| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. |
| * |
| * Authors: |
| * Paul Mackerras <paulus@au1.ibm.com> |
| * Alexander Graf <agraf@suse.de> |
| * Kevin Wolf <mail@kevin-wolf.de> |
| * |
| * Description: KVM functions specific to running on Book 3S |
| * processors in hypervisor mode (specifically POWER7 and later). |
| * |
| * This file is derived from arch/powerpc/kvm/book3s.c, |
| * by Alexander Graf <agraf@suse.de>. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/kernel.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/preempt.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/stat.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/fs.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/spinlock.h> |
| #include <linux/page-flags.h> |
| #include <linux/srcu.h> |
| #include <linux/miscdevice.h> |
| #include <linux/debugfs.h> |
| #include <linux/gfp.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| #include <linux/hugetlb.h> |
| #include <linux/kvm_irqfd.h> |
| #include <linux/irqbypass.h> |
| #include <linux/module.h> |
| #include <linux/compiler.h> |
| #include <linux/of.h> |
| |
| #include <asm/ftrace.h> |
| #include <asm/reg.h> |
| #include <asm/ppc-opcode.h> |
| #include <asm/asm-prototypes.h> |
| #include <asm/archrandom.h> |
| #include <asm/debug.h> |
| #include <asm/disassemble.h> |
| #include <asm/cputable.h> |
| #include <asm/cacheflush.h> |
| #include <linux/uaccess.h> |
| #include <asm/interrupt.h> |
| #include <asm/io.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/mmu_context.h> |
| #include <asm/lppaca.h> |
| #include <asm/pmc.h> |
| #include <asm/processor.h> |
| #include <asm/cputhreads.h> |
| #include <asm/page.h> |
| #include <asm/hvcall.h> |
| #include <asm/switch_to.h> |
| #include <asm/smp.h> |
| #include <asm/dbell.h> |
| #include <asm/hmi.h> |
| #include <asm/pnv-pci.h> |
| #include <asm/mmu.h> |
| #include <asm/opal.h> |
| #include <asm/xics.h> |
| #include <asm/xive.h> |
| #include <asm/hw_breakpoint.h> |
| #include <asm/kvm_book3s_uvmem.h> |
| #include <asm/ultravisor.h> |
| #include <asm/dtl.h> |
| #include <asm/plpar_wrappers.h> |
| |
| #include "book3s.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace_hv.h" |
| |
| /* #define EXIT_DEBUG */ |
| /* #define EXIT_DEBUG_SIMPLE */ |
| /* #define EXIT_DEBUG_INT */ |
| |
| /* Used to indicate that a guest page fault needs to be handled */ |
| #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) |
| /* Used to indicate that a guest passthrough interrupt needs to be handled */ |
| #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) |
| |
| /* Used as a "null" value for timebase values */ |
| #define TB_NIL (~(u64)0) |
| |
| static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); |
| |
| static int dynamic_mt_modes = 6; |
| module_param(dynamic_mt_modes, int, 0644); |
| MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); |
| static int target_smt_mode; |
| module_param(target_smt_mode, int, 0644); |
| MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); |
| |
| static bool one_vm_per_core; |
| module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); |
| MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); |
| |
| #ifdef CONFIG_KVM_XICS |
| static const struct kernel_param_ops module_param_ops = { |
| .set = param_set_int, |
| .get = param_get_int, |
| }; |
| |
| module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); |
| MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); |
| |
| module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); |
| MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); |
| #endif |
| |
| /* If set, guests are allowed to create and control nested guests */ |
| static bool nested = true; |
| module_param(nested, bool, S_IRUGO | S_IWUSR); |
| MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); |
| |
| static inline bool nesting_enabled(struct kvm *kvm) |
| { |
| return kvm->arch.nested_enable && kvm_is_radix(kvm); |
| } |
| |
| static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); |
| |
| /* |
| * RWMR values for POWER8. These control the rate at which PURR |
| * and SPURR count and should be set according to the number of |
| * online threads in the vcore being run. |
| */ |
| #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL |
| #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL |
| #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL |
| #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL |
| #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL |
| #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL |
| #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL |
| #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL |
| |
| static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { |
| RWMR_RPA_P8_1THREAD, |
| RWMR_RPA_P8_1THREAD, |
| RWMR_RPA_P8_2THREAD, |
| RWMR_RPA_P8_3THREAD, |
| RWMR_RPA_P8_4THREAD, |
| RWMR_RPA_P8_5THREAD, |
| RWMR_RPA_P8_6THREAD, |
| RWMR_RPA_P8_7THREAD, |
| RWMR_RPA_P8_8THREAD, |
| }; |
| |
| static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, |
| int *ip) |
| { |
| int i = *ip; |
| struct kvm_vcpu *vcpu; |
| |
| while (++i < MAX_SMT_THREADS) { |
| vcpu = READ_ONCE(vc->runnable_threads[i]); |
| if (vcpu) { |
| *ip = i; |
| return vcpu; |
| } |
| } |
| return NULL; |
| } |
| |
| /* Used to traverse the list of runnable threads for a given vcore */ |
| #define for_each_runnable_thread(i, vcpu, vc) \ |
| for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) |
| |
| static bool kvmppc_ipi_thread(int cpu) |
| { |
| unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); |
| |
| /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ |
| if (kvmhv_on_pseries()) |
| return false; |
| |
| /* On POWER9 we can use msgsnd to IPI any cpu */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| msg |= get_hard_smp_processor_id(cpu); |
| smp_mb(); |
| __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); |
| return true; |
| } |
| |
| /* On POWER8 for IPIs to threads in the same core, use msgsnd */ |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| preempt_disable(); |
| if (cpu_first_thread_sibling(cpu) == |
| cpu_first_thread_sibling(smp_processor_id())) { |
| msg |= cpu_thread_in_core(cpu); |
| smp_mb(); |
| __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); |
| preempt_enable(); |
| return true; |
| } |
| preempt_enable(); |
| } |
| |
| #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) |
| if (cpu >= 0 && cpu < nr_cpu_ids) { |
| if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { |
| xics_wake_cpu(cpu); |
| return true; |
| } |
| opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); |
| return true; |
| } |
| #endif |
| |
| return false; |
| } |
| |
| static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) |
| { |
| int cpu; |
| struct rcuwait *waitp; |
| |
| waitp = kvm_arch_vcpu_get_wait(vcpu); |
| if (rcuwait_wake_up(waitp)) |
| ++vcpu->stat.generic.halt_wakeup; |
| |
| cpu = READ_ONCE(vcpu->arch.thread_cpu); |
| if (cpu >= 0 && kvmppc_ipi_thread(cpu)) |
| return; |
| |
| /* CPU points to the first thread of the core */ |
| cpu = vcpu->cpu; |
| if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) |
| smp_send_reschedule(cpu); |
| } |
| |
| /* |
| * We use the vcpu_load/put functions to measure stolen time. |
| * Stolen time is counted as time when either the vcpu is able to |
| * run as part of a virtual core, but the task running the vcore |
| * is preempted or sleeping, or when the vcpu needs something done |
| * in the kernel by the task running the vcpu, but that task is |
| * preempted or sleeping. Those two things have to be counted |
| * separately, since one of the vcpu tasks will take on the job |
| * of running the core, and the other vcpu tasks in the vcore will |
| * sleep waiting for it to do that, but that sleep shouldn't count |
| * as stolen time. |
| * |
| * Hence we accumulate stolen time when the vcpu can run as part of |
| * a vcore using vc->stolen_tb, and the stolen time when the vcpu |
| * needs its task to do other things in the kernel (for example, |
| * service a page fault) in busy_stolen. We don't accumulate |
| * stolen time for a vcore when it is inactive, or for a vcpu |
| * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of |
| * a misnomer; it means that the vcpu task is not executing in |
| * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in |
| * the kernel. We don't have any way of dividing up that time |
| * between time that the vcpu is genuinely stopped, time that |
| * the task is actively working on behalf of the vcpu, and time |
| * that the task is preempted, so we don't count any of it as |
| * stolen. |
| * |
| * Updates to busy_stolen are protected by arch.tbacct_lock; |
| * updates to vc->stolen_tb are protected by the vcore->stoltb_lock |
| * lock. The stolen times are measured in units of timebase ticks. |
| * (Note that the != TB_NIL checks below are purely defensive; |
| * they should never fail.) |
| */ |
| |
| static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vc->stoltb_lock, flags); |
| vc->preempt_tb = mftb(); |
| spin_unlock_irqrestore(&vc->stoltb_lock, flags); |
| } |
| |
| static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vc->stoltb_lock, flags); |
| if (vc->preempt_tb != TB_NIL) { |
| vc->stolen_tb += mftb() - vc->preempt_tb; |
| vc->preempt_tb = TB_NIL; |
| } |
| spin_unlock_irqrestore(&vc->stoltb_lock, flags); |
| } |
| |
| static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| unsigned long flags; |
| |
| /* |
| * We can test vc->runner without taking the vcore lock, |
| * because only this task ever sets vc->runner to this |
| * vcpu, and once it is set to this vcpu, only this task |
| * ever sets it to NULL. |
| */ |
| if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) |
| kvmppc_core_end_stolen(vc); |
| |
| spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); |
| if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && |
| vcpu->arch.busy_preempt != TB_NIL) { |
| vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; |
| vcpu->arch.busy_preempt = TB_NIL; |
| } |
| spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); |
| } |
| |
| static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| unsigned long flags; |
| |
| if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) |
| kvmppc_core_start_stolen(vc); |
| |
| spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); |
| if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) |
| vcpu->arch.busy_preempt = mftb(); |
| spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); |
| } |
| |
| static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) |
| { |
| vcpu->arch.pvr = pvr; |
| } |
| |
| /* Dummy value used in computing PCR value below */ |
| #define PCR_ARCH_31 (PCR_ARCH_300 << 1) |
| |
| static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) |
| { |
| unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| /* We can (emulate) our own architecture version and anything older */ |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| host_pcr_bit = PCR_ARCH_31; |
| else if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| host_pcr_bit = PCR_ARCH_300; |
| else if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| host_pcr_bit = PCR_ARCH_207; |
| else if (cpu_has_feature(CPU_FTR_ARCH_206)) |
| host_pcr_bit = PCR_ARCH_206; |
| else |
| host_pcr_bit = PCR_ARCH_205; |
| |
| /* Determine lowest PCR bit needed to run guest in given PVR level */ |
| guest_pcr_bit = host_pcr_bit; |
| if (arch_compat) { |
| switch (arch_compat) { |
| case PVR_ARCH_205: |
| guest_pcr_bit = PCR_ARCH_205; |
| break; |
| case PVR_ARCH_206: |
| case PVR_ARCH_206p: |
| guest_pcr_bit = PCR_ARCH_206; |
| break; |
| case PVR_ARCH_207: |
| guest_pcr_bit = PCR_ARCH_207; |
| break; |
| case PVR_ARCH_300: |
| guest_pcr_bit = PCR_ARCH_300; |
| break; |
| case PVR_ARCH_31: |
| guest_pcr_bit = PCR_ARCH_31; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* Check requested PCR bits don't exceed our capabilities */ |
| if (guest_pcr_bit > host_pcr_bit) |
| return -EINVAL; |
| |
| spin_lock(&vc->lock); |
| vc->arch_compat = arch_compat; |
| /* |
| * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit |
| * Also set all reserved PCR bits |
| */ |
| vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; |
| spin_unlock(&vc->lock); |
| |
| return 0; |
| } |
| |
| static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); |
| pr_err("pc = %.16lx msr = %.16llx trap = %x\n", |
| vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); |
| for (r = 0; r < 16; ++r) |
| pr_err("r%2d = %.16lx r%d = %.16lx\n", |
| r, kvmppc_get_gpr(vcpu, r), |
| r+16, kvmppc_get_gpr(vcpu, r+16)); |
| pr_err("ctr = %.16lx lr = %.16lx\n", |
| vcpu->arch.regs.ctr, vcpu->arch.regs.link); |
| pr_err("srr0 = %.16llx srr1 = %.16llx\n", |
| vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); |
| pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", |
| vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); |
| pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", |
| vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); |
| pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", |
| vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); |
| pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); |
| pr_err("fault dar = %.16lx dsisr = %.8x\n", |
| vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); |
| pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); |
| for (r = 0; r < vcpu->arch.slb_max; ++r) |
| pr_err(" ESID = %.16llx VSID = %.16llx\n", |
| vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); |
| pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", |
| vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, |
| vcpu->arch.last_inst); |
| } |
| |
| static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) |
| { |
| return kvm_get_vcpu_by_id(kvm, id); |
| } |
| |
| static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) |
| { |
| vpa->__old_status |= LPPACA_OLD_SHARED_PROC; |
| vpa->yield_count = cpu_to_be32(1); |
| } |
| |
| static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, |
| unsigned long addr, unsigned long len) |
| { |
| /* check address is cacheline aligned */ |
| if (addr & (L1_CACHE_BYTES - 1)) |
| return -EINVAL; |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| if (v->next_gpa != addr || v->len != len) { |
| v->next_gpa = addr; |
| v->len = addr ? len : 0; |
| v->update_pending = 1; |
| } |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| return 0; |
| } |
| |
| /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ |
| struct reg_vpa { |
| u32 dummy; |
| union { |
| __be16 hword; |
| __be32 word; |
| } length; |
| }; |
| |
| static int vpa_is_registered(struct kvmppc_vpa *vpap) |
| { |
| if (vpap->update_pending) |
| return vpap->next_gpa != 0; |
| return vpap->pinned_addr != NULL; |
| } |
| |
| static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, |
| unsigned long flags, |
| unsigned long vcpuid, unsigned long vpa) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long len, nb; |
| void *va; |
| struct kvm_vcpu *tvcpu; |
| int err; |
| int subfunc; |
| struct kvmppc_vpa *vpap; |
| |
| tvcpu = kvmppc_find_vcpu(kvm, vcpuid); |
| if (!tvcpu) |
| return H_PARAMETER; |
| |
| subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; |
| if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || |
| subfunc == H_VPA_REG_SLB) { |
| /* Registering new area - address must be cache-line aligned */ |
| if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) |
| return H_PARAMETER; |
| |
| /* convert logical addr to kernel addr and read length */ |
| va = kvmppc_pin_guest_page(kvm, vpa, &nb); |
| if (va == NULL) |
| return H_PARAMETER; |
| if (subfunc == H_VPA_REG_VPA) |
| len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); |
| else |
| len = be32_to_cpu(((struct reg_vpa *)va)->length.word); |
| kvmppc_unpin_guest_page(kvm, va, vpa, false); |
| |
| /* Check length */ |
| if (len > nb || len < sizeof(struct reg_vpa)) |
| return H_PARAMETER; |
| } else { |
| vpa = 0; |
| len = 0; |
| } |
| |
| err = H_PARAMETER; |
| vpap = NULL; |
| spin_lock(&tvcpu->arch.vpa_update_lock); |
| |
| switch (subfunc) { |
| case H_VPA_REG_VPA: /* register VPA */ |
| /* |
| * The size of our lppaca is 1kB because of the way we align |
| * it for the guest to avoid crossing a 4kB boundary. We only |
| * use 640 bytes of the structure though, so we should accept |
| * clients that set a size of 640. |
| */ |
| BUILD_BUG_ON(sizeof(struct lppaca) != 640); |
| if (len < sizeof(struct lppaca)) |
| break; |
| vpap = &tvcpu->arch.vpa; |
| err = 0; |
| break; |
| |
| case H_VPA_REG_DTL: /* register DTL */ |
| if (len < sizeof(struct dtl_entry)) |
| break; |
| len -= len % sizeof(struct dtl_entry); |
| |
| /* Check that they have previously registered a VPA */ |
| err = H_RESOURCE; |
| if (!vpa_is_registered(&tvcpu->arch.vpa)) |
| break; |
| |
| vpap = &tvcpu->arch.dtl; |
| err = 0; |
| break; |
| |
| case H_VPA_REG_SLB: /* register SLB shadow buffer */ |
| /* Check that they have previously registered a VPA */ |
| err = H_RESOURCE; |
| if (!vpa_is_registered(&tvcpu->arch.vpa)) |
| break; |
| |
| vpap = &tvcpu->arch.slb_shadow; |
| err = 0; |
| break; |
| |
| case H_VPA_DEREG_VPA: /* deregister VPA */ |
| /* Check they don't still have a DTL or SLB buf registered */ |
| err = H_RESOURCE; |
| if (vpa_is_registered(&tvcpu->arch.dtl) || |
| vpa_is_registered(&tvcpu->arch.slb_shadow)) |
| break; |
| |
| vpap = &tvcpu->arch.vpa; |
| err = 0; |
| break; |
| |
| case H_VPA_DEREG_DTL: /* deregister DTL */ |
| vpap = &tvcpu->arch.dtl; |
| err = 0; |
| break; |
| |
| case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ |
| vpap = &tvcpu->arch.slb_shadow; |
| err = 0; |
| break; |
| } |
| |
| if (vpap) { |
| vpap->next_gpa = vpa; |
| vpap->len = len; |
| vpap->update_pending = 1; |
| } |
| |
| spin_unlock(&tvcpu->arch.vpa_update_lock); |
| |
| return err; |
| } |
| |
| static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| void *va; |
| unsigned long nb; |
| unsigned long gpa; |
| |
| /* |
| * We need to pin the page pointed to by vpap->next_gpa, |
| * but we can't call kvmppc_pin_guest_page under the lock |
| * as it does get_user_pages() and down_read(). So we |
| * have to drop the lock, pin the page, then get the lock |
| * again and check that a new area didn't get registered |
| * in the meantime. |
| */ |
| for (;;) { |
| gpa = vpap->next_gpa; |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| va = NULL; |
| nb = 0; |
| if (gpa) |
| va = kvmppc_pin_guest_page(kvm, gpa, &nb); |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| if (gpa == vpap->next_gpa) |
| break; |
| /* sigh... unpin that one and try again */ |
| if (va) |
| kvmppc_unpin_guest_page(kvm, va, gpa, false); |
| } |
| |
| vpap->update_pending = 0; |
| if (va && nb < vpap->len) { |
| /* |
| * If it's now too short, it must be that userspace |
| * has changed the mappings underlying guest memory, |
| * so unregister the region. |
| */ |
| kvmppc_unpin_guest_page(kvm, va, gpa, false); |
| va = NULL; |
| } |
| if (vpap->pinned_addr) |
| kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, |
| vpap->dirty); |
| vpap->gpa = gpa; |
| vpap->pinned_addr = va; |
| vpap->dirty = false; |
| if (va) |
| vpap->pinned_end = va + vpap->len; |
| } |
| |
| static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.vpa.update_pending || |
| vcpu->arch.slb_shadow.update_pending || |
| vcpu->arch.dtl.update_pending)) |
| return; |
| |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| if (vcpu->arch.vpa.update_pending) { |
| kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); |
| if (vcpu->arch.vpa.pinned_addr) |
| init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); |
| } |
| if (vcpu->arch.dtl.update_pending) { |
| kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); |
| vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; |
| vcpu->arch.dtl_index = 0; |
| } |
| if (vcpu->arch.slb_shadow.update_pending) |
| kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| } |
| |
| /* |
| * Return the accumulated stolen time for the vcore up until `now'. |
| * The caller should hold the vcore lock. |
| */ |
