * for basic samples, AUX buffer belongs to the event. It is scheduled with |
| * the task among online cpus when it is a per-thread event. |
| * |
| * Return the private AUX buffer structure if success or NULL if fails. |
| */ |
| static void *aux_buffer_setup(struct perf_event *event, void **pages, |
| int nr_pages, bool snapshot) |
| { |
| struct sf_buffer *sfb; |
| struct aux_buffer *aux; |
| unsigned long *new, *tail; |
| int i, n_sdbt; |
| |
| if (!nr_pages || !pages) |
| return NULL; |
| |
| if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) { |
| pr_err("AUX buffer size (%i pages) is larger than the " |
| "maximum sampling buffer limit\n", |
| nr_pages); |
| return NULL; |
| } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) { |
| pr_err("AUX buffer size (%i pages) is less than the " |
| "minimum sampling buffer limit\n", |
| nr_pages); |
| return NULL; |
| } |
| |
| /* Allocate aux_buffer struct for the event */ |
| aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL); |
| if (!aux) |
| goto no_aux; |
| sfb = &aux->sfb; |
| |
| /* Allocate sdbt_index for fast reference */ |
| n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE); |
| aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL); |
| if (!aux->sdbt_index) |
| goto no_sdbt_index; |
| |
| /* Allocate sdb_index for fast reference */ |
| aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); |
| if (!aux->sdb_index) |
| goto no_sdb_index; |
| |
| /* Allocate the first SDBT */ |
| sfb->num_sdbt = 0; |
| sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); |
| if (!sfb->sdbt) |
| goto no_sdbt; |
| aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt; |
| tail = sfb->tail = sfb->sdbt; |
| |
| /* |
| * Link the provided pages of AUX buffer to SDBT. |
| * Allocate SDBT if needed. |
| */ |
| for (i = 0; i < nr_pages; i++, tail++) { |
| if (require_table_link(tail)) { |
| new = (unsigned long *)get_zeroed_page(GFP_KERNEL); |
| if (!new) |
| goto no_sdbt; |
| aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new; |
| /* Link current page to tail of chain */ |
| *tail = virt_to_phys(new) + 1; |
| tail = new; |
| } |
| /* Tail is the entry in a SDBT */ |
| *tail = virt_to_phys(pages[i]); |
| aux->sdb_index[i] = (unsigned long)pages[i]; |
| aux_sdb_init((unsigned long)pages[i]); |
| } |
| sfb->num_sdb = nr_pages; |
| |
| /* Link the last entry in the SDBT to the first SDBT */ |
| *tail = virt_to_phys(sfb->sdbt) + 1; |
| sfb->tail = tail; |
| |
| /* |
| * Initial all SDBs are zeroed. Mark it as empty. |
| * So there is no need to clear the full indicator |
| * when this event is first added. |
| */ |
| aux->empty_mark = sfb->num_sdb - 1; |
| |
| debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__, |
| sfb->num_sdbt, sfb->num_sdb); |
| |
| return aux; |
| |
| no_sdbt: |
| /* SDBs (AUX buffer pages) are freed by caller */ |
| for (i = 0; i < sfb->num_sdbt; i++) |
| free_page(aux->sdbt_index[i]); |
| kfree(aux->sdb_index); |
| no_sdb_index: |
| kfree(aux->sdbt_index); |
| no_sdbt_index: |
| kfree(aux); |
| no_aux: |
| return NULL; |
| } |
| |
| static void cpumsf_pmu_read(struct perf_event *event) |
| { |
| /* Nothing to do ... updates are interrupt-driven */ |
| } |
| |
| /* Check if the new sampling period/frequency is appropriate. |
| * |
| * Return non-zero on error and zero on passed checks. |
| */ |
| static int cpumsf_pmu_check_period(struct perf_event *event, u64 value) |
| { |
| struct hws_qsi_info_block si; |
| unsigned long rate; |
| bool do_freq; |
| |
| memset(&si, 0, sizeof(si)); |
| if (event->cpu == -1) { |
| if (qsi(&si)) |
| return -ENODEV; |
| } else { |
| /* Event is pinned to a particular CPU, retrieve the per-CPU |
| * sampling structure for accessing the CPU-specific QSI. |
| */ |
| struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu); |
