| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include "irq.h" |
| #include "ioapic.h" |
| #include "mmu.h" |
| #include "mmu_internal.h" |
| #include "tdp_mmu.h" |
| #include "x86.h" |
| #include "kvm_cache_regs.h" |
| #include "smm.h" |
| #include "kvm_emulate.h" |
| #include "page_track.h" |
| #include "cpuid.h" |
| #include "spte.h" |
| |
| #include <linux/kvm_host.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/moduleparam.h> |
| #include <linux/export.h> |
| #include <linux/swap.h> |
| #include <linux/hugetlb.h> |
| #include <linux/compiler.h> |
| #include <linux/srcu.h> |
| #include <linux/slab.h> |
| #include <linux/sched/signal.h> |
| #include <linux/uaccess.h> |
| #include <linux/hash.h> |
| #include <linux/kern_levels.h> |
| #include <linux/kstrtox.h> |
| #include <linux/kthread.h> |
| #include <linux/wordpart.h> |
| |
| #include <asm/page.h> |
| #include <asm/memtype.h> |
| #include <asm/cmpxchg.h> |
| #include <asm/io.h> |
| #include <asm/set_memory.h> |
| #include <asm/spec-ctrl.h> |
| #include <asm/vmx.h> |
| |
| #include "trace.h" |
| |
| static bool nx_hugepage_mitigation_hard_disabled; |
| |
| int __read_mostly nx_huge_pages = -1; |
| static uint __read_mostly nx_huge_pages_recovery_period_ms; |
| #ifdef CONFIG_PREEMPT_RT |
| /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ |
| static uint __read_mostly nx_huge_pages_recovery_ratio = 0; |
| #else |
| static uint __read_mostly nx_huge_pages_recovery_ratio = 60; |
| #endif |
| |
| static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); |
| static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); |
| static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); |
| |
| static const struct kernel_param_ops nx_huge_pages_ops = { |
| .set = set_nx_huge_pages, |
| .get = get_nx_huge_pages, |
| }; |
| |
| static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { |
| .set = set_nx_huge_pages_recovery_param, |
| .get = param_get_uint, |
| }; |
| |
| module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); |
| __MODULE_PARM_TYPE(nx_huge_pages, "bool"); |
| module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, |
| &nx_huge_pages_recovery_ratio, 0644); |
| __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); |
| module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, |
| &nx_huge_pages_recovery_period_ms, 0644); |
| __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); |
| |
| static bool __read_mostly force_flush_and_sync_on_reuse; |
| module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); |
| |
| /* |
| * When setting this variable to true it enables Two-Dimensional-Paging |
| * where the hardware walks 2 page tables: |
| * 1. the guest-virtual to guest-physical |
| * 2. while doing 1. it walks guest-physical to host-physical |
| * If the hardware supports that we don't need to do shadow paging. |
| */ |
| bool tdp_enabled = false; |
| |
| static bool __ro_after_init tdp_mmu_allowed; |
| |
| #ifdef CONFIG_X86_64 |
| bool __read_mostly tdp_mmu_enabled = true; |
| module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); |
| #endif |
| |
| static int max_huge_page_level __read_mostly; |
| static int tdp_root_level __read_mostly; |
| static int max_tdp_level __read_mostly; |
| |
| #define PTE_PREFETCH_NUM 8 |
| |
| #include <trace/events/kvm.h> |
| |
| /* make pte_list_desc fit well in cache lines */ |
| #define PTE_LIST_EXT 14 |
| |
| /* |
| * struct pte_list_desc is the core data structure used to implement a custom |
| * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a |
| * given GFN when used in the context of rmaps. Using a custom list allows KVM |
| * to optimize for the common case where many GFNs will have at most a handful |
| * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small |
| * memory footprint, which in turn improves runtime performance by exploiting |
| * cache locality. |
| * |
| * A list is comprised of one or more pte_list_desc objects (descriptors). |
| * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor |
| * is full and a new SPTEs needs to be added, a new descriptor is allocated and |
| * becomes the head of the list. This means that by definitions, all tail |
| * descriptors are full. |
| * |
| * Note, the meta data fields are deliberately placed at the start of the |
| * structure to optimize the cacheline layout; accessing the descriptor will |
| * touch only a single cacheline so long as @spte_count<=6 (or if only the |
| * descriptors metadata is accessed). |
| */ |
| struct pte_list_desc { |
| struct pte_list_desc *more; |
| /* The number of PTEs stored in _this_ descriptor. */ |
| u32 spte_count; |
| /* The number of PTEs stored in all tails of this descriptor. */ |
| u32 tail_count; |
| u64 *sptes[PTE_LIST_EXT]; |
| }; |
| |
| struct kvm_shadow_walk_iterator { |
| u64 addr; |
| hpa_t shadow_addr; |
| u64 *sptep; |
| int level; |
| unsigned index; |
| }; |
| |
| #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ |
| for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ |
| (_root), (_addr)); \ |
| shadow_walk_okay(&(_walker)); \ |
| shadow_walk_next(&(_walker))) |
| |
| #define for_each_shadow_entry(_vcpu, _addr, _walker) \ |
| for (shadow_walk_init(&(_walker), _vcpu, _addr); \ |
| shadow_walk_okay(&(_walker)); \ |
| shadow_walk_next(&(_walker))) |
| |
| #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ |
| for (shadow_walk_init(&(_walker), _vcpu, _addr); \ |
| shadow_walk_okay(&(_walker)) && \ |
| ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ |
| __shadow_walk_next(&(_walker), spte)) |
| |
| static struct kmem_cache *pte_list_desc_cache; |
| struct kmem_cache *mmu_page_header_cache; |
| static struct percpu_counter kvm_total_used_mmu_pages; |
| |
| static void mmu_spte_set(u64 *sptep, u64 spte); |
| |
| struct kvm_mmu_role_regs { |
| const unsigned long cr0; |
| const unsigned long cr4; |
| const u64 efer; |
| }; |
| |
| #define CREATE_TRACE_POINTS |
| #include "mmutrace.h" |
| |
| /* |
| * Yes, lot's of underscores. They're a hint that you probably shouldn't be |
| * reading from the role_regs. Once the root_role is constructed, it becomes |
| * the single source of truth for the MMU's state. |
| */ |
| #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ |
| static inline bool __maybe_unused \ |
| ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ |
| { \ |
| return !!(regs->reg & flag); \ |
| } |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); |
| |
| /* |
| * The MMU itself (with a valid role) is the single source of truth for the |
| * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The |
| * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, |
| * and the vCPU may be incorrect/irrelevant. |
| */ |
| #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ |
| static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ |
| { \ |
| return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ |
| } |
| BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); |
| BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); |
| BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); |
| |
| static inline bool is_cr0_pg(struct kvm_mmu *mmu) |
| { |
| return mmu->cpu_role.base.level > 0; |
| } |
| |
| static inline bool is_cr4_pae(struct kvm_mmu *mmu) |
| { |
| return !mmu->cpu_role.base.has_4_byte_gpte; |
| } |
| |
| static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu_role_regs regs = { |
| .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), |
| .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), |
| .efer = vcpu->arch.efer, |
| }; |
| |
| return regs; |
| } |
| |
| static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) |
| { |
| return kvm_read_cr3(vcpu); |
| } |
| |
| static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *mmu) |
| { |
| if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) |
| return kvm_read_cr3(vcpu); |
| |
| return mmu->get_guest_pgd(vcpu); |
| } |
| |
| static inline bool kvm_available_flush_remote_tlbs_range(void) |
| { |
| #if IS_ENABLED(CONFIG_HYPERV) |
| return kvm_x86_ops.flush_remote_tlbs_range; |
| #else |
| return false; |
| #endif |
| } |
| |
| static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); |
| |
| /* Flush the range of guest memory mapped by the given SPTE. */ |
| static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) |
| { |
| struct kvm_mmu_page *sp = sptep_to_sp(sptep); |
| gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); |
| |
| kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); |
| } |
| |
| static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, |
| unsigned int access) |
| { |
| u64 spte = make_mmio_spte(vcpu, gfn, access); |
| |
| trace_mark_mmio_spte(sptep, gfn, spte); |
| mmu_spte_set(sptep, spte); |
| } |
| |
| static gfn_t get_mmio_spte_gfn(u64 spte) |
| { |
| u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; |
| |
| gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) |
| & shadow_nonpresent_or_rsvd_mask; |
| |
| return gpa >> PAGE_SHIFT; |
| } |
| |
| static unsigned get_mmio_spte_access(u64 spte) |
| { |
| return spte & shadow_mmio_access_mask; |
| } |
| |
| static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) |
| { |
| u64 kvm_gen, spte_gen, gen; |
| |
| gen = kvm_vcpu_memslots(vcpu)->generation; |
| if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) |
| return false; |
| |
| kvm_gen = gen & MMIO_SPTE_GEN_MASK; |
| spte_gen = get_mmio_spte_generation(spte); |
| |
| trace_check_mmio_spte(spte, kvm_gen, spte_gen); |
| return likely(kvm_gen == spte_gen); |
| } |
| |
| static int is_cpuid_PSE36(void) |
| { |
| return 1; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void __set_spte(u64 *sptep, u64 spte) |
| { |
| KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); |
| WRITE_ONCE(*sptep, spte); |
| } |
| |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
| { |
| KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); |
| WRITE_ONCE(*sptep, spte); |
| } |
| |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) |
| { |
| KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); |
| return xchg(sptep, spte); |
| } |
| |
| static u64 __get_spte_lockless(u64 *sptep) |
| { |
| return READ_ONCE(*sptep); |
| } |
| #else |
| union split_spte { |
| struct { |
| u32 spte_low; |
| u32 spte_high; |
| }; |
| u64 spte; |
| }; |
| |
| static void count_spte_clear(u64 *sptep, u64 spte) |
| { |
| struct kvm_mmu_page *sp = sptep_to_sp(sptep); |
| |
| if (is_shadow_present_pte(spte)) |
| return; |
| |
| /* Ensure the spte is completely set before we increase the count */ |
| smp_wmb(); |
| sp->clear_spte_count++; |
| } |
| |
| static void __set_spte(u64 *sptep, u64 spte) |
| { |
| union split_spte *ssptep, sspte; |
| |
| ssptep = (union split_spte *)sptep; |
| sspte = (union split_spte)spte; |
| |
| ssptep->spte_high = sspte.spte_high; |
| |
| /* |
| * If we map the spte from nonpresent to present, We should store |
| * the high bits firstly, then set present bit, so cpu can not |
| * fetch this spte while we are setting the spte. |
| */ |
| smp_wmb(); |
| |
| WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
| } |
| |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
| { |
| union split_spte *ssptep, sspte; |
| |
| ssptep = (union split_spte *)sptep; |
| sspte = (union split_spte)spte; |
| |
| WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
| |
| /* |
| * If we map the spte from present to nonpresent, we should clear |
| * present bit firstly to avoid vcpu fetch the old high bits. |
| */ |
| smp_wmb(); |
| |
| ssptep->spte_high = sspte.spte_high; |
| count_spte_clear(sptep, spte); |
| } |
| |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) |
| { |
| union split_spte *ssptep, sspte, orig; |
| |
| ssptep = (union split_spte *)sptep; |
| sspte = (union split_spte)spte; |
| |
| /* xchg acts as a barrier before the setting of the high bits */ |
| orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); |
| orig.spte_high = ssptep->spte_high; |
| ssptep->spte_high = sspte.spte_high; |
| count_spte_clear(sptep, spte); |
| |
| return orig.spte; |
| } |
| |
| /* |
| * The idea using the light way get the spte on x86_32 guest is from |
| * gup_get_pte (mm/gup.c). |
| * |
| * An spte tlb flush may be pending, because they are coalesced and |
| * we are running out of the MMU lock. Therefore |
| * we need to protect against in-progress updates of the spte. |
| * |
| * Reading the spte while an update is in progress may get the old value |
| * for the high part of the spte. The race is fine for a present->non-present |
| * change (because the high part of the spte is ignored for non-present spte), |
| * but for a present->present change we must reread the spte. |
| * |
| * All such changes are done in two steps (present->non-present and |
| * non-present->present), hence it is enough to count the number of |
| * present->non-present updates: if it changed while reading the spte, |
| * we might have hit the race. This is done using clear_spte_count. |
| */ |
| static u64 __get_spte_lockless(u64 *sptep) |
| { |
| struct kvm_mmu_page *sp = sptep_to_sp(sptep); |
| union split_spte spte, *orig = (union split_spte *)sptep; |
| int count; |
| |
| retry: |
| count = sp->clear_spte_count; |
| smp_rmb(); |
| |
| spte.spte_low = orig->spte_low; |
| smp_rmb(); |
| |
| spte.spte_high = orig->spte_high; |
| smp_rmb(); |
| |
| if (unlikely(spte.spte_low != orig->spte_low || |
| count != sp->clear_spte_count)) |
| goto retry; |
| |
| return spte.spte; |
| } |
| #endif |
| |
| /* Rules for using mmu_spte_set: |
| * Set the sptep from nonpresent to present. |
| * Note: the sptep being assigned *must* be either not present |
| * or in a state where the hardware will not attempt to update |
| * the spte. |
| */ |
| static void mmu_spte_set(u64 *sptep, u64 new_spte) |
| { |
| WARN_ON_ONCE(is_shadow_present_pte(*sptep)); |
| __set_spte(sptep, new_spte); |
| } |
| |
| /* |
| * Update the SPTE (excluding the PFN), but do not track changes in its |
| * accessed/dirty status. |
| */ |
| static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) |
| { |
| u64 old_spte = *sptep; |
| |
| WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); |
| check_spte_writable_invariants(new_spte); |
| |
| if (!is_shadow_present_pte(old_spte)) { |
| mmu_spte_set(sptep, new_spte); |
| return old_spte; |
| } |
| |
| if (!spte_has_volatile_bits(old_spte)) |
| __update_clear_spte_fast(sptep, new_spte); |
| else |
| old_spte = __update_clear_spte_slow(sptep, new_spte); |
| |
| WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); |
| |
| return old_spte; |
| } |
| |
| /* Rules for using mmu_spte_update: |
| * Update the state bits, it means the mapped pfn is not changed. |
| * |
| * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote |
| * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only |
| * spte, even though the writable spte might be cached on a CPU's TLB. |
| * |
| * Returns true if the TLB needs to be flushed |
| */ |
| static bool mmu_spte_update(u64 *sptep, u64 new_spte) |
| { |
| bool flush = false; |
| u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); |
| |
| if (!is_shadow_present_pte(old_spte)) |
| return false; |
| |
| /* |
| * For the spte updated out of mmu-lock is safe, since |
| * we always atomically update it, see the comments in |
| * spte_has_volatile_bits(). |
| */ |
| if (is_mmu_writable_spte(old_spte) && |
| !is_writable_pte(new_spte)) |
| flush = true; |
| |
| /* |
| * Flush TLB when accessed/dirty states are changed in the page tables, |
| * to guarantee consistency between TLB and page tables. |
| */ |
| |
| if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { |
| flush = true; |
| kvm_set_pfn_accessed(spte_to_pfn(old_spte)); |
| } |
| |
| if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { |
| flush = true; |
| kvm_set_pfn_dirty(spte_to_pfn(old_spte)); |
| } |
| |
| return flush; |
| } |
| |
| /* |
| * Rules for using mmu_spte_clear_track_bits: |
| * It sets the sptep from present to nonpresent, and track the |
| * state bits, it is used to clear the last level sptep. |
| * Returns the old PTE. |
| */ |
| static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) |
| { |
| kvm_pfn_t pfn; |
| u64 old_spte = *sptep; |
| int level = sptep_to_sp(sptep)->role.level; |
| struct page *page; |
| |
| if (!is_shadow_present_pte(old_spte) || |
| !spte_has_volatile_bits(old_spte)) |
| __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); |
| else |
| old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); |
| |
| if (!is_shadow_present_pte(old_spte)) |
| return old_spte; |
| |
| kvm_update_page_stats(kvm, level, -1); |
| |
| pfn = spte_to_pfn(old_spte); |
| |
| /* |
| * KVM doesn't hold a reference to any pages mapped into the guest, and |
| * instead uses the mmu_notifier to ensure that KVM unmaps any pages |
| * before they are reclaimed. Sanity check that, if the pfn is backed |
| * by a refcounted page, the refcount is elevated. |
| */ |
| page = kvm_pfn_to_refcounted_page(pfn); |
| WARN_ON_ONCE(page && !page_count(page)); |
| |
| if (is_accessed_spte(old_spte)) |
| kvm_set_pfn_accessed(pfn); |
| |
| if (is_dirty_spte(old_spte)) |
| kvm_set_pfn_dirty(pfn); |
| |
| return old_spte; |
| } |
| |
| /* |
| * Rules for using mmu_spte_clear_no_track: |
| * Directly clear spte without caring the state bits of sptep, |
| * it is used to set the upper level spte. |
| */ |
| static void mmu_spte_clear_no_track(u64 *sptep) |
| { |
| __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); |
| } |
| |
| static u64 mmu_spte_get_lockless(u64 *sptep) |
| { |
| return __get_spte_lockless(sptep); |
| } |
| |
| /* Returns the Accessed status of the PTE and resets it at the same time. */ |
| static bool mmu_spte_age(u64 *sptep) |
| { |
| u64 spte = mmu_spte_get_lockless(sptep); |
| |
| if (!is_accessed_spte(spte)) |
| return false; |
| |
| if (spte_ad_enabled(spte)) { |
| clear_bit((ffs(shadow_accessed_mask) - 1), |
| (unsigned long *)sptep); |
| } else { |
| /* |
| * Capture the dirty status of the page, so that it doesn't get |
| * lost when the SPTE is marked for access tracking. |
| */ |
| if (is_writable_pte(spte)) |
| kvm_set_pfn_dirty(spte_to_pfn(spte)); |
| |
| spte = mark_spte_for_access_track(spte); |
| mmu_spte_update_no_track(sptep, spte); |
| } |
| |
| return true; |
| } |
| |
| static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) |
| { |
| return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; |
| } |
| |
| static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) |
| { |
| if (is_tdp_mmu_active(vcpu)) { |
| kvm_tdp_mmu_walk_lockless_begin(); |
| } else { |
| /* |
| * Prevent page table teardown by making any free-er wait during |
| * kvm_flush_remote_tlbs() IPI to all active vcpus. |
| */ |
| local_irq_disable(); |
| |
| /* |
| * Make sure a following spte read is not reordered ahead of the write |
| * to vcpu->mode. |
| */ |
| smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); |
| } |
| } |
| |
| static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) |
| { |
| if (is_tdp_mmu_active(vcpu)) { |
| kvm_tdp_mmu_walk_lockless_end(); |
| } else { |
| /* |
| * Make sure the write to vcpu->mode is not reordered in front of |
| * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us |
| * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. |
| */ |
| smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); |
| local_irq_enable(); |
| } |
| } |
| |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) |
| { |
| int r; |
| |
| /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ |
| r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, |
| 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); |
| if (r) |
| return r; |
| r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, |
| PT64_ROOT_MAX_LEVEL); |
| if (r) |
| return r; |
| if (maybe_indirect) { |
| r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, |
| PT64_ROOT_MAX_LEVEL); |
| if (r) |
| return r; |
| } |
| return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, |
| PT64_ROOT_MAX_LEVEL); |
| } |
| |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| { |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); |
| } |
| |
| static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) |
| { |
| kmem_cache_free(pte_list_desc_cache, pte_list_desc); |
| } |
| |
| static bool sp_has_gptes(struct kvm_mmu_page *sp); |
| |
| static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) |
| { |
| if (sp->role.passthrough) |
| return sp->gfn; |
| |
| if (sp->shadowed_translation) |
| return sp->shadowed_translation[index] >> PAGE_SHIFT; |
| |
| return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); |
| } |
| |
| /* |
| * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note |
| * that the SPTE itself may have a more constrained access permissions that |
| * what the guest enforces. For example, a guest may create an executable |
| * huge PTE but KVM may disallow execution to mitigate iTLB multihit. |
| */ |
| static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) |
| { |
| if (sp->shadowed_translation) |
| return sp->shadowed_translation[index] & ACC_ALL; |
| |
| /* |
| * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, |
| * KVM is not shadowing any guest page tables, so the "guest access |
| * permissions" are just ACC_ALL. |
| * |
| * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM |
| * is shadowing a guest huge page with small pages, the guest access |
| * permissions being shadowed are the access permissions of the huge |
| * page. |
| * |
| * In both cases, sp->role.access contains the correct access bits. |
| */ |
| return sp->role.access; |
| } |
| |
| static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, |
| gfn_t gfn, unsigned int access) |
| { |
| if (sp->shadowed_translation) { |
| sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; |
| return; |
| } |
| |
| WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), |
| "access mismatch under %s page %llx (expected %u, got %u)\n", |
| sp->role.passthrough ? "passthrough" : "direct", |
| sp->gfn, kvm_mmu_page_get_access(sp, index), access); |
| |
| WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), |
| "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", |
| sp->role.passthrough ? "passthrough" : "direct", |
| sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); |
| } |
| |
| static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, |
| unsigned int access) |
| { |
| gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); |
| |
| kvm_mmu_page_set_translation(sp, index, gfn, access); |
| } |
| |
| /* |
| * Return the pointer to the large page information for a given gfn, |
| * handling slots that are not large page aligned. |
| */ |
| static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, |
| const struct kvm_memory_slot *slot, int level) |
| { |
| unsigned long idx; |
| |
| idx = gfn_to_index(gfn, slot->base_gfn, level); |
| return &slot->arch.lpage_info[level - 2][idx]; |
| } |
| |
| /* |
| * The most significant bit in disallow_lpage tracks whether or not memory |
| * attributes are mixed, i.e. not identical for all gfns at the current level. |
| * The lower order bits are used to refcount other cases where a hugepage is |
| * disallowed, e.g. if KVM has shadow a page table at the gfn. |
| */ |
| #define KVM_LPAGE_MIXED_FLAG BIT(31) |
| |
| static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, |
| gfn_t gfn, int count) |
| { |
| struct kvm_lpage_info *linfo; |
| int old, i; |
| |
| for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { |
| linfo = lpage_info_slot(gfn, slot, i); |
| |
| old = linfo->disallow_lpage; |
| linfo->disallow_lpage += count; |
| WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); |
| } |
| } |
| |
| void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| update_gfn_disallow_lpage_count(slot, gfn, 1); |
| } |
| |
| void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| update_gfn_disallow_lpage_count(slot, gfn, -1); |
| } |
| |
| static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *slot; |
| gfn_t gfn; |
| |
| kvm->arch.indirect_shadow_pages++; |
| /* |
| * Ensure indirect_shadow_pages is elevated prior to re-reading guest |
| * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight |
| * emulated writes are visible before re-reading guest PTEs, or that |
| * an emulated write will see the elevated count and acquire mmu_lock |
| * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). |
| */ |
| smp_mb(); |
| |
| gfn = sp->gfn; |
| slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| slot = __gfn_to_memslot(slots, gfn); |
| |
| /* the non-leaf shadow pages are keeping readonly. */ |
| if (sp->role.level > PG_LEVEL_4K) |
| return __kvm_write_track_add_gfn(kvm, slot, gfn); |
| |
| kvm_mmu_gfn_disallow_lpage(slot, gfn); |
| |
| if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) |
| kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); |
| } |
| |
| void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| /* |
| * If it's possible to replace the shadow page with an NX huge page, |
| * i.e. if the shadow page is the only thing currently preventing KVM |
| * from using a huge page, add the shadow page to the list of "to be |
| * zapped for NX recovery" pages. Note, the shadow page can already be |
| * on the list if KVM is reusing an existing shadow page, i.e. if KVM |
| * links a shadow page at multiple points. |
| */ |
| if (!list_empty(&sp->possible_nx_huge_page_link)) |
| return; |
| |
| ++kvm->stat.nx_lpage_splits; |
| list_add_tail(&sp->possible_nx_huge_page_link, |
| &kvm->arch.possible_nx_huge_pages); |
| } |
| |
| static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| bool nx_huge_page_possible) |
| { |
| sp->nx_huge_page_disallowed = true; |
| |
| if (nx_huge_page_possible) |
| track_possible_nx_huge_page(kvm, sp); |
| } |
| |
| static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *slot; |
| gfn_t gfn; |
| |
| kvm->arch.indirect_shadow_pages--; |
| gfn = sp->gfn; |
| slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| slot = __gfn_to_memslot(slots, gfn); |
| if (sp->role.level > PG_LEVEL_4K) |
| return __kvm_write_track_remove_gfn(kvm, slot, gfn); |
| |
| kvm_mmu_gfn_allow_lpage(slot, gfn); |
| } |
| |
| void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| if (list_empty(&sp->possible_nx_huge_page_link)) |
| return; |
| |
| --kvm->stat.nx_lpage_splits; |
| list_del_init(&sp->possible_nx_huge_page_link); |
| } |
| |
| static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| sp->nx_huge_page_disallowed = false; |
| |
| untrack_possible_nx_huge_page(kvm, sp); |
| } |
| |
| static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, |
| gfn_t gfn, |
| bool no_dirty_log) |
| { |
| struct kvm_memory_slot *slot; |
| |
| slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| if (!slot || slot->flags & KVM_MEMSLOT_INVALID) |
| return NULL; |
| if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) |
| return NULL; |
| |
| return slot; |
| } |
| |
| /* |
| * About rmap_head encoding: |
| * |
| * If the bit zero of rmap_head->val is clear, then it points to the only spte |
| * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct |
| * pte_list_desc containing more mappings. |
| */ |
| |
| /* |
| * Returns the number of pointers in the rmap chain, not counting the new one. |
| */ |
| static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, |
| struct kvm_rmap_head *rmap_head) |
| { |
| struct pte_list_desc *desc; |
| int count = 0; |
| |
| if (!rmap_head->val) { |
| rmap_head->val = (unsigned long)spte; |
| } else if (!(rmap_head->val & 1)) { |
| desc = kvm_mmu_memory_cache_alloc(cache); |
| desc->sptes[0] = (u64 *)rmap_head->val; |
| desc->sptes[1] = spte; |
| desc->spte_count = 2; |
| desc->tail_count = 0; |
| rmap_head->val = (unsigned long)desc | 1; |
| ++count; |
| } else { |
| desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| count = desc->tail_count + desc->spte_count; |
| |
| /* |
| * If the previous head is full, allocate a new head descriptor |
| * as tail descriptors are always kept full. |
| */ |
| if (desc->spte_count == PTE_LIST_EXT) { |
| desc = kvm_mmu_memory_cache_alloc(cache); |
| desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| desc->spte_count = 0; |
| desc->tail_count = count; |
| rmap_head->val = (unsigned long)desc | 1; |
| } |
| desc->sptes[desc->spte_count++] = spte; |
| } |
| return count; |
| } |
| |
| static void pte_list_desc_remove_entry(struct kvm *kvm, |
| struct kvm_rmap_head *rmap_head, |
| struct pte_list_desc *desc, int i) |
| { |
| struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| int j = head_desc->spte_count - 1; |
| |
| /* |
| * The head descriptor should never be empty. A new head is added only |
| * when adding an entry and the previous head is full, and heads are |
| * removed (this flow) when they become empty. |
| */ |
| KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); |
| |
| /* |
| * Replace the to-be-freed SPTE with the last valid entry from the head |
| * descriptor to ensure that tail descriptors are full at all times. |
| * Note, this also means that tail_count is stable for each descriptor. |
| */ |
| desc->sptes[i] = head_desc->sptes[j]; |
| head_desc->sptes[j] = NULL; |
| head_desc->spte_count--; |
| if (head_desc->spte_count) |
| return; |
| |
| /* |
| * The head descriptor is empty. If there are no tail descriptors, |
| * nullify the rmap head to mark the list as empty, else point the rmap |
| * head at the next descriptor, i.e. the new head. |
| */ |
| if (!head_desc->more) |
| rmap_head->val = 0; |
| else |
| rmap_head->val = (unsigned long)head_desc->more | 1; |
| mmu_free_pte_list_desc(head_desc); |
| } |
| |
| static void pte_list_remove(struct kvm *kvm, u64 *spte, |
| struct kvm_rmap_head *rmap_head) |
| { |
| struct pte_list_desc *desc; |
| int i; |
| |
| if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) |
| return; |
| |
| if (!(rmap_head->val & 1)) { |
| if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) |
| return; |
| |
| rmap_head->val = 0; |
| } else { |
| desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| while (desc) { |
| for (i = 0; i < desc->spte_count; ++i) { |
| if (desc->sptes[i] == spte) { |
| pte_list_desc_remove_entry(kvm, rmap_head, |
| desc, i); |
| return; |
| } |
| } |
| desc = desc->more; |
| } |
| |
| KVM_BUG_ON_DATA_CORRUPTION(true, kvm); |
| } |
| } |
| |
| static void kvm_zap_one_rmap_spte(struct kvm *kvm, |
| struct kvm_rmap_head *rmap_head, u64 *sptep) |
| { |
| mmu_spte_clear_track_bits(kvm, sptep); |
| pte_list_remove(kvm, sptep, rmap_head); |
| } |
| |
| /* Return true if at least one SPTE was zapped, false otherwise */ |
| static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, |
| struct kvm_rmap_head *rmap_head) |
| { |
| struct pte_list_desc *desc, *next; |
| int i; |
| |
| if (!rmap_head->val) |
| return false; |
| |
| if (!(rmap_head->val & 1)) { |
| mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); |
| goto out; |
| } |
| |
| desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| |
| for (; desc; desc = next) { |
| for (i = 0; i < desc->spte_count; i++) |
| mmu_spte_clear_track_bits(kvm, desc->sptes[i]); |
| next = desc->more; |
| mmu_free_pte_list_desc(desc); |
| } |
| out: |
| /* rmap_head is meaningless now, remember to reset it */ |
| rmap_head->val = 0; |
| return true; |
| } |
| |
| unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) |
| { |
| struct pte_list_desc *desc; |
| |
| if (!rmap_head->val) |
| return 0; |
| else if (!(rmap_head->val & 1)) |
| return 1; |
| |
| desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| return desc->tail_count + desc->spte_count; |
| } |
| |
| static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, |
| const struct kvm_memory_slot *slot) |
| { |
| unsigned long idx; |
| |
| idx = gfn_to_index(gfn, slot->base_gfn, level); |
| return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; |
| } |
| |
| static void rmap_remove(struct kvm *kvm, u64 *spte) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *slot; |
| struct kvm_mmu_page *sp; |
| gfn_t gfn; |
| struct kvm_rmap_head *rmap_head; |
| |
| sp = sptep_to_sp(spte); |
| gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); |
| |
| /* |
| * Unlike rmap_add, rmap_remove does not run in the context of a vCPU |
| * so we have to determine which memslots to use based on context |
| * information in sp->role. |
| */ |
| slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| |
| slot = __gfn_to_memslot(slots, gfn); |
| rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); |
| |
| pte_list_remove(kvm, spte, rmap_head); |
| } |
| |
| /* |
| * Used by the following functions to iterate through the sptes linked by a |
| * rmap. All fields are private and not assumed to be used outside. |
| */ |
| struct rmap_iterator { |
| /* private fields */ |
| struct pte_list_desc *desc; /* holds the sptep if not NULL */ |
| int pos; /* index of the sptep */ |
| }; |
| |
| /* |
| * Iteration must be started by this function. This should also be used after |
| * removing/dropping sptes from the rmap link because in such cases the |
| * information in the iterator may not be valid. |
| * |
| * Returns sptep if found, NULL otherwise. |
| */ |
| static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, |
| struct rmap_iterator *iter) |
| { |
| u64 *sptep; |
| |
| if (!rmap_head->val) |
| return NULL; |
| |
| if (!(rmap_head->val & 1)) { |
| iter->desc = NULL; |
| sptep = (u64 *)rmap_head->val; |
| goto out; |
| } |
| |
| iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| iter->pos = 0; |
| sptep = iter->desc->sptes[iter->pos]; |
| out: |
| BUG_ON(!is_shadow_present_pte(*sptep)); |
| return sptep; |
| } |
| |
| /* |
| * Must be used with a valid iterator: e.g. after rmap_get_first(). |
| * |
| * Returns sptep if found, NULL otherwise. |
| */ |
| static u64 *rmap_get_next(struct rmap_iterator *iter) |
| { |
| u64 *sptep; |
| |
| if (iter->desc) { |
| if (iter->pos < PTE_LIST_EXT - 1) { |
| ++iter->pos; |
| sptep = iter->desc->sptes[iter->pos]; |
| if (sptep) |
| goto out; |
| } |
| |
| iter->desc = iter->desc->more; |
| |
| if (iter->desc) { |
| iter->pos = 0; |
| /* desc->sptes[0] cannot be NULL */ |
| sptep = iter->desc->sptes[iter->pos]; |
| goto out; |
| } |
| } |
| |
| return NULL; |
| out: |
| BUG_ON(!is_shadow_present_pte(*sptep)); |
| return sptep; |
| } |
| |
| #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ |
| for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ |
| _spte_; _spte_ = rmap_get_next(_iter_)) |
| |
| static void drop_spte(struct kvm *kvm, u64 *sptep) |
| { |
| u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); |
| |
| if (is_shadow_present_pte(old_spte)) |
| rmap_remove(kvm, sptep); |
| } |
| |
| static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) |
| { |
| struct kvm_mmu_page *sp; |
| |
| sp = sptep_to_sp(sptep); |
| WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); |
| |
| drop_spte(kvm, sptep); |
| |
| if (flush) |
| kvm_flush_remote_tlbs_sptep(kvm, sptep); |
| } |
| |
| /* |
| * Write-protect on the specified @sptep, @pt_protect indicates whether |
| * spte write-protection is caused by protecting shadow page table. |
| * |
| * Note: write protection is difference between dirty logging and spte |
| * protection: |
| * - for dirty logging, the spte can be set to writable at anytime if |
| * its dirty bitmap is properly set. |
| * - for spte protection, the spte can be writable only after unsync-ing |
| * shadow page. |
| * |
| * Return true if tlb need be flushed. |
| */ |
| static bool spte_write_protect(u64 *sptep, bool pt_protect) |
| { |
| u64 spte = *sptep; |
| |
| if (!is_writable_pte(spte) && |
| !(pt_protect && is_mmu_writable_spte(spte))) |
| return false; |
| |
| if (pt_protect) |
| spte &= ~shadow_mmu_writable_mask; |
| spte = spte & ~PT_WRITABLE_MASK; |
| |
| return mmu_spte_update(sptep, spte); |
| } |
| |
| static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, |
| bool pt_protect) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| bool flush = false; |
| |
| for_each_rmap_spte(rmap_head, &iter, sptep) |
| flush |= spte_write_protect(sptep, pt_protect); |
| |
| return flush; |
| } |
| |
| static bool spte_clear_dirty(u64 *sptep) |
| { |
| u64 spte = *sptep; |
| |
| KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); |
| spte &= ~shadow_dirty_mask; |
| return mmu_spte_update(sptep, spte); |
| } |
| |
| static bool spte_wrprot_for_clear_dirty(u64 *sptep) |
| { |
| bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, |
| (unsigned long *)sptep); |
| if (was_writable && !spte_ad_enabled(*sptep)) |
| kvm_set_pfn_dirty(spte_to_pfn(*sptep)); |
| |
| return was_writable; |
| } |
| |
| /* |
| * Gets the GFN ready for another round of dirty logging by clearing the |
| * - D bit on ad-enabled SPTEs, and |
| * - W bit on ad-disabled SPTEs. |
| * Returns true iff any D or W bits were cleared. |
| */ |
| static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| const struct kvm_memory_slot *slot) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| bool flush = false; |
| |
| for_each_rmap_spte(rmap_head, &iter, sptep) |
| if (spte_ad_need_write_protect(*sptep)) |
| flush |= spte_wrprot_for_clear_dirty(sptep); |
| else |
| flush |= spte_clear_dirty(sptep); |
| |
| return flush; |
| } |
| |
| /** |
| * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages |
| * @kvm: kvm instance |
| * @slot: slot to protect |
| * @gfn_offset: start of the BITS_PER_LONG pages we care about |
| * @mask: indicates which pages we should protect |
| * |
| * Used when we do not need to care about huge page mappings. |
| */ |
| static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, unsigned long mask) |
| { |
| struct kvm_rmap_head *rmap_head; |
| |
| if (tdp_mmu_enabled) |
| kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, |
| slot->base_gfn + gfn_offset, mask, true); |
| |
| if (!kvm_memslots_have_rmaps(kvm)) |
| return; |
| |
| while (mask) { |
| rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
| PG_LEVEL_4K, slot); |
| rmap_write_protect(rmap_head, false); |
| |
| /* clear the first set bit */ |
| mask &= mask - 1; |
| } |
| } |
| |
| /** |
| * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write |
| * protect the page if the D-bit isn't supported. |
| * @kvm: kvm instance |
| * @slot: slot to clear D-bit |
| * @gfn_offset: start of the BITS_PER_LONG pages we care about |
| * @mask: indicates which pages we should clear D-bit |
| * |
| * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. |
| */ |
| static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, unsigned long mask) |
| { |
| struct kvm_rmap_head *rmap_head; |
| |
| if (tdp_mmu_enabled) |
| kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, |
| slot->base_gfn + gfn_offset, mask, false); |
| |
| if (!kvm_memslots_have_rmaps(kvm)) |
| return; |
| |
| while (mask) { |
| rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
| PG_LEVEL_4K, slot); |
| __rmap_clear_dirty(kvm, rmap_head, slot); |
| |
| /* clear the first set bit */ |
| mask &= mask - 1; |
| } |
| } |
| |
| /** |
| * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected |
| * PT level pages. |
| * |
| * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to |
| * enable dirty logging for them. |
| * |
| * We need to care about huge page mappings: e.g. during dirty logging we may |
| * have such mappings. |
| */ |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, unsigned long mask) |
| { |
| /* |
| * Huge pages are NOT write protected when we start dirty logging in |
| * initially-all-set mode; must write protect them here so that they |
| * are split to 4K on the first write. |
| * |
| * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn |
| * of memslot has no such restriction, so the range can cross two large |
| * pages. |
| */ |
| if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { |
| gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); |
| gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); |
| |
| if (READ_ONCE(eager_page_split)) |
| kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); |
| |
| kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); |
| |
| /* Cross two large pages? */ |
| if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != |
| ALIGN(end << PAGE_SHIFT, PMD_SIZE)) |
| kvm_mmu_slot_gfn_write_protect(kvm, slot, end, |
| PG_LEVEL_2M); |
| } |
| |
| /* Now handle 4K PTEs. */ |
| if (kvm_x86_ops.cpu_dirty_log_size) |
| kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); |
| else |
| kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); |
| } |
| |
| int kvm_cpu_dirty_log_size(void) |
| { |
| return kvm_x86_ops.cpu_dirty_log_size; |
| } |
| |
| bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, |
| struct kvm_memory_slot *slot, u64 gfn, |
| int min_level) |
| { |
| struct kvm_rmap_head *rmap_head; |
| int i; |
| bool write_protected = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) { |
| for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { |
| rmap_head = gfn_to_rmap(gfn, i, slot); |
| write_protected |= rmap_write_protect(rmap_head, true); |
| } |
| } |
| |
| if (tdp_mmu_enabled) |
| write_protected |= |
| kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); |
| |
| return write_protected; |
| } |
| |
| static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) |
| { |
| struct kvm_memory_slot *slot; |
| |
| slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); |
| } |
| |
| static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| const struct kvm_memory_slot *slot) |
| { |
| return kvm_zap_all_rmap_sptes(kvm, rmap_head); |
| } |
| |
| static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, int level) |
| { |
| return __kvm_zap_rmap(kvm, rmap_head, slot); |
| } |
| |
| struct slot_rmap_walk_iterator { |
| /* input fields. */ |
| const struct kvm_memory_slot *slot; |
| gfn_t start_gfn; |
| gfn_t end_gfn; |
| int start_level; |
| int end_level; |
| |
| /* output fields. */ |
| gfn_t gfn; |
| struct kvm_rmap_head *rmap; |
| int level; |
| |
| /* private field. */ |
| struct kvm_rmap_head *end_rmap; |
| }; |
| |
| static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, |
| int level) |
| { |
| iterator->level = level; |
| iterator->gfn = iterator->start_gfn; |
| iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); |
| iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); |
| } |
| |
| static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, |
| const struct kvm_memory_slot *slot, |
| int start_level, int end_level, |
| gfn_t start_gfn, gfn_t end_gfn) |
| { |
| iterator->slot = slot; |
| iterator->start_level = start_level; |
| iterator->end_level = end_level; |
| iterator->start_gfn = start_gfn; |
| iterator->end_gfn = end_gfn; |
| |
| rmap_walk_init_level(iterator, iterator->start_level); |
| } |
| |
| static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) |
| { |
| return !!iterator->rmap; |
| } |
| |
| static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) |
| { |
| while (++iterator->rmap <= iterator->end_rmap) { |
| iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); |
| |
| if (iterator->rmap->val) |
| return; |
| } |
| |
| if (++iterator->level > iterator->end_level) { |
| iterator->rmap = NULL; |
| return; |
| } |
| |
| rmap_walk_init_level(iterator, iterator->level); |
| } |
| |
| #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ |
| _start_gfn, _end_gfn, _iter_) \ |
| for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ |
| _end_level_, _start_gfn, _end_gfn); \ |
| slot_rmap_walk_okay(_iter_); \ |
| slot_rmap_walk_next(_iter_)) |
| |
| typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, |
| int level); |
| |
| static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, |
| struct kvm_gfn_range *range, |
| rmap_handler_t handler) |
| { |
| struct slot_rmap_walk_iterator iterator; |
| bool ret = false; |
| |
| for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, |
| range->start, range->end - 1, &iterator) |
| ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, |
| iterator.level); |
| |
| return ret; |
| } |
| |
| bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| bool flush = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) |
| flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); |
| |
| if (tdp_mmu_enabled) |
| flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); |
| |
| if (kvm_x86_ops.set_apic_access_page_addr && |
| range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) |
| kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); |
| |
| return flush; |
| } |
| |
| static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, int level) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| int young = 0; |
| |
| for_each_rmap_spte(rmap_head, &iter, sptep) |
| young |= mmu_spte_age(sptep); |
| |
| return young; |
| } |
| |
| static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, int level) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| |
| for_each_rmap_spte(rmap_head, &iter, sptep) |
| if (is_accessed_spte(*sptep)) |
| return true; |
| return false; |
| } |
| |
| #define RMAP_RECYCLE_THRESHOLD 1000 |
| |
| static void __rmap_add(struct kvm *kvm, |
| struct kvm_mmu_memory_cache *cache, |
| const struct kvm_memory_slot *slot, |
| u64 *spte, gfn_t gfn, unsigned int access) |
| { |
| struct kvm_mmu_page *sp; |
| struct kvm_rmap_head *rmap_head; |
| int rmap_count; |
| |
| sp = sptep_to_sp(spte); |
| kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); |
| kvm_update_page_stats(kvm, sp->role.level, 1); |
| |
| rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); |
| rmap_count = pte_list_add(cache, spte, rmap_head); |
| |
| if (rmap_count > kvm->stat.max_mmu_rmap_size) |
| kvm->stat.max_mmu_rmap_size = rmap_count; |
| if (rmap_count > RMAP_RECYCLE_THRESHOLD) { |
| kvm_zap_all_rmap_sptes(kvm, rmap_head); |
| kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); |
| } |
| } |
| |
| static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, |
| u64 *spte, gfn_t gfn, unsigned int access) |
| { |
| struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; |
| |
| __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); |
| } |
| |
| bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| bool young = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) |
| young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); |
| |
| if (tdp_mmu_enabled) |
| young |= kvm_tdp_mmu_age_gfn_range(kvm, range); |
| |
| return young; |
| } |
| |
| bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| bool young = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) |
| young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); |
| |
| if (tdp_mmu_enabled) |
| young |= kvm_tdp_mmu_test_age_gfn(kvm, range); |
| |
| return young; |
| } |
| |
| static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) |
| { |
| #ifdef CONFIG_KVM_PROVE_MMU |
| int i; |
| |
| for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { |
| if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) |
| pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", |
| sp->spt[i], &sp->spt[i], |
| kvm_mmu_page_get_gfn(sp, i)); |
| } |
| #endif |
| } |
| |
| /* |
| * This value is the sum of all of the kvm instances's |
| * kvm->arch.n_used_mmu_pages values. We need a global, |
| * aggregate version in order to make the slab shrinker |
| * faster |
| */ |
| static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) |
| { |
| kvm->arch.n_used_mmu_pages += nr; |
| percpu_counter_add(&kvm_total_used_mmu_pages, nr); |
| } |
| |
| static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| kvm_mod_used_mmu_pages(kvm, +1); |
| kvm_account_pgtable_pages((void *)sp->spt, +1); |
| } |
| |
| static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| kvm_mod_used_mmu_pages(kvm, -1); |
| kvm_account_pgtable_pages((void *)sp->spt, -1); |
| } |
| |
| static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) |
| { |
| kvm_mmu_check_sptes_at_free(sp); |
| |
| hlist_del(&sp->hash_link); |
| list_del(&sp->link); |
| free_page((unsigned long)sp->spt); |
| free_page((unsigned long)sp->shadowed_translation); |
| kmem_cache_free(mmu_page_header_cache, sp); |
| } |
| |
| static unsigned kvm_page_table_hashfn(gfn_t gfn) |
| { |
| return hash_64(gfn, KVM_MMU_HASH_SHIFT); |
| } |
| |
| static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, |
| struct kvm_mmu_page *sp, u64 *parent_pte) |
| { |
| if (!parent_pte) |
| return; |
| |
| pte_list_add(cache, parent_pte, &sp->parent_ptes); |
| } |
| |
| static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, |
| u64 *parent_pte) |
| { |
| pte_list_remove(kvm, parent_pte, &sp->parent_ptes); |
| } |
| |
| static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, |
| u64 *parent_pte) |
| { |
| mmu_page_remove_parent_pte(kvm, sp, parent_pte); |
| mmu_spte_clear_no_track(parent_pte); |
| } |
| |
| static void mark_unsync(u64 *spte); |
| static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| |
| for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { |
| mark_unsync(sptep); |
| } |
| } |
| |
| static void mark_unsync(u64 *spte) |
| { |
| struct kvm_mmu_page *sp; |
| |
| sp = sptep_to_sp(spte); |
| if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) |
| return; |
| if (sp->unsync_children++) |
| return; |
| kvm_mmu_mark_parents_unsync(sp); |
| } |
| |
| #define KVM_PAGE_ARRAY_NR 16 |
| |
| struct kvm_mmu_pages { |
| struct mmu_page_and_offset { |
| struct kvm_mmu_page *sp; |
| unsigned int idx; |
| } page[KVM_PAGE_ARRAY_NR]; |
| unsigned int nr; |
| }; |
| |
| static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, |
| int idx) |
| { |
| int i; |
| |
| if (sp->unsync) |
| for (i=0; i < pvec->nr; i++) |
| if (pvec->page[i].sp == sp) |
| return 0; |
| |
| pvec->page[pvec->nr].sp = sp; |
| pvec->page[pvec->nr].idx = idx; |
| pvec->nr++; |
| return (pvec->nr == KVM_PAGE_ARRAY_NR); |
| } |
| |
| static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) |
| { |
| --sp->unsync_children; |
| WARN_ON_ONCE((int)sp->unsync_children < 0); |
| __clear_bit(idx, sp->unsync_child_bitmap); |
| } |
| |
| static int __mmu_unsync_walk(struct kvm_mmu_page *sp, |
| struct kvm_mmu_pages *pvec) |
| { |
| int i, ret, nr_unsync_leaf = 0; |
| |
| for_each_set_bit(i, sp->unsync_child_bitmap, 512) { |
| struct kvm_mmu_page *child; |
| u64 ent = sp->spt[i]; |
| |
| if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { |
| clear_unsync_child_bit(sp, i); |
| continue; |
| } |
| |
| child = spte_to_child_sp(ent); |
| |
| if (child->unsync_children) { |
| if (mmu_pages_add(pvec, child, i)) |
| return -ENOSPC; |
| |
| ret = __mmu_unsync_walk(child, pvec); |
| if (!ret) { |
| clear_unsync_child_bit(sp, i); |
| continue; |
| } else if (ret > 0) { |
| nr_unsync_leaf += ret; |
| } else |
| return ret; |
| } else if (child->unsync) { |
| nr_unsync_leaf++; |
| if (mmu_pages_add(pvec, child, i)) |
| return -ENOSPC; |
| } else |
| clear_unsync_child_bit(sp, i); |
| } |
| |
| return nr_unsync_leaf; |
| } |
| |
| #define INVALID_INDEX (-1) |
| |
| static int mmu_unsync_walk(struct kvm_mmu_page *sp, |
| struct kvm_mmu_pages *pvec) |
| { |
| pvec->nr = 0; |
| if (!sp->unsync_children) |
| return 0; |
| |
| mmu_pages_add(pvec, sp, INVALID_INDEX); |
| return __mmu_unsync_walk(sp, pvec); |
| } |
| |
| static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| WARN_ON_ONCE(!sp->unsync); |
| trace_kvm_mmu_sync_page(sp); |
| sp->unsync = 0; |
| --kvm->stat.mmu_unsync; |
| } |
| |
| static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list); |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
| struct list_head *invalid_list); |
| |
| static bool sp_has_gptes(struct kvm_mmu_page *sp) |
| { |
| if (sp->role.direct) |
| return false; |
| |
| if (sp->role.passthrough) |
| return false; |
| |
| return true; |
| } |
| |
| #define for_each_valid_sp(_kvm, _sp, _list) \ |
| hlist_for_each_entry(_sp, _list, hash_link) \ |
| if (is_obsolete_sp((_kvm), (_sp))) { \ |
| } else |
| |
| #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ |
| for_each_valid_sp(_kvm, _sp, \ |
| &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ |
| if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else |
| |
| static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
| { |
| union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; |
| |
| /* |
| * Ignore various flags when verifying that it's safe to sync a shadow |
| * page using the current MMU context. |
| * |
| * - level: not part of the overall MMU role and will never match as the MMU's |
| * level tracks the root level |
| * - access: updated based on the new guest PTE |
| * - quadrant: not part of the overall MMU role (similar to level) |
| */ |
| const union kvm_mmu_page_role sync_role_ign = { |
| .level = 0xf, |
| .access = 0x7, |
| .quadrant = 0x3, |
| .passthrough = 0x1, |
| }; |
| |
| /* |
| * Direct pages can never be unsync, and KVM should never attempt to |
| * sync a shadow page for a different MMU context, e.g. if the role |
| * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the |
| * reserved bits checks will be wrong, etc... |
| */ |
| if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || |
| (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) |
| return false; |
| |
| return true; |
| } |
| |
| static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) |
| { |
| /* sp->spt[i] has initial value of shadow page table allocation */ |
| if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) |
| return 0; |
| |
| return vcpu->arch.mmu->sync_spte(vcpu, sp, i); |
| } |
| |
| static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
| { |
| int flush = 0; |
| int i; |
| |
| if (!kvm_sync_page_check(vcpu, sp)) |
| return -1; |
| |
| for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { |
| int ret = kvm_sync_spte(vcpu, sp, i); |
| |
| if (ret < -1) |
| return -1; |
| flush |= ret; |
| } |
| |
| /* |
| * Note, any flush is purely for KVM's correctness, e.g. when dropping |
| * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier |
| * unmap or dirty logging event doesn't fail to flush. The guest is |
| * responsible for flushing the TLB to ensure any changes in protection |
| * bits are recognized, i.e. until the guest flushes or page faults on |
| * a relevant address, KVM is architecturally allowed to let vCPUs use |
| * cached translations with the old protection bits. |
| */ |
| return flush; |
| } |
| |
| static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list) |
| { |
| int ret = __kvm_sync_page(vcpu, sp); |
| |
| if (ret < 0) |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); |
| return ret; |
| } |
| |
| static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, |
| struct list_head *invalid_list, |
| bool remote_flush) |
| { |
| if (!remote_flush && list_empty(invalid_list)) |
| return false; |
| |
| if (!list_empty(invalid_list)) |
| kvm_mmu_commit_zap_page(kvm, invalid_list); |
| else |
| kvm_flush_remote_tlbs(kvm); |
| return true; |
| } |
| |
| static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| if (sp->role.invalid) |
| return true; |
| |
| /* TDP MMU pages do not use the MMU generation. */ |
| return !is_tdp_mmu_page(sp) && |
| unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); |
| } |
| |
| struct mmu_page_path { |
| struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; |
| unsigned int idx[PT64_ROOT_MAX_LEVEL]; |
| }; |
| |
| #define for_each_sp(pvec, sp, parents, i) \ |
| for (i = mmu_pages_first(&pvec, &parents); \ |
| i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ |
| i = mmu_pages_next(&pvec, &parents, i)) |
| |
| static int mmu_pages_next(struct kvm_mmu_pages *pvec, |
| struct mmu_page_path *parents, |
| int i) |
| { |
| int n; |
| |
| for (n = i+1; n < pvec->nr; n++) { |
| struct kvm_mmu_page *sp = pvec->page[n].sp; |
| unsigned idx = pvec->page[n].idx; |
| int level = sp->role.level; |
| |
| parents->idx[level-1] = idx; |
| if (level == PG_LEVEL_4K) |
| break; |
| |
| parents->parent[level-2] = sp; |
| } |
| |
| return n; |
| } |
| |
| static int mmu_pages_first(struct kvm_mmu_pages *pvec, |
| struct mmu_page_path *parents) |
| { |
| struct kvm_mmu_page *sp; |
| int level; |
| |
| if (pvec->nr == 0) |
| return 0; |
| |
| WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); |
| |
| sp = pvec->page[0].sp; |
| level = sp->role.level; |