| static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) |
| { |
| u64 p; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vc->stoltb_lock, flags); |
| p = vc->stolen_tb; |
| if (vc->vcore_state != VCORE_INACTIVE && |
| vc->preempt_tb != TB_NIL) |
| p += now - vc->preempt_tb; |
| spin_unlock_irqrestore(&vc->stoltb_lock, flags); |
| return p; |
| } |
| |
| static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, |
| struct kvmppc_vcore *vc) |
| { |
| struct dtl_entry *dt; |
| struct lppaca *vpa; |
| unsigned long stolen; |
| unsigned long core_stolen; |
| u64 now; |
| unsigned long flags; |
| |
| dt = vcpu->arch.dtl_ptr; |
| vpa = vcpu->arch.vpa.pinned_addr; |
| now = mftb(); |
| core_stolen = vcore_stolen_time(vc, now); |
| stolen = core_stolen - vcpu->arch.stolen_logged; |
| vcpu->arch.stolen_logged = core_stolen; |
| spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); |
| stolen += vcpu->arch.busy_stolen; |
| vcpu->arch.busy_stolen = 0; |
| spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); |
| if (!dt || !vpa) |
| return; |
| memset(dt, 0, sizeof(struct dtl_entry)); |
| dt->dispatch_reason = 7; |
| dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); |
| dt->timebase = cpu_to_be64(now + vc->tb_offset); |
| dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); |
| dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); |
| dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); |
| ++dt; |
| if (dt == vcpu->arch.dtl.pinned_end) |
| dt = vcpu->arch.dtl.pinned_addr; |
| vcpu->arch.dtl_ptr = dt; |
| /* order writing *dt vs. writing vpa->dtl_idx */ |
| smp_wmb(); |
| vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); |
| vcpu->arch.dtl.dirty = true; |
| } |
| |
| /* See if there is a doorbell interrupt pending for a vcpu */ |
| static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) |
| { |
| int thr; |
| struct kvmppc_vcore *vc; |
| |
| if (vcpu->arch.doorbell_request) |
| return true; |
| /* |
| * Ensure that the read of vcore->dpdes comes after the read |
| * of vcpu->doorbell_request. This barrier matches the |
| * smp_wmb() in kvmppc_guest_entry_inject(). |
| */ |
| smp_rmb(); |
| vc = vcpu->arch.vcore; |
| thr = vcpu->vcpu_id - vc->first_vcpuid; |
| return !!(vc->dpdes & (1 << thr)); |
| } |
| |
| static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) |
| return true; |
| if ((!vcpu->arch.vcore->arch_compat) && |
| cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return true; |
| return false; |
| } |
| |
| static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, |
| unsigned long resource, unsigned long value1, |
| unsigned long value2) |
| { |
| switch (resource) { |
| case H_SET_MODE_RESOURCE_SET_CIABR: |
| if (!kvmppc_power8_compatible(vcpu)) |
| return H_P2; |
| if (value2) |
| return H_P4; |
| if (mflags) |
| return H_UNSUPPORTED_FLAG_START; |
| /* Guests can't breakpoint the hypervisor */ |
| if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) |
| return H_P3; |
| vcpu->arch.ciabr = value1; |
| return H_SUCCESS; |
| case H_SET_MODE_RESOURCE_SET_DAWR0: |
| if (!kvmppc_power8_compatible(vcpu)) |
| return H_P2; |
| if (!ppc_breakpoint_available()) |
| return H_P2; |
| if (mflags) |
| return H_UNSUPPORTED_FLAG_START; |
| if (value2 & DABRX_HYP) |
| return H_P4; |
| vcpu->arch.dawr0 = value1; |
| vcpu->arch.dawrx0 = value2; |
| return H_SUCCESS; |
| case H_SET_MODE_RESOURCE_SET_DAWR1: |
| if (!kvmppc_power8_compatible(vcpu)) |
| return H_P2; |
| if (!ppc_breakpoint_available()) |
| return H_P2; |
| if (!cpu_has_feature(CPU_FTR_DAWR1)) |
| return H_P2; |
| if (!vcpu->kvm->arch.dawr1_enabled) |
| return H_FUNCTION; |
| if (mflags) |
| return H_UNSUPPORTED_FLAG_START; |
| if (value2 & DABRX_HYP) |
| return H_P4; |
| vcpu->arch.dawr1 = value1; |
| vcpu->arch.dawrx1 = value2; |
| return H_SUCCESS; |
| case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: |
| /* |
| * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. |
| * Keep this in synch with kvmppc_filter_guest_lpcr_hv. |
| */ |
| if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && |
| kvmhv_vcpu_is_radix(vcpu) && mflags == 3) |
| return H_UNSUPPORTED_FLAG_START; |
| return H_TOO_HARD; |
| default: |
| return H_TOO_HARD; |
| } |
| } |
| |
| /* Copy guest memory in place - must reside within a single memslot */ |
| static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, |
| unsigned long len) |
| { |
| struct kvm_memory_slot *to_memslot = NULL; |
| struct kvm_memory_slot *from_memslot = NULL; |
| unsigned long to_addr, from_addr; |
| int r; |
| |
| /* Get HPA for from address */ |
| from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); |
| if (!from_memslot) |
| return -EFAULT; |
| if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) |
| << PAGE_SHIFT)) |
| return -EINVAL; |
| from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); |
| if (kvm_is_error_hva(from_addr)) |
| return -EFAULT; |
| from_addr |= (from & (PAGE_SIZE - 1)); |
| |
| /* Get HPA for to address */ |
| to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); |
| if (!to_memslot) |
| return -EFAULT; |
| if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) |
| << PAGE_SHIFT)) |
| return -EINVAL; |
| to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); |
| if (kvm_is_error_hva(to_addr)) |
| return -EFAULT; |
| to_addr |= (to & (PAGE_SIZE - 1)); |
| |
| /* Perform copy */ |
| r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, |
| len); |
| if (r) |
| return -EFAULT; |
| mark_page_dirty(kvm, to >> PAGE_SHIFT); |
| return 0; |
| } |
| |
| static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long dest, unsigned long src) |
| { |
| u64 pg_sz = SZ_4K; /* 4K page size */ |
| u64 pg_mask = SZ_4K - 1; |
| int ret; |
| |
| /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ |
| if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | |
| H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) |
| return H_PARAMETER; |
| |
| /* dest (and src if copy_page flag set) must be page aligned */ |
| if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) |
| return H_PARAMETER; |
| |
| /* zero and/or copy the page as determined by the flags */ |
| if (flags & H_COPY_PAGE) { |
| ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); |
| if (ret < 0) |
| return H_PARAMETER; |
| } else if (flags & H_ZERO_PAGE) { |
| ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); |
| if (ret < 0) |
| return H_PARAMETER; |
| } |
| |
| /* We can ignore the remaining flags */ |
| |
| return H_SUCCESS; |
| } |
| |
| static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) |
| { |
| struct kvmppc_vcore *vcore = target->arch.vcore; |
| |
| /* |
| * We expect to have been called by the real mode handler |
| * (kvmppc_rm_h_confer()) which would have directly returned |
| * H_SUCCESS if the source vcore wasn't idle (e.g. if it may |
| * have useful work to do and should not confer) so we don't |
| * recheck that here. |
| * |
| * In the case of the P9 single vcpu per vcore case, the real |
| * mode handler is not called but no other threads are in the |
| * source vcore. |
| */ |
| |
| spin_lock(&vcore->lock); |
| if (target->arch.state == KVMPPC_VCPU_RUNNABLE && |
| vcore->vcore_state != VCORE_INACTIVE && |
| vcore->runner) |
| target = vcore->runner; |
| spin_unlock(&vcore->lock); |
| |
| return kvm_vcpu_yield_to(target); |
| } |
| |
| static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) |
| { |
| int yield_count = 0; |
| struct lppaca *lppaca; |
| |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; |
| if (lppaca) |
| yield_count = be32_to_cpu(lppaca->yield_count); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| return yield_count; |
| } |
| |
| /* |
| * H_RPT_INVALIDATE hcall handler for nested guests. |
| * |
| * Handles only nested process-scoped invalidation requests in L0. |
| */ |
| static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) |
| { |
| unsigned long type = kvmppc_get_gpr(vcpu, 6); |
| unsigned long pid, pg_sizes, start, end; |
| |
| /* |
| * The partition-scoped invalidations aren't handled here in L0. |
| */ |
| if (type & H_RPTI_TYPE_NESTED) |
| return RESUME_HOST; |
| |
| pid = kvmppc_get_gpr(vcpu, 4); |
| pg_sizes = kvmppc_get_gpr(vcpu, 7); |
| start = kvmppc_get_gpr(vcpu, 8); |
| end = kvmppc_get_gpr(vcpu, 9); |
| |
| do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, |
| type, pg_sizes, start, end); |
| |
| kvmppc_set_gpr(vcpu, 3, H_SUCCESS); |
| return RESUME_GUEST; |
| } |
| |
| static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, |
| unsigned long id, unsigned long target, |
| unsigned long type, unsigned long pg_sizes, |
| unsigned long start, unsigned long end) |
| { |
| if (!kvm_is_radix(vcpu->kvm)) |
| return H_UNSUPPORTED; |
| |
| if (end < start) |
| return H_P5; |
| |
| /* |
| * Partition-scoped invalidation for nested guests. |
| */ |
| if (type & H_RPTI_TYPE_NESTED) { |
| if (!nesting_enabled(vcpu->kvm)) |
| return H_FUNCTION; |
| |
| /* Support only cores as target */ |
| if (target != H_RPTI_TARGET_CMMU) |
| return H_P2; |
| |
| return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, |
| start, end); |
| } |
| |
| /* |
| * Process-scoped invalidation for L1 guests. |
| */ |
| do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, |
| type, pg_sizes, start, end); |
| return H_SUCCESS; |
| } |
| |
| int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long req = kvmppc_get_gpr(vcpu, 3); |
| unsigned long target, ret = H_SUCCESS; |
| int yield_count; |
| struct kvm_vcpu *tvcpu; |
| int idx, rc; |
| |
| if (req <= MAX_HCALL_OPCODE && |
| !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) |
| return RESUME_HOST; |
| |
| switch (req) { |
| case H_REMOVE: |
| ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_ENTER: |
| ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6), |
| kvmppc_get_gpr(vcpu, 7)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_READ: |
| ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_CLEAR_MOD: |
| ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_CLEAR_REF: |
| ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_PROTECT: |
| ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_BULK_REMOVE: |