| |
| si = cpuhw->qsi; |
| } |
| |
| do_freq = !!SAMPLE_FREQ_MODE(&event->hw); |
| rate = getrate(do_freq, value, &si); |
| if (!rate) |
| return -EINVAL; |
| |
| event->attr.sample_period = rate; |
| SAMPL_RATE(&event->hw) = rate; |
| hw_init_period(&event->hw, SAMPL_RATE(&event->hw)); |
| debug_sprintf_event(sfdbg, 4, "%s:" |
| " cpu %d value %#llx period %#llx freq %d\n", |
| __func__, event->cpu, value, |
| event->attr.sample_period, do_freq); |
| return 0; |
| } |
| |
| /* Activate sampling control. |
| * Next call of pmu_enable() starts sampling. |
| */ |
| static void cpumsf_pmu_start(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); |
| |
| if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) |
| return; |
| |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); |
| |
| perf_pmu_disable(event->pmu); |
| event->hw.state = 0; |
| cpuhw->lsctl.cs = 1; |
| if (SAMPL_DIAG_MODE(&event->hw)) |
| cpuhw->lsctl.cd = 1; |
| perf_pmu_enable(event->pmu); |
| } |
| |
| /* Deactivate sampling control. |
| * Next call of pmu_enable() stops sampling. |
| */ |
| static void cpumsf_pmu_stop(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); |
| |
| if (event->hw.state & PERF_HES_STOPPED) |
| return; |
| |
| perf_pmu_disable(event->pmu); |
| cpuhw->lsctl.cs = 0; |
| cpuhw->lsctl.cd = 0; |
| event->hw.state |= PERF_HES_STOPPED; |
| |
| if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { |
| hw_perf_event_update(event, 1); |
| event->hw.state |= PERF_HES_UPTODATE; |
| } |
| perf_pmu_enable(event->pmu); |
| } |
| |
| static int cpumsf_pmu_add(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); |
| struct aux_buffer *aux; |
| int err; |
| |
| if (cpuhw->flags & PMU_F_IN_USE) |
| return -EAGAIN; |
| |
| if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt) |
| return -EINVAL; |
| |
| err = 0; |
| perf_pmu_disable(event->pmu); |
| |
| event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| |
| /* Set up sampling controls. Always program the sampling register |
| * using the SDB-table start. Reset TEAR_REG event hardware register |
| * that is used by hw_perf_event_update() to store the sampling buffer |
| * position after samples have been flushed. |
| */ |
| cpuhw->lsctl.s = 0; |
| cpuhw->lsctl.h = 1; |
| cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); |
| if (!SAMPL_DIAG_MODE(&event->hw)) { |
| cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt); |
| cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt; |
| TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt; |
| } |
| |
| /* Ensure sampling functions are in the disabled state. If disabled, |
| * switch on sampling enable control. */ |
| if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| if (SAMPL_DIAG_MODE(&event->hw)) { |
| aux = perf_aux_output_begin(&cpuhw->handle, event); |
| if (!aux) { |
| err = -EINVAL; |
| goto out; |
| } |
| err = aux_output_begin(&cpuhw->handle, aux, cpuhw); |
| if (err) |
| goto out; |
| cpuhw->lsctl.ed = 1; |
| } |
| cpuhw->lsctl.es = 1; |
| |
| /* Set in_use flag and store event */ |
| cpuhw->event = event; |
| cpuhw->flags |= PMU_F_IN_USE; |
| |
| if (flags & PERF_EF_START) |
| cpumsf_pmu_start(event, PERF_EF_RELOAD); |
| out: |
| perf_event_update_userpage(event); |
| perf_pmu_enable(event->pmu); |
| return err; |
| } |
| |
| static void cpumsf_pmu_del(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); |
| |
| perf_pmu_disable(event->pmu); |
| cpumsf_pmu_stop(event, PERF_EF_UPDATE); |
| |
| cpuhw->lsctl.es = 0; |
| cpuhw->lsctl.ed = 0; |
| cpuhw->flags &= ~PMU_F_IN_USE; |
| cpuhw->event = NULL; |
| |
| if (SAMPL_DIAG_MODE(&event->hw)) |
| aux_output_end(&cpuhw->handle); |
| perf_event_update_userpage(event); |
| perf_pmu_enable(event->pmu); |
| } |
| |
| CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); |
| CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); |
| |
| /* Attribute list for CPU_SF. |
| * |
| * The availablitiy depends on the CPU_MF sampling facility authorization |
| * for basic + diagnositic samples. This is determined at initialization |
| * time by the sampling facility device driver. |
| * If the authorization for basic samples is turned off, it should be |
| * also turned off for diagnostic sampling. |
| * |
| * During initialization of the device driver, check the authorization |
| * level for diagnostic sampling and installs the attribute |
| * file for diagnostic sampling if necessary. |
| * |
| * For now install a placeholder to reference all possible attributes: |
| * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG. |
| * Add another entry for the final NULL pointer. |
| */ |
| enum { |
| SF_CYCLES_BASIC_ATTR_IDX = 0, |
| SF_CYCLES_BASIC_DIAG_ATTR_IDX, |
| SF_CYCLES_ATTR_MAX |
| }; |
| |
| static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = { |
| [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC) |
| }; |
| |
| PMU_FORMAT_ATTR(event, "config:0-63"); |
| |
| static struct attribute *cpumsf_pmu_format_attr[] = { |
| &format_attr_event.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group cpumsf_pmu_events_group = { |
| .name = "events", |
| .attrs = cpumsf_pmu_events_attr, |
| }; |
| |
| static struct attribute_group cpumsf_pmu_format_group = { |
| .name = "format", |
| .attrs = cpumsf_pmu_format_attr, |
| }; |
| |
| static const struct attribute_group *cpumsf_pmu_attr_groups[] = { |
| &cpumsf_pmu_events_group, |
| &cpumsf_pmu_format_group, |
| NULL, |
| }; |
| |
| static struct pmu cpumf_sampling = { |
| .pmu_enable = cpumsf_pmu_enable, |
| .pmu_disable = cpumsf_pmu_disable, |
| |
| .event_init = cpumsf_pmu_event_init, |
| .add = cpumsf_pmu_add, |
| .del = cpumsf_pmu_del, |
| |
| .start = cpumsf_pmu_start, |
| .stop = cpumsf_pmu_stop, |
| .read = cpumsf_pmu_read, |
| |
| .attr_groups = cpumsf_pmu_attr_groups, |
| |
| .setup_aux = aux_buffer_setup, |
| .free_aux = aux_buffer_free, |
| |
| .check_period = cpumsf_pmu_check_period, |
| }; |
| |
| static void cpumf_measurement_alert(struct ext_code ext_code, |
| unsigned int alert, unsigned long unused) |
| { |
| struct cpu_hw_sf *cpuhw; |
| |
| if (!(alert & CPU_MF_INT_SF_MASK)) |
| return; |
| inc_irq_stat(IRQEXT_CMS); |
| cpuhw = this_cpu_ptr(&cpu_hw_sf); |
| |
| /* Measurement alerts are shared and might happen when the PMU |
| * is not reserved. Ignore these alerts in this case. */ |
| if (!(cpuhw->flags & PMU_F_RESERVED)) |
| return; |
| |
| /* The processing below must take care of multiple alert events that |
| * might be indicated concurrently. */ |
| |
| /* Program alert request */ |
| if (alert & CPU_MF_INT_SF_PRA) { |
| if (cpuhw->flags & PMU_F_IN_USE) |
| if (SAMPL_DIAG_MODE(&cpuhw->event->hw)) |
| hw_collect_aux(cpuhw); |
| else |
| hw_perf_event_update(cpuhw->event, 0); |
| else |
| WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE)); |
| } |
| |
| /* Report measurement alerts only for non-PRA codes */ |
| if (alert != CPU_MF_INT_SF_PRA) |
| debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__, |
| alert); |
| |
| /* Sampling authorization change request */ |
| if (alert & CPU_MF_INT_SF_SACA) |
| qsi(&cpuhw->qsi); |
| |
| /* Loss of sample data due to high-priority machine activities */ |
| if (alert & CPU_MF_INT_SF_LSDA) { |
| pr_err("Sample data was lost\n"); |
| cpuhw->flags |= PMU_F_ERR_LSDA; |
| sf_disable(); |
| } |
| |
| /* Invalid sampling buffer entry */ |
| if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { |
| pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n", |
| alert); |
| cpuhw->flags |= PMU_F_ERR_IBE; |
| sf_disable(); |