| WARN_ON_ONCE(level == PG_LEVEL_4K); |
| |
| parents->parent[level-2] = sp; |
| |
| /* Also set up a sentinel. Further entries in pvec are all |
| * children of sp, so this element is never overwritten. |
| */ |
| parents->parent[level-1] = NULL; |
| return mmu_pages_next(pvec, parents, 0); |
| } |
| |
| static void mmu_pages_clear_parents(struct mmu_page_path *parents) |
| { |
| struct kvm_mmu_page *sp; |
| unsigned int level = 0; |
| |
| do { |
| unsigned int idx = parents->idx[level]; |
| sp = parents->parent[level]; |
| if (!sp) |
| return; |
| |
| WARN_ON_ONCE(idx == INVALID_INDEX); |
| clear_unsync_child_bit(sp, idx); |
| level++; |
| } while (!sp->unsync_children); |
| } |
| |
| static int mmu_sync_children(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *parent, bool can_yield) |
| { |
| int i; |
| struct kvm_mmu_page *sp; |
| struct mmu_page_path parents; |
| struct kvm_mmu_pages pages; |
| LIST_HEAD(invalid_list); |
| bool flush = false; |
| |
| while (mmu_unsync_walk(parent, &pages)) { |
| bool protected = false; |
| |
| for_each_sp(pages, sp, parents, i) |
| protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); |
| |
| if (protected) { |
| kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); |
| flush = false; |
| } |
| |
| for_each_sp(pages, sp, parents, i) { |
| kvm_unlink_unsync_page(vcpu->kvm, sp); |
| flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; |
| mmu_pages_clear_parents(&parents); |
| } |
| if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { |
| kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); |
| if (!can_yield) { |
| kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
| return -EINTR; |
| } |
| |
| cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); |
| flush = false; |
| } |
| } |
| |
| kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); |
| return 0; |
| } |
| |
| static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) |
| { |
| atomic_set(&sp->write_flooding_count, 0); |
| } |
| |
| static void clear_sp_write_flooding_count(u64 *spte) |
| { |
| __clear_sp_write_flooding_count(sptep_to_sp(spte)); |
| } |
| |
| /* |
| * The vCPU is required when finding indirect shadow pages; the shadow |
| * page may already exist and syncing it needs the vCPU pointer in |
| * order to read guest page tables. Direct shadow pages are never |
| * unsync, thus @vcpu can be NULL if @role.direct is true. |
| */ |
| static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, |
| struct kvm_vcpu *vcpu, |
| gfn_t gfn, |
| struct hlist_head *sp_list, |
| union kvm_mmu_page_role role) |
| { |
| struct kvm_mmu_page *sp; |
| int ret; |
| int collisions = 0; |
| LIST_HEAD(invalid_list); |
| |
| for_each_valid_sp(kvm, sp, sp_list) { |
| if (sp->gfn != gfn) { |
| collisions++; |
| continue; |
| } |
| |
| if (sp->role.word != role.word) { |
| /* |
| * If the guest is creating an upper-level page, zap |
| * unsync pages for the same gfn. While it's possible |
| * the guest is using recursive page tables, in all |
| * likelihood the guest has stopped using the unsync |
| * page and is installing a completely unrelated page. |
| * Unsync pages must not be left as is, because the new |
| * upper-level page will be write-protected. |
| */ |
| if (role.level > PG_LEVEL_4K && sp->unsync) |
| kvm_mmu_prepare_zap_page(kvm, sp, |
| &invalid_list); |
| continue; |
| } |
| |
| /* unsync and write-flooding only apply to indirect SPs. */ |
| if (sp->role.direct) |
| goto out; |
| |
| if (sp->unsync) { |
| if (KVM_BUG_ON(!vcpu, kvm)) |
| break; |
| |
| /* |
| * The page is good, but is stale. kvm_sync_page does |
| * get the latest guest state, but (unlike mmu_unsync_children) |
| * it doesn't write-protect the page or mark it synchronized! |
| * This way the validity of the mapping is ensured, but the |
| * overhead of write protection is not incurred until the |
| * guest invalidates the TLB mapping. This allows multiple |
| * SPs for a single gfn to be unsync. |
| * |
| * If the sync fails, the page is zapped. If so, break |
| * in order to rebuild it. |
| */ |
| ret = kvm_sync_page(vcpu, sp, &invalid_list); |
| if (ret < 0) |
| break; |
| |
| WARN_ON_ONCE(!list_empty(&invalid_list)); |
| if (ret > 0) |
| kvm_flush_remote_tlbs(kvm); |
| } |
| |
| __clear_sp_write_flooding_count(sp); |
| |
| goto out; |
| } |
| |
| sp = NULL; |
| ++kvm->stat.mmu_cache_miss; |
| |
| out: |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| |
| if (collisions > kvm->stat.max_mmu_page_hash_collisions) |
| kvm->stat.max_mmu_page_hash_collisions = collisions; |
| return sp; |
| } |
| |
| /* Caches used when allocating a new shadow page. */ |
| struct shadow_page_caches { |
| struct kvm_mmu_memory_cache *page_header_cache; |
| struct kvm_mmu_memory_cache *shadow_page_cache; |
| struct kvm_mmu_memory_cache *shadowed_info_cache; |
| }; |
| |
| static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, |
| struct shadow_page_caches *caches, |
| gfn_t gfn, |
| struct hlist_head *sp_list, |
| union kvm_mmu_page_role role) |
| { |
| struct kvm_mmu_page *sp; |
| |
| sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); |
| sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); |
| if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) |
| sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); |
| |
| set_page_private(virt_to_page(sp->spt), (unsigned long)sp); |
| |
| INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); |
| |
| /* |
| * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() |
| * depends on valid pages being added to the head of the list. See |
| * comments in kvm_zap_obsolete_pages(). |
| */ |
| sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; |
| list_add(&sp->link, &kvm->arch.active_mmu_pages); |
| kvm_account_mmu_page(kvm, sp); |
| |
| sp->gfn = gfn; |
| sp->role = role; |
| hlist_add_head(&sp->hash_link, sp_list); |
| if (sp_has_gptes(sp)) |
| account_shadowed(kvm, sp); |
| |
| return sp; |
| } |
| |
| /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ |
| static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, |
| struct kvm_vcpu *vcpu, |
| struct shadow_page_caches *caches, |
| gfn_t gfn, |
| union kvm_mmu_page_role role) |
| { |
| struct hlist_head *sp_list; |
| struct kvm_mmu_page *sp; |
| bool created = false; |
| |
| sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; |
| |
| sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); |
| if (!sp) { |
| created = true; |
| sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); |
| } |
| |
| trace_kvm_mmu_get_page(sp, created); |
| return sp; |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, |
| gfn_t gfn, |
| union kvm_mmu_page_role role) |
| { |
| struct shadow_page_caches caches = { |
| .page_header_cache = &vcpu->arch.mmu_page_header_cache, |
| .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, |
| .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, |
| }; |
| |
| return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); |
| } |
| |
| static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, |
| unsigned int access) |
| { |
| struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); |
| union kvm_mmu_page_role role; |
| |
| role = parent_sp->role; |
| role.level--; |
| role.access = access; |
| role.direct = direct; |
| role.passthrough = 0; |
| |
| /* |
| * If the guest has 4-byte PTEs then that means it's using 32-bit, |
| * 2-level, non-PAE paging. KVM shadows such guests with PAE paging |
| * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must |
| * shadow each guest page table with multiple shadow page tables, which |
| * requires extra bookkeeping in the role. |
| * |
| * Specifically, to shadow the guest's page directory (which covers a |
| * 4GiB address space), KVM uses 4 PAE page directories, each mapping |
| * 1GiB of the address space. @role.quadrant encodes which quarter of |
| * the address space each maps. |
| * |
| * To shadow the guest's page tables (which each map a 4MiB region), KVM |
| * uses 2 PAE page tables, each mapping a 2MiB region. For these, |
| * @role.quadrant encodes which half of the region they map. |
| * |
| * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE |
| * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow |
| * PDPTEs; those 4 PAE page directories are pre-allocated and their |
| * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes |
| * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume |
| * bit 21 in the PTE (the child here), KVM propagates that bit to the |
| * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE |
| * covers bit 21 (see above), thus the quadrant is calculated from the |
| * _least_ significant bit of the PDE index. |
| */ |
| if (role.has_4_byte_gpte) { |
| WARN_ON_ONCE(role.level != PG_LEVEL_4K); |
| role.quadrant = spte_index(sptep) & 1; |
| } |
| |
| return role; |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, |
| u64 *sptep, gfn_t gfn, |
| bool direct, unsigned int access) |
| { |
| union kvm_mmu_page_role role; |
| |
| if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) |
| return ERR_PTR(-EEXIST); |
| |
| role = kvm_mmu_child_role(sptep, direct, access); |
| return kvm_mmu_get_shadow_page(vcpu, gfn, role); |
| } |
| |
| static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, |
| struct kvm_vcpu *vcpu, hpa_t root, |
| u64 addr) |
| { |
| iterator->addr = addr; |
| iterator->shadow_addr = root; |
| iterator->level = vcpu->arch.mmu->root_role.level; |
| |
| if (iterator->level >= PT64_ROOT_4LEVEL && |
| vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && |
| !vcpu->arch.mmu->root_role.direct) |
| iterator->level = PT32E_ROOT_LEVEL; |
| |
| if (iterator->level == PT32E_ROOT_LEVEL) { |
| /* |
| * prev_root is currently only used for 64-bit hosts. So only |
| * the active root_hpa is valid here. |
| */ |
| BUG_ON(root != vcpu->arch.mmu->root.hpa); |
| |
| iterator->shadow_addr |
| = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; |
| iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; |
| --iterator->level; |
| if (!iterator->shadow_addr) |
| iterator->level = 0; |
| } |
| } |
| |
| static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, |
| struct kvm_vcpu *vcpu, u64 addr) |
| { |
| shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, |
| addr); |
| } |
| |
| static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) |
| { |
| if (iterator->level < PG_LEVEL_4K) |
| return false; |
| |
| iterator->index = SPTE_INDEX(iterator->addr, iterator->level); |
| iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; |
| return true; |
| } |
| |
| static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, |
| u64 spte) |
| { |
| if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { |
| iterator->level = 0; |
| return; |
| } |
| |
| iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; |
| --iterator->level; |
| } |
| |
| static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) |
| { |
| __shadow_walk_next(iterator, *iterator->sptep); |
| } |
| |
| static void __link_shadow_page(struct kvm *kvm, |
| struct kvm_mmu_memory_cache *cache, u64 *sptep, |
| struct kvm_mmu_page *sp, bool flush) |
| { |
| u64 spte; |
| |
| BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); |
| |
| /* |
| * If an SPTE is present already, it must be a leaf and therefore |
| * a large one. Drop it, and flush the TLB if needed, before |
| * installing sp. |
| */ |
| if (is_shadow_present_pte(*sptep)) |
| drop_large_spte(kvm, sptep, flush); |
| |
| spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); |
| |
| mmu_spte_set(sptep, spte); |
| |
| mmu_page_add_parent_pte(cache, sp, sptep); |
| |
| /* |
| * The non-direct sub-pagetable must be updated before linking. For |
| * L1 sp, the pagetable is updated via kvm_sync_page() in |
| * kvm_mmu_find_shadow_page() without write-protecting the gfn, |
| * so sp->unsync can be true or false. For higher level non-direct |
| * sp, the pagetable is updated/synced via mmu_sync_children() in |
| * FNAME(fetch)(), so sp->unsync_children can only be false. |
| * WARN_ON_ONCE() if anything happens unexpectedly. |
| */ |
| if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) |
| mark_unsync(sptep); |
| } |
| |
| static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, |
| struct kvm_mmu_page *sp) |
| { |
| __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); |
| } |
| |
| static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| unsigned direct_access) |
| { |
| if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { |
| struct kvm_mmu_page *child; |
| |
| /* |
| * For the direct sp, if the guest pte's dirty bit |
| * changed form clean to dirty, it will corrupt the |
| * sp's access: allow writable in the read-only sp, |
| * so we should update the spte at this point to get |
| * a new sp with the correct access. |
| */ |
| child = spte_to_child_sp(*sptep); |
| if (child->role.access == direct_access) |
| return; |
| |
| drop_parent_pte(vcpu->kvm, child, sptep); |
| kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); |
| } |
| } |
| |
| /* Returns the number of zapped non-leaf child shadow pages. */ |
| static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, |
| u64 *spte, struct list_head *invalid_list) |
| { |
| u64 pte; |
| struct kvm_mmu_page *child; |
| |
| pte = *spte; |
| if (is_shadow_present_pte(pte)) { |
| if (is_last_spte(pte, sp->role.level)) { |
| drop_spte(kvm, spte); |
| } else { |
| child = spte_to_child_sp(pte); |
| drop_parent_pte(kvm, child, spte); |
| |
| /* |
| * Recursively zap nested TDP SPs, parentless SPs are |
| * unlikely to be used again in the near future. This |
| * avoids retaining a large number of stale nested SPs. |
| */ |
| if (tdp_enabled && invalid_list && |
| child->role.guest_mode && !child->parent_ptes.val) |
| return kvm_mmu_prepare_zap_page(kvm, child, |
| invalid_list); |
| } |
| } else if (is_mmio_spte(kvm, pte)) { |
| mmu_spte_clear_no_track(spte); |
| } |
| return 0; |
| } |
| |
| static int kvm_mmu_page_unlink_children(struct kvm *kvm, |
| struct kvm_mmu_page *sp, |
| struct list_head *invalid_list) |
| { |
| int zapped = 0; |
| unsigned i; |
| |
| for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) |
| zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); |
| |
| return zapped; |
| } |
| |
| static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| |
| while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) |
| drop_parent_pte(kvm, sp, sptep); |
| } |
| |
| static int mmu_zap_unsync_children(struct kvm *kvm, |
| struct kvm_mmu_page *parent, |
| struct list_head *invalid_list) |
| { |
| int i, zapped = 0; |
| struct mmu_page_path parents; |
| struct kvm_mmu_pages pages; |
| |
| if (parent->role.level == PG_LEVEL_4K) |
| return 0; |
| |
| while (mmu_unsync_walk(parent, &pages)) { |
| struct kvm_mmu_page *sp; |
| |
| for_each_sp(pages, sp, parents, i) { |
| kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
| mmu_pages_clear_parents(&parents); |
| zapped++; |
| } |
| } |
| |
| return zapped; |
| } |
| |
| static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, |
| struct kvm_mmu_page *sp, |
| struct list_head *invalid_list, |
| int *nr_zapped) |
| { |
| bool list_unstable, zapped_root = false; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| trace_kvm_mmu_prepare_zap_page(sp); |
| ++kvm->stat.mmu_shadow_zapped; |
| *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); |
| *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); |
| kvm_mmu_unlink_parents(kvm, sp); |
| |
| /* Zapping children means active_mmu_pages has become unstable. */ |
| list_unstable = *nr_zapped; |
| |
| if (!sp->role.invalid && sp_has_gptes(sp)) |
| unaccount_shadowed(kvm, sp); |
| |
| if (sp->unsync) |
| kvm_unlink_unsync_page(kvm, sp); |
| if (!sp->root_count) { |
| /* Count self */ |
| (*nr_zapped)++; |
| |
| /* |
| * Already invalid pages (previously active roots) are not on |
| * the active page list. See list_del() in the "else" case of |
| * !sp->root_count. |
| */ |
| if (sp->role.invalid) |
| list_add(&sp->link, invalid_list); |
| else |
| list_move(&sp->link, invalid_list); |
| kvm_unaccount_mmu_page(kvm, sp); |
| } else { |
| /* |
| * Remove the active root from the active page list, the root |
| * will be explicitly freed when the root_count hits zero. |
| */ |
| list_del(&sp->link); |
| |
| /* |
| * Obsolete pages cannot be used on any vCPUs, see the comment |
| * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also |
| * treats invalid shadow pages as being obsolete. |
| */ |
| zapped_root = !is_obsolete_sp(kvm, sp); |
| } |
| |
| if (sp->nx_huge_page_disallowed) |
| unaccount_nx_huge_page(kvm, sp); |
| |
| sp->role.invalid = 1; |
| |
| /* |
| * Make the request to free obsolete roots after marking the root |
| * invalid, otherwise other vCPUs may not see it as invalid. |
| */ |
| if (zapped_root) |
| kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); |
| return list_unstable; |
| } |
| |
| static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list) |
| { |
| int nr_zapped; |
| |
| __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); |
| return nr_zapped; |
| } |
| |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
| struct list_head *invalid_list) |
| { |
| struct kvm_mmu_page *sp, *nsp; |
| |
| if (list_empty(invalid_list)) |
| return; |
| |
| /* |
| * We need to make sure everyone sees our modifications to |
| * the page tables and see changes to vcpu->mode here. The barrier |
| * in the kvm_flush_remote_tlbs() achieves this. This pairs |
| * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. |
| * |
| * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit |
| * guest mode and/or lockless shadow page table walks. |
| */ |
| kvm_flush_remote_tlbs(kvm); |
| |
| list_for_each_entry_safe(sp, nsp, invalid_list, link) { |
| WARN_ON_ONCE(!sp->role.invalid || sp->root_count); |
| kvm_mmu_free_shadow_page(sp); |
| } |
| } |
| |
| static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, |
| unsigned long nr_to_zap) |
| { |
| unsigned long total_zapped = 0; |
| struct kvm_mmu_page *sp, *tmp; |
| LIST_HEAD(invalid_list); |
| bool unstable; |
| int nr_zapped; |
| |
| if (list_empty(&kvm->arch.active_mmu_pages)) |
| return 0; |
| |
| restart: |
| list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { |
| /* |
| * Don't zap active root pages, the page itself can't be freed |
| * and zapping it will just force vCPUs to realloc and reload. |
| */ |
| if (sp->root_count) |
| continue; |
| |
| unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, |
| &nr_zapped); |
| total_zapped += nr_zapped; |
| if (total_zapped >= nr_to_zap) |
| break; |
| |
| if (unstable) |
| goto restart; |
| } |
| |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| |
| kvm->stat.mmu_recycled += total_zapped; |
| return total_zapped; |
| } |
| |
| static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) |
| { |
| if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) |
| return kvm->arch.n_max_mmu_pages - |
| kvm->arch.n_used_mmu_pages; |
| |
| return 0; |
| } |
| |
| static int make_mmu_pages_available(struct kvm_vcpu *vcpu) |
| { |
| unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); |
| |
| if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) |
| return 0; |
| |
| kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); |
| |
| /* |
| * Note, this check is intentionally soft, it only guarantees that one |
| * page is available, while the caller may end up allocating as many as |
| * four pages, e.g. for PAE roots or for 5-level paging. Temporarily |
| * exceeding the (arbitrary by default) limit will not harm the host, |
| * being too aggressive may unnecessarily kill the guest, and getting an |
| * exact count is far more trouble than it's worth, especially in the |
| * page fault paths. |
| */ |
| if (!kvm_mmu_available_pages(vcpu->kvm)) |
| return -ENOSPC; |
| return 0; |
| } |
| |
| /* |
| * Changing the number of mmu pages allocated to the vm |
| * Note: if goal_nr_mmu_pages is too small, you will get dead lock |
| */ |
| void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) |
| { |
| write_lock(&kvm->mmu_lock); |
| |
| if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { |
| kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - |
| goal_nr_mmu_pages); |
| |
| goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; |
| } |
| |
| kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; |
| |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_mmu_page *sp; |
| LIST_HEAD(invalid_list); |
| int r; |
| |
| r = 0; |
| write_lock(&kvm->mmu_lock); |
| for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { |
| r = 1; |
| kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
| } |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| write_unlock(&kvm->mmu_lock); |
| |
| return r; |
| } |
| |
| static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| gpa_t gpa; |
| int r; |
| |
| if (vcpu->arch.mmu->root_role.direct) |
| return 0; |
| |
| gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); |
| |
| r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
| |
| return r; |
| } |
| |
| static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| trace_kvm_mmu_unsync_page(sp); |
| ++kvm->stat.mmu_unsync; |
| sp->unsync = 1; |
| |
| kvm_mmu_mark_parents_unsync(sp); |
| } |
| |
| /* |
| * Attempt to unsync any shadow pages that can be reached by the specified gfn, |
| * KVM is creating a writable mapping for said gfn. Returns 0 if all pages |
| * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must |
| * be write-protected. |
| */ |
| int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, |
| gfn_t gfn, bool can_unsync, bool prefetch) |
| { |
| struct kvm_mmu_page *sp; |
| bool locked = false; |
| |
| /* |
| * Force write-protection if the page is being tracked. Note, the page |
| * track machinery is used to write-protect upper-level shadow pages, |
| * i.e. this guards the role.level == 4K assertion below! |
| */ |
| if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) |
| return -EPERM; |
| |
| /* |
| * The page is not write-tracked, mark existing shadow pages unsync |
| * unless KVM is synchronizing an unsync SP (can_unsync = false). In |
| * that case, KVM must complete emulation of the guest TLB flush before |
| * allowing shadow pages to become unsync (writable by the guest). |
| */ |
| for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { |
| if (!can_unsync) |
| return -EPERM; |
| |
| if (sp->unsync) |
| continue; |
| |
| if (prefetch) |
| return -EEXIST; |
| |
| /* |
| * TDP MMU page faults require an additional spinlock as they |
| * run with mmu_lock held for read, not write, and the unsync |
| * logic is not thread safe. Take the spinklock regardless of |
| * the MMU type to avoid extra conditionals/parameters, there's |
| * no meaningful penalty if mmu_lock is held for write. |
| */ |
| if (!locked) { |
| locked = true; |
| spin_lock(&kvm->arch.mmu_unsync_pages_lock); |
| |
| /* |
| * Recheck after taking the spinlock, a different vCPU |
| * may have since marked the page unsync. A false |
| * negative on the unprotected check above is not |
| * possible as clearing sp->unsync _must_ hold mmu_lock |
| * for write, i.e. unsync cannot transition from 1->0 |
| * while this CPU holds mmu_lock for read (or write). |
| */ |
| if (READ_ONCE(sp->unsync)) |
| continue; |
| } |
| |
| WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); |
| kvm_unsync_page(kvm, sp); |
| } |
| if (locked) |
| spin_unlock(&kvm->arch.mmu_unsync_pages_lock); |
| |
| /* |
| * We need to ensure that the marking of unsync pages is visible |
| * before the SPTE is updated to allow writes because |
| * kvm_mmu_sync_roots() checks the unsync flags without holding |
| * the MMU lock and so can race with this. If the SPTE was updated |
| * before the page had been marked as unsync-ed, something like the |
| * following could happen: |
| * |
| * CPU 1 CPU 2 |
| * --------------------------------------------------------------------- |
| * 1.2 Host updates SPTE |
| * to be writable |
| * 2.1 Guest writes a GPTE for GVA X. |
| * (GPTE being in the guest page table shadowed |
| * by the SP from CPU 1.) |
| * This reads SPTE during the page table walk. |
| * Since SPTE.W is read as 1, there is no |
| * fault. |
| * |
| * 2.2 Guest issues TLB flush. |
| * That causes a VM Exit. |
| * |
| * 2.3 Walking of unsync pages sees sp->unsync is |
| * false and skips the page. |
| * |
| * 2.4 Guest accesses GVA X. |
| * Since the mapping in the SP was not updated, |
| * so the old mapping for GVA X incorrectly |
| * gets used. |
| * 1.1 Host marks SP |
| * as unsync |
| * (sp->unsync = true) |
| * |
| * The write barrier below ensures that 1.1 happens before 1.2 and thus |
| * the situation in 2.4 does not arise. It pairs with the read barrier |
| * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. |
| */ |
| smp_wmb(); |
| |
| return 0; |
| } |
| |
| static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, |
| u64 *sptep, unsigned int pte_access, gfn_t gfn, |
| kvm_pfn_t pfn, struct kvm_page_fault *fault) |
| { |
| struct kvm_mmu_page *sp = sptep_to_sp(sptep); |
| int level = sp->role.level; |
| int was_rmapped = 0; |
| int ret = RET_PF_FIXED; |
| bool flush = false; |
| bool wrprot; |
| u64 spte; |
| |
| /* Prefetching always gets a writable pfn. */ |
| bool host_writable = !fault || fault->map_writable; |
| bool prefetch = !fault || fault->prefetch; |
| bool write_fault = fault && fault->write; |
| |
| if (unlikely(is_noslot_pfn(pfn))) { |
| vcpu->stat.pf_mmio_spte_created++; |
| mark_mmio_spte(vcpu, sptep, gfn, pte_access); |
| return RET_PF_EMULATE; |
| } |
| |
| if (is_shadow_present_pte(*sptep)) { |
| /* |
| * If we overwrite a PTE page pointer with a 2MB PMD, unlink |
| * the parent of the now unreachable PTE. |
| */ |
| if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { |
| struct kvm_mmu_page *child; |
| u64 pte = *sptep; |
| |
| child = spte_to_child_sp(pte); |
| drop_parent_pte(vcpu->kvm, child, sptep); |
| flush = true; |
| } else if (pfn != spte_to_pfn(*sptep)) { |
| drop_spte(vcpu->kvm, sptep); |
| flush = true; |
| } else |
| was_rmapped = 1; |
| } |
| |
| wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, |
| true, host_writable, &spte); |
| |
| if (*sptep == spte) { |
| ret = RET_PF_SPURIOUS; |
| } else { |
| flush |= mmu_spte_update(sptep, spte); |
| trace_kvm_mmu_set_spte(level, gfn, sptep); |
| } |
| |
| if (wrprot) { |
| if (write_fault) |
| ret = RET_PF_EMULATE; |
| } |
| |
| if (flush) |
| kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); |
| |
| if (!was_rmapped) { |
| WARN_ON_ONCE(ret == RET_PF_SPURIOUS); |
| rmap_add(vcpu, slot, sptep, gfn, pte_access); |
| } else { |
| /* Already rmapped but the pte_access bits may have changed. */ |
| kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); |
| } |
| |
| return ret; |
| } |
| |
| static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, |
| u64 *start, u64 *end) |
| { |
| struct page *pages[PTE_PREFETCH_NUM]; |
| struct kvm_memory_slot *slot; |
| unsigned int access = sp->role.access; |
| int i, ret; |
| gfn_t gfn; |
| |
| gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); |
| slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); |
| if (!slot) |
| return -1; |
| |
| ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); |
| if (ret <= 0) |
| return -1; |
| |
| for (i = 0; i < ret; i++, gfn++, start++) { |
| mmu_set_spte(vcpu, slot, start, access, gfn, |
| page_to_pfn(pages[i]), NULL); |
| put_page(pages[i]); |
| } |
| |
| return 0; |
| } |
| |
| static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, u64 *sptep) |
| { |
| u64 *spte, *start = NULL; |
| int i; |
| |
| WARN_ON_ONCE(!sp->role.direct); |
| |
| i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); |
| spte = sp->spt + i; |
| |
| for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { |
| if (is_shadow_present_pte(*spte) || spte == sptep) { |
| if (!start) |
| continue; |
| if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) |
| return; |
| start = NULL; |
| } else if (!start) |
| start = spte; |
| } |
| if (start) |
| direct_pte_prefetch_many(vcpu, sp, start, spte); |
| } |
| |
| static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) |