| ret = kvmppc_h_bulk_remove(vcpu); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| |
| case H_CEDE: |
| break; |
| case H_PROD: |
| target = kvmppc_get_gpr(vcpu, 4); |
| tvcpu = kvmppc_find_vcpu(kvm, target); |
| if (!tvcpu) { |
| ret = H_PARAMETER; |
| break; |
| } |
| tvcpu->arch.prodded = 1; |
| smp_mb(); |
| if (tvcpu->arch.ceded) |
| kvmppc_fast_vcpu_kick_hv(tvcpu); |
| break; |
| case H_CONFER: |
| target = kvmppc_get_gpr(vcpu, 4); |
| if (target == -1) |
| break; |
| tvcpu = kvmppc_find_vcpu(kvm, target); |
| if (!tvcpu) { |
| ret = H_PARAMETER; |
| break; |
| } |
| yield_count = kvmppc_get_gpr(vcpu, 5); |
| if (kvmppc_get_yield_count(tvcpu) != yield_count) |
| break; |
| kvm_arch_vcpu_yield_to(tvcpu); |
| break; |
| case H_REGISTER_VPA: |
| ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| break; |
| case H_RTAS: |
| if (list_empty(&kvm->arch.rtas_tokens)) |
| return RESUME_HOST; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| rc = kvmppc_rtas_hcall(vcpu); |
| srcu_read_unlock(&kvm->srcu, idx); |
| |
| if (rc == -ENOENT) |
| return RESUME_HOST; |
| else if (rc == 0) |
| break; |
| |
| /* Send the error out to userspace via KVM_RUN */ |
| return rc; |
| case H_LOGICAL_CI_LOAD: |
| ret = kvmppc_h_logical_ci_load(vcpu); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_LOGICAL_CI_STORE: |
| ret = kvmppc_h_logical_ci_store(vcpu); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_SET_MODE: |
| ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6), |
| kvmppc_get_gpr(vcpu, 7)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_XIRR: |
| case H_CPPR: |
| case H_EOI: |
| case H_IPI: |
| case H_IPOLL: |
| case H_XIRR_X: |
| if (kvmppc_xics_enabled(vcpu)) { |
| if (xics_on_xive()) { |
| ret = H_NOT_AVAILABLE; |
| return RESUME_GUEST; |
| } |
| ret = kvmppc_xics_hcall(vcpu, req); |
| break; |
| } |
| return RESUME_HOST; |
| case H_SET_DABR: |
| ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); |
| break; |
| case H_SET_XDABR: |
| ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5)); |
| break; |
| #ifdef CONFIG_SPAPR_TCE_IOMMU |
| case H_GET_TCE: |
| ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_PUT_TCE: |
| ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_PUT_TCE_INDIRECT: |
| ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6), |
| kvmppc_get_gpr(vcpu, 7)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| case H_STUFF_TCE: |
| ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6), |
| kvmppc_get_gpr(vcpu, 7)); |
| if (ret == H_TOO_HARD) |
| return RESUME_HOST; |
| break; |
| #endif |
| case H_RANDOM: |
| if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4])) |
| ret = H_HARDWARE; |
| break; |
| case H_RPT_INVALIDATE: |
| ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6), |
| kvmppc_get_gpr(vcpu, 7), |
| kvmppc_get_gpr(vcpu, 8), |
| kvmppc_get_gpr(vcpu, 9)); |
| break; |
| |
| case H_SET_PARTITION_TABLE: |
| ret = H_FUNCTION; |
| if (nesting_enabled(kvm)) |
| ret = kvmhv_set_partition_table(vcpu); |
| break; |
| case H_ENTER_NESTED: |
| ret = H_FUNCTION; |
| if (!nesting_enabled(kvm)) |
| break; |
| ret = kvmhv_enter_nested_guest(vcpu); |
| if (ret == H_INTERRUPT) { |
| kvmppc_set_gpr(vcpu, 3, 0); |
| vcpu->arch.hcall_needed = 0; |
| return -EINTR; |
| } else if (ret == H_TOO_HARD) { |
| kvmppc_set_gpr(vcpu, 3, 0); |
| vcpu->arch.hcall_needed = 0; |
| return RESUME_HOST; |
| } |
| break; |
| case H_TLB_INVALIDATE: |
| ret = H_FUNCTION; |
| if (nesting_enabled(kvm)) |
| ret = kvmhv_do_nested_tlbie(vcpu); |
| break; |
| case H_COPY_TOFROM_GUEST: |
| ret = H_FUNCTION; |
| if (nesting_enabled(kvm)) |
| ret = kvmhv_copy_tofrom_guest_nested(vcpu); |
| break; |
| case H_PAGE_INIT: |
| ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| break; |
| case H_SVM_PAGE_IN: |
| ret = H_UNSUPPORTED; |
| if (kvmppc_get_srr1(vcpu) & MSR_S) |
| ret = kvmppc_h_svm_page_in(kvm, |
| kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| break; |
| case H_SVM_PAGE_OUT: |
| ret = H_UNSUPPORTED; |
| if (kvmppc_get_srr1(vcpu) & MSR_S) |
| ret = kvmppc_h_svm_page_out(kvm, |
| kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| break; |
| case H_SVM_INIT_START: |
| ret = H_UNSUPPORTED; |
| if (kvmppc_get_srr1(vcpu) & MSR_S) |
| ret = kvmppc_h_svm_init_start(kvm); |
| break; |
| case H_SVM_INIT_DONE: |
| ret = H_UNSUPPORTED; |
| if (kvmppc_get_srr1(vcpu) & MSR_S) |
| ret = kvmppc_h_svm_init_done(kvm); |
| break; |
| case H_SVM_INIT_ABORT: |
| /* |
| * Even if that call is made by the Ultravisor, the SSR1 value |
| * is the guest context one, with the secure bit clear as it has |
| * not yet been secured. So we can't check it here. |
| * Instead the kvm->arch.secure_guest flag is checked inside |
| * kvmppc_h_svm_init_abort(). |
| */ |
| ret = kvmppc_h_svm_init_abort(kvm); |
| break; |
| |
| default: |
| return RESUME_HOST; |
| } |
| WARN_ON_ONCE(ret == H_TOO_HARD); |
| kvmppc_set_gpr(vcpu, 3, ret); |
| vcpu->arch.hcall_needed = 0; |
| return RESUME_GUEST; |
| } |
| |
| /* |
| * Handle H_CEDE in the P9 path where we don't call the real-mode hcall |
| * handlers in book3s_hv_rmhandlers.S. |
| * |
| * This has to be done early, not in kvmppc_pseries_do_hcall(), so |
| * that the cede logic in kvmppc_run_single_vcpu() works properly. |
| */ |
| static void kvmppc_cede(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.shregs.msr |= MSR_EE; |
| vcpu->arch.ceded = 1; |
| smp_mb(); |
| if (vcpu->arch.prodded) { |
| vcpu->arch.prodded = 0; |
| smp_mb(); |
| vcpu->arch.ceded = 0; |
| } |
| } |
| |
| static int kvmppc_hcall_impl_hv(unsigned long cmd) |
| { |
| switch (cmd) { |
| case H_CEDE: |
| case H_PROD: |
| case H_CONFER: |
| case H_REGISTER_VPA: |
| case H_SET_MODE: |
| case H_LOGICAL_CI_LOAD: |
| case H_LOGICAL_CI_STORE: |
| #ifdef CONFIG_KVM_XICS |
| case H_XIRR: |
| case H_CPPR: |
| case H_EOI: |
| case H_IPI: |
| case H_IPOLL: |
| case H_XIRR_X: |
| #endif |
| case H_PAGE_INIT: |
| case H_RPT_INVALIDATE: |
| return 1; |
| } |
| |
| /* See if it's in the real-mode table */ |
| return kvmppc_hcall_impl_hv_realmode(cmd); |
| } |
| |
| static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) |
| { |
| u32 last_inst; |
| |
| if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != |
| EMULATE_DONE) { |
| /* |
| * Fetch failed, so return to guest and |
| * try executing it again. |
| */ |
| return RESUME_GUEST; |
| } |
| |
| if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { |
| vcpu->run->exit_reason = KVM_EXIT_DEBUG; |
| vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); |
| return RESUME_HOST; |
| } else { |
| kvmppc_core_queue_program(vcpu, SRR1_PROGILL); |
| return RESUME_GUEST; |
| } |
| } |
| |
| static void do_nothing(void *x) |
| { |
| } |
| |
| static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) |
| { |
| int thr, cpu, pcpu, nthreads; |
| struct kvm_vcpu *v; |
| unsigned long dpdes; |
| |
| nthreads = vcpu->kvm->arch.emul_smt_mode; |
| dpdes = 0; |
| cpu = vcpu->vcpu_id & ~(nthreads - 1); |
| for (thr = 0; thr < nthreads; ++thr, ++cpu) { |
| v = kvmppc_find_vcpu(vcpu->kvm, cpu); |
| if (!v) |
| continue; |
| /* |
| * If the vcpu is currently running on a physical cpu thread, |
| * interrupt it in order to pull it out of the guest briefly, |
| * which will update its vcore->dpdes value. |
| */ |
| pcpu = READ_ONCE(v->cpu); |
| if (pcpu >= 0) |
| smp_call_function_single(pcpu, do_nothing, NULL, 1); |
| if (kvmppc_doorbell_pending(v)) |
| dpdes |= 1 << thr; |
| } |
| return dpdes; |
| } |
| |
| /* |
| * On POWER9, emulate doorbell-related instructions in order to |
| * give the guest the illusion of running on a multi-threaded core. |
| * The instructions emulated are msgsndp, msgclrp, mfspr TIR, |
| * and mfspr DPDES. |
| */ |
| static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) |
| { |
| u32 inst, rb, thr; |
| unsigned long arg; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_vcpu *tvcpu; |
| |
| if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) |
| return RESUME_GUEST; |
| if (get_op(inst) != 31) |
| return EMULATE_FAIL; |
| rb = get_rb(inst); |
| thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); |
| switch (get_xop(inst)) { |
| case OP_31_XOP_MSGSNDP: |
| arg = kvmppc_get_gpr(vcpu, rb); |
| if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) |
| break; |
| arg &= 0x7f; |
| if (arg >= kvm->arch.emul_smt_mode) |
| break; |
| tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); |
| if (!tvcpu) |
| break; |
| if (!tvcpu->arch.doorbell_request) { |
| tvcpu->arch.doorbell_request = 1; |
| kvmppc_fast_vcpu_kick_hv(tvcpu); |
| } |
| break; |
| case OP_31_XOP_MSGCLRP: |
| arg = kvmppc_get_gpr(vcpu, rb); |
| if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) |
| break; |
| vcpu->arch.vcore->dpdes = 0; |
| vcpu->arch.doorbell_request = 0; |
| break; |
| case OP_31_XOP_MFSPR: |
| switch (get_sprn(inst)) { |
| case SPRN_TIR: |
| arg = thr; |
| break; |
| case SPRN_DPDES: |
| arg = kvmppc_read_dpdes(vcpu); |
| break; |
| default: |
| return EMULATE_FAIL; |
| } |
| kvmppc_set_gpr(vcpu, get_rt(inst), arg); |
| break; |
| default: |
| return EMULATE_FAIL; |
| } |
| kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); |
| return RESUME_GUEST; |
| } |
| |
| static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, |
| struct task_struct *tsk) |
| { |
| struct kvm_run *run = vcpu->run; |
| int r = RESUME_HOST; |
| |
| vcpu->stat.sum_exits++; |
| |
| /* |
| * This can happen if an interrupt occurs in the last stages |
| * of guest entry or the first stages of guest exit (i.e. after |
| * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV |
| * and before setting it to KVM_GUEST_MODE_HOST_HV). |
| * That can happen due to a bug, or due to a machine check |
| * occurring at just the wrong time. |
| */ |
| if (vcpu->arch.shregs.msr & MSR_HV) { |
| printk(KERN_EMERG "KVM trap in HV mode!\n"); |
| printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", |
| vcpu->arch.trap, kvmppc_get_pc(vcpu), |
| vcpu->arch.shregs.msr); |
| kvmppc_dump_regs(vcpu); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| run->hw.hardware_exit_reason = vcpu->arch.trap; |