| } |
| } |
| |
| static int cpusf_pmu_setup(unsigned int cpu, int flags) |
| { |
| /* Ignore the notification if no events are scheduled on the PMU. |
| * This might be racy... |
| */ |
| if (!atomic_read(&num_events)) |
| return 0; |
| |
| local_irq_disable(); |
| setup_pmc_cpu(&flags); |
| local_irq_enable(); |
| return 0; |
| } |
| |
| static int s390_pmu_sf_online_cpu(unsigned int cpu) |
| { |
| return cpusf_pmu_setup(cpu, PMC_INIT); |
| } |
| |
| static int s390_pmu_sf_offline_cpu(unsigned int cpu) |
| { |
| return cpusf_pmu_setup(cpu, PMC_RELEASE); |
| } |
| |
| static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) |
| { |
| if (!cpum_sf_avail()) |
| return -ENODEV; |
| return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); |
| } |
| |
| static int param_set_sfb_size(const char *val, const struct kernel_param *kp) |
| { |
| int rc; |
| unsigned long min, max; |
| |
| if (!cpum_sf_avail()) |
| return -ENODEV; |
| if (!val || !strlen(val)) |
| return -EINVAL; |
| |
| /* Valid parameter values: "min,max" or "max" */ |
| min = CPUM_SF_MIN_SDB; |
| max = CPUM_SF_MAX_SDB; |
| if (strchr(val, ',')) |
| rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; |
| else |
| rc = kstrtoul(val, 10, &max); |
| |
| if (min < 2 || min >= max || max > get_num_physpages()) |
| rc = -EINVAL; |
| if (rc) |
| return rc; |
| |
| sfb_set_limits(min, max); |
| pr_info("The sampling buffer limits have changed to: " |
| "min %lu max %lu (diag %lu)\n", |
| CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); |
| return 0; |
| } |
| |
| #define param_check_sfb_size(name, p) __param_check(name, p, void) |
| static const struct kernel_param_ops param_ops_sfb_size = { |
| .set = param_set_sfb_size, |
| .get = param_get_sfb_size, |
| }; |
| |
| #define RS_INIT_FAILURE_QSI 0x0001 |
| #define RS_INIT_FAILURE_BSDES 0x0002 |
| #define RS_INIT_FAILURE_ALRT 0x0003 |
| #define RS_INIT_FAILURE_PERF 0x0004 |
| static void __init pr_cpumsf_err(unsigned int reason) |
| { |
| pr_err("Sampling facility support for perf is not available: " |
| "reason %#x\n", reason); |
| } |
| |
| static int __init init_cpum_sampling_pmu(void) |
| { |
| struct hws_qsi_info_block si; |
| int err; |
| |
| if (!cpum_sf_avail()) |
| return -ENODEV; |
| |
| memset(&si, 0, sizeof(si)); |
| if (qsi(&si)) { |
| pr_cpumsf_err(RS_INIT_FAILURE_QSI); |
| return -ENODEV; |
| } |
| |
| if (!si.as && !si.ad) |
| return -ENODEV; |
| |
| if (si.bsdes != sizeof(struct hws_basic_entry)) { |
| pr_cpumsf_err(RS_INIT_FAILURE_BSDES); |
| return -EINVAL; |
| } |
| |
| if (si.ad) { |
| sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); |
| /* Sampling of diagnostic data authorized, |
| * install event into attribute list of PMU device. |
| */ |
| cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] = |
| CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); |
| } |
| |
| sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); |
| if (!sfdbg) { |
| pr_err("Registering for s390dbf failed\n"); |
| return -ENOMEM; |
| } |
| debug_register_view(sfdbg, &debug_sprintf_view); |
| |
| err = register_external_irq(EXT_IRQ_MEASURE_ALERT, |
| cpumf_measurement_alert); |
| if (err) { |
| pr_cpumsf_err(RS_INIT_FAILURE_ALRT); |
| debug_unregister(sfdbg); |
| goto out; |
| } |
| |
| err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); |
| if (err) { |
| pr_cpumsf_err(RS_INIT_FAILURE_PERF); |
| unregister_external_irq(EXT_IRQ_MEASURE_ALERT, |
| cpumf_measurement_alert); |
| debug_unregister(sfdbg); |
| goto out; |
| } |
| |
| cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", |
| s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); |
| out: |
| return err; |
| } |
| |
| arch_initcall(init_cpum_sampling_pmu); |
| core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644); |