| { |
| struct kvm_mmu_page *sp; |
| |
| sp = sptep_to_sp(sptep); |
| |
| /* |
| * Without accessed bits, there's no way to distinguish between |
| * actually accessed translations and prefetched, so disable pte |
| * prefetch if accessed bits aren't available. |
| */ |
| if (sp_ad_disabled(sp)) |
| return; |
| |
| if (sp->role.level > PG_LEVEL_4K) |
| return; |
| |
| /* |
| * If addresses are being invalidated, skip prefetching to avoid |
| * accidentally prefetching those addresses. |
| */ |
| if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) |
| return; |
| |
| __direct_pte_prefetch(vcpu, sp, sptep); |
| } |
| |
| /* |
| * Lookup the mapping level for @gfn in the current mm. |
| * |
| * WARNING! Use of host_pfn_mapping_level() requires the caller and the end |
| * consumer to be tied into KVM's handlers for MMU notifier events! |
| * |
| * There are several ways to safely use this helper: |
| * |
| * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before |
| * consuming it. In this case, mmu_lock doesn't need to be held during the |
| * lookup, but it does need to be held while checking the MMU notifier. |
| * |
| * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation |
| * event for the hva. This can be done by explicit checking the MMU notifier |
| * or by ensuring that KVM already has a valid mapping that covers the hva. |
| * |
| * - Do not use the result to install new mappings, e.g. use the host mapping |
| * level only to decide whether or not to zap an entry. In this case, it's |
| * not required to hold mmu_lock (though it's highly likely the caller will |
| * want to hold mmu_lock anyways, e.g. to modify SPTEs). |
| * |
| * Note! The lookup can still race with modifications to host page tables, but |
| * the above "rules" ensure KVM will not _consume_ the result of the walk if a |
| * race with the primary MMU occurs. |
| */ |
| static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, |
| const struct kvm_memory_slot *slot) |
| { |
| int level = PG_LEVEL_4K; |
| unsigned long hva; |
| unsigned long flags; |
| pgd_t pgd; |
| p4d_t p4d; |
| pud_t pud; |
| pmd_t pmd; |
| |
| /* |
| * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() |
| * is not solely for performance, it's also necessary to avoid the |
| * "writable" check in __gfn_to_hva_many(), which will always fail on |
| * read-only memslots due to gfn_to_hva() assuming writes. Earlier |
| * page fault steps have already verified the guest isn't writing a |
| * read-only memslot. |
| */ |
| hva = __gfn_to_hva_memslot(slot, gfn); |
| |
| /* |
| * Disable IRQs to prevent concurrent tear down of host page tables, |
| * e.g. if the primary MMU promotes a P*D to a huge page and then frees |
| * the original page table. |
| */ |
| local_irq_save(flags); |
| |
| /* |
| * Read each entry once. As above, a non-leaf entry can be promoted to |
| * a huge page _during_ this walk. Re-reading the entry could send the |
| * walk into the weeks, e.g. p*d_leaf() returns false (sees the old |
| * value) and then p*d_offset() walks into the target huge page instead |
| * of the old page table (sees the new value). |
| */ |
| pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); |
| if (pgd_none(pgd)) |
| goto out; |
| |
| p4d = READ_ONCE(*p4d_offset(&pgd, hva)); |
| if (p4d_none(p4d) || !p4d_present(p4d)) |
| goto out; |
| |
| pud = READ_ONCE(*pud_offset(&p4d, hva)); |
| if (pud_none(pud) || !pud_present(pud)) |
| goto out; |
| |
| if (pud_leaf(pud)) { |
| level = PG_LEVEL_1G; |
| goto out; |
| } |
| |
| pmd = READ_ONCE(*pmd_offset(&pud, hva)); |
| if (pmd_none(pmd) || !pmd_present(pmd)) |
| goto out; |
| |
| if (pmd_leaf(pmd)) |
| level = PG_LEVEL_2M; |
| |
| out: |
| local_irq_restore(flags); |
| return level; |
| } |
| |
| static int __kvm_mmu_max_mapping_level(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, |
| gfn_t gfn, int max_level, bool is_private) |
| { |
| struct kvm_lpage_info *linfo; |
| int host_level; |
| |
| max_level = min(max_level, max_huge_page_level); |
| for ( ; max_level > PG_LEVEL_4K; max_level--) { |
| linfo = lpage_info_slot(gfn, slot, max_level); |
| if (!linfo->disallow_lpage) |
| break; |
| } |
| |
| if (is_private) |
| return max_level; |
| |
| if (max_level == PG_LEVEL_4K) |
| return PG_LEVEL_4K; |
| |
| host_level = host_pfn_mapping_level(kvm, gfn, slot); |
| return min(host_level, max_level); |
| } |
| |
| int kvm_mmu_max_mapping_level(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, gfn_t gfn, |
| int max_level) |
| { |
| bool is_private = kvm_slot_can_be_private(slot) && |
| kvm_mem_is_private(kvm, gfn); |
| |
| return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private); |
| } |
| |
| void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) |
| { |
| struct kvm_memory_slot *slot = fault->slot; |
| kvm_pfn_t mask; |
| |
| fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; |
| |
| if (unlikely(fault->max_level == PG_LEVEL_4K)) |
| return; |
| |
| if (is_error_noslot_pfn(fault->pfn)) |
| return; |
| |
| if (kvm_slot_dirty_track_enabled(slot)) |
| return; |
| |
| /* |
| * Enforce the iTLB multihit workaround after capturing the requested |
| * level, which will be used to do precise, accurate accounting. |
| */ |
| fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, |
| fault->gfn, fault->max_level, |
| fault->is_private); |
| if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) |
| return; |
| |
| /* |
| * mmu_invalidate_retry() was successful and mmu_lock is held, so |
| * the pmd can't be split from under us. |
| */ |
| fault->goal_level = fault->req_level; |
| mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; |
| VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); |
| fault->pfn &= ~mask; |
| } |
| |
| void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) |
| { |
| if (cur_level > PG_LEVEL_4K && |
| cur_level == fault->goal_level && |
| is_shadow_present_pte(spte) && |
| !is_large_pte(spte) && |
| spte_to_child_sp(spte)->nx_huge_page_disallowed) { |
| /* |
| * A small SPTE exists for this pfn, but FNAME(fetch), |
| * direct_map(), or kvm_tdp_mmu_map() would like to create a |
| * large PTE instead: just force them to go down another level, |
| * patching back for them into pfn the next 9 bits of the |
| * address. |
| */ |
| u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - |
| KVM_PAGES_PER_HPAGE(cur_level - 1); |
| fault->pfn |= fault->gfn & page_mask; |
| fault->goal_level--; |
| } |
| } |
| |
| static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) |
| { |
| struct kvm_shadow_walk_iterator it; |
| struct kvm_mmu_page *sp; |
| int ret; |
| gfn_t base_gfn = fault->gfn; |
| |
| kvm_mmu_hugepage_adjust(vcpu, fault); |
| |
| trace_kvm_mmu_spte_requested(fault); |
| for_each_shadow_entry(vcpu, fault->addr, it) { |
| /* |
| * We cannot overwrite existing page tables with an NX |
| * large page, as the leaf could be executable. |
| */ |
| if (fault->nx_huge_page_workaround_enabled) |
| disallowed_hugepage_adjust(fault, *it.sptep, it.level); |
| |
| base_gfn = gfn_round_for_level(fault->gfn, it.level); |
| if (it.level == fault->goal_level) |
| break; |
| |
| sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); |
| if (sp == ERR_PTR(-EEXIST)) |
| continue; |
| |
| link_shadow_page(vcpu, it.sptep, sp); |
| if (fault->huge_page_disallowed) |
| account_nx_huge_page(vcpu->kvm, sp, |
| fault->req_level >= it.level); |
| } |
| |
| if (WARN_ON_ONCE(it.level != fault->goal_level)) |
| return -EFAULT; |
| |
| ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, |
| base_gfn, fault->pfn, fault); |
| if (ret == RET_PF_SPURIOUS) |
| return ret; |
| |
| direct_pte_prefetch(vcpu, it.sptep); |
| return ret; |
| } |
| |
| static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| unsigned long hva = gfn_to_hva_memslot(slot, gfn); |
| |
| send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); |
| } |
| |
| static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) |
| { |
| if (is_sigpending_pfn(fault->pfn)) { |
| kvm_handle_signal_exit(vcpu); |
| return -EINTR; |
| } |
| |
| /* |
| * Do not cache the mmio info caused by writing the readonly gfn |
| * into the spte otherwise read access on readonly gfn also can |
| * caused mmio page fault and treat it as mmio access. |
| */ |
| if (fault->pfn == KVM_PFN_ERR_RO_FAULT) |
| return RET_PF_EMULATE; |
| |
| if (fault->pfn == KVM_PFN_ERR_HWPOISON) { |
| kvm_send_hwpoison_signal(fault->slot, fault->gfn); |
| return RET_PF_RETRY; |
| } |
| |
| return -EFAULT; |
| } |
| |
| static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, |
| struct kvm_page_fault *fault, |
| unsigned int access) |
| { |
| gva_t gva = fault->is_tdp ? 0 : fault->addr; |
| |
| if (fault->is_private) { |
| kvm_mmu_prepare_memory_fault_exit(vcpu, fault); |
| return -EFAULT; |
| } |
| |
| vcpu_cache_mmio_info(vcpu, gva, fault->gfn, |
| access & shadow_mmio_access_mask); |
| |
| fault->slot = NULL; |
| fault->pfn = KVM_PFN_NOSLOT; |
| fault->map_writable = false; |
| fault->hva = KVM_HVA_ERR_BAD; |
| |
| /* |
| * If MMIO caching is disabled, emulate immediately without |
| * touching the shadow page tables as attempting to install an |
| * MMIO SPTE will just be an expensive nop. |
| */ |
| if (unlikely(!enable_mmio_caching)) |
| return RET_PF_EMULATE; |
| |
| /* |
| * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, |
| * any guest that generates such gfns is running nested and is being |
| * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and |
| * only if L1's MAXPHYADDR is inaccurate with respect to the |
| * hardware's). |
| */ |
| if (unlikely(fault->gfn > kvm_mmu_max_gfn())) |
| return RET_PF_EMULATE; |
| |
| return RET_PF_CONTINUE; |
| } |
| |
| static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) |
| { |
| /* |
| * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only |
| * reach the common page fault handler if the SPTE has an invalid MMIO |
| * generation number. Refreshing the MMIO generation needs to go down |
| * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! |
| */ |
| if (fault->rsvd) |
| return false; |
| |
| /* |
| * For hardware-protected VMs, certain conditions like attempting to |
| * perform a write to a page which is not in the state that the guest |
| * expects it to be in can result in a nested/extended #PF. In this |
| * case, the below code might misconstrue this situation as being the |
| * result of a write-protected access, and treat it as a spurious case |
| * rather than taking any action to satisfy the real source of the #PF |
| * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the |
| * guest spinning on a #PF indefinitely, so don't attempt the fast path |
| * in this case. |
| * |
| * Note that the kvm_mem_is_private() check might race with an |
| * attribute update, but this will either result in the guest spinning |
| * on RET_PF_SPURIOUS until the update completes, or an actual spurious |
| * case might go down the slow path. Either case will resolve itself. |
| */ |
| if (kvm->arch.has_private_mem && |
| fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) |
| return false; |
| |
| /* |
| * #PF can be fast if: |
| * |
| * 1. The shadow page table entry is not present and A/D bits are |
| * disabled _by KVM_, which could mean that the fault is potentially |
| * caused by access tracking (if enabled). If A/D bits are enabled |
| * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D |
| * bits for L2 and employ access tracking, but the fast page fault |
| * mechanism only supports direct MMUs. |
| * 2. The shadow page table entry is present, the access is a write, |
| * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. |
| * the fault was caused by a write-protection violation. If the |
| * SPTE is MMU-writable (determined later), the fault can be fixed |
| * by setting the Writable bit, which can be done out of mmu_lock. |
| */ |
| if (!fault->present) |
| return !kvm_ad_enabled(); |
| |
| /* |
| * Note, instruction fetches and writes are mutually exclusive, ignore |
| * the "exec" flag. |
| */ |
| return fault->write; |
| } |
| |
| /* |
| * Returns true if the SPTE was fixed successfully. Otherwise, |
| * someone else modified the SPTE from its original value. |
| */ |
| static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, |
| struct kvm_page_fault *fault, |
| u64 *sptep, u64 old_spte, u64 new_spte) |
| { |
| /* |
| * Theoretically we could also set dirty bit (and flush TLB) here in |
| * order to eliminate unnecessary PML logging. See comments in |
| * set_spte. But fast_page_fault is very unlikely to happen with PML |
| * enabled, so we do not do this. This might result in the same GPA |
| * to be logged in PML buffer again when the write really happens, and |
| * eventually to be called by mark_page_dirty twice. But it's also no |
| * harm. This also avoids the TLB flush needed after setting dirty bit |
| * so non-PML cases won't be impacted. |
| * |
| * Compare with set_spte where instead shadow_dirty_mask is set. |
| */ |
| if (!try_cmpxchg64(sptep, &old_spte, new_spte)) |
| return false; |
| |
| if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) |
| mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); |
| |
| return true; |
| } |
| |
| static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) |
| { |
| if (fault->exec) |
| return is_executable_pte(spte); |
| |
| if (fault->write) |
| return is_writable_pte(spte); |
| |
| /* Fault was on Read access */ |
| return spte & PT_PRESENT_MASK; |
| } |
| |
| /* |
| * Returns the last level spte pointer of the shadow page walk for the given |
| * gpa, and sets *spte to the spte value. This spte may be non-preset. If no |
| * walk could be performed, returns NULL and *spte does not contain valid data. |
| * |
| * Contract: |
| * - Must be called between walk_shadow_page_lockless_{begin,end}. |
| * - The returned sptep must not be used after walk_shadow_page_lockless_end. |
| */ |
| static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| u64 old_spte; |
| u64 *sptep = NULL; |
| |
| for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { |
| sptep = iterator.sptep; |
| *spte = old_spte; |
| } |
| |
| return sptep; |
| } |
| |
| /* |
| * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. |
| */ |
| static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) |
| { |
| struct kvm_mmu_page *sp; |
| int ret = RET_PF_INVALID; |
| u64 spte; |
| u64 *sptep; |
| uint retry_count = 0; |
| |
| if (!page_fault_can_be_fast(vcpu->kvm, fault)) |
| return ret; |
| |
| walk_shadow_page_lockless_begin(vcpu); |
| |
| do { |
| u64 new_spte; |
| |
| if (tdp_mmu_enabled) |
| sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); |
| else |
| sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); |
| |
| /* |
| * It's entirely possible for the mapping to have been zapped |
| * by a different task, but the root page should always be |
| * available as the vCPU holds a reference to its root(s). |
| */ |
| if (WARN_ON_ONCE(!sptep)) |
| spte = FROZEN_SPTE; |
| |
| if (!is_shadow_present_pte(spte)) |
| break; |
| |
| sp = sptep_to_sp(sptep); |
| if (!is_last_spte(spte, sp->role.level)) |
| break; |
| |
| /* |
| * Check whether the memory access that caused the fault would |
| * still cause it if it were to be performed right now. If not, |
| * then this is a spurious fault caused by TLB lazily flushed, |
| * or some other CPU has already fixed the PTE after the |
| * current CPU took the fault. |
| * |
| * Need not check the access of upper level table entries since |
| * they are always ACC_ALL. |
| */ |
| if (is_access_allowed(fault, spte)) { |
| ret = RET_PF_SPURIOUS; |
| break; |
| } |
| |
| new_spte = spte; |
| |
| /* |
| * KVM only supports fixing page faults outside of MMU lock for |
| * direct MMUs, nested MMUs are always indirect, and KVM always |
| * uses A/D bits for non-nested MMUs. Thus, if A/D bits are |
| * enabled, the SPTE can't be an access-tracked SPTE. |
| */ |
| if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) |
| new_spte = restore_acc_track_spte(new_spte); |
| |
| /* |
| * To keep things simple, only SPTEs that are MMU-writable can |
| * be made fully writable outside of mmu_lock, e.g. only SPTEs |
| * that were write-protected for dirty-logging or access |
| * tracking are handled here. Don't bother checking if the |
| * SPTE is writable to prioritize running with A/D bits enabled. |
| * The is_access_allowed() check above handles the common case |
| * of the fault being spurious, and the SPTE is known to be |
| * shadow-present, i.e. except for access tracking restoration |
| * making the new SPTE writable, the check is wasteful. |
| */ |
| if (fault->write && is_mmu_writable_spte(spte)) { |
| new_spte |= PT_WRITABLE_MASK; |
| |
| /* |
| * Do not fix write-permission on the large spte when |
| * dirty logging is enabled. Since we only dirty the |
| * first page into the dirty-bitmap in |
| * fast_pf_fix_direct_spte(), other pages are missed |
| * if its slot has dirty logging enabled. |
| * |
| * Instead, we let the slow page fault path create a |
| * normal spte to fix the access. |
| */ |
| if (sp->role.level > PG_LEVEL_4K && |
| kvm_slot_dirty_track_enabled(fault->slot)) |
| break; |
| } |
| |
| /* Verify that the fault can be handled in the fast path */ |
| if (new_spte == spte || |
| !is_access_allowed(fault, new_spte)) |
| break; |
| |
| /* |
| * Currently, fast page fault only works for direct mapping |
| * since the gfn is not stable for indirect shadow page. See |
| * Documentation/virt/kvm/locking.rst to get more detail. |
| */ |
| if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { |
| ret = RET_PF_FIXED; |
| break; |
| } |
| |
| if (++retry_count > 4) { |
| pr_warn_once("Fast #PF retrying more than 4 times.\n"); |
| break; |
| } |
| |
| } while (true); |
| |
| trace_fast_page_fault(vcpu, fault, sptep, spte, ret); |
| walk_shadow_page_lockless_end(vcpu); |
| |
| if (ret != RET_PF_INVALID) |
| vcpu->stat.pf_fast++; |
| |
| return ret; |
| } |
| |
| static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, |
| struct list_head *invalid_list) |
| { |
| struct kvm_mmu_page *sp; |
| |
| if (!VALID_PAGE(*root_hpa)) |
| return; |
| |
| sp = root_to_sp(*root_hpa); |
| if (WARN_ON_ONCE(!sp)) |
| return; |
| |
| if (is_tdp_mmu_page(sp)) { |
| lockdep_assert_held_read(&kvm->mmu_lock); |
| kvm_tdp_mmu_put_root(kvm, sp); |
| } else { |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| if (!--sp->root_count && sp->role.invalid) |
| kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
| } |
| |
| *root_hpa = INVALID_PAGE; |
| } |
| |
| /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ |
| void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, |
| ulong roots_to_free) |
| { |
| bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; |
| int i; |
| LIST_HEAD(invalid_list); |
| bool free_active_root; |
| |
| WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); |
| |
| BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); |
| |
| /* Before acquiring the MMU lock, see if we need to do any real work. */ |
| free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) |
| && VALID_PAGE(mmu->root.hpa); |
| |
| if (!free_active_root) { |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && |
| VALID_PAGE(mmu->prev_roots[i].hpa)) |
| break; |
| |
| if (i == KVM_MMU_NUM_PREV_ROOTS) |
| return; |
| } |
| |
| if (is_tdp_mmu) |
| read_lock(&kvm->mmu_lock); |
| else |
| write_lock(&kvm->mmu_lock); |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) |
| mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, |
| &invalid_list); |
| |
| if (free_active_root) { |
| if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { |
| /* Nothing to cleanup for dummy roots. */ |
| } else if (root_to_sp(mmu->root.hpa)) { |
| mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); |
| } else if (mmu->pae_root) { |
| for (i = 0; i < 4; ++i) { |
| if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) |
| continue; |
| |
| mmu_free_root_page(kvm, &mmu->pae_root[i], |
| &invalid_list); |
| mmu->pae_root[i] = INVALID_PAE_ROOT; |
| } |
| } |
| mmu->root.hpa = INVALID_PAGE; |
| mmu->root.pgd = 0; |
| } |
| |
| if (is_tdp_mmu) { |
| read_unlock(&kvm->mmu_lock); |
| WARN_ON_ONCE(!list_empty(&invalid_list)); |
| } else { |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| write_unlock(&kvm->mmu_lock); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); |
| |
| void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) |
| { |
| unsigned long roots_to_free = 0; |
| struct kvm_mmu_page *sp; |
| hpa_t root_hpa; |
| int i; |
| |
| /* |
| * This should not be called while L2 is active, L2 can't invalidate |
| * _only_ its own roots, e.g. INVVPID unconditionally exits. |
| */ |
| WARN_ON_ONCE(mmu->root_role.guest_mode); |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| root_hpa = mmu->prev_roots[i].hpa; |
| if (!VALID_PAGE(root_hpa)) |
| continue; |
| |
| sp = root_to_sp(root_hpa); |
| if (!sp || sp->role.guest_mode) |
| roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); |
| } |
| |
| kvm_mmu_free_roots(kvm, mmu, roots_to_free); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); |
| |
| static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, |
| u8 level) |
| { |
| union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; |
| struct kvm_mmu_page *sp; |
| |
| role.level = level; |
| role.quadrant = quadrant; |
| |
| WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); |
| WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); |
| |
| sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); |
| ++sp->root_count; |
| |
| return __pa(sp->spt); |
| } |
| |
| static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.mmu; |
| u8 shadow_root_level = mmu->root_role.level; |
| hpa_t root; |
| unsigned i; |
| int r; |
| |
| if (tdp_mmu_enabled) |
| return kvm_tdp_mmu_alloc_root(vcpu); |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| r = make_mmu_pages_available(vcpu); |
| if (r < 0) |
| goto out_unlock; |
| |
| if (shadow_root_level >= PT64_ROOT_4LEVEL) { |
| root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); |
| mmu->root.hpa = root; |
| } else if (shadow_root_level == PT32E_ROOT_LEVEL) { |
| if (WARN_ON_ONCE(!mmu->pae_root)) { |
| r = -EIO; |
| goto out_unlock; |
| } |
| |
| for (i = 0; i < 4; ++i) { |
| WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); |
| |
| root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, |
| PT32_ROOT_LEVEL); |
| mmu->pae_root[i] = root | PT_PRESENT_MASK | |
| shadow_me_value; |
| } |
| mmu->root.hpa = __pa(mmu->pae_root); |
| } else { |
| WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); |
| r = -EIO; |
| goto out_unlock; |
| } |
| |
| /* root.pgd is ignored for direct MMUs. */ |
| mmu->root.pgd = 0; |
| out_unlock: |
| write_unlock(&vcpu->kvm->mmu_lock); |
| return r; |
| } |
| |
| static int mmu_first_shadow_root_alloc(struct kvm *kvm) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *slot; |
| int r = 0, i, bkt; |
| |
| /* |
| * Check if this is the first shadow root being allocated before |
| * taking the lock. |
| */ |
| if (kvm_shadow_root_allocated(kvm)) |
| return 0; |
| |
| mutex_lock(&kvm->slots_arch_lock); |
| |
| /* Recheck, under the lock, whether this is the first shadow root. */ |
| if (kvm_shadow_root_allocated(kvm)) |
| goto out_unlock; |
| |
| /* |
| * Check if anything actually needs to be allocated, e.g. all metadata |
| * will be allocated upfront if TDP is disabled. |
| */ |
| if (kvm_memslots_have_rmaps(kvm) && |
| kvm_page_track_write_tracking_enabled(kvm)) |
| goto out_success; |
| |
| for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { |
| slots = __kvm_memslots(kvm, i); |
| kvm_for_each_memslot(slot, bkt, slots) { |
| /* |
| * Both of these functions are no-ops if the target is |
| * already allocated, so unconditionally calling both |
| * is safe. Intentionally do NOT free allocations on |
| * failure to avoid having to track which allocations |
| * were made now versus when the memslot was created. |
| * The metadata is guaranteed to be freed when the slot |
| * is freed, and will be kept/used if userspace retries |
| * KVM_RUN instead of killing the VM. |
| */ |
| r = memslot_rmap_alloc(slot, slot->npages); |
| if (r) |
| goto out_unlock; |
| r = kvm_page_track_write_tracking_alloc(slot); |
| if (r) |
| goto out_unlock; |
| } |
| } |
| |
| /* |
| * Ensure that shadow_root_allocated becomes true strictly after |
| * all the related pointers are set. |
| */ |
| out_success: |
| smp_store_release(&kvm->arch.shadow_root_allocated, true); |
| |
| out_unlock: |
| mutex_unlock(&kvm->slots_arch_lock); |
| return r; |
| } |
| |
| static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.mmu; |
| u64 pdptrs[4], pm_mask; |
| gfn_t root_gfn, root_pgd; |
| int quadrant, i, r; |
| hpa_t root; |
| |
| root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); |
| root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| |
| if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { |
| mmu->root.hpa = kvm_mmu_get_dummy_root(); |
| return 0; |
| } |
| |
| /* |
| * On SVM, reading PDPTRs might access guest memory, which might fault |
| * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. |
| */ |
| if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { |
| for (i = 0; i < 4; ++i) { |
| pdptrs[i] = mmu->get_pdptr(vcpu, i); |
| if (!(pdptrs[i] & PT_PRESENT_MASK)) |
| continue; |
| |
| if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) |
| pdptrs[i] = 0; |
| } |
| } |
| |
| r = mmu_first_shadow_root_alloc(vcpu->kvm); |
| if (r) |
| return r; |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| r = make_mmu_pages_available(vcpu); |
| if (r < 0) |
| goto out_unlock; |
| |
| /* |
| * Do we shadow a long mode page table? If so we need to |
| * write-protect the guests page table root. |
| */ |
| if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { |
| root = mmu_alloc_root(vcpu, root_gfn, 0, |
| mmu->root_role.level); |
| mmu->root.hpa = root; |
| goto set_root_pgd; |
| } |
| |
| if (WARN_ON_ONCE(!mmu->pae_root)) { |
| r = -EIO; |
| goto out_unlock; |
| } |
| |
| /* |
| * We shadow a 32 bit page table. This may be a legacy 2-level |
| * or a PAE 3-level page table. In either case we need to be aware that |
| * the shadow page table may be a PAE or a long mode page table. |
| */ |
| pm_mask = PT_PRESENT_MASK | shadow_me_value; |
| if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { |
| pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; |
| |
| if (WARN_ON_ONCE(!mmu->pml4_root)) { |
| r = -EIO; |
| goto out_unlock; |
| } |
| mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; |
| |
| if (mmu->root_role.level == PT64_ROOT_5LEVEL) { |
| if (WARN_ON_ONCE(!mmu->pml5_root)) { |
| r = -EIO; |
| goto out_unlock; |
| } |
| mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; |
| } |
| } |
| |
| for (i = 0; i < 4; ++i) { |
| WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); |
| |
| if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { |
| if (!(pdptrs[i] & PT_PRESENT_MASK)) { |
| mmu->pae_root[i] = INVALID_PAE_ROOT; |
| continue; |
| } |
| root_gfn = pdptrs[i] >> PAGE_SHIFT; |
| } |
| |
| /* |
| * If shadowing 32-bit non-PAE page tables, each PAE page |
| * directory maps one quarter of the guest's non-PAE page |
| * directory. Othwerise each PAE page direct shadows one guest |
| * PAE page directory so that quadrant should be 0. |
| */ |
| quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; |
| |
| root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); |
| mmu->pae_root[i] = root | pm_mask; |
| } |
| |
| if (mmu->root_role.level == PT64_ROOT_5LEVEL) |
| mmu->root.hpa = __pa(mmu->pml5_root); |
| else if (mmu->root_role.level == PT64_ROOT_4LEVEL) |
| mmu->root.hpa = __pa(mmu->pml4_root); |
| else |
| mmu->root.hpa = __pa(mmu->pae_root); |
| |
| set_root_pgd: |
| mmu->root.pgd = root_pgd; |
| out_unlock: |
| write_unlock(&vcpu->kvm->mmu_lock); |
| |
| return r; |
| } |
| |
| static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.mmu; |
| bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; |
| u64 *pml5_root = NULL; |
| u64 *pml4_root = NULL; |
| u64 *pae_root; |
| |
| /* |
| * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP |
| * tables are allocated and initialized at root creation as there is no |
| * equivalent level in the guest's NPT to shadow. Allocate the tables |
| * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. |
| */ |
| if (mmu->root_role.direct || |
| mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || |
| mmu->root_role.level < PT64_ROOT_4LEVEL) |
| return 0; |
| |
| /* |
| * NPT, the only paging mode that uses this horror, uses a fixed number |
| * of levels for the shadow page tables, e.g. all MMUs are 4-level or |
| * all MMus are 5-level. Thus, this can safely require that pml5_root |
| * is allocated if the other roots are valid and pml5 is needed, as any |
| * prior MMU would also have required pml5. |
| */ |
| if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) |
| return 0; |
| |
| /* |
| * The special roots should always be allocated in concert. Yell and |
| * bail if KVM ends up in a state where only one of the roots is valid. |
| */ |
| if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || |
| (need_pml5 && mmu->pml5_root))) |
| return -EIO; |
| |
| /* |
| * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and |
| * doesn't need to be decrypted. |
| */ |
| pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); |
| if (!pae_root) |
| return -ENOMEM; |
| |
| #ifdef CONFIG_X86_64 |
| pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); |
| if (!pml4_root) |
| goto err_pml4; |
| |
| if (need_pml5) { |
| pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); |
| if (!pml5_root) |
| goto err_pml5; |
| } |
| #endif |
| |
| mmu->pae_root = pae_root; |
| mmu->pml4_root = pml4_root; |
| mmu->pml5_root = pml5_root; |
| |
| return 0; |
| |
| #ifdef CONFIG_X86_64 |
| err_pml5: |
| free_page((unsigned long)pml4_root); |
| err_pml4: |
| free_page((unsigned long)pae_root); |
| return -ENOMEM; |
| #endif |
| } |
| |
| static bool is_unsync_root(hpa_t root) |
| { |
| struct kvm_mmu_page *sp; |
| |
| if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) |
| return false; |
| |
| /* |
| * The read barrier orders the CPU's read of SPTE.W during the page table |
| * walk before the reads of sp->unsync/sp->unsync_children here. |
| * |
| * Even if another CPU was marking the SP as unsync-ed simultaneously, |
| * any guest page table changes are not guaranteed to be visible anyway |
| * until this VCPU issues a TLB flush strictly after those changes are |
| * made. We only need to ensure that the other CPU sets these flags |
| * before any actual changes to the page tables are made. The comments |
| * in mmu_try_to_unsync_pages() describe what could go wrong if this |
| * requirement isn't satisfied. |
| */ |
| smp_rmb(); |
| sp = root_to_sp(root); |
| |
| /* |
| * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the |
| * PDPTEs for a given PAE root need to be synchronized individually. |
| */ |
| if (WARN_ON_ONCE(!sp)) |
| return false; |
| |
| if (sp->unsync || sp->unsync_children) |
| return true; |
| |
| return false; |
| } |
| |
| void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_mmu_page *sp; |
| |
| if (vcpu->arch.mmu->root_role.direct) |
| return; |
| |
| if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) |
| return; |
| |
| vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); |
| |
| if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { |
| hpa_t root = vcpu->arch.mmu->root.hpa; |
| |
| if (!is_unsync_root(root)) |
| return; |
| |
| sp = root_to_sp(root); |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| mmu_sync_children(vcpu, sp, true); |
| write_unlock(&vcpu->kvm->mmu_lock); |
| return; |
| } |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| |
| for (i = 0; i < 4; ++i) { |
| hpa_t root = vcpu->arch.mmu->pae_root[i]; |
| |
| if (IS_VALID_PAE_ROOT(root)) { |
| sp = spte_to_child_sp(root); |
| mmu_sync_children(vcpu, sp, true); |
| } |
| } |
| |
| write_unlock(&vcpu->kvm->mmu_lock); |
| } |
| |
| void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) |
| { |
| unsigned long roots_to_free = 0; |
| int i; |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) |
| roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); |
| |
| /* sync prev_roots by simply freeing them */ |
| kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); |
| } |
| |
| static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| gpa_t vaddr, u64 access, |
| struct x86_exception *exception) |
| { |
| if (exception) |
| exception->error_code = 0; |
| return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); |
| } |
| |
| static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) |
| { |
| /* |
| * A nested guest cannot use the MMIO cache if it is using nested |
| * page tables, because cr2 is a nGPA while the cache stores GPAs. |
| */ |
| if (mmu_is_nested(vcpu)) |
| return false; |
| |
| if (direct) |
| return vcpu_match_mmio_gpa(vcpu, addr); |
| |
| return vcpu_match_mmio_gva(vcpu, addr); |
| } |
| |
| /* |
| * Return the level of the lowest level SPTE added to sptes. |
| * That SPTE may be non-present. |
| * |
| * Must be called between walk_shadow_page_lockless_{begin,end}. |
| */ |
| static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| int leaf = -1; |
| u64 spte; |
| |
| for (shadow_walk_init(&iterator, vcpu, addr), |
| *root_level = iterator.level; |
| shadow_walk_okay(&iterator); |
| __shadow_walk_next(&iterator, spte)) { |
| leaf = iterator.level; |
| spte = mmu_spte_get_lockless(iterator.sptep); |
| |
| sptes[leaf] = spte; |
| } |
| |
| return leaf; |
| } |
| |
| static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, |
| int *root_level) |
| { |
| int leaf; |
| |
| walk_shadow_page_lockless_begin(vcpu); |
| |
| if (is_tdp_mmu_active(vcpu)) |
| leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); |
| else |
| leaf = get_walk(vcpu, addr, sptes, root_level); |
| |
| walk_shadow_page_lockless_end(vcpu); |
| return leaf; |
| } |
| |
| /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ |
| static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) |
| { |
| u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; |
| struct rsvd_bits_validate *rsvd_check; |
| int root, leaf, level; |
| bool reserved = false; |
| |
| leaf = get_sptes_lockless(vcpu, addr, sptes, &root); |
| if (unlikely(leaf < 0)) { |
| *sptep = 0ull; |
| return reserved; |
| } |
| |
| *sptep = sptes[leaf]; |
| |
| /* |
| * Skip reserved bits checks on the terminal leaf if it's not a valid |
| * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by |
| * design, always have reserved bits set. The purpose of the checks is |
| * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. |
| */ |
| if (!is_shadow_present_pte(sptes[leaf])) |
| leaf++; |
| |
| rsvd_check = &vcpu->arch.mmu->shadow_zero_check; |
| |
| for (level = root; level >= leaf; level--) |
| reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); |
| |
| if (reserved) { |
| pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", |
| __func__, addr); |
| for (level = root; level >= leaf; level--) |
| pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", |
| sptes[level], level, |
| get_rsvd_bits(rsvd_check, sptes[level], level)); |
| } |
| |
| return reserved; |
| } |
| |
| static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) |
| { |
| u64 spte; |
| bool reserved; |
| |
| if (mmio_info_in_cache(vcpu, addr, direct)) |
| return RET_PF_EMULATE; |
| |
| reserved = get_mmio_spte(vcpu, addr, &spte); |
| if (WARN_ON_ONCE(reserved)) |
| return -EINVAL; |
| |
| if (is_mmio_spte(vcpu->kvm, spte)) { |
| gfn_t gfn = get_mmio_spte_gfn(spte); |
| unsigned int access = get_mmio_spte_access(spte); |
| |
| if (!check_mmio_spte(vcpu, spte)) |
| return RET_PF_INVALID; |
| |
| if (direct) |
| addr = 0; |
| |
| trace_handle_mmio_page_fault(addr, gfn, access); |
| vcpu_cache_mmio_info(vcpu, addr, gfn, access); |
| return RET_PF_EMULATE; |
| } |
| |
| /* |
| * If the page table is zapped by other cpus, let CPU fault again on |
| * the address. |
| */ |
| return RET_PF_RETRY; |
| } |
| |
| static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, |
| struct kvm_page_fault *fault) |
| { |
| if (unlikely(fault->rsvd)) |
| return false; |
| |
| if (!fault->present || !fault->write) |
| return false; |
| |
| /* |
| * guest is writing the page which is write tracked which can |
| * not be fixed by page fault handler. |
| */ |
| if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) |
| return true; |
| |
| return false; |
| } |
| |
| static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| u64 spte; |
| |
| walk_shadow_page_lockless_begin(vcpu); |
| for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) |
| clear_sp_write_flooding_count(iterator.sptep); |
| walk_shadow_page_lockless_end(vcpu); |
| } |
| |
| static u32 alloc_apf_token(struct kvm_vcpu *vcpu) |
| { |
| /* make sure the token value is not 0 */ |
| u32 id = vcpu->arch.apf.id; |
| |
| if (id << 12 == 0) |
| vcpu->arch.apf.id = 1; |
| |
| return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; |
| } |
| |
| static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, |
| struct kvm_page_fault *fault) |
| { |
| struct kvm_arch_async_pf arch; |
| |
| arch.token = alloc_apf_token(vcpu); |
| arch.gfn = fault->gfn; |
| arch.error_code = fault->error_code; |
| arch.direct_map = vcpu->arch.mmu->root_role.direct; |
| arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); |
| |
| return kvm_setup_async_pf(vcpu, fault->addr, |
| kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); |
| } |
| |
| void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
| { |
| int r; |
| |
| if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) |
| return; |
| |
| if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || |
| work->wakeup_all) |
| return; |
| |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) |
| return; |
| |
| if (!vcpu->arch.mmu->root_role.direct && |
| work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) |
| return; |
| |
| r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, |
| true, NULL, NULL); |
| |
| /* |
| * Account fixed page faults, otherwise they'll never be counted, but |
| * ignore stats for all other return times. Page-ready "faults" aren't |
| * truly spurious and never trigger emulation |
| */ |
| if (r == RET_PF_FIXED) |
| vcpu->stat.pf_fixed++; |
| } |
| |
| static inline u8 kvm_max_level_for_order(int order) |
| { |
| BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); |
| |
| KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && |
| order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && |
| order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); |
| |
| if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) |
| return PG_LEVEL_1G; |
| |
| if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) |
| return PG_LEVEL_2M; |
| |
| return PG_LEVEL_4K; |
| } |
| |
| static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, |
| u8 max_level, int gmem_order) |
| { |
| u8 req_max_level; |
| |
| if (max_level == PG_LEVEL_4K) |
| return PG_LEVEL_4K; |
| |
| max_level = min(kvm_max_level_for_order(gmem_order), max_level); |
| if (max_level == PG_LEVEL_4K) |
| return PG_LEVEL_4K; |
| |
| req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); |
| if (req_max_level) |
| max_level = min(max_level, req_max_level); |
| |
| return req_max_level; |
| } |
| |
| static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, |
| struct kvm_page_fault *fault) |
| { |
| int max_order, r; |
| |
| if (!kvm_slot_can_be_private(fault->slot)) { |
| kvm_mmu_prepare_memory_fault_exit(vcpu, fault); |
| return -EFAULT; |
| } |
| |
| r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, |
| &max_order); |
| if (r) { |
| kvm_mmu_prepare_memory_fault_exit(vcpu, fault); |
| return r; |
| } |
| |
| fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); |
| fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, |
| fault->max_level, max_order); |
| |
| return RET_PF_CONTINUE; |
| } |
| |
| static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) |
| { |
| bool async; |
| |
| if (fault->is_private) |
| return kvm_faultin_pfn_private(vcpu, fault); |
| |
| async = false; |
| fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false, |
| &async, fault->write, |
| &fault->map_writable, &fault->hva); |
| if (!async) |
| return RET_PF_CONTINUE; /* *pfn has correct page already */ |
| |
| if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { |
| trace_kvm_try_async_get_page(fault->addr, fault->gfn); |
| if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { |
| trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); |
| kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
| return RET_PF_RETRY; |
| } else if (kvm_arch_setup_async_pf(vcpu, fault)) { |
| return RET_PF_RETRY; |
| } |
| } |
| |
| /* |
| * Allow gup to bail on pending non-fatal signals when it's also allowed |
| * to wait for IO. Note, gup always bails if it is unable to quickly |
| * get a page and a fatal signal, i.e. SIGKILL, is pending. |
| */ |
| fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true, |
| NULL, fault->write, |
| &fault->map_writable, &fault->hva); |
| return RET_PF_CONTINUE; |
| } |
| |
| static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, |
| unsigned int access) |
| { |
| struct kvm_memory_slot *slot = fault->slot; |
| int ret; |
| |
| /* |
| * Note that the mmu_invalidate_seq also serves to detect a concurrent |
| * change in attributes. is_page_fault_stale() will detect an |
| * invalidation relate to fault->fn and resume the guest without |
| * installing a mapping in the page tables. |
| */ |
| fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; |
| smp_rmb(); |
| |
| /* |
| * Now that we have a snapshot of mmu_invalidate_seq we can check for a |
| * private vs. shared mismatch. |
| */ |
| if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { |
| kvm_mmu_prepare_memory_fault_exit(vcpu, fault); |
| return -EFAULT; |
| } |
| |
| if (unlikely(!slot)) |
| return kvm_handle_noslot_fault(vcpu, fault, access); |
| |
| /* |
| * Retry the page fault if the gfn hit a memslot that is being deleted |
| * or moved. This ensures any existing SPTEs for the old memslot will |
| * be zapped before KVM inserts a new MMIO SPTE for the gfn. |
| */ |
| if (slot->flags & KVM_MEMSLOT_INVALID) |
| return RET_PF_RETRY; |
| |
| if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { |
| /* |
| * Don't map L1's APIC access page into L2, KVM doesn't support |
| * using APICv/AVIC to accelerate L2 accesses to L1's APIC, |
| * i.e. the access needs to be emulated. Emulating access to |
| * L1's APIC is also correct if L1 is accelerating L2's own |
| * virtual APIC, but for some reason L1 also maps _L1's_ APIC |
| * into L2. Note, vcpu_is_mmio_gpa() always treats access to |
| * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM |
| * uses different roots for L1 vs. L2, i.e. there is no danger |
| * of breaking APICv/AVIC for L1. |
| */ |
| if (is_guest_mode(vcpu)) |
| return kvm_handle_noslot_fault(vcpu, fault, access); |
| |
| /* |
| * If the APIC access page exists but is disabled, go directly |
| * to emulation without caching the MMIO access or creating a |
| * MMIO SPTE. That way the cache doesn't need to be purged |
| * when the AVIC is re-enabled. |
| */ |
| if (!kvm_apicv_activated(vcpu->kvm)) |
| return RET_PF_EMULATE; |
| } |
| |
| /* |
| * Check for a relevant mmu_notifier invalidation event before getting |
| * the pfn from the primary MMU, and before acquiring mmu_lock. |
| * |
| * For mmu_lock, if there is an in-progress invalidation and the kernel |
| * allows preemption, the invalidation task may drop mmu_lock and yield |
| * in response to mmu_lock being contended, which is *very* counter- |
| * productive as this vCPU can't actually make forward progress until |
| * the invalidation completes. |
| * |
| * Retrying now can also avoid unnessary lock contention in the primary |
| * MMU, as the primary MMU doesn't necessarily hold a single lock for |
| * the duration of the invalidation, i.e. faulting in a conflicting pfn |
| * can cause the invalidation to take longer by holding locks that are |
| * needed to complete the invalidation. |
| * |
| * Do the pre-check even for non-preemtible kernels, i.e. even if KVM |
| * will never yield mmu_lock in response to contention, as this vCPU is |
| * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held |
| * to detect retry guarantees the worst case latency for the vCPU. |
| */ |
| if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) |
| return RET_PF_RETRY; |
| |
| ret = __kvm_faultin_pfn(vcpu, fault); |
| if (ret != RET_PF_CONTINUE) |
| return ret; |
| |
| if (unlikely(is_error_pfn(fault->pfn))) |
| return kvm_handle_error_pfn(vcpu, fault); |
| |
| if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) |
| return kvm_handle_noslot_fault(vcpu, fault, access); |
| |
| /* |
| * Check again for a relevant mmu_notifier invalidation event purely to |
| * avoid contending mmu_lock. Most invalidations will be detected by |
| * the previous check, but checking is extremely cheap relative to the |
| * overall cost of failing to detect the invalidation until after |
| * mmu_lock is acquired. |
| */ |
| if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { |
| kvm_release_pfn_clean(fault->pfn); |
| return RET_PF_RETRY; |
| } |
| |
| return RET_PF_CONTINUE; |
| } |
| |
| /* |
| * Returns true if the page fault is stale and needs to be retried, i.e. if the |
| * root was invalidated by a memslot update or a relevant mmu_notifier fired. |
| */ |
| static bool is_page_fault_stale(struct kvm_vcpu *vcpu, |
| struct kvm_page_fault *fault) |
| { |
| struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); |
| |
| /* Special roots, e.g. pae_root, are not backed by shadow pages. */ |
| if (sp && is_obsolete_sp(vcpu->kvm, sp)) |
| return true; |
| |
| /* |
| * Roots without an associated shadow page are considered invalid if |
| * there is a pending request to free obsolete roots. The request is |
| * only a hint that the current root _may_ be obsolete and needs to be |
| * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a |
| * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs |
| * to reload even if no vCPU is actively using the root. |
| */ |
| if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) |
| return true; |
| |
| /* |
| * Check for a relevant mmu_notifier invalidation event one last time |
| * now that mmu_lock is held, as the "unsafe" checks performed without |
| * holding mmu_lock can get false negatives. |
| */ |
| return fault->slot && |
| mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); |
| } |
| |
| static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) |
| { |
| int r; |
| |
| /* Dummy roots are used only for shadowing bad guest roots. */ |
| if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) |
| return RET_PF_RETRY; |
| |
| if (page_fault_handle_page_track(vcpu, fault)) |
| return RET_PF_EMULATE; |
| |
| r = fast_page_fault(vcpu, fault); |
| if (r != RET_PF_INVALID) |
| return r; |
| |
| r = mmu_topup_memory_caches(vcpu, false); |
| if (r) |
| return r; |
| |
| r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); |
| if (r != RET_PF_CONTINUE) |
| return r; |
| |
| r = RET_PF_RETRY; |
| write_lock(&vcpu->kvm->mmu_lock); |
| |
| if (is_page_fault_stale(vcpu, fault)) |
| goto out_unlock; |
| |
| r = make_mmu_pages_available(vcpu); |
| if (r) |
| goto out_unlock; |
| |
| r = direct_map(vcpu, fault); |
| |
| out_unlock: |
| write_unlock(&vcpu->kvm->mmu_lock); |
| kvm_release_pfn_clean(fault->pfn); |
| return r; |
| } |
| |
| static int nonpaging_page_fault(struct kvm_vcpu *vcpu, |
| struct kvm_page_fault *fault) |
| { |
| /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ |
| fault->max_level = PG_LEVEL_2M; |
| return direct_page_fault(vcpu, fault); |
| } |
| |
| int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, |
| u64 fault_address, char *insn, int insn_len) |
| { |
| int r = 1; |
| u32 flags = vcpu->arch.apf.host_apf_flags; |
| |
| #ifndef CONFIG_X86_64 |
| /* A 64-bit CR2 should be impossible on 32-bit KVM. */ |
| if (WARN_ON_ONCE(fault_address >> 32)) |
| return -EFAULT; |
| #endif |
| /* |
| * Legacy #PF exception only have a 32-bit error code. Simply drop the |
| * upper bits as KVM doesn't use them for #PF (because they are never |
| * set), and to ensure there are no collisions with KVM-defined bits. |
| */ |
| if (WARN_ON_ONCE(error_code >> 32)) |
| error_code = lower_32_bits(error_code); |
| |
| /* |
| * Restrict KVM-defined flags to bits 63:32 so that it's impossible for |
| * them to conflict with #PF error codes, which are limited to 32 bits. |
| */ |
| BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); |
| |
| vcpu->arch.l1tf_flush_l1d = true; |
| if (!flags) { |
| trace_kvm_page_fault(vcpu, fault_address, error_code); |
| |
| if (kvm_event_needs_reinjection(vcpu)) |
| kvm_mmu_unprotect_page_virt(vcpu, fault_address); |
| r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, |
| insn_len); |
| } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { |
| vcpu->arch.apf.host_apf_flags = 0; |
| local_irq_disable(); |
| kvm_async_pf_task_wait_schedule(fault_address); |
| local_irq_enable(); |
| } else { |
| WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); |
| } |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_handle_page_fault); |
| |
| #ifdef CONFIG_X86_64 |
| static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, |
| struct kvm_page_fault *fault) |
| { |
| int r; |
| |
| if (page_fault_handle_page_track(vcpu, fault)) |
| return RET_PF_EMULATE; |
| |
| r = fast_page_fault(vcpu, fault); |
| if (r != RET_PF_INVALID) |
| return r; |
| |
| r = mmu_topup_memory_caches(vcpu, false); |
| if (r) |
| return r; |
| |
| r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); |
| if (r != RET_PF_CONTINUE) |
| return r; |
| |
| r = RET_PF_RETRY; |
| read_lock(&vcpu->kvm->mmu_lock); |
| |
| if (is_page_fault_stale(vcpu, fault)) |
| goto out_unlock; |
| |
| r = kvm_tdp_mmu_map(vcpu, fault); |
| |
| out_unlock: |
| read_unlock(&vcpu->kvm->mmu_lock); |
| kvm_release_pfn_clean(fault->pfn); |
| return r; |
| } |
| #endif |
| |
| bool kvm_mmu_may_ignore_guest_pat(void) |
| { |
| /* |
| * When EPT is enabled (shadow_memtype_mask is non-zero), the CPU does |
| * not support self-snoop (or is affected by an erratum), and the VM |
| * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to |
| * honor the memtype from the guest's PAT so that guest accesses to |
| * memory that is DMA'd aren't cached against the guest's wishes. As a |
| * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, |
| * KVM _always_ ignores or honors guest PAT, i.e. doesn't toggle SPTE |
| * bits in response to non-coherent device (un)registration. |
| */ |
| return !static_cpu_has(X86_FEATURE_SELFSNOOP) && shadow_memtype_mask; |
| } |
| |
| int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) |
| { |
| #ifdef CONFIG_X86_64 |
| if (tdp_mmu_enabled) |
| return kvm_tdp_mmu_page_fault(vcpu, fault); |
| #endif |
| |
| return direct_page_fault(vcpu, fault); |
| } |
| |
| static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, |
| u8 *level) |
| { |
| int r; |
| |
| /* |
| * Restrict to TDP page fault, since that's the only case where the MMU |
| * is indexed by GPA. |
| */ |
| if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) |
| return -EOPNOTSUPP; |
| |
| do { |
| if (signal_pending(current)) |
| return -EINTR; |
| cond_resched(); |
| r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); |
| } while (r == RET_PF_RETRY); |
| |
| if (r < 0) |
| return r; |
| |
| switch (r) { |
| case RET_PF_FIXED: |
| case RET_PF_SPURIOUS: |
| return 0; |
| |
| case RET_PF_EMULATE: |
| return -ENOENT; |
| |
| case RET_PF_RETRY: |
| case RET_PF_CONTINUE: |
| case RET_PF_INVALID: |
| default: |
| WARN_ONCE(1, "could not fix page fault during prefault"); |
| return -EIO; |
| } |
| } |
| |
| long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, |
| struct kvm_pre_fault_memory *range) |
| { |
| u64 error_code = PFERR_GUEST_FINAL_MASK; |
| u8 level = PG_LEVEL_4K; |
| u64 end; |
| int r; |
| |
| /* |
| * reload is efficient when called repeatedly, so we can do it on |
| * every iteration. |
| */ |
| kvm_mmu_reload(vcpu); |
| |
| if (kvm_arch_has_private_mem(vcpu->kvm) && |
| kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) |
| error_code |= PFERR_PRIVATE_ACCESS; |
| |
| /* |
| * Shadow paging uses GVA for kvm page fault, so restrict to |
| * two-dimensional paging. |
| */ |
| r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); |
| if (r < 0) |
| return r; |
| |
| /* |
| * If the mapping that covers range->gpa can use a huge page, it |
| * may start below it or end after range->gpa + range->size. |
| */ |
| end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); |
| return min(range->size, end - range->gpa); |
| } |
| |
| static void nonpaging_init_context(struct kvm_mmu *context) |
| { |
| context->page_fault = nonpaging_page_fault; |
| context->gva_to_gpa = nonpaging_gva_to_gpa; |
| context->sync_spte = NULL; |
| } |
| |
| static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, |
| union kvm_mmu_page_role role) |
| { |
| struct kvm_mmu_page *sp; |
| |
| if (!VALID_PAGE(root->hpa)) |
| return false; |
| |
| if (!role.direct && pgd != root->pgd) |
| return false; |
| |
| sp = root_to_sp(root->hpa); |
| if (WARN_ON_ONCE(!sp)) |
| return false; |
| |
| return role.word == sp->role.word; |
| } |
| |
| /* |
| * Find out if a previously cached root matching the new pgd/role is available, |
| * and insert the current root as the MRU in the cache. |
| * If a matching root is found, it is assigned to kvm_mmu->root and |
| * true is returned. |
| * If no match is found, kvm_mmu->root is left invalid, the LRU root is |
| * evicted to make room for the current root, and false is returned. |
| */ |
| static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, |
| gpa_t new_pgd, |
| union kvm_mmu_page_role new_role) |
| { |
| uint i; |
| |
| if (is_root_usable(&mmu->root, new_pgd, new_role)) |
| return true; |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| /* |
| * The swaps end up rotating the cache like this: |
| * C 0 1 2 3 (on entry to the function) |
| * 0 C 1 2 3 |
| * 1 C 0 2 3 |
| * 2 C 0 1 3 |
| * 3 C 0 1 2 (on exit from the loop) |
| */ |
| swap(mmu->root, mmu->prev_roots[i]); |
| if (is_root_usable(&mmu->root, new_pgd, new_role)) |
| return true; |
| } |
| |
| kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); |
| return false; |
| } |
| |
| /* |
| * Find out if a previously cached root matching the new pgd/role is available. |
| * On entry, mmu->root is invalid. |
| * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry |
| * of the cache becomes invalid, and true is returned. |
| * If no match is found, kvm_mmu->root is left invalid and false is returned. |
| */ |
| static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, |
| gpa_t new_pgd, |
| union kvm_mmu_page_role new_role) |
| { |
| uint i; |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) |
| goto hit; |
| |
| return false; |
| |
| hit: |
| swap(mmu->root, mmu->prev_roots[i]); |
| /* Bubble up the remaining roots. */ |
| for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) |
| mmu->prev_roots[i] = mmu->prev_roots[i + 1]; |
| mmu->prev_roots[i].hpa = INVALID_PAGE; |
| return true; |
| } |
| |
| static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, |
| gpa_t new_pgd, union kvm_mmu_page_role new_role) |
| { |
| /* |
| * Limit reuse to 64-bit hosts+VMs without "special" roots in order to |
| * avoid having to deal with PDPTEs and other complexities. |
| */ |
| if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) |
| kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); |
| |
| if (VALID_PAGE(mmu->root.hpa)) |
| return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); |
| else |
| return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); |
| } |
| |
| void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.mmu; |
| union kvm_mmu_page_role new_role = mmu->root_role; |
| |
| /* |
| * Return immediately if no usable root was found, kvm_mmu_reload() |
| * will establish a valid root prior to the next VM-Enter. |