| return RESUME_HOST; |
| } |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| run->ready_for_interrupt_injection = 1; |
| switch (vcpu->arch.trap) { |
| /* We're good on these - the host merely wanted to get our attention */ |
| case BOOK3S_INTERRUPT_HV_DECREMENTER: |
| vcpu->stat.dec_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_EXTERNAL: |
| case BOOK3S_INTERRUPT_H_DOORBELL: |
| case BOOK3S_INTERRUPT_H_VIRT: |
| vcpu->stat.ext_intr_exits++; |
| r = RESUME_GUEST; |
| break; |
| /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ |
| case BOOK3S_INTERRUPT_HMI: |
| case BOOK3S_INTERRUPT_PERFMON: |
| case BOOK3S_INTERRUPT_SYSTEM_RESET: |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_MACHINE_CHECK: { |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| /* |
| * Print the MCE event to host console. Ratelimit so the guest |
| * can't flood the host log. |
| */ |
| if (__ratelimit(&rs)) |
| machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); |
| |
| /* |
| * If the guest can do FWNMI, exit to userspace so it can |
| * deliver a FWNMI to the guest. |
| * Otherwise we synthesize a machine check for the guest |
| * so that it knows that the machine check occurred. |
| */ |
| if (!vcpu->kvm->arch.fwnmi_enabled) { |
| ulong flags = vcpu->arch.shregs.msr & 0x083c0000; |
| kvmppc_core_queue_machine_check(vcpu, flags); |
| r = RESUME_GUEST; |
| break; |
| } |
| |
| /* Exit to guest with KVM_EXIT_NMI as exit reason */ |
| run->exit_reason = KVM_EXIT_NMI; |
| run->hw.hardware_exit_reason = vcpu->arch.trap; |
| /* Clear out the old NMI status from run->flags */ |
| run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; |
| /* Now set the NMI status */ |
| if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) |
| run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; |
| else |
| run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; |
| |
| r = RESUME_HOST; |
| break; |
| } |
| case BOOK3S_INTERRUPT_PROGRAM: |
| { |
| ulong flags; |
| /* |
| * Normally program interrupts are delivered directly |
| * to the guest by the hardware, but we can get here |
| * as a result of a hypervisor emulation interrupt |
| * (e40) getting turned into a 700 by BML RTAS. |
| */ |
| flags = vcpu->arch.shregs.msr & 0x1f0000ull; |
| kvmppc_core_queue_program(vcpu, flags); |
| r = RESUME_GUEST; |
| break; |
| } |
| case BOOK3S_INTERRUPT_SYSCALL: |
| { |
| int i; |
| |
| if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) { |
| /* |
| * Guest userspace executed sc 1. This can only be |
| * reached by the P9 path because the old path |
| * handles this case in realmode hcall handlers. |
| */ |
| if (!kvmhv_vcpu_is_radix(vcpu)) { |
| /* |
| * A guest could be running PR KVM, so this |
| * may be a PR KVM hcall. It must be reflected |
| * to the guest kernel as a sc interrupt. |
| */ |
| kvmppc_core_queue_syscall(vcpu); |
| } else { |
| /* |
| * Radix guests can not run PR KVM or nested HV |
| * hash guests which might run PR KVM, so this |
| * is always a privilege fault. Send a program |
| * check to guest kernel. |
| */ |
| kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); |
| } |
| r = RESUME_GUEST; |
| break; |
| } |
| |
| /* |
| * hcall - gather args and set exit_reason. This will next be |
| * handled by kvmppc_pseries_do_hcall which may be able to deal |
| * with it and resume guest, or may punt to userspace. |
| */ |
| run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); |
| for (i = 0; i < 9; ++i) |
| run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); |
| run->exit_reason = KVM_EXIT_PAPR_HCALL; |
| vcpu->arch.hcall_needed = 1; |
| r = RESUME_HOST; |
| break; |
| } |
| /* |
| * We get these next two if the guest accesses a page which it thinks |
| * it has mapped but which is not actually present, either because |
| * it is for an emulated I/O device or because the corresonding |
| * host page has been paged out. |
| * |
| * Any other HDSI/HISI interrupts have been handled already for P7/8 |
| * guests. For POWER9 hash guests not using rmhandlers, basic hash |
| * fault handling is done here. |
| */ |
| case BOOK3S_INTERRUPT_H_DATA_STORAGE: { |
| unsigned long vsid; |
| long err; |
| |
| if (vcpu->arch.fault_dsisr == HDSISR_CANARY) { |
| r = RESUME_GUEST; /* Just retry if it's the canary */ |
| break; |
| } |
| |
| if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { |
| /* |
| * Radix doesn't require anything, and pre-ISAv3.0 hash |
| * already attempted to handle this in rmhandlers. The |
| * hash fault handling below is v3 only (it uses ASDR |
| * via fault_gpa). |
| */ |
| r = RESUME_PAGE_FAULT; |
| break; |
| } |
| |
| if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { |
| kvmppc_core_queue_data_storage(vcpu, |
| vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); |
| r = RESUME_GUEST; |
| break; |
| } |
| |
| if (!(vcpu->arch.shregs.msr & MSR_DR)) |
| vsid = vcpu->kvm->arch.vrma_slb_v; |
| else |
| vsid = vcpu->arch.fault_gpa; |
| |
| err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, |
| vsid, vcpu->arch.fault_dsisr, true); |
| if (err == 0) { |
| r = RESUME_GUEST; |
| } else if (err == -1 || err == -2) { |
| r = RESUME_PAGE_FAULT; |
| } else { |
| kvmppc_core_queue_data_storage(vcpu, |
| vcpu->arch.fault_dar, err); |
| r = RESUME_GUEST; |
| } |
| break; |
| } |
| case BOOK3S_INTERRUPT_H_INST_STORAGE: { |
| unsigned long vsid; |
| long err; |
| |
| vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); |
| vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & |
| DSISR_SRR1_MATCH_64S; |
| if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { |
| /* |
| * Radix doesn't require anything, and pre-ISAv3.0 hash |
| * already attempted to handle this in rmhandlers. The |
| * hash fault handling below is v3 only (it uses ASDR |
| * via fault_gpa). |
| */ |
| if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) |
| vcpu->arch.fault_dsisr |= DSISR_ISSTORE; |
| r = RESUME_PAGE_FAULT; |
| break; |
| } |
| |
| if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { |
| kvmppc_core_queue_inst_storage(vcpu, |
| vcpu->arch.fault_dsisr); |
| r = RESUME_GUEST; |
| break; |
| } |
| |
| if (!(vcpu->arch.shregs.msr & MSR_IR)) |
| vsid = vcpu->kvm->arch.vrma_slb_v; |
| else |
| vsid = vcpu->arch.fault_gpa; |
| |
| err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, |
| vsid, vcpu->arch.fault_dsisr, false); |
| if (err == 0) { |
| r = RESUME_GUEST; |
| } else if (err == -1) { |
| r = RESUME_PAGE_FAULT; |
| } else { |
| kvmppc_core_queue_inst_storage(vcpu, err); |
| r = RESUME_GUEST; |
| } |
| break; |
| } |
| |
| /* |
| * This occurs if the guest executes an illegal instruction. |
| * If the guest debug is disabled, generate a program interrupt |
| * to the guest. If guest debug is enabled, we need to check |
| * whether the instruction is a software breakpoint instruction. |
| * Accordingly return to Guest or Host. |
| */ |
| case BOOK3S_INTERRUPT_H_EMUL_ASSIST: |
| if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) |
| vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? |
| swab32(vcpu->arch.emul_inst) : |
| vcpu->arch.emul_inst; |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { |
| r = kvmppc_emulate_debug_inst(vcpu); |
| } else { |
| kvmppc_core_queue_program(vcpu, SRR1_PROGILL); |
| r = RESUME_GUEST; |
| } |
| break; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| case BOOK3S_INTERRUPT_HV_SOFTPATCH: |
| /* |
| * This occurs for various TM-related instructions that |
| * we need to emulate on POWER9 DD2.2. We have already |
| * handled the cases where the guest was in real-suspend |
| * mode and was transitioning to transactional state. |
| */ |
| r = kvmhv_p9_tm_emulation(vcpu); |
| if (r != -1) |
| break; |
| fallthrough; /* go to facility unavailable handler */ |
| #endif |
| |
| /* |
| * This occurs if the guest (kernel or userspace), does something that |
| * is prohibited by HFSCR. |
| * On POWER9, this could be a doorbell instruction that we need |
| * to emulate. |
| * Otherwise, we just generate a program interrupt to the guest. |
| */ |
| case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: |
| r = EMULATE_FAIL; |
| if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && |
| cpu_has_feature(CPU_FTR_ARCH_300)) |
| r = kvmppc_emulate_doorbell_instr(vcpu); |
| if (r == EMULATE_FAIL) { |
| kvmppc_core_queue_program(vcpu, SRR1_PROGILL); |
| r = RESUME_GUEST; |
| } |
| break; |
| |
| case BOOK3S_INTERRUPT_HV_RM_HARD: |
| r = RESUME_PASSTHROUGH; |
| break; |
| default: |
| kvmppc_dump_regs(vcpu); |
| printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", |
| vcpu->arch.trap, kvmppc_get_pc(vcpu), |
| vcpu->arch.shregs.msr); |
| run->hw.hardware_exit_reason = vcpu->arch.trap; |
| r = RESUME_HOST; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_nested_guest *nested = vcpu->arch.nested; |
| int r; |
| int srcu_idx; |
| |
| vcpu->stat.sum_exits++; |
| |
| /* |
| * This can happen if an interrupt occurs in the last stages |
| * of guest entry or the first stages of guest exit (i.e. after |
| * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV |
| * and before setting it to KVM_GUEST_MODE_HOST_HV). |
| * That can happen due to a bug, or due to a machine check |
| * occurring at just the wrong time. |
| */ |
| if (vcpu->arch.shregs.msr & MSR_HV) { |
| pr_emerg("KVM trap in HV mode while nested!\n"); |
| pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", |
| vcpu->arch.trap, kvmppc_get_pc(vcpu), |
| vcpu->arch.shregs.msr); |
| kvmppc_dump_regs(vcpu); |
| return RESUME_HOST; |
| } |
| switch (vcpu->arch.trap) { |
| /* We're good on these - the host merely wanted to get our attention */ |
| case BOOK3S_INTERRUPT_HV_DECREMENTER: |
| vcpu->stat.dec_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_EXTERNAL: |
| vcpu->stat.ext_intr_exits++; |
| r = RESUME_HOST; |
| break; |
| case BOOK3S_INTERRUPT_H_DOORBELL: |
| case BOOK3S_INTERRUPT_H_VIRT: |
| vcpu->stat.ext_intr_exits++; |
| r = RESUME_GUEST; |
| break; |
| /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ |
| case BOOK3S_INTERRUPT_HMI: |
| case BOOK3S_INTERRUPT_PERFMON: |
| case BOOK3S_INTERRUPT_SYSTEM_RESET: |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_MACHINE_CHECK: |