| */ |
| if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) |
| return; |
| |
| /* |
| * It's possible that the cached previous root page is obsolete because |
| * of a change in the MMU generation number. However, changing the |
| * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, |
| * which will free the root set here and allocate a new one. |
| */ |
| kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); |
| |
| if (force_flush_and_sync_on_reuse) { |
| kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| |
| /* |
| * The last MMIO access's GVA and GPA are cached in the VCPU. When |
| * switching to a new CR3, that GVA->GPA mapping may no longer be |
| * valid. So clear any cached MMIO info even when we don't need to sync |
| * the shadow page tables. |
| */ |
| vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); |
| |
| /* |
| * If this is a direct root page, it doesn't have a write flooding |
| * count. Otherwise, clear the write flooding count. |
| */ |
| if (!new_role.direct) { |
| struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); |
| |
| if (!WARN_ON_ONCE(!sp)) |
| __clear_sp_write_flooding_count(sp); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); |
| |
| static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, |
| unsigned int access) |
| { |
| if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { |
| if (gfn != get_mmio_spte_gfn(*sptep)) { |
| mmu_spte_clear_no_track(sptep); |
| return true; |
| } |
| |
| mark_mmio_spte(vcpu, sptep, gfn, access); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #define PTTYPE_EPT 18 /* arbitrary */ |
| #define PTTYPE PTTYPE_EPT |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| #define PTTYPE 64 |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| #define PTTYPE 32 |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, |
| u64 pa_bits_rsvd, int level, bool nx, |
| bool gbpages, bool pse, bool amd) |
| { |
| u64 gbpages_bit_rsvd = 0; |
| u64 nonleaf_bit8_rsvd = 0; |
| u64 high_bits_rsvd; |
| |
| rsvd_check->bad_mt_xwr = 0; |
| |
| if (!gbpages) |
| gbpages_bit_rsvd = rsvd_bits(7, 7); |
| |
| if (level == PT32E_ROOT_LEVEL) |
| high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); |
| else |
| high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); |
| |
| /* Note, NX doesn't exist in PDPTEs, this is handled below. */ |
| if (!nx) |
| high_bits_rsvd |= rsvd_bits(63, 63); |
| |
| /* |
| * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for |
| * leaf entries) on AMD CPUs only. |
| */ |
| if (amd) |
| nonleaf_bit8_rsvd = rsvd_bits(8, 8); |
| |
| switch (level) { |
| case PT32_ROOT_LEVEL: |
| /* no rsvd bits for 2 level 4K page table entries */ |
| rsvd_check->rsvd_bits_mask[0][1] = 0; |
| rsvd_check->rsvd_bits_mask[0][0] = 0; |
| rsvd_check->rsvd_bits_mask[1][0] = |
| rsvd_check->rsvd_bits_mask[0][0]; |
| |
| if (!pse) { |
| rsvd_check->rsvd_bits_mask[1][1] = 0; |
| break; |
| } |
| |
| if (is_cpuid_PSE36()) |
| /* 36bits PSE 4MB page */ |
| rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); |
| else |
| /* 32 bits PSE 4MB page */ |
| rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); |
| break; |
| case PT32E_ROOT_LEVEL: |
| rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | |
| high_bits_rsvd | |
| rsvd_bits(5, 8) | |
| rsvd_bits(1, 2); /* PDPTE */ |
| rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ |
| rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ |
| rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | |
| rsvd_bits(13, 20); /* large page */ |
| rsvd_check->rsvd_bits_mask[1][0] = |
| rsvd_check->rsvd_bits_mask[0][0]; |
| break; |
| case PT64_ROOT_5LEVEL: |
| rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | |
| nonleaf_bit8_rsvd | |
| rsvd_bits(7, 7); |
| rsvd_check->rsvd_bits_mask[1][4] = |
| rsvd_check->rsvd_bits_mask[0][4]; |
| fallthrough; |
| case PT64_ROOT_4LEVEL: |
| rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | |
| nonleaf_bit8_rsvd | |
| rsvd_bits(7, 7); |
| rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | |
| gbpages_bit_rsvd; |
| rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; |
| rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; |
| rsvd_check->rsvd_bits_mask[1][3] = |
| rsvd_check->rsvd_bits_mask[0][3]; |
| rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | |
| gbpages_bit_rsvd | |
| rsvd_bits(13, 29); |
| rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | |
| rsvd_bits(13, 20); /* large page */ |
| rsvd_check->rsvd_bits_mask[1][0] = |
| rsvd_check->rsvd_bits_mask[0][0]; |
| break; |
| } |
| } |
| |
| static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context) |
| { |
| __reset_rsvds_bits_mask(&context->guest_rsvd_check, |
| vcpu->arch.reserved_gpa_bits, |
| context->cpu_role.base.level, is_efer_nx(context), |
| guest_can_use(vcpu, X86_FEATURE_GBPAGES), |
| is_cr4_pse(context), |
| guest_cpuid_is_amd_compatible(vcpu)); |
| } |
| |
| static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, |
| u64 pa_bits_rsvd, bool execonly, |
| int huge_page_level) |
| { |
| u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); |
| u64 large_1g_rsvd = 0, large_2m_rsvd = 0; |
| u64 bad_mt_xwr; |
| |
| if (huge_page_level < PG_LEVEL_1G) |
| large_1g_rsvd = rsvd_bits(7, 7); |
| if (huge_page_level < PG_LEVEL_2M) |
| large_2m_rsvd = rsvd_bits(7, 7); |
| |
| rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); |
| rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); |
| rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; |
| rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; |
| rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; |
| |
| /* large page */ |
| rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; |
| rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; |
| rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; |
| rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; |
| rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; |
| |
| bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ |
| bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ |
| bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ |
| bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ |
| bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ |
| if (!execonly) { |
| /* bits 0..2 must not be 100 unless VMX capabilities allow it */ |
| bad_mt_xwr |= REPEAT_BYTE(1ull << 4); |
| } |
| rsvd_check->bad_mt_xwr = bad_mt_xwr; |
| } |
| |
| static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context, bool execonly, int huge_page_level) |
| { |
| __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, |
| vcpu->arch.reserved_gpa_bits, execonly, |
| huge_page_level); |
| } |
| |
| static inline u64 reserved_hpa_bits(void) |
| { |
| return rsvd_bits(kvm_host.maxphyaddr, 63); |
| } |
| |
| /* |
| * the page table on host is the shadow page table for the page |
| * table in guest or amd nested guest, its mmu features completely |
| * follow the features in guest. |
| */ |
| static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *context) |
| { |
| /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ |
| bool is_amd = true; |
| /* KVM doesn't use 2-level page tables for the shadow MMU. */ |
| bool is_pse = false; |
| struct rsvd_bits_validate *shadow_zero_check; |
| int i; |
| |
| WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); |
| |
| shadow_zero_check = &context->shadow_zero_check; |
| __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), |
| context->root_role.level, |
| context->root_role.efer_nx, |
| guest_can_use(vcpu, X86_FEATURE_GBPAGES), |
| is_pse, is_amd); |
| |
| if (!shadow_me_mask) |
| return; |
| |
| for (i = context->root_role.level; --i >= 0;) { |
| /* |
| * So far shadow_me_value is a constant during KVM's life |
| * time. Bits in shadow_me_value are allowed to be set. |
| * Bits in shadow_me_mask but not in shadow_me_value are |
| * not allowed to be set. |
| */ |
| shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; |
| shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; |
| shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; |
| shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; |
| } |
| |
| } |
| |
| static inline bool boot_cpu_is_amd(void) |
| { |
| WARN_ON_ONCE(!tdp_enabled); |
| return shadow_x_mask == 0; |
| } |
| |
| /* |
| * the direct page table on host, use as much mmu features as |
| * possible, however, kvm currently does not do execution-protection. |
| */ |
| static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) |
| { |
| struct rsvd_bits_validate *shadow_zero_check; |
| int i; |
| |
| shadow_zero_check = &context->shadow_zero_check; |
| |
| if (boot_cpu_is_amd()) |
| __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), |
| context->root_role.level, true, |
| boot_cpu_has(X86_FEATURE_GBPAGES), |
| false, true); |
| else |
| __reset_rsvds_bits_mask_ept(shadow_zero_check, |
| reserved_hpa_bits(), false, |
| max_huge_page_level); |
| |
| if (!shadow_me_mask) |
| return; |
| |
| for (i = context->root_role.level; --i >= 0;) { |
| shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; |
| shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; |
| } |
| } |
| |
| /* |
| * as the comments in reset_shadow_zero_bits_mask() except it |
| * is the shadow page table for intel nested guest. |
| */ |
| static void |
| reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) |
| { |
| __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, |
| reserved_hpa_bits(), execonly, |
| max_huge_page_level); |
| } |
| |
| #define BYTE_MASK(access) \ |
| ((1 & (access) ? 2 : 0) | \ |
| (2 & (access) ? 4 : 0) | \ |
| (3 & (access) ? 8 : 0) | \ |
| (4 & (access) ? 16 : 0) | \ |
| (5 & (access) ? 32 : 0) | \ |
| (6 & (access) ? 64 : 0) | \ |
| (7 & (access) ? 128 : 0)) |
| |
| |
| static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) |
| { |
| unsigned byte; |
| |
| const u8 x = BYTE_MASK(ACC_EXEC_MASK); |
| const u8 w = BYTE_MASK(ACC_WRITE_MASK); |
| const u8 u = BYTE_MASK(ACC_USER_MASK); |
| |
| bool cr4_smep = is_cr4_smep(mmu); |
| bool cr4_smap = is_cr4_smap(mmu); |
| bool cr0_wp = is_cr0_wp(mmu); |
| bool efer_nx = is_efer_nx(mmu); |
| |
| for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { |
| unsigned pfec = byte << 1; |
| |
| /* |
| * Each "*f" variable has a 1 bit for each UWX value |
| * that causes a fault with the given PFEC. |
| */ |
| |
| /* Faults from writes to non-writable pages */ |
| u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; |
| /* Faults from user mode accesses to supervisor pages */ |
| u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; |
| /* Faults from fetches of non-executable pages*/ |
| u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; |
| /* Faults from kernel mode fetches of user pages */ |
| u8 smepf = 0; |
| /* Faults from kernel mode accesses of user pages */ |
| u8 smapf = 0; |
| |
| if (!ept) { |
| /* Faults from kernel mode accesses to user pages */ |
| u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; |
| |
| /* Not really needed: !nx will cause pte.nx to fault */ |
| if (!efer_nx) |
| ff = 0; |
| |
| /* Allow supervisor writes if !cr0.wp */ |
| if (!cr0_wp) |
| wf = (pfec & PFERR_USER_MASK) ? wf : 0; |
| |
| /* Disallow supervisor fetches of user code if cr4.smep */ |
| if (cr4_smep) |
| smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; |
| |
| /* |
| * SMAP:kernel-mode data accesses from user-mode |
| * mappings should fault. A fault is considered |
| * as a SMAP violation if all of the following |
| * conditions are true: |
| * - X86_CR4_SMAP is set in CR4 |
| * - A user page is accessed |
| * - The access is not a fetch |
| * - The access is supervisor mode |
| * - If implicit supervisor access or X86_EFLAGS_AC is clear |
| * |
| * Here, we cover the first four conditions. |
| * The fifth is computed dynamically in permission_fault(); |
| * PFERR_RSVD_MASK bit will be set in PFEC if the access is |
| * *not* subject to SMAP restrictions. |
| */ |
| if (cr4_smap) |
| smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; |
| } |
| |
| mmu->permissions[byte] = ff | uf | wf | smepf | smapf; |
| } |
| } |
| |
| /* |
| * PKU is an additional mechanism by which the paging controls access to |
| * user-mode addresses based on the value in the PKRU register. Protection |
| * key violations are reported through a bit in the page fault error code. |
| * Unlike other bits of the error code, the PK bit is not known at the |
| * call site of e.g. gva_to_gpa; it must be computed directly in |
| * permission_fault based on two bits of PKRU, on some machine state (CR4, |
| * CR0, EFER, CPL), and on other bits of the error code and the page tables. |
| * |
| * In particular the following conditions come from the error code, the |
| * page tables and the machine state: |
| * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 |
| * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) |
| * - PK is always zero if U=0 in the page tables |
| * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. |
| * |
| * The PKRU bitmask caches the result of these four conditions. The error |
| * code (minus the P bit) and the page table's U bit form an index into the |
| * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed |
| * with the two bits of the PKRU register corresponding to the protection key. |
| * For the first three conditions above the bits will be 00, thus masking |
| * away both AD and WD. For all reads or if the last condition holds, WD |
| * only will be masked away. |
| */ |
| static void update_pkru_bitmask(struct kvm_mmu *mmu) |
| { |
| unsigned bit; |
| bool wp; |
| |
| mmu->pkru_mask = 0; |
| |
| if (!is_cr4_pke(mmu)) |
| return; |
| |
| wp = is_cr0_wp(mmu); |
| |
| for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { |
| unsigned pfec, pkey_bits; |
| bool check_pkey, check_write, ff, uf, wf, pte_user; |
| |
| pfec = bit << 1; |
| ff = pfec & PFERR_FETCH_MASK; |
| uf = pfec & PFERR_USER_MASK; |
| wf = pfec & PFERR_WRITE_MASK; |
| |
| /* PFEC.RSVD is replaced by ACC_USER_MASK. */ |
| pte_user = pfec & PFERR_RSVD_MASK; |
| |
| /* |
| * Only need to check the access which is not an |
| * instruction fetch and is to a user page. |
| */ |
| check_pkey = (!ff && pte_user); |
| /* |
| * write access is controlled by PKRU if it is a |
| * user access or CR0.WP = 1. |
| */ |
| check_write = check_pkey && wf && (uf || wp); |
| |
| /* PKRU.AD stops both read and write access. */ |
| pkey_bits = !!check_pkey; |
| /* PKRU.WD stops write access. */ |
| pkey_bits |= (!!check_write) << 1; |
| |
| mmu->pkru_mask |= (pkey_bits & 3) << pfec; |
| } |
| } |
| |
| static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *mmu) |
| { |
| if (!is_cr0_pg(mmu)) |
| return; |
| |
| reset_guest_rsvds_bits_mask(vcpu, mmu); |
| update_permission_bitmask(mmu, false); |
| update_pkru_bitmask(mmu); |
| } |
| |
| static void paging64_init_context(struct kvm_mmu *context) |
| { |
| context->page_fault = paging64_page_fault; |
| context->gva_to_gpa = paging64_gva_to_gpa; |
| context->sync_spte = paging64_sync_spte; |
| } |
| |
| static void paging32_init_context(struct kvm_mmu *context) |
| { |
| context->page_fault = paging32_page_fault; |
| context->gva_to_gpa = paging32_gva_to_gpa; |
| context->sync_spte = paging32_sync_spte; |
| } |
| |
| static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, |
| const struct kvm_mmu_role_regs *regs) |
| { |
| union kvm_cpu_role role = {0}; |
| |
| role.base.access = ACC_ALL; |
| role.base.smm = is_smm(vcpu); |
| role.base.guest_mode = is_guest_mode(vcpu); |
| role.ext.valid = 1; |
| |
| if (!____is_cr0_pg(regs)) { |
| role.base.direct = 1; |
| return role; |
| } |
| |
| role.base.efer_nx = ____is_efer_nx(regs); |
| role.base.cr0_wp = ____is_cr0_wp(regs); |
| role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); |
| role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); |
| role.base.has_4_byte_gpte = !____is_cr4_pae(regs); |
| |
| if (____is_efer_lma(regs)) |
| role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL |
| : PT64_ROOT_4LEVEL; |
| else if (____is_cr4_pae(regs)) |
| role.base.level = PT32E_ROOT_LEVEL; |
| else |
| role.base.level = PT32_ROOT_LEVEL; |
| |
| role.ext.cr4_smep = ____is_cr4_smep(regs); |
| role.ext.cr4_smap = ____is_cr4_smap(regs); |
| role.ext.cr4_pse = ____is_cr4_pse(regs); |
| |
| /* PKEY and LA57 are active iff long mode is active. */ |
| role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); |
| role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); |
| role.ext.efer_lma = ____is_efer_lma(regs); |
| return role; |
| } |
| |
| void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *mmu) |
| { |
| const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); |
| |
| BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); |
| BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); |
| |
| if (is_cr0_wp(mmu) == cr0_wp) |
| return; |
| |
| mmu->cpu_role.base.cr0_wp = cr0_wp; |
| reset_guest_paging_metadata(vcpu, mmu); |
| } |
| |
| static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) |
| { |
| /* tdp_root_level is architecture forced level, use it if nonzero */ |
| if (tdp_root_level) |
| return tdp_root_level; |
| |
| /* Use 5-level TDP if and only if it's useful/necessary. */ |
| if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) |
| return 4; |
| |
| return max_tdp_level; |
| } |
| |
| u8 kvm_mmu_get_max_tdp_level(void) |
| { |
| return tdp_root_level ? tdp_root_level : max_tdp_level; |
| } |
| |
| static union kvm_mmu_page_role |
| kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, |
| union kvm_cpu_role cpu_role) |
| { |
| union kvm_mmu_page_role role = {0}; |
| |
| role.access = ACC_ALL; |
| role.cr0_wp = true; |
| role.efer_nx = true; |
| role.smm = cpu_role.base.smm; |
| role.guest_mode = cpu_role.base.guest_mode; |
| role.ad_disabled = !kvm_ad_enabled(); |
| role.level = kvm_mmu_get_tdp_level(vcpu); |
| role.direct = true; |
| role.has_4_byte_gpte = false; |
| |
| return role; |
| } |
| |
| static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, |
| union kvm_cpu_role cpu_role) |
| { |
| struct kvm_mmu *context = &vcpu->arch.root_mmu; |
| union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); |
| |
| if (cpu_role.as_u64 == context->cpu_role.as_u64 && |
| root_role.word == context->root_role.word) |
| return; |
| |
| context->cpu_role.as_u64 = cpu_role.as_u64; |
| context->root_role.word = root_role.word; |
| context->page_fault = kvm_tdp_page_fault; |
| context->sync_spte = NULL; |
| context->get_guest_pgd = get_guest_cr3; |
| context->get_pdptr = kvm_pdptr_read; |
| context->inject_page_fault = kvm_inject_page_fault; |
| |
| if (!is_cr0_pg(context)) |
| context->gva_to_gpa = nonpaging_gva_to_gpa; |
| else if (is_cr4_pae(context)) |
| context->gva_to_gpa = paging64_gva_to_gpa; |
| else |
| context->gva_to_gpa = paging32_gva_to_gpa; |
| |
| reset_guest_paging_metadata(vcpu, context); |
| reset_tdp_shadow_zero_bits_mask(context); |
| } |
| |
| static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, |
| union kvm_cpu_role cpu_role, |
| union kvm_mmu_page_role root_role) |
| { |
| if (cpu_role.as_u64 == context->cpu_role.as_u64 && |
| root_role.word == context->root_role.word) |
| return; |
| |
| context->cpu_role.as_u64 = cpu_role.as_u64; |
| context->root_role.word = root_role.word; |
| |
| if (!is_cr0_pg(context)) |
| nonpaging_init_context(context); |
| else if (is_cr4_pae(context)) |
| paging64_init_context(context); |
| else |
| paging32_init_context(context); |
| |
| reset_guest_paging_metadata(vcpu, context); |
| reset_shadow_zero_bits_mask(vcpu, context); |
| } |
| |
| static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, |
| union kvm_cpu_role cpu_role) |
| { |
| struct kvm_mmu *context = &vcpu->arch.root_mmu; |
| union kvm_mmu_page_role root_role; |
| |
| root_role = cpu_role.base; |
| |
| /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ |
| root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); |
| |
| /* |
| * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. |
| * KVM uses NX when TDP is disabled to handle a variety of scenarios, |
| * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and |
| * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. |
| * The iTLB multi-hit workaround can be toggled at any time, so assume |
| * NX can be used by any non-nested shadow MMU to avoid having to reset |
| * MMU contexts. |
| */ |
| root_role.efer_nx = true; |
| |
| shadow_mmu_init_context(vcpu, context, cpu_role, root_role); |
| } |
| |
| void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, |
| unsigned long cr4, u64 efer, gpa_t nested_cr3) |
| { |
| struct kvm_mmu *context = &vcpu->arch.guest_mmu; |
| struct kvm_mmu_role_regs regs = { |
| .cr0 = cr0, |
| .cr4 = cr4 & ~X86_CR4_PKE, |
| .efer = efer, |
| }; |
| union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); |
| union kvm_mmu_page_role root_role; |
| |
| /* NPT requires CR0.PG=1. */ |
| WARN_ON_ONCE(cpu_role.base.direct); |
| |
| root_role = cpu_role.base; |
| root_role.level = kvm_mmu_get_tdp_level(vcpu); |
| if (root_role.level == PT64_ROOT_5LEVEL && |
| cpu_role.base.level == PT64_ROOT_4LEVEL) |
| root_role.passthrough = 1; |
| |
| shadow_mmu_init_context(vcpu, context, cpu_role, root_role); |
| kvm_mmu_new_pgd(vcpu, nested_cr3); |
| } |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); |
| |
| static union kvm_cpu_role |
| kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, |
| bool execonly, u8 level) |
| { |
| union kvm_cpu_role role = {0}; |
| |
| /* |
| * KVM does not support SMM transfer monitors, and consequently does not |
| * support the "entry to SMM" control either. role.base.smm is always 0. |
| */ |
| WARN_ON_ONCE(is_smm(vcpu)); |
| role.base.level = level; |
| role.base.has_4_byte_gpte = false; |
| role.base.direct = false; |
| role.base.ad_disabled = !accessed_dirty; |
| role.base.guest_mode = true; |
| role.base.access = ACC_ALL; |
| |
| role.ext.word = 0; |
| role.ext.execonly = execonly; |
| role.ext.valid = 1; |
| |
| return role; |
| } |
| |
| void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, |
| int huge_page_level, bool accessed_dirty, |
| gpa_t new_eptp) |
| { |
| struct kvm_mmu *context = &vcpu->arch.guest_mmu; |
| u8 level = vmx_eptp_page_walk_level(new_eptp); |
| union kvm_cpu_role new_mode = |
| kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, |
| execonly, level); |
| |
| if (new_mode.as_u64 != context->cpu_role.as_u64) { |
| /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ |
| context->cpu_role.as_u64 = new_mode.as_u64; |
| context->root_role.word = new_mode.base.word; |
| |
| context->page_fault = ept_page_fault; |
| context->gva_to_gpa = ept_gva_to_gpa; |
| context->sync_spte = ept_sync_spte; |
| |
| update_permission_bitmask(context, true); |
| context->pkru_mask = 0; |
| reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); |
| reset_ept_shadow_zero_bits_mask(context, execonly); |
| } |
| |
| kvm_mmu_new_pgd(vcpu, new_eptp); |
| } |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); |
| |
| static void init_kvm_softmmu(struct kvm_vcpu *vcpu, |
| union kvm_cpu_role cpu_role) |
| { |
| struct kvm_mmu *context = &vcpu->arch.root_mmu; |
| |
| kvm_init_shadow_mmu(vcpu, cpu_role); |
| |
| context->get_guest_pgd = get_guest_cr3; |
| context->get_pdptr = kvm_pdptr_read; |
| context->inject_page_fault = kvm_inject_page_fault; |
| } |
| |
| static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, |
| union kvm_cpu_role new_mode) |
| { |
| struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; |
| |
| if (new_mode.as_u64 == g_context->cpu_role.as_u64) |
| return; |
| |
| g_context->cpu_role.as_u64 = new_mode.as_u64; |
| g_context->get_guest_pgd = get_guest_cr3; |
| g_context->get_pdptr = kvm_pdptr_read; |
| g_context->inject_page_fault = kvm_inject_page_fault; |
| |
| /* |
| * L2 page tables are never shadowed, so there is no need to sync |
| * SPTEs. |
| */ |
| g_context->sync_spte = NULL; |
| |
| /* |
| * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using |
| * L1's nested page tables (e.g. EPT12). The nested translation |
| * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using |
| * L2's page tables as the first level of translation and L1's |
| * nested page tables as the second level of translation. Basically |
| * the gva_to_gpa functions between mmu and nested_mmu are swapped. |
| */ |
| if (!is_paging(vcpu)) |
| g_context->gva_to_gpa = nonpaging_gva_to_gpa; |
| else if (is_long_mode(vcpu)) |
| g_context->gva_to_gpa = paging64_gva_to_gpa; |
| else if (is_pae(vcpu)) |
| g_context->gva_to_gpa = paging64_gva_to_gpa; |
| else |
| g_context->gva_to_gpa = paging32_gva_to_gpa; |
| |
| reset_guest_paging_metadata(vcpu, g_context); |
| } |
| |
| void kvm_init_mmu(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); |
| union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); |
| |
| if (mmu_is_nested(vcpu)) |
| init_kvm_nested_mmu(vcpu, cpu_role); |
| else if (tdp_enabled) |
| init_kvm_tdp_mmu(vcpu, cpu_role); |
| else |
| init_kvm_softmmu(vcpu, cpu_role); |
| } |
| EXPORT_SYMBOL_GPL(kvm_init_mmu); |
| |
| void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Invalidate all MMU roles to force them to reinitialize as CPUID |
| * information is factored into reserved bit calculations. |
| * |
| * Correctly handling multiple vCPU models with respect to paging and |
| * physical address properties) in a single VM would require tracking |
| * all relevant CPUID information in kvm_mmu_page_role. That is very |
| * undesirable as it would increase the memory requirements for |
| * gfn_write_track (see struct kvm_mmu_page_role comments). For now |
| * that problem is swept under the rug; KVM's CPUID API is horrific and |
| * it's all but impossible to solve it without introducing a new API. |
| */ |
| vcpu->arch.root_mmu.root_role.invalid = 1; |
| vcpu->arch.guest_mmu.root_role.invalid = 1; |
| vcpu->arch.nested_mmu.root_role.invalid = 1; |
| vcpu->arch.root_mmu.cpu_role.ext.valid = 0; |
| vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; |
| vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; |
| kvm_mmu_reset_context(vcpu); |
| |
| /* |
| * Changing guest CPUID after KVM_RUN is forbidden, see the comment in |
| * kvm_arch_vcpu_ioctl(). |
| */ |
| KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); |
| } |
| |
| void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) |
| { |
| kvm_mmu_unload(vcpu); |
| kvm_init_mmu(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); |
| |
| int kvm_mmu_load(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); |
| if (r) |
| goto out; |
| r = mmu_alloc_special_roots(vcpu); |
| if (r) |
| goto out; |
| if (vcpu->arch.mmu->root_role.direct) |
| r = mmu_alloc_direct_roots(vcpu); |
| else |
| r = mmu_alloc_shadow_roots(vcpu); |
| if (r) |
| goto out; |
| |
| kvm_mmu_sync_roots(vcpu); |
| |
| kvm_mmu_load_pgd(vcpu); |
| |
| /* |
| * Flush any TLB entries for the new root, the provenance of the root |
| * is unknown. Even if KVM ensures there are no stale TLB entries |
| * for a freed root, in theory another hypervisor could have left |
| * stale entries. Flushing on alloc also allows KVM to skip the TLB |
| * flush when freeing a root (see kvm_tdp_mmu_put_root()). |
| */ |
| kvm_x86_call(flush_tlb_current)(vcpu); |
| out: |
| return r; |
| } |
| |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| |
| kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); |
| WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); |
| kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); |
| WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); |
| vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); |
| } |
| |
| static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) |
| { |
| struct kvm_mmu_page *sp; |
| |
| if (!VALID_PAGE(root_hpa)) |
| return false; |
| |
| /* |
| * When freeing obsolete roots, treat roots as obsolete if they don't |
| * have an associated shadow page, as it's impossible to determine if |
| * such roots are fresh or stale. This does mean KVM will get false |
| * positives and free roots that don't strictly need to be freed, but |
| * such false positives are relatively rare: |
| * |
| * (a) only PAE paging and nested NPT have roots without shadow pages |
| * (or any shadow paging flavor with a dummy root, see note below) |
| * (b) remote reloads due to a memslot update obsoletes _all_ roots |
| * (c) KVM doesn't track previous roots for PAE paging, and the guest |
| * is unlikely to zap an in-use PGD. |
| * |
| * Note! Dummy roots are unique in that they are obsoleted by memslot |
| * _creation_! See also FNAME(fetch). |
| */ |
| sp = root_to_sp(root_hpa); |
| return !sp || is_obsolete_sp(kvm, sp); |
| } |
| |
| static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) |
| { |
| unsigned long roots_to_free = 0; |
| int i; |
| |
| if (is_obsolete_root(kvm, mmu->root.hpa)) |
| roots_to_free |= KVM_MMU_ROOT_CURRENT; |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) |
| roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); |
| } |
| |
| if (roots_to_free) |
| kvm_mmu_free_roots(kvm, mmu, roots_to_free); |
| } |
| |
| void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) |
| { |
| __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); |
| __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); |
| } |
| |
| static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, |
| int *bytes) |
| { |
| u64 gentry = 0; |
| int r; |
| |
| /* |
| * Assume that the pte write on a page table of the same type |
| * as the current vcpu paging mode since we update the sptes only |
| * when they have the same mode. |
| */ |
| if (is_pae(vcpu) && *bytes == 4) { |
| /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ |
| *gpa &= ~(gpa_t)7; |
| *bytes = 8; |
| } |
| |
| if (*bytes == 4 || *bytes == 8) { |
| r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); |
| if (r) |
| gentry = 0; |
| } |
| |
| return gentry; |
| } |
| |
| /* |
| * If we're seeing too many writes to a page, it may no longer be a page table, |
| * or we may be forking, in which case it is better to unmap the page. |
| */ |
| static bool detect_write_flooding(struct kvm_mmu_page *sp) |
| { |
| /* |
| * Skip write-flooding detected for the sp whose level is 1, because |
| * it can become unsync, then the guest page is not write-protected. |
| */ |
| if (sp->role.level == PG_LEVEL_4K) |
| return false; |
| |
| atomic_inc(&sp->write_flooding_count); |
| return atomic_read(&sp->write_flooding_count) >= 3; |
| } |
| |
| /* |
| * Misaligned accesses are too much trouble to fix up; also, they usually |
| * indicate a page is not used as a page table. |
| */ |
| static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, |
| int bytes) |
| { |
| unsigned offset, pte_size, misaligned; |
| |
| offset = offset_in_page(gpa); |
| pte_size = sp->role.has_4_byte_gpte ? 4 : 8; |
| |
| /* |
| * Sometimes, the OS only writes the last one bytes to update status |
| * bits, for example, in linux, andb instruction is used in clear_bit(). |
| */ |
| if (!(offset & (pte_size - 1)) && bytes == 1) |
| return false; |
| |
| misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); |
| misaligned |= bytes < 4; |
| |
| return misaligned; |
| } |
| |
| static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) |
| { |
| unsigned page_offset, quadrant; |
| u64 *spte; |
| int level; |
| |
| page_offset = offset_in_page(gpa); |
| level = sp->role.level; |
| *nspte = 1; |
| if (sp->role.has_4_byte_gpte) { |
| page_offset <<= 1; /* 32->64 */ |
| /* |
| * A 32-bit pde maps 4MB while the shadow pdes map |
| * only 2MB. So we need to double the offset again |
| * and zap two pdes instead of one. |
| */ |
| if (level == PT32_ROOT_LEVEL) { |
| page_offset &= ~7; /* kill rounding error */ |
| page_offset <<= 1; |
| *nspte = 2; |
| } |
| quadrant = page_offset >> PAGE_SHIFT; |
| page_offset &= ~PAGE_MASK; |
| if (quadrant != sp->role.quadrant) |
| return NULL; |
| } |
| |
| spte = &sp->spt[page_offset / sizeof(*spte)]; |
| return spte; |
| } |
| |
| void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, |
| int bytes) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| struct kvm_mmu_page *sp; |
| LIST_HEAD(invalid_list); |
| u64 entry, gentry, *spte; |
| int npte; |
| bool flush = false; |
| |
| /* |
| * When emulating guest writes, ensure the written value is visible to |
| * any task that is handling page faults before checking whether or not |
| * KVM is shadowing a guest PTE. This ensures either KVM will create |
| * the correct SPTE in the page fault handler, or this task will see |
| * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in |
| * account_shadowed(). |
| */ |
| smp_mb(); |
| if (!vcpu->kvm->arch.indirect_shadow_pages) |
| return; |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| |
| gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); |
| |
| ++vcpu->kvm->stat.mmu_pte_write; |
| |
| for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { |
| if (detect_write_misaligned(sp, gpa, bytes) || |
| detect_write_flooding(sp)) { |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); |
| ++vcpu->kvm->stat.mmu_flooded; |
| continue; |
| } |
| |
| spte = get_written_sptes(sp, gpa, &npte); |
| if (!spte) |
| continue; |
| |
| while (npte--) { |
| entry = *spte; |
| mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); |
| if (gentry && sp->role.level != PG_LEVEL_4K) |
| ++vcpu->kvm->stat.mmu_pde_zapped; |
| if (is_shadow_present_pte(entry)) |
| flush = true; |
| ++spte; |
| } |
| } |
| kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); |
| write_unlock(&vcpu->kvm->mmu_lock); |
| } |
| |
| int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, |
| void *insn, int insn_len) |
| { |
| int r, emulation_type = EMULTYPE_PF; |
| bool direct = vcpu->arch.mmu->root_role.direct; |
| |
| if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) |
| return RET_PF_RETRY; |
| |
| /* |
| * Except for reserved faults (emulated MMIO is shared-only), set the |
| * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's |
| * current attributes, which are the source of truth for such VMs. Note, |
| * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't |
| * currently supported nested virtualization (among many other things) |
| * for software-protected VMs. |
| */ |
| if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && |
| !(error_code & PFERR_RSVD_MASK) && |
| vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && |
| kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) |
| error_code |= PFERR_PRIVATE_ACCESS; |
| |
| r = RET_PF_INVALID; |
| if (unlikely(error_code & PFERR_RSVD_MASK)) { |
| if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) |
| return -EFAULT; |
| |
| r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); |
| if (r == RET_PF_EMULATE) |
| goto emulate; |
| } |
| |
| if (r == RET_PF_INVALID) { |
| vcpu->stat.pf_taken++; |
| |
| r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, |
| &emulation_type, NULL); |
| if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) |
| return -EIO; |
| } |
| |
| if (r < 0) |
| return r; |
| |
| if (r == RET_PF_FIXED) |
| vcpu->stat.pf_fixed++; |
| else if (r == RET_PF_EMULATE) |
| vcpu->stat.pf_emulate++; |
| else if (r == RET_PF_SPURIOUS) |
| vcpu->stat.pf_spurious++; |
| |
| if (r != RET_PF_EMULATE) |
| return 1; |
| |
| /* |
| * Before emulating the instruction, check if the error code |
| * was due to a RO violation while translating the guest page. |
| * This can occur when using nested virtualization with nested |
| * paging in both guests. If true, we simply unprotect the page |
| * and resume the guest. |
| */ |
| if (vcpu->arch.mmu->root_role.direct && |
| (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { |
| kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); |
| return 1; |
| } |
| |
| /* |
| * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still |
| * optimistically try to just unprotect the page and let the processor |
| * re-execute the instruction that caused the page fault. Do not allow |
| * retrying MMIO emulation, as it's not only pointless but could also |
| * cause us to enter an infinite loop because the processor will keep |
| * faulting on the non-existent MMIO address. Retrying an instruction |
| * from a nested guest is also pointless and dangerous as we are only |
| * explicitly shadowing L1's page tables, i.e. unprotecting something |
| * for L1 isn't going to magically fix whatever issue cause L2 to fail. |
| */ |
| if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) |
| emulation_type |= EMULTYPE_ALLOW_RETRY_PF; |
| emulate: |
| return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, |
| insn_len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); |
| |
| void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) |
| { |
| u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; |
| int root_level, leaf, level; |
| |
| leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); |
| if (unlikely(leaf < 0)) |
| return; |
| |
| pr_err("%s %llx", msg, gpa); |
| for (level = root_level; level >= leaf; level--) |
| pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); |
| pr_cont("\n"); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); |
| |
| static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| u64 addr, hpa_t root_hpa) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| |
| vcpu_clear_mmio_info(vcpu, addr); |
| |
| /* |
| * Walking and synchronizing SPTEs both assume they are operating in |
| * the context of the current MMU, and would need to be reworked if |
| * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. |
| */ |
| if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) |
| return; |
| |
| if (!VALID_PAGE(root_hpa)) |
| return; |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { |
| struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); |
| |
| if (sp->unsync) { |
| int ret = kvm_sync_spte(vcpu, sp, iterator.index); |
| |
| if (ret < 0) |
| mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); |
| if (ret) |
| kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); |
| } |
| |
| if (!sp->unsync_children) |
| break; |
| } |
| write_unlock(&vcpu->kvm->mmu_lock); |
| } |
| |
| void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| u64 addr, unsigned long roots) |
| { |
| int i; |
| |
| WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); |
| |
| /* It's actually a GPA for vcpu->arch.guest_mmu. */ |
| if (mmu != &vcpu->arch.guest_mmu) { |
| /* INVLPG on a non-canonical address is a NOP according to the SDM. */ |
| if (is_noncanonical_address(addr, vcpu)) |
| return; |
| |
| kvm_x86_call(flush_tlb_gva)(vcpu, addr); |
| } |
| |
| if (!mmu->sync_spte) |
| return; |
| |
| if (roots & KVM_MMU_ROOT_CURRENT) |
| __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| if (roots & KVM_MMU_ROOT_PREVIOUS(i)) |
| __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); |
| |
| void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| /* |
| * INVLPG is required to invalidate any global mappings for the VA, |
| * irrespective of PCID. Blindly sync all roots as it would take |
| * roughly the same amount of work/time to determine whether any of the |
| * previous roots have a global mapping. |
| * |
| * Mappings not reachable via the current or previous cached roots will |
| * be synced when switching to that new cr3, so nothing needs to be |
| * done here for them. |
| */ |
| kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); |
| ++vcpu->stat.invlpg; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); |
| |
| |
| void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.mmu; |
| unsigned long roots = 0; |
| uint i; |
| |
| if (pcid == kvm_get_active_pcid(vcpu)) |
| roots |= KVM_MMU_ROOT_CURRENT; |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| if (VALID_PAGE(mmu->prev_roots[i].hpa) && |
| pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) |
| roots |= KVM_MMU_ROOT_PREVIOUS(i); |
| } |
| |
| if (roots) |
| kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); |
| ++vcpu->stat.invlpg; |
| |
| /* |
| * Mappings not reachable via the current cr3 or the prev_roots will be |
| * synced when switching to that cr3, so nothing needs to be done here |
| * for them. |
| */ |
| } |
| |
| void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, |
| int tdp_max_root_level, int tdp_huge_page_level) |
| { |
| tdp_enabled = enable_tdp; |
| tdp_root_level = tdp_forced_root_level; |
| max_tdp_level = tdp_max_root_level; |
| |
| #ifdef CONFIG_X86_64 |
| tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; |
| #endif |
| /* |
| * max_huge_page_level reflects KVM's MMU capabilities irrespective |
| * of kernel support, e.g. KVM may be capable of using 1GB pages when |
| * the kernel is not. But, KVM never creates a page size greater than |
| * what is used by the kernel for any given HVA, i.e. the kernel's |
| * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). |
| */ |
| if (tdp_enabled) |
| max_huge_page_level = tdp_huge_page_level; |
| else if (boot_cpu_has(X86_FEATURE_GBPAGES)) |
| max_huge_page_level = PG_LEVEL_1G; |
| else |
| max_huge_page_level = PG_LEVEL_2M; |
| } |
| EXPORT_SYMBOL_GPL(kvm_configure_mmu); |
| |
| /* The return value indicates if tlb flush on all vcpus is needed. */ |
| typedef bool (*slot_rmaps_handler) (struct kvm *kvm, |
| struct kvm_rmap_head *rmap_head, |
| const struct kvm_memory_slot *slot); |
| |
| static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, |
| slot_rmaps_handler fn, |
| int start_level, int end_level, |
| gfn_t start_gfn, gfn_t end_gfn, |
| bool flush_on_yield, bool flush) |
| { |
| struct slot_rmap_walk_iterator iterator; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| |
| for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, |
| end_gfn, &iterator) { |
| if (iterator.rmap) |
| flush |= fn(kvm, iterator.rmap, slot); |
| |
| if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { |
| if (flush && flush_on_yield) { |
| kvm_flush_remote_tlbs_range(kvm, start_gfn, |
| iterator.gfn - start_gfn + 1); |
| flush = false; |
| } |
| cond_resched_rwlock_write(&kvm->mmu_lock); |
| } |
| } |
| |
| return flush; |
| } |
| |
| static __always_inline bool walk_slot_rmaps(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, |
| slot_rmaps_handler fn, |
| int start_level, int end_level, |
| bool flush_on_yield) |
| { |
| return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, |
| slot->base_gfn, slot->base_gfn + slot->npages - 1, |
| flush_on_yield, false); |
| } |
| |
| static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, |
| slot_rmaps_handler fn, |
| bool flush_on_yield) |
| { |
| return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); |
| } |
| |
| static void free_mmu_pages(struct kvm_mmu *mmu) |
| { |
| if (!tdp_enabled && mmu->pae_root) |
| set_memory_encrypted((unsigned long)mmu->pae_root, 1); |
| free_page((unsigned long)mmu->pae_root); |
| free_page((unsigned long)mmu->pml4_root); |
| free_page((unsigned long)mmu->pml5_root); |
| } |
| |
| static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) |
| { |
| struct page *page; |
| int i; |
| |
| mmu->root.hpa = INVALID_PAGE; |
| mmu->root.pgd = 0; |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; |
| |
| /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ |
| if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) |
| return 0; |
| |
| /* |
| * When using PAE paging, the four PDPTEs are treated as 'root' pages, |
| * while the PDP table is a per-vCPU construct that's allocated at MMU |
| * creation. When emulating 32-bit mode, cr3 is only 32 bits even on |
| * x86_64. Therefore we need to allocate the PDP table in the first |
| * 4GB of memory, which happens to fit the DMA32 zone. TDP paging |
| * generally doesn't use PAE paging and can skip allocating the PDP |
| * table. The main exception, handled here, is SVM's 32-bit NPT. The |
| * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit |
| * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). |
| */ |
| if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) |
| return 0; |
| |
| page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); |
| if (!page) |
| return -ENOMEM; |
| |
| mmu->pae_root = page_address(page); |
| |
| /* |
| * CR3 is only 32 bits when PAE paging is used, thus it's impossible to |
| * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so |
| * that KVM's writes and the CPU's reads get along. Note, this is |
| * only necessary when using shadow paging, as 64-bit NPT can get at |
| * the C-bit even when shadowing 32-bit NPT, and SME isn't supported |
| * by 32-bit kernels (when KVM itself uses 32-bit NPT). |
| */ |
| if (!tdp_enabled) |
| set_memory_decrypted((unsigned long)mmu->pae_root, 1); |
| else |
| WARN_ON_ONCE(shadow_me_value); |
| |
| for (i = 0; i < 4; ++i) |
| mmu->pae_root[i] = INVALID_PAE_ROOT; |
| |
| return 0; |
| } |
| |
| int kvm_mmu_create(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| |
| vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; |
| vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; |
| |
| vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; |
| vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; |
| |
| vcpu->arch.mmu_shadow_page_cache.init_value = |
| SHADOW_NONPRESENT_VALUE; |
| if (!vcpu->arch.mmu_shadow_page_cache.init_value) |
| vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; |
| |
| vcpu->arch.mmu = &vcpu->arch.root_mmu; |
| vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; |
| |
| ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); |
| if (ret) |
| return ret; |
| |
| ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); |
| if (ret) |
| goto fail_allocate_root; |
| |
| return ret; |
| fail_allocate_root: |
| free_mmu_pages(&vcpu->arch.guest_mmu); |
| return ret; |
| } |
| |
| #define BATCH_ZAP_PAGES 10 |
| static void kvm_zap_obsolete_pages(struct kvm *kvm) |
| { |
| struct kvm_mmu_page *sp, *node; |
| int nr_zapped, batch = 0; |
| bool unstable; |
| |
| restart: |
| list_for_each_entry_safe_reverse(sp, node, |
| &kvm->arch.active_mmu_pages, link) { |
| /* |
| * No obsolete valid page exists before a newly created page |
| * since active_mmu_pages is a FIFO list. |
| */ |
| if (!is_obsolete_sp(kvm, sp)) |
| break; |
| |
| /* |
| * Invalid pages should never land back on the list of active |
| * pages. Skip the bogus page, otherwise we'll get stuck in an |
| * infinite loop if the page gets put back on the list (again). |
| */ |
| if (WARN_ON_ONCE(sp->role.invalid)) |
| continue; |
| |
| /* |
| * No need to flush the TLB since we're only zapping shadow |
| * pages with an obsolete generation number and all vCPUS have |
| * loaded a new root, i.e. the shadow pages being zapped cannot |
| * be in active use by the guest. |
| */ |
| if (batch >= BATCH_ZAP_PAGES && |
| cond_resched_rwlock_write(&kvm->mmu_lock)) { |
| batch = 0; |
| goto restart; |
| } |
| |
| unstable = __kvm_mmu_prepare_zap_page(kvm, sp, |
| &kvm->arch.zapped_obsolete_pages, &nr_zapped); |
| batch += nr_zapped; |
| |
| if (unstable) |
| goto restart; |
| } |
| |
| /* |
| * Kick all vCPUs (via remote TLB flush) before freeing the page tables |
| * to ensure KVM is not in the middle of a lockless shadow page table |
| * walk, which may reference the pages. The remote TLB flush itself is |
| * not required and is simply a convenient way to kick vCPUs as needed. |
| * KVM performs a local TLB flush when allocating a new root (see |
| * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are |
| * running with an obsolete MMU. |
| */ |
| kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); |
| } |
| |
| /* |
| * Fast invalidate all shadow pages and use lock-break technique |
| * to zap obsolete pages. |
| * |
| * It's required when memslot is being deleted or VM is being |
| * destroyed, in these cases, we should ensure that KVM MMU does |
| * not use any resource of the being-deleted slot or all slots |
| * after calling the function. |
| */ |
| static void kvm_mmu_zap_all_fast(struct kvm *kvm) |
| { |
| lockdep_assert_held(&kvm->slots_lock); |
| |
| write_lock(&kvm->mmu_lock); |
| trace_kvm_mmu_zap_all_fast(kvm); |
| |
| /* |
| * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is |
| * held for the entire duration of zapping obsolete pages, it's |
| * impossible for there to be multiple invalid generations associated |
| * with *valid* shadow pages at any given time, i.e. there is exactly |
| * one valid generation and (at most) one invalid generation. |
| */ |
| kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; |
| |
| /* |
| * In order to ensure all vCPUs drop their soon-to-be invalid roots, |
| * invalidating TDP MMU roots must be done while holding mmu_lock for |
| * write and in the same critical section as making the reload request, |
| * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. |
| */ |
| if (tdp_mmu_enabled) |
| kvm_tdp_mmu_invalidate_all_roots(kvm); |
| |
| /* |
| * Notify all vcpus to reload its shadow page table and flush TLB. |
| * Then all vcpus will switch to new shadow page table with the new |
| * mmu_valid_gen. |
| * |
| * Note: we need to do this under the protection of mmu_lock, |
| * otherwise, vcpu would purge shadow page but miss tlb flush. |
| */ |
| kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); |
| |
| kvm_zap_obsolete_pages(kvm); |
| |
| write_unlock(&kvm->mmu_lock); |
| |
| /* |
| * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before |
| * returning to the caller, e.g. if the zap is in response to a memslot |
| * deletion, mmu_notifier callbacks will be unable to reach the SPTEs |
| * associated with the deleted memslot once the update completes, and |
| * Deferring the zap until the final reference to the root is put would |
| * lead to use-after-free. |
| */ |
| if (tdp_mmu_enabled) |
| kvm_tdp_mmu_zap_invalidated_roots(kvm); |
| } |
| |
| static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) |
| { |
| return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); |
| } |
| |
| void kvm_mmu_init_vm(struct kvm *kvm) |
| { |
| kvm->arch.shadow_mmio_value = shadow_mmio_value; |
| INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
| INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); |
| INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); |
| spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); |
| |
| if (tdp_mmu_enabled) |
| kvm_mmu_init_tdp_mmu(kvm); |
| |
| kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; |
| kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; |
| |
| kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; |
| |
| kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; |
| kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; |
| } |
| |
| static void mmu_free_vm_memory_caches(struct kvm *kvm) |
| { |
| kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); |
| kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); |
| kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); |
| } |
| |
| void kvm_mmu_uninit_vm(struct kvm *kvm) |
| { |
| if (tdp_mmu_enabled) |
| kvm_mmu_uninit_tdp_mmu(kvm); |
| |
| mmu_free_vm_memory_caches(kvm); |
| } |
| |
| static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) |
| { |
| const struct kvm_memory_slot *memslot; |
| struct kvm_memslots *slots; |
| struct kvm_memslot_iter iter; |
| bool flush = false; |
| gfn_t start, end; |
| int i; |
| |
| if (!kvm_memslots_have_rmaps(kvm)) |
| return flush; |
| |
| for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { |
| slots = __kvm_memslots(kvm, i); |
| |
| kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { |
| memslot = iter.slot; |
| start = max(gfn_start, memslot->base_gfn); |
| end = min(gfn_end, memslot->base_gfn + memslot->npages); |
| if (WARN_ON_ONCE(start >= end)) |
| continue; |
| |
| flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, |
| PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, |
| start, end - 1, true, flush); |
| } |
| } |
| |
| return flush; |
| } |
| |
| /* |
| * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end |
| * (not including it) |
| */ |
| void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) |
| { |
| bool flush; |
| |
| if (WARN_ON_ONCE(gfn_end <= gfn_start)) |
| return; |
| |
| write_lock(&kvm->mmu_lock); |
| |
| kvm_mmu_invalidate_begin(kvm); |
| |
| kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); |
| |
| flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); |
| |
| if (tdp_mmu_enabled) |
| flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); |
| |
| if (flush) |
| kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); |
| |
| kvm_mmu_invalidate_end(kvm); |
| |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| static bool slot_rmap_write_protect(struct kvm *kvm, |
| struct kvm_rmap_head *rmap_head, |
| const struct kvm_memory_slot *slot) |
| { |
| return rmap_write_protect(rmap_head, false); |
| } |
| |
| void kvm_mmu_slot_remove_write_access(struct kvm *kvm, |
| const struct kvm_memory_slot *memslot, |
| int start_level) |
| { |
| if (kvm_memslots_have_rmaps(kvm)) { |
| write_lock(&kvm->mmu_lock); |
| walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, |
| start_level, KVM_MAX_HUGEPAGE_LEVEL, false); |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| if (tdp_mmu_enabled) { |
| read_lock(&kvm->mmu_lock); |
| kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); |
| read_unlock(&kvm->mmu_lock); |
| } |
| } |
| |
| static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) |
| { |
| return kvm_mmu_memory_cache_nr_free_objects(cache) < min; |
| } |
| |
| static bool need_topup_split_caches_or_resched(struct kvm *kvm) |
| { |
| if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) |
| return true; |
| |
| /* |
| * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed |
| * to split a single huge page. Calculating how many are actually needed |
| * is possible but not worth the complexity. |
| */ |
| return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || |
| need_topup(&kvm->arch.split_page_header_cache, 1) || |
| need_topup(&kvm->arch.split_shadow_page_cache, 1); |
| } |
| |
| static int topup_split_caches(struct kvm *kvm) |
| { |
| /* |
| * Allocating rmap list entries when splitting huge pages for nested |
| * MMUs is uncommon as KVM needs to use a list if and only if there is |
| * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be |
| * aliased by multiple L2 gfns and/or from multiple nested roots with |
| * different roles. Aliasing gfns when using TDP is atypical for VMMs; |
| * a few gfns are often aliased during boot, e.g. when remapping BIOS, |
| * but aliasing rarely occurs post-boot or for many gfns. If there is |
| * only one rmap entry, rmap->val points directly at that one entry and |
| * doesn't need to allocate a list. Buffer the cache by the default |
| * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM |
| * encounters an aliased gfn or two. |
| */ |
| const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + |
| KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; |
| int r; |
| |
| lockdep_assert_held(&kvm->slots_lock); |
| |
| r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, |
| SPLIT_DESC_CACHE_MIN_NR_OBJECTS); |
| if (r) |
| return r; |
| |
| r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); |
| if (r) |
| return r; |
| |
| return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); |
| } |
| |
| static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) |
| { |
| struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); |
| struct shadow_page_caches caches = {}; |
| union kvm_mmu_page_role role; |
| unsigned int access; |
| gfn_t gfn; |
| |
| gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); |
| access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); |
| |
| /* |
| * Note, huge page splitting always uses direct shadow pages, regardless |
| * of whether the huge page itself is mapped by a direct or indirect |
| * shadow page, since the huge page region itself is being directly |
| * mapped with smaller pages. |
| */ |
| role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); |
| |
| /* Direct SPs do not require a shadowed_info_cache. */ |
| caches.page_header_cache = &kvm->arch.split_page_header_cache; |
| caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; |
| |