| { |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| /* Pass the machine check to the L1 guest */ |
| r = RESUME_HOST; |
| /* Print the MCE event to host console. */ |
| if (__ratelimit(&rs)) |
| machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); |
| break; |
| } |
| /* |
| * We get these next two if the guest accesses a page which it thinks |
| * it has mapped but which is not actually present, either because |
| * it is for an emulated I/O device or because the corresonding |
| * host page has been paged out. |
| */ |
| case BOOK3S_INTERRUPT_H_DATA_STORAGE: |
| srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = kvmhv_nested_page_fault(vcpu); |
| srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); |
| break; |
| case BOOK3S_INTERRUPT_H_INST_STORAGE: |
| vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); |
| vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & |
| DSISR_SRR1_MATCH_64S; |
| if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) |
| vcpu->arch.fault_dsisr |= DSISR_ISSTORE; |
| srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = kvmhv_nested_page_fault(vcpu); |
| srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); |
| break; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| case BOOK3S_INTERRUPT_HV_SOFTPATCH: |
| /* |
| * This occurs for various TM-related instructions that |
| * we need to emulate on POWER9 DD2.2. We have already |
| * handled the cases where the guest was in real-suspend |
| * mode and was transitioning to transactional state. |
| */ |
| r = kvmhv_p9_tm_emulation(vcpu); |
| if (r != -1) |
| break; |
| fallthrough; /* go to facility unavailable handler */ |
| #endif |
| |
| case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { |
| u64 cause = vcpu->arch.hfscr >> 56; |
| |
| /* |
| * Only pass HFU interrupts to the L1 if the facility is |
| * permitted but disabled by the L1's HFSCR, otherwise |
| * the interrupt does not make sense to the L1 so turn |
| * it into a HEAI. |
| */ |
| if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || |
| (nested->hfscr & (1UL << cause))) { |
| vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; |
| |
| /* |
| * If the fetch failed, return to guest and |
| * try executing it again. |
| */ |
| r = kvmppc_get_last_inst(vcpu, INST_GENERIC, |
| &vcpu->arch.emul_inst); |
| if (r != EMULATE_DONE) |
| r = RESUME_GUEST; |
| else |
| r = RESUME_HOST; |
| } else { |
| r = RESUME_HOST; |
| } |
| |
| break; |
| } |
| |
| case BOOK3S_INTERRUPT_HV_RM_HARD: |
| vcpu->arch.trap = 0; |
| r = RESUME_GUEST; |
| if (!xics_on_xive()) |
| kvmppc_xics_rm_complete(vcpu, 0); |
| break; |
| case BOOK3S_INTERRUPT_SYSCALL: |
| { |
| unsigned long req = kvmppc_get_gpr(vcpu, 3); |
| |
| /* |
| * The H_RPT_INVALIDATE hcalls issued by nested |
| * guests for process-scoped invalidations when |
| * GTSE=0, are handled here in L0. |
| */ |
| if (req == H_RPT_INVALIDATE) { |
| r = kvmppc_nested_h_rpt_invalidate(vcpu); |
| break; |
| } |
| |
| r = RESUME_HOST; |
| break; |
| } |
| default: |
| r = RESUME_HOST; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int i; |
| |
| memset(sregs, 0, sizeof(struct kvm_sregs)); |
| sregs->pvr = vcpu->arch.pvr; |
| for (i = 0; i < vcpu->arch.slb_max; i++) { |
| sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; |
| sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int i, j; |
| |
| /* Only accept the same PVR as the host's, since we can't spoof it */ |
| if (sregs->pvr != vcpu->arch.pvr) |
| return -EINVAL; |
| |
| j = 0; |
| for (i = 0; i < vcpu->arch.slb_nr; i++) { |
| if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { |
| vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; |
| vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; |
| ++j; |
| } |
| } |
| vcpu->arch.slb_max = j; |
| |
| return 0; |
| } |
| |
| /* |
| * Enforce limits on guest LPCR values based on hardware availability, |
| * guest configuration, and possibly hypervisor support and security |
| * concerns. |
| */ |
| unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) |
| { |
| /* LPCR_TC only applies to HPT guests */ |
| if (kvm_is_radix(kvm)) |
| lpcr &= ~LPCR_TC; |
| |
| /* On POWER8 and above, userspace can modify AIL */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| lpcr &= ~LPCR_AIL; |
| if ((lpcr & LPCR_AIL) != LPCR_AIL_3) |
| lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ |
| /* |
| * On some POWER9s we force AIL off for radix guests to prevent |
| * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to |
| * guest, which can result in Q0 translations with LPID=0 PID=PIDR to |
| * be cached, which the host TLB management does not expect. |
| */ |
| if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) |
| lpcr &= ~LPCR_AIL; |
| |
| /* |
| * On POWER9, allow userspace to enable large decrementer for the |
| * guest, whether or not the host has it enabled. |
| */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| lpcr &= ~LPCR_LD; |
| |
| return lpcr; |
| } |
| |
| static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) |
| { |
| if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { |
| WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", |
| lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); |
| } |
| } |
| |
| static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, |
| bool preserve_top32) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| u64 mask; |
| |
| spin_lock(&vc->lock); |
| |
| /* |
| * Userspace can only modify |
| * DPFD (default prefetch depth), ILE (interrupt little-endian), |
| * TC (translation control), AIL (alternate interrupt location), |
| * LD (large decrementer). |
| * These are subject to restrictions from kvmppc_filter_lcpr_hv(). |
| */ |
| mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; |
| |
| /* Broken 32-bit version of LPCR must not clear top bits */ |
| if (preserve_top32) |
| mask &= 0xFFFFFFFF; |
| |
| new_lpcr = kvmppc_filter_lpcr_hv(kvm, |
| (vc->lpcr & ~mask) | (new_lpcr & mask)); |
| |
| /* |
| * If ILE (interrupt little-endian) has changed, update the |
| * MSR_LE bit in the intr_msr for each vcpu in this vcore. |
| */ |
| if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (vcpu->arch.vcore != vc) |
| continue; |
| if (new_lpcr & LPCR_ILE) |
| vcpu->arch.intr_msr |= MSR_LE; |
| else |
| vcpu->arch.intr_msr &= ~MSR_LE; |
| } |
| } |
| |
| vc->lpcr = new_lpcr; |
| |
| spin_unlock(&vc->lock); |
| } |
| |
| static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, |
| union kvmppc_one_reg *val) |
| { |
| int r = 0; |
| long int i; |
| |
| switch (id) { |
| case KVM_REG_PPC_DEBUG_INST: |
| *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); |
| break; |
| case KVM_REG_PPC_HIOR: |
| *val = get_reg_val(id, 0); |
| break; |
| case KVM_REG_PPC_DABR: |
| *val = get_reg_val(id, vcpu->arch.dabr); |
| break; |
| case KVM_REG_PPC_DABRX: |
| *val = get_reg_val(id, vcpu->arch.dabrx); |
| break; |
| case KVM_REG_PPC_DSCR: |
| *val = get_reg_val(id, vcpu->arch.dscr); |
| break; |
| case KVM_REG_PPC_PURR: |
| *val = get_reg_val(id, vcpu->arch.purr); |
| break; |
| case KVM_REG_PPC_SPURR: |
| *val = get_reg_val(id, vcpu->arch.spurr); |
| break; |
| case KVM_REG_PPC_AMR: |
| *val = get_reg_val(id, vcpu->arch.amr); |
| break; |
| case KVM_REG_PPC_UAMOR: |
| *val = get_reg_val(id, vcpu->arch.uamor); |
| break; |
| case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: |
| i = id - KVM_REG_PPC_MMCR0; |
| *val = get_reg_val(id, vcpu->arch.mmcr[i]); |
| break; |
| case KVM_REG_PPC_MMCR2: |
| *val = get_reg_val(id, vcpu->arch.mmcr[2]); |
| break; |
| case KVM_REG_PPC_MMCRA: |
| *val = get_reg_val(id, vcpu->arch.mmcra); |
| break; |
| case KVM_REG_PPC_MMCRS: |
| *val = get_reg_val(id, vcpu->arch.mmcrs); |
| break; |
| case KVM_REG_PPC_MMCR3: |
| *val = get_reg_val(id, vcpu->arch.mmcr[3]); |
| break; |
| case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: |
| i = id - KVM_REG_PPC_PMC1; |
| *val = get_reg_val(id, vcpu->arch.pmc[i]); |
| break; |
| case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: |
| i = id - KVM_REG_PPC_SPMC1; |
| *val = get_reg_val(id, vcpu->arch.spmc[i]); |
| break; |
| case KVM_REG_PPC_SIAR: |
| *val = get_reg_val(id, vcpu->arch.siar); |
| break; |
| case KVM_REG_PPC_SDAR: |
| *val = get_reg_val(id, vcpu->arch.sdar); |
| break; |
| case KVM_REG_PPC_SIER: |
| *val = get_reg_val(id, vcpu->arch.sier[0]); |
| break; |
| case KVM_REG_PPC_SIER2: |
| *val = get_reg_val(id, vcpu->arch.sier[1]); |
| break; |
| case KVM_REG_PPC_SIER3: |
| *val = get_reg_val(id, vcpu->arch.sier[2]); |
| break; |
| case KVM_REG_PPC_IAMR: |
| *val = get_reg_val(id, vcpu->arch.iamr); |
| break; |
| case KVM_REG_PPC_PSPB: |
| *val = get_reg_val(id, vcpu->arch.pspb); |
| break; |
| case KVM_REG_PPC_DPDES: |
| /* |
| * On POWER9, where we are emulating msgsndp etc., |
| * we return 1 bit for each vcpu, which can come from |
| * either vcore->dpdes or doorbell_request. |
| * On POWER8, doorbell_request is 0. |
| */ |
| *val = get_reg_val(id, vcpu->arch.vcore->dpdes | |
| vcpu->arch.doorbell_request); |
| break; |
| case KVM_REG_PPC_VTB: |
| *val = get_reg_val(id, vcpu->arch.vcore->vtb); |
| break; |
| case KVM_REG_PPC_DAWR: |
| *val = get_reg_val(id, vcpu->arch.dawr0); |
| break; |
| case KVM_REG_PPC_DAWRX: |
| *val = get_reg_val(id, vcpu->arch.dawrx0); |
| break; |
| case KVM_REG_PPC_DAWR1: |
| *val = get_reg_val(id, vcpu->arch.dawr1); |
| break; |
| case KVM_REG_PPC_DAWRX1: |
| *val = get_reg_val(id, vcpu->arch.dawrx1); |
| break; |
| case KVM_REG_PPC_CIABR: |
| *val = get_reg_val(id, vcpu->arch.ciabr); |
| break; |
| case KVM_REG_PPC_CSIGR: |
| *val = get_reg_val(id, vcpu->arch.csigr); |
| break; |
| case KVM_REG_PPC_TACR: |
| *val = get_reg_val(id, vcpu->arch.tacr); |
| break; |
| case KVM_REG_PPC_TCSCR: |
| *val = get_reg_val(id, vcpu->arch.tcscr); |
| break; |
| case KVM_REG_PPC_PID: |
| *val = get_reg_val(id, vcpu->arch.pid); |
| break; |
| case KVM_REG_PPC_ACOP: |
| *val = get_reg_val(id, vcpu->arch.acop); |
| break; |
| case KVM_REG_PPC_WORT: |
| *val = get_reg_val(id, vcpu->arch.wort); |
| break; |
| case KVM_REG_PPC_TIDR: |
| *val = get_reg_val(id, vcpu->arch.tid); |
| break; |
| case KVM_REG_PPC_PSSCR: |
| *val = get_reg_val(id, vcpu->arch.psscr); |
| break; |
| case KVM_REG_PPC_VPA_ADDR: |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| break; |
| case KVM_REG_PPC_VPA_SLB: |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; |
| val->vpaval.length = vcpu->arch.slb_shadow.len; |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| break; |
| case KVM_REG_PPC_VPA_DTL: |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| val->vpaval.addr = vcpu->arch.dtl.next_gpa; |
| val->vpaval.length = vcpu->arch.dtl.len; |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| break; |
| case KVM_REG_PPC_TB_OFFSET: |
| *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); |
| break; |
| case KVM_REG_PPC_LPCR: |
| case KVM_REG_PPC_LPCR_64: |
| *val = get_reg_val(id, vcpu->arch.vcore->lpcr); |
| break; |
| case KVM_REG_PPC_PPR: |
| *val = get_reg_val(id, vcpu->arch.ppr); |
| break; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| case KVM_REG_PPC_TFHAR: |
| *val = get_reg_val(id, vcpu->arch.tfhar); |
| break; |
| case KVM_REG_PPC_TFIAR: |
| *val = get_reg_val(id, vcpu->arch.tfiar); |
| break; |
| case KVM_REG_PPC_TEXASR: |
| *val = get_reg_val(id, vcpu->arch.texasr); |
| break; |
| case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: |
| i = id - KVM_REG_PPC_TM_GPR0; |
| *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); |
| break; |
| case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: |
| { |
| int j; |
| i = id - KVM_REG_PPC_TM_VSR0; |
| if (i < 32) |
| for (j = 0; j < TS_FPRWIDTH; j++) |
| val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; |
| else { |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| val->vval = vcpu->arch.vr_tm.vr[i-32]; |
| else |
| r = -ENXIO; |
| } |
| break; |
| } |
| case KVM_REG_PPC_TM_CR: |
| *val = get_reg_val(id, vcpu->arch.cr_tm); |
| break; |
| case KVM_REG_PPC_TM_XER: |
| *val = get_reg_val(id, vcpu->arch.xer_tm); |
| break; |
| case KVM_REG_PPC_TM_LR: |
| *val = get_reg_val(id, vcpu->arch.lr_tm); |
| break; |
| case KVM_REG_PPC_TM_CTR: |
| *val = get_reg_val(id, vcpu->arch.ctr_tm); |
| break; |
| case KVM_REG_PPC_TM_FPSCR: |
| *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); |
| break; |
| case KVM_REG_PPC_TM_AMR: |
| *val = get_reg_val(id, vcpu->arch.amr_tm); |
| break; |
| case KVM_REG_PPC_TM_PPR: |
| *val = get_reg_val(id, vcpu->arch.ppr_tm); |
| break; |
| case KVM_REG_PPC_TM_VRSAVE: |
| *val = get_reg_val(id, vcpu->arch.vrsave_tm); |
| break; |
| case KVM_REG_PPC_TM_VSCR: |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); |
| else |
| r = -ENXIO; |
| break; |
| case KVM_REG_PPC_TM_DSCR: |
| *val = get_reg_val(id, vcpu->arch.dscr_tm); |
| break; |
| case KVM_REG_PPC_TM_TAR: |
| *val = get_reg_val(id, vcpu->arch.tar_tm); |
| break; |
| #endif |
| case KVM_REG_PPC_ARCH_COMPAT: |
| *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); |
| break; |
| case KVM_REG_PPC_DEC_EXPIRY: |
| *val = get_reg_val(id, vcpu->arch.dec_expires + |
| vcpu->arch.vcore->tb_offset); |
| break; |
| case KVM_REG_PPC_ONLINE: |
| *val = get_reg_val(id, vcpu->arch.online); |
| break; |
| case KVM_REG_PPC_PTCR: |
| *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, |
| union kvmppc_one_reg *val) |
| { |
| int r = 0; |
| long int i; |
| unsigned long addr, len; |
| |
| switch (id) { |
| case KVM_REG_PPC_HIOR: |
| /* Only allow this to be set to zero */ |
| if (set_reg_val(id, *val)) |
| r = -EINVAL; |
| break; |
| case KVM_REG_PPC_DABR: |
| vcpu->arch.dabr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_DABRX: |
| vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; |
| break; |
| case KVM_REG_PPC_DSCR: |
| vcpu->arch.dscr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_PURR: |
| vcpu->arch.purr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_SPURR: |
| vcpu->arch.spurr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_AMR: |
| vcpu->arch.amr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_UAMOR: |
| vcpu->arch.uamor = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: |
| i = id - KVM_REG_PPC_MMCR0; |
| vcpu->arch.mmcr[i] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_MMCR2: |
| vcpu->arch.mmcr[2] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_MMCRA: |
| vcpu->arch.mmcra = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_MMCRS: |
| vcpu->arch.mmcrs = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_MMCR3: |
| *val = get_reg_val(id, vcpu->arch.mmcr[3]); |
| break; |
| case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: |
| i = id - KVM_REG_PPC_PMC1; |
| vcpu->arch.pmc[i] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: |
| i = id - KVM_REG_PPC_SPMC1; |
| vcpu->arch.spmc[i] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_SIAR: |
| vcpu->arch.siar = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_SDAR: |
| vcpu->arch.sdar = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_SIER: |
| vcpu->arch.sier[0] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_SIER2: |
| vcpu->arch.sier[1] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_SIER3: |
| vcpu->arch.sier[2] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_IAMR: |
| vcpu->arch.iamr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_PSPB: |
| vcpu->arch.pspb = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_DPDES: |
| vcpu->arch.vcore->dpdes = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_VTB: |
| vcpu->arch.vcore->vtb = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_DAWR: |
| vcpu->arch.dawr0 = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_DAWRX: |
| vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; |
| break; |
| case KVM_REG_PPC_DAWR1: |
| vcpu->arch.dawr1 = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_DAWRX1: |
| vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; |
| break; |
| case KVM_REG_PPC_CIABR: |
| vcpu->arch.ciabr = set_reg_val(id, *val); |
| /* Don't allow setting breakpoints in hypervisor code */ |
| if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) |
| vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ |
| break; |
| case KVM_REG_PPC_CSIGR: |
| vcpu->arch.csigr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TACR: |
| vcpu->arch.tacr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TCSCR: |
| vcpu->arch.tcscr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_PID: |
| vcpu->arch.pid = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_ACOP: |
| vcpu->arch.acop = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_WORT: |
| vcpu->arch.wort = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TIDR: |
| vcpu->arch.tid = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_PSSCR: |
| vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; |
| break; |
| case KVM_REG_PPC_VPA_ADDR: |
| addr = set_reg_val(id, *val); |
| r = -EINVAL; |
| if (!addr && (vcpu->arch.slb_shadow.next_gpa || |
| vcpu->arch.dtl.next_gpa)) |
| break; |
| r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); |
| break; |
| case KVM_REG_PPC_VPA_SLB: |
| addr = val->vpaval.addr; |
| len = val->vpaval.length; |
| r = -EINVAL; |
| if (addr && !vcpu->arch.vpa.next_gpa) |
| break; |
| r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); |
| break; |
| case KVM_REG_PPC_VPA_DTL: |
| addr = val->vpaval.addr; |
| len = val->vpaval.length; |
| r = -EINVAL; |
| if (addr && (len < sizeof(struct dtl_entry) || |
| !vcpu->arch.vpa.next_gpa)) |
| break; |
| len -= len % sizeof(struct dtl_entry); |
| r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); |
| break; |
| case KVM_REG_PPC_TB_OFFSET: |
| /* round up to multiple of 2^24 */ |
| vcpu->arch.vcore->tb_offset = |
| ALIGN(set_reg_val(id, *val), 1UL << 24); |
| break; |
| case KVM_REG_PPC_LPCR: |
| kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); |
| break; |
| case KVM_REG_PPC_LPCR_64: |
| kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); |
| break; |
| case KVM_REG_PPC_PPR: |
| vcpu->arch.ppr = set_reg_val(id, *val); |
| break; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| case KVM_REG_PPC_TFHAR: |
| vcpu->arch.tfhar = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TFIAR: |
| vcpu->arch.tfiar = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TEXASR: |
| vcpu->arch.texasr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: |
| i = id - KVM_REG_PPC_TM_GPR0; |
| vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: |
| { |
| int j; |
| i = id - KVM_REG_PPC_TM_VSR0; |
| if (i < 32) |
| for (j = 0; j < TS_FPRWIDTH; j++) |
| vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; |
| else |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| vcpu->arch.vr_tm.vr[i-32] = val->vval; |
| else |
| r = -ENXIO; |
| break; |
| } |
| case KVM_REG_PPC_TM_CR: |
| vcpu->arch.cr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_XER: |
| vcpu->arch.xer_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_LR: |
| vcpu->arch.lr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_CTR: |
| vcpu->arch.ctr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_FPSCR: |
| vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_AMR: |
| vcpu->arch.amr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_PPR: |
| vcpu->arch.ppr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_VRSAVE: |
| vcpu->arch.vrsave_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_VSCR: |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); |
| else |
| r = - ENXIO; |
| break; |
| case KVM_REG_PPC_TM_DSCR: |
| vcpu->arch.dscr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_TAR: |
| vcpu->arch.tar_tm = set_reg_val(id, *val); |
| break; |
| #endif |
| case KVM_REG_PPC_ARCH_COMPAT: |
| r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); |
| break; |
| case KVM_REG_PPC_DEC_EXPIRY: |
| vcpu->arch.dec_expires = set_reg_val(id, *val) - |
| vcpu->arch.vcore->tb_offset; |
| break; |
| case KVM_REG_PPC_ONLINE: |
| i = set_reg_val(id, *val); |
| if (i && !vcpu->arch.online) |
| atomic_inc(&vcpu->arch.vcore->online_count); |
| else if (!i && vcpu->arch.online) |
| atomic_dec(&vcpu->arch.vcore->online_count); |