| /* Safe to pass NULL for vCPU since requesting a direct SP. */ |
| return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); |
| } |
| |
| static void shadow_mmu_split_huge_page(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, |
| u64 *huge_sptep) |
| |
| { |
| struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; |
| u64 huge_spte = READ_ONCE(*huge_sptep); |
| struct kvm_mmu_page *sp; |
| bool flush = false; |
| u64 *sptep, spte; |
| gfn_t gfn; |
| int index; |
| |
| sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); |
| |
| for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { |
| sptep = &sp->spt[index]; |
| gfn = kvm_mmu_page_get_gfn(sp, index); |
| |
| /* |
| * The SP may already have populated SPTEs, e.g. if this huge |
| * page is aliased by multiple sptes with the same access |
| * permissions. These entries are guaranteed to map the same |
| * gfn-to-pfn translation since the SP is direct, so no need to |
| * modify them. |
| * |
| * However, if a given SPTE points to a lower level page table, |
| * that lower level page table may only be partially populated. |
| * Installing such SPTEs would effectively unmap a potion of the |
| * huge page. Unmapping guest memory always requires a TLB flush |
| * since a subsequent operation on the unmapped regions would |
| * fail to detect the need to flush. |
| */ |
| if (is_shadow_present_pte(*sptep)) { |
| flush |= !is_last_spte(*sptep, sp->role.level); |
| continue; |
| } |
| |
| spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); |
| mmu_spte_set(sptep, spte); |
| __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); |
| } |
| |
| __link_shadow_page(kvm, cache, huge_sptep, sp, flush); |
| } |
| |
| static int shadow_mmu_try_split_huge_page(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, |
| u64 *huge_sptep) |
| { |
| struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); |
| int level, r = 0; |
| gfn_t gfn; |
| u64 spte; |
| |
| /* Grab information for the tracepoint before dropping the MMU lock. */ |
| gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); |
| level = huge_sp->role.level; |
| spte = *huge_sptep; |
| |
| if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { |
| r = -ENOSPC; |
| goto out; |
| } |
| |
| if (need_topup_split_caches_or_resched(kvm)) { |
| write_unlock(&kvm->mmu_lock); |
| cond_resched(); |
| /* |
| * If the topup succeeds, return -EAGAIN to indicate that the |
| * rmap iterator should be restarted because the MMU lock was |
| * dropped. |
| */ |
| r = topup_split_caches(kvm) ?: -EAGAIN; |
| write_lock(&kvm->mmu_lock); |
| goto out; |
| } |
| |
| shadow_mmu_split_huge_page(kvm, slot, huge_sptep); |
| |
| out: |
| trace_kvm_mmu_split_huge_page(gfn, spte, level, r); |
| return r; |
| } |
| |
| static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, |
| struct kvm_rmap_head *rmap_head, |
| const struct kvm_memory_slot *slot) |
| { |
| struct rmap_iterator iter; |
| struct kvm_mmu_page *sp; |
| u64 *huge_sptep; |
| int r; |
| |
| restart: |
| for_each_rmap_spte(rmap_head, &iter, huge_sptep) { |
| sp = sptep_to_sp(huge_sptep); |
| |
| /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ |
| if (WARN_ON_ONCE(!sp->role.guest_mode)) |
| continue; |
| |
| /* The rmaps should never contain non-leaf SPTEs. */ |
| if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) |
| continue; |
| |
| /* SPs with level >PG_LEVEL_4K should never by unsync. */ |
| if (WARN_ON_ONCE(sp->unsync)) |
| continue; |
| |
| /* Don't bother splitting huge pages on invalid SPs. */ |
| if (sp->role.invalid) |
| continue; |
| |
| r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); |
| |
| /* |
| * The split succeeded or needs to be retried because the MMU |
| * lock was dropped. Either way, restart the iterator to get it |
| * back into a consistent state. |
| */ |
| if (!r || r == -EAGAIN) |
| goto restart; |
| |
| /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ |
| break; |
| } |
| |
| return false; |
| } |
| |
| static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, |
| gfn_t start, gfn_t end, |
| int target_level) |
| { |
| int level; |
| |
| /* |
| * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working |
| * down to the target level. This ensures pages are recursively split |
| * all the way to the target level. There's no need to split pages |
| * already at the target level. |
| */ |
| for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) |
| __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, |
| level, level, start, end - 1, true, false); |
| } |
| |
| /* Must be called with the mmu_lock held in write-mode. */ |
| void kvm_mmu_try_split_huge_pages(struct kvm *kvm, |
| const struct kvm_memory_slot *memslot, |
| u64 start, u64 end, |
| int target_level) |
| { |
| if (!tdp_mmu_enabled) |
| return; |
| |
| if (kvm_memslots_have_rmaps(kvm)) |
| kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); |
| |
| kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); |
| |
| /* |
| * A TLB flush is unnecessary at this point for the same reasons as in |
| * kvm_mmu_slot_try_split_huge_pages(). |
| */ |
| } |
| |
| void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, |
| const struct kvm_memory_slot *memslot, |
| int target_level) |
| { |
| u64 start = memslot->base_gfn; |
| u64 end = start + memslot->npages; |
| |
| if (!tdp_mmu_enabled) |
| return; |
| |
| if (kvm_memslots_have_rmaps(kvm)) { |
| write_lock(&kvm->mmu_lock); |
| kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| read_lock(&kvm->mmu_lock); |
| kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); |
| read_unlock(&kvm->mmu_lock); |
| |
| /* |
| * No TLB flush is necessary here. KVM will flush TLBs after |
| * write-protecting and/or clearing dirty on the newly split SPTEs to |
| * ensure that guest writes are reflected in the dirty log before the |
| * ioctl to enable dirty logging on this memslot completes. Since the |
| * split SPTEs retain the write and dirty bits of the huge SPTE, it is |
| * safe for KVM to decide if a TLB flush is necessary based on the split |
| * SPTEs. |
| */ |
| } |
| |
| static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, |
| struct kvm_rmap_head *rmap_head, |
| const struct kvm_memory_slot *slot) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| int need_tlb_flush = 0; |
| struct kvm_mmu_page *sp; |
| |
| restart: |
| for_each_rmap_spte(rmap_head, &iter, sptep) { |
| sp = sptep_to_sp(sptep); |
| |
| /* |
| * We cannot do huge page mapping for indirect shadow pages, |
| * which are found on the last rmap (level = 1) when not using |
| * tdp; such shadow pages are synced with the page table in |
| * the guest, and the guest page table is using 4K page size |
| * mapping if the indirect sp has level = 1. |
| */ |
| if (sp->role.direct && |
| sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, |
| PG_LEVEL_NUM)) { |
| kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); |
| |
| if (kvm_available_flush_remote_tlbs_range()) |
| kvm_flush_remote_tlbs_sptep(kvm, sptep); |
| else |
| need_tlb_flush = 1; |
| |
| goto restart; |
| } |
| } |
| |
| return need_tlb_flush; |
| } |
| EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); |
| |
| static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, |
| const struct kvm_memory_slot *slot) |
| { |
| /* |
| * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap |
| * pages that are already mapped at the maximum hugepage level. |
| */ |
| if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, |
| PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) |
| kvm_flush_remote_tlbs_memslot(kvm, slot); |
| } |
| |
| void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, |
| const struct kvm_memory_slot *slot) |
| { |
| if (kvm_memslots_have_rmaps(kvm)) { |
| write_lock(&kvm->mmu_lock); |
| kvm_rmap_zap_collapsible_sptes(kvm, slot); |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| if (tdp_mmu_enabled) { |
| read_lock(&kvm->mmu_lock); |
| kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); |
| read_unlock(&kvm->mmu_lock); |
| } |
| } |
| |
| void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, |
| const struct kvm_memory_slot *memslot) |
| { |
| if (kvm_memslots_have_rmaps(kvm)) { |
| write_lock(&kvm->mmu_lock); |
| /* |
| * Clear dirty bits only on 4k SPTEs since the legacy MMU only |
| * support dirty logging at a 4k granularity. |
| */ |
| walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| if (tdp_mmu_enabled) { |
| read_lock(&kvm->mmu_lock); |
| kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); |
| read_unlock(&kvm->mmu_lock); |
| } |
| |
| /* |
| * The caller will flush the TLBs after this function returns. |
| * |
| * It's also safe to flush TLBs out of mmu lock here as currently this |
| * function is only used for dirty logging, in which case flushing TLB |
| * out of mmu lock also guarantees no dirty pages will be lost in |
| * dirty_bitmap. |
| */ |
| } |
| |
| static void kvm_mmu_zap_all(struct kvm *kvm) |
| { |
| struct kvm_mmu_page *sp, *node; |
| LIST_HEAD(invalid_list); |
| int ign; |
| |
| write_lock(&kvm->mmu_lock); |
| restart: |
| list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { |
| if (WARN_ON_ONCE(sp->role.invalid)) |
| continue; |
| if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) |
| goto restart; |
| if (cond_resched_rwlock_write(&kvm->mmu_lock)) |
| goto restart; |
| } |
| |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| |
| if (tdp_mmu_enabled) |
| kvm_tdp_mmu_zap_all(kvm); |
| |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| { |
| kvm_mmu_zap_all(kvm); |
| } |
| |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| kvm_mmu_zap_all_fast(kvm); |
| } |
| |
| void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) |
| { |
| WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); |
| |
| gen &= MMIO_SPTE_GEN_MASK; |
| |
| /* |
| * Generation numbers are incremented in multiples of the number of |
| * address spaces in order to provide unique generations across all |
| * address spaces. Strip what is effectively the address space |
| * modifier prior to checking for a wrap of the MMIO generation so |
| * that a wrap in any address space is detected. |
| */ |
| gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); |
| |
| /* |
| * The very rare case: if the MMIO generation number has wrapped, |
| * zap all shadow pages. |
| */ |
| if (unlikely(gen == 0)) { |
| kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); |
| kvm_mmu_zap_all_fast(kvm); |
| } |
| } |
| |
| static unsigned long mmu_shrink_scan(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct kvm *kvm; |
| int nr_to_scan = sc->nr_to_scan; |
| unsigned long freed = 0; |
| |
| mutex_lock(&kvm_lock); |
| |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| int idx; |
| |
| /* |
| * Never scan more than sc->nr_to_scan VM instances. |
| * Will not hit this condition practically since we do not try |
| * to shrink more than one VM and it is very unlikely to see |
| * !n_used_mmu_pages so many times. |
| */ |
| if (!nr_to_scan--) |
| break; |
| /* |
| * n_used_mmu_pages is accessed without holding kvm->mmu_lock |
| * here. We may skip a VM instance errorneosly, but we do not |
| * want to shrink a VM that only started to populate its MMU |
| * anyway. |
| */ |
| if (!kvm->arch.n_used_mmu_pages && |
| !kvm_has_zapped_obsolete_pages(kvm)) |
| continue; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| write_lock(&kvm->mmu_lock); |
| |
| if (kvm_has_zapped_obsolete_pages(kvm)) { |
| kvm_mmu_commit_zap_page(kvm, |
| &kvm->arch.zapped_obsolete_pages); |
| goto unlock; |
| } |
| |
| freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); |
| |
| unlock: |
| write_unlock(&kvm->mmu_lock); |
| srcu_read_unlock(&kvm->srcu, idx); |
| |
| /* |
| * unfair on small ones |
| * per-vm shrinkers cry out |
| * sadness comes quickly |
| */ |
| list_move_tail(&kvm->vm_list, &vm_list); |
| break; |
| } |
| |
| mutex_unlock(&kvm_lock); |
| return freed; |
| } |
| |
| static unsigned long mmu_shrink_count(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| return percpu_counter_read_positive(&kvm_total_used_mmu_pages); |
| } |
| |
| static struct shrinker *mmu_shrinker; |
| |
| static void mmu_destroy_caches(void) |
| { |
| kmem_cache_destroy(pte_list_desc_cache); |
| kmem_cache_destroy(mmu_page_header_cache); |
| } |
| |
| static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) |
| { |
| if (nx_hugepage_mitigation_hard_disabled) |
| return sysfs_emit(buffer, "never\n"); |
| |
| return param_get_bool(buffer, kp); |
| } |
| |
| static bool get_nx_auto_mode(void) |
| { |
| /* Return true when CPU has the bug, and mitigations are ON */ |
| return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); |
| } |
| |
| static void __set_nx_huge_pages(bool val) |
| { |
| nx_huge_pages = itlb_multihit_kvm_mitigation = val; |
| } |
| |
| static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) |
| { |
| bool old_val = nx_huge_pages; |
| bool new_val; |
| |
| if (nx_hugepage_mitigation_hard_disabled) |
| return -EPERM; |
| |
| /* In "auto" mode deploy workaround only if CPU has the bug. */ |
| if (sysfs_streq(val, "off")) { |
| new_val = 0; |
| } else if (sysfs_streq(val, "force")) { |
| new_val = 1; |
| } else if (sysfs_streq(val, "auto")) { |
| new_val = get_nx_auto_mode(); |
| } else if (sysfs_streq(val, "never")) { |
| new_val = 0; |
| |
| mutex_lock(&kvm_lock); |
| if (!list_empty(&vm_list)) { |
| mutex_unlock(&kvm_lock); |
| return -EBUSY; |
| } |
| nx_hugepage_mitigation_hard_disabled = true; |
| mutex_unlock(&kvm_lock); |
| } else if (kstrtobool(val, &new_val) < 0) { |
| return -EINVAL; |
| } |
| |
| __set_nx_huge_pages(new_val); |
| |
| if (new_val != old_val) { |
| struct kvm *kvm; |
| |
| mutex_lock(&kvm_lock); |
| |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| mutex_lock(&kvm->slots_lock); |
| kvm_mmu_zap_all_fast(kvm); |
| mutex_unlock(&kvm->slots_lock); |
| |
| wake_up_process(kvm->arch.nx_huge_page_recovery_thread); |
| } |
| mutex_unlock(&kvm_lock); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as |
| * its default value of -1 is technically undefined behavior for a boolean. |
| * Forward the module init call to SPTE code so that it too can handle module |
| * params that need to be resolved/snapshot. |
| */ |
| void __init kvm_mmu_x86_module_init(void) |
| { |
| if (nx_huge_pages == -1) |
| __set_nx_huge_pages(get_nx_auto_mode()); |
| |
| /* |
| * Snapshot userspace's desire to enable the TDP MMU. Whether or not the |
| * TDP MMU is actually enabled is determined in kvm_configure_mmu() |
| * when the vendor module is loaded. |
| */ |
| tdp_mmu_allowed = tdp_mmu_enabled; |
| |
| kvm_mmu_spte_module_init(); |
| } |
| |
| /* |
| * The bulk of the MMU initialization is deferred until the vendor module is |
| * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need |
| * to be reset when a potentially different vendor module is loaded. |
| */ |
| int kvm_mmu_vendor_module_init(void) |
| { |
| int ret = -ENOMEM; |
| |
| /* |
| * MMU roles use union aliasing which is, generally speaking, an |
| * undefined behavior. However, we supposedly know how compilers behave |
| * and the current status quo is unlikely to change. Guardians below are |
| * supposed to let us know if the assumption becomes false. |
| */ |
| BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); |
| BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); |
| BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); |
| |
| kvm_mmu_reset_all_pte_masks(); |
| |
| pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); |
| if (!pte_list_desc_cache) |
| goto out; |
| |
| mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", |
| sizeof(struct kvm_mmu_page), |
| 0, SLAB_ACCOUNT, NULL); |
| if (!mmu_page_header_cache) |
| goto out; |
| |
| if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) |
| goto out; |
| |
| mmu_shrinker = shrinker_alloc(0, "x86-mmu"); |
| if (!mmu_shrinker) |
| goto out_shrinker; |
| |
| mmu_shrinker->count_objects = mmu_shrink_count; |
| mmu_shrinker->scan_objects = mmu_shrink_scan; |
| mmu_shrinker->seeks = DEFAULT_SEEKS * 10; |
| |
| shrinker_register(mmu_shrinker); |
| |
| return 0; |
| |
| out_shrinker: |
| percpu_counter_destroy(&kvm_total_used_mmu_pages); |
| out: |
| mmu_destroy_caches(); |
| return ret; |
| } |
| |
| void kvm_mmu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kvm_mmu_unload(vcpu); |
| free_mmu_pages(&vcpu->arch.root_mmu); |
| free_mmu_pages(&vcpu->arch.guest_mmu); |
| mmu_free_memory_caches(vcpu); |
| } |
| |
| void kvm_mmu_vendor_module_exit(void) |
| { |
| mmu_destroy_caches(); |
| percpu_counter_destroy(&kvm_total_used_mmu_pages); |
| shrinker_free(mmu_shrinker); |
| } |
| |
| /* |
| * Calculate the effective recovery period, accounting for '0' meaning "let KVM |
| * select a halving time of 1 hour". Returns true if recovery is enabled. |
| */ |
| static bool calc_nx_huge_pages_recovery_period(uint *period) |
| { |
| /* |
| * Use READ_ONCE to get the params, this may be called outside of the |
| * param setters, e.g. by the kthread to compute its next timeout. |
| */ |
| bool enabled = READ_ONCE(nx_huge_pages); |
| uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); |
| |
| if (!enabled || !ratio) |
| return false; |
| |
| *period = READ_ONCE(nx_huge_pages_recovery_period_ms); |
| if (!*period) { |
| /* Make sure the period is not less than one second. */ |
| ratio = min(ratio, 3600u); |
| *period = 60 * 60 * 1000 / ratio; |
| } |
| return true; |
| } |
| |
| static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) |
| { |
| bool was_recovery_enabled, is_recovery_enabled; |
| uint old_period, new_period; |
| int err; |
| |
| if (nx_hugepage_mitigation_hard_disabled) |
| return -EPERM; |
| |
| was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); |
| |
| err = param_set_uint(val, kp); |
| if (err) |
| return err; |
| |
| is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); |
| |
| if (is_recovery_enabled && |
| (!was_recovery_enabled || old_period > new_period)) { |
| struct kvm *kvm; |
| |
| mutex_lock(&kvm_lock); |
| |
| list_for_each_entry(kvm, &vm_list, vm_list) |
| wake_up_process(kvm->arch.nx_huge_page_recovery_thread); |
| |
| mutex_unlock(&kvm_lock); |
| } |
| |
| return err; |
| } |
| |
| static void kvm_recover_nx_huge_pages(struct kvm *kvm) |
| { |
| unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; |
| struct kvm_memory_slot *slot; |
| int rcu_idx; |
| struct kvm_mmu_page *sp; |
| unsigned int ratio; |
| LIST_HEAD(invalid_list); |
| bool flush = false; |
| ulong to_zap; |
| |
| rcu_idx = srcu_read_lock(&kvm->srcu); |
| write_lock(&kvm->mmu_lock); |
| |
| /* |
| * Zapping TDP MMU shadow pages, including the remote TLB flush, must |
| * be done under RCU protection, because the pages are freed via RCU |
| * callback. |
| */ |
| rcu_read_lock(); |
| |
| ratio = READ_ONCE(nx_huge_pages_recovery_ratio); |
| to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; |
| for ( ; to_zap; --to_zap) { |
| if (list_empty(&kvm->arch.possible_nx_huge_pages)) |
| break; |
| |
| /* |
| * We use a separate list instead of just using active_mmu_pages |
| * because the number of shadow pages that be replaced with an |
| * NX huge page is expected to be relatively small compared to |
| * the total number of shadow pages. And because the TDP MMU |
| * doesn't use active_mmu_pages. |
| */ |
| sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, |
| struct kvm_mmu_page, |
| possible_nx_huge_page_link); |
| WARN_ON_ONCE(!sp->nx_huge_page_disallowed); |
| WARN_ON_ONCE(!sp->role.direct); |
| |
| /* |
| * Unaccount and do not attempt to recover any NX Huge Pages |
| * that are being dirty tracked, as they would just be faulted |
| * back in as 4KiB pages. The NX Huge Pages in this slot will be |
| * recovered, along with all the other huge pages in the slot, |
| * when dirty logging is disabled. |
| * |
| * Since gfn_to_memslot() is relatively expensive, it helps to |
| * skip it if it the test cannot possibly return true. On the |
| * other hand, if any memslot has logging enabled, chances are |
| * good that all of them do, in which case unaccount_nx_huge_page() |
| * is much cheaper than zapping the page. |
| * |
| * If a memslot update is in progress, reading an incorrect value |
| * of kvm->nr_memslots_dirty_logging is not a problem: if it is |
| * becoming zero, gfn_to_memslot() will be done unnecessarily; if |
| * it is becoming nonzero, the page will be zapped unnecessarily. |
| * Either way, this only affects efficiency in racy situations, |
| * and not correctness. |
| */ |
| slot = NULL; |
| if (atomic_read(&kvm->nr_memslots_dirty_logging)) { |
| struct kvm_memslots *slots; |
| |
| slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| slot = __gfn_to_memslot(slots, sp->gfn); |
| WARN_ON_ONCE(!slot); |
| } |
| |
| if (slot && kvm_slot_dirty_track_enabled(slot)) |
| unaccount_nx_huge_page(kvm, sp); |
| else if (is_tdp_mmu_page(sp)) |
| flush |= kvm_tdp_mmu_zap_sp(kvm, sp); |
| else |
| kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
| WARN_ON_ONCE(sp->nx_huge_page_disallowed); |
| |
| if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { |
| kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); |
| rcu_read_unlock(); |
| |
| cond_resched_rwlock_write(&kvm->mmu_lock); |
| flush = false; |
| |
| rcu_read_lock(); |
| } |
| } |
| kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); |
| |
| rcu_read_unlock(); |
| |
| write_unlock(&kvm->mmu_lock); |
| srcu_read_unlock(&kvm->srcu, rcu_idx); |
| } |
| |
| static long get_nx_huge_page_recovery_timeout(u64 start_time) |
| { |
| bool enabled; |
| uint period; |
| |
| enabled = calc_nx_huge_pages_recovery_period(&period); |
| |
| return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() |
| : MAX_SCHEDULE_TIMEOUT; |
| } |
| |
| static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) |
| { |
| u64 start_time; |
| long remaining_time; |
| |
| while (true) { |
| start_time = get_jiffies_64(); |
| remaining_time = get_nx_huge_page_recovery_timeout(start_time); |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| while (!kthread_should_stop() && remaining_time > 0) { |
| schedule_timeout(remaining_time); |
| remaining_time = get_nx_huge_page_recovery_timeout(start_time); |
| set_current_state(TASK_INTERRUPTIBLE); |
| } |
| |
| set_current_state(TASK_RUNNING); |
| |
| if (kthread_should_stop()) |
| return 0; |
| |
| kvm_recover_nx_huge_pages(kvm); |
| } |
| } |
| |
| int kvm_mmu_post_init_vm(struct kvm *kvm) |
| { |
| int err; |
| |
| if (nx_hugepage_mitigation_hard_disabled) |
| return 0; |
| |
| err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, |
| "kvm-nx-lpage-recovery", |
| &kvm->arch.nx_huge_page_recovery_thread); |
| if (!err) |
| kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); |
| |
| return err; |
| } |
| |
| void kvm_mmu_pre_destroy_vm(struct kvm *kvm) |
| { |
| if (kvm->arch.nx_huge_page_recovery_thread) |
| kthread_stop(kvm->arch.nx_huge_page_recovery_thread); |
| } |
| |
| #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES |
| bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, |
| struct kvm_gfn_range *range) |
| { |
| /* |
| * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only |
| * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM |
| * can simply ignore such slots. But if userspace is making memory |
| * PRIVATE, then KVM must prevent the guest from accessing the memory |
| * as shared. And if userspace is making memory SHARED and this point |
| * is reached, then at least one page within the range was previously |
| * PRIVATE, i.e. the slot's possible hugepage ranges are changing. |
| * Zapping SPTEs in this case ensures KVM will reassess whether or not |
| * a hugepage can be used for affected ranges. |
| */ |
| if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) |
| return false; |
| |
| return kvm_unmap_gfn_range(kvm, range); |
| } |
| |
| static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, |
| int level) |
| { |
| return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; |
| } |
| |
| static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, |
| int level) |
| { |
| lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; |
| } |
| |
| static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, |
| int level) |
| { |
| lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; |
| } |
| |
| static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, |
| gfn_t gfn, int level, unsigned long attrs) |
| { |
| const unsigned long start = gfn; |
| const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); |
| |
| if (level == PG_LEVEL_2M) |
| return kvm_range_has_memory_attributes(kvm, start, end, attrs); |
| |
| for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { |
| if (hugepage_test_mixed(slot, gfn, level - 1) || |
| attrs != kvm_get_memory_attributes(kvm, gfn)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, |
| struct kvm_gfn_range *range) |
| { |
| unsigned long attrs = range->arg.attributes; |
| struct kvm_memory_slot *slot = range->slot; |
| int level; |
| |
| lockdep_assert_held_write(&kvm->mmu_lock); |
| lockdep_assert_held(&kvm->slots_lock); |
| |
| /* |
| * Calculate which ranges can be mapped with hugepages even if the slot |
| * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over |
| * a range that has PRIVATE GFNs, and conversely converting a range to |
| * SHARED may now allow hugepages. |
| */ |
| if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) |
| return false; |
| |
| /* |
| * The sequence matters here: upper levels consume the result of lower |
| * level's scanning. |
| */ |
| for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { |
| gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); |
| gfn_t gfn = gfn_round_for_level(range->start, level); |
| |
| /* Process the head page if it straddles the range. */ |
| if (gfn != range->start || gfn + nr_pages > range->end) { |
| /* |
| * Skip mixed tracking if the aligned gfn isn't covered |
| * by the memslot, KVM can't use a hugepage due to the |
| * misaligned address regardless of memory attributes. |
| */ |
| if (gfn >= slot->base_gfn && |
| gfn + nr_pages <= slot->base_gfn + slot->npages) { |
| if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) |
| hugepage_clear_mixed(slot, gfn, level); |
| else |
| hugepage_set_mixed(slot, gfn, level); |
| } |
| gfn += nr_pages; |
| } |
| |
| /* |
| * Pages entirely covered by the range are guaranteed to have |
| * only the attributes which were just set. |
| */ |
| for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) |
| hugepage_clear_mixed(slot, gfn, level); |
| |
| /* |
| * Process the last tail page if it straddles the range and is |
| * contained by the memslot. Like the head page, KVM can't |
| * create a hugepage if the slot size is misaligned. |
| */ |
| if (gfn < range->end && |
| (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { |
| if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) |
| hugepage_clear_mixed(slot, gfn, level); |
| else |
| hugepage_set_mixed(slot, gfn, level); |
| } |
| } |
| return false; |
| } |
| |
| void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| int level; |
| |
| if (!kvm_arch_has_private_mem(kvm)) |
| return; |
| |
| for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { |
| /* |
| * Don't bother tracking mixed attributes for pages that can't |
| * be huge due to alignment, i.e. process only pages that are |
| * entirely contained by the memslot. |
| */ |
| gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); |
| gfn_t start = gfn_round_for_level(slot->base_gfn, level); |
| gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); |
| gfn_t gfn; |
| |
| if (start < slot->base_gfn) |
| start += nr_pages; |
| |
| /* |
| * Unlike setting attributes, every potential hugepage needs to |
| * be manually checked as the attributes may already be mixed. |
| */ |
| for (gfn = start; gfn < end; gfn += nr_pages) { |
| unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); |
| |
| if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) |
| hugepage_clear_mixed(slot, gfn, level); |
| else |
| hugepage_set_mixed(slot, gfn, level); |
| } |
| } |
| } |
| #endif |