| vcpu->arch.online = i; |
| break; |
| case KVM_REG_PPC_PTCR: |
| vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| /* |
| * On POWER9, threads are independent and can be in different partitions. |
| * Therefore we consider each thread to be a subcore. |
| * There is a restriction that all threads have to be in the same |
| * MMU mode (radix or HPT), unfortunately, but since we only support |
| * HPT guests on a HPT host so far, that isn't an impediment yet. |
| */ |
| static int threads_per_vcore(struct kvm *kvm) |
| { |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| return 1; |
| return threads_per_subcore; |
| } |
| |
| static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) |
| { |
| struct kvmppc_vcore *vcore; |
| |
| vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); |
| |
| if (vcore == NULL) |
| return NULL; |
| |
| spin_lock_init(&vcore->lock); |
| spin_lock_init(&vcore->stoltb_lock); |
| rcuwait_init(&vcore->wait); |
| vcore->preempt_tb = TB_NIL; |
| vcore->lpcr = kvm->arch.lpcr; |
| vcore->first_vcpuid = id; |
| vcore->kvm = kvm; |
| INIT_LIST_HEAD(&vcore->preempt_list); |
| |
| return vcore; |
| } |
| |
| #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING |
| static struct debugfs_timings_element { |
| const char *name; |
| size_t offset; |
| } timings[] = { |
| {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, |
| {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, |
| {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, |
| {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, |
| {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, |
| }; |
| |
| #define N_TIMINGS (ARRAY_SIZE(timings)) |
| |
| struct debugfs_timings_state { |
| struct kvm_vcpu *vcpu; |
| unsigned int buflen; |
| char buf[N_TIMINGS * 100]; |
| }; |
| |
| static int debugfs_timings_open(struct inode *inode, struct file *file) |
| { |
| struct kvm_vcpu *vcpu = inode->i_private; |
| struct debugfs_timings_state *p; |
| |
| p = kzalloc(sizeof(*p), GFP_KERNEL); |
| if (!p) |
| return -ENOMEM; |
| |
| kvm_get_kvm(vcpu->kvm); |
| p->vcpu = vcpu; |
| file->private_data = p; |
| |
| return nonseekable_open(inode, file); |
| } |
| |
| static int debugfs_timings_release(struct inode *inode, struct file *file) |
| { |
| struct debugfs_timings_state *p = file->private_data; |
| |
| kvm_put_kvm(p->vcpu->kvm); |
| kfree(p); |
| return 0; |
| } |
| |
| static ssize_t debugfs_timings_read(struct file *file, char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| struct debugfs_timings_state *p = file->private_data; |
| struct kvm_vcpu *vcpu = p->vcpu; |
| char *s, *buf_end; |
| struct kvmhv_tb_accumulator tb; |
| u64 count; |
| loff_t pos; |
| ssize_t n; |
| int i, loops; |
| bool ok; |
| |
| if (!p->buflen) { |
| s = p->buf; |
| buf_end = s + sizeof(p->buf); |
| for (i = 0; i < N_TIMINGS; ++i) { |
| struct kvmhv_tb_accumulator *acc; |
| |
| acc = (struct kvmhv_tb_accumulator *) |
| ((unsigned long)vcpu + timings[i].offset); |
| ok = false; |
| for (loops = 0; loops < 1000; ++loops) { |
| count = acc->seqcount; |
| if (!(count & 1)) { |
| smp_rmb(); |
| tb = *acc; |
| smp_rmb(); |
| if (count == acc->seqcount) { |
| ok = true; |
| break; |
| } |
| } |
| udelay(1); |
| } |
| if (!ok) |
| snprintf(s, buf_end - s, "%s: stuck\n", |
| timings[i].name); |
| else |
| snprintf(s, buf_end - s, |
| "%s: %llu %llu %llu %llu\n", |
| timings[i].name, count / 2, |
| tb_to_ns(tb.tb_total), |
| tb_to_ns(tb.tb_min), |
| tb_to_ns(tb.tb_max)); |
| s += strlen(s); |
| } |
| p->buflen = s - p->buf; |
| } |
| |
| pos = *ppos; |
| if (pos >= p->buflen) |
| return 0; |
| if (len > p->buflen - pos) |
| len = p->buflen - pos; |
| n = copy_to_user(buf, p->buf + pos, len); |
| if (n) { |
| if (n == len) |
| return -EFAULT; |
| len -= n; |
| } |
| *ppos = pos + len; |
| return len; |
| } |
| |
| static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| return -EACCES; |
| } |
| |
| static const struct file_operations debugfs_timings_ops = { |
| .owner = THIS_MODULE, |
| .open = debugfs_timings_open, |
| .release = debugfs_timings_release, |
| .read = debugfs_timings_read, |
| .write = debugfs_timings_write, |
| .llseek = generic_file_llseek, |
| }; |
| |
| /* Create a debugfs directory for the vcpu */ |
| static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) |
| { |
| char buf[16]; |
| struct kvm *kvm = vcpu->kvm; |
| |
| snprintf(buf, sizeof(buf), "vcpu%u", id); |
| vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); |
| debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, |
| &debugfs_timings_ops); |
| } |
| |
| #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ |
| static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) |
| { |
| } |
| #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ |
| |
| static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) |
| { |
| int err; |
| int core; |
| struct kvmppc_vcore *vcore; |
| struct kvm *kvm; |
| unsigned int id; |
| |
| kvm = vcpu->kvm; |
| id = vcpu->vcpu_id; |
| |
| vcpu->arch.shared = &vcpu->arch.shregs; |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| /* |
| * The shared struct is never shared on HV, |
| * so we can always use host endianness |
| */ |
| #ifdef __BIG_ENDIAN__ |
| vcpu->arch.shared_big_endian = true; |
| #else |
| vcpu->arch.shared_big_endian = false; |
| #endif |
| #endif |
| vcpu->arch.mmcr[0] = MMCR0_FC; |
| vcpu->arch.ctrl = CTRL_RUNLATCH; |
| /* default to host PVR, since we can't spoof it */ |
| kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); |
| spin_lock_init(&vcpu->arch.vpa_update_lock); |
| spin_lock_init(&vcpu->arch.tbacct_lock); |
| vcpu->arch.busy_preempt = TB_NIL; |
| vcpu->arch.shregs.msr = MSR_ME; |
| vcpu->arch.intr_msr = MSR_SF | MSR_ME; |
| |
| /* |
| * Set the default HFSCR for the guest from the host value. |
| * This value is only used on POWER9. |
| * On POWER9, we want to virtualize the doorbell facility, so we |
| * don't set the HFSCR_MSGP bit, and that causes those instructions |
| * to trap and then we emulate them. |
| */ |
| vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | |
| HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX; |
| if (cpu_has_feature(CPU_FTR_HVMODE)) { |
| vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) |
| vcpu->arch.hfscr |= HFSCR_TM; |
| #endif |
| } |
| if (cpu_has_feature(CPU_FTR_TM_COMP)) |
| vcpu->arch.hfscr |= HFSCR_TM; |
| |
| vcpu->arch.hfscr_permitted = vcpu->arch.hfscr; |
| |
| kvmppc_mmu_book3s_hv_init(vcpu); |
| |
| vcpu->arch.state = KVMPPC_VCPU_NOTREADY; |
| |
| init_waitqueue_head(&vcpu->arch.cpu_run); |
| |
| mutex_lock(&kvm->lock); |
| vcore = NULL; |
| err = -EINVAL; |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { |
| pr_devel("KVM: VCPU ID too high\n"); |
| core = KVM_MAX_VCORES; |
| } else { |
| BUG_ON(kvm->arch.smt_mode != 1); |
| core = kvmppc_pack_vcpu_id(kvm, id); |
| } |
| } else { |
| core = id / kvm->arch.smt_mode; |
| } |
| if (core < KVM_MAX_VCORES) { |
| vcore = kvm->arch.vcores[core]; |
| if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { |
| pr_devel("KVM: collision on id %u", id); |
| vcore = NULL; |
| } else if (!vcore) { |
| /* |
| * Take mmu_setup_lock for mutual exclusion |
| * with kvmppc_update_lpcr(). |
| */ |
| err = -ENOMEM; |
| vcore = kvmppc_vcore_create(kvm, |
| id & ~(kvm->arch.smt_mode - 1)); |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| kvm->arch.vcores[core] = vcore; |
| kvm->arch.online_vcores++; |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| } |
| } |
| mutex_unlock(&kvm->lock); |
| |
| if (!vcore) |
| return err; |
| |
| spin_lock(&vcore->lock); |
| ++vcore->num_threads; |
| spin_unlock(&vcore->lock); |
| vcpu->arch.vcore = vcore; |
| vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; |
| vcpu->arch.thread_cpu = -1; |
| vcpu->arch.prev_cpu = -1; |
| |
| vcpu->arch.cpu_type = KVM_CPU_3S_64; |
| kvmppc_sanity_check(vcpu); |
| |
| debugfs_vcpu_init(vcpu, id); |
| |
| return 0; |
| } |
| |
| static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, |
| unsigned long flags) |
| { |
| int err; |
| int esmt = 0; |
| |
| if (flags) |
| return -EINVAL; |
| if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) |
| return -EINVAL; |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) { |
| /* |
| * On POWER8 (or POWER7), the threading mode is "strict", |
| * so we pack smt_mode vcpus per vcore. |
| */ |
| if (smt_mode > threads_per_subcore) |
| return -EINVAL; |
| } else { |
| /* |
| * On POWER9, the threading mode is "loose", |
| * so each vcpu gets its own vcore. |
| */ |
| esmt = smt_mode; |
| smt_mode = 1; |
| } |
| mutex_lock(&kvm->lock); |
| err = -EBUSY; |
| if (!kvm->arch.online_vcores) { |
| kvm->arch.smt_mode = smt_mode; |
| kvm->arch.emul_smt_mode = esmt; |
| err = 0; |
| } |
| mutex_unlock(&kvm->lock); |
| |
| return err; |
| } |
| |
| static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) |
| { |
| if (vpa->pinned_addr) |
| kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, |
| vpa->dirty); |
| } |
| |
| static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) |
| { |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); |
| unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); |
| unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| } |
| |
| static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) |
| { |
| /* Indicate we want to get back into the guest */ |
| return 1; |
| } |
| |
| static void kvmppc_set_timer(struct kvm_vcpu *vcpu) |
| { |
| unsigned long dec_nsec, now; |
| |
| now = get_tb(); |
| if (now > vcpu->arch.dec_expires) { |
| /* decrementer has already gone negative */ |
| kvmppc_core_queue_dec(vcpu); |
| kvmppc_core_prepare_to_enter(vcpu); |
| return; |
| } |
| dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); |
| hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); |
| vcpu->arch.timer_running = 1; |
| } |
| |
| extern int __kvmppc_vcore_entry(void); |
| |
| static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, |
| struct kvm_vcpu *vcpu) |
| { |
| u64 now; |
| |
| if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) |
| return; |
| spin_lock_irq(&vcpu->arch.tbacct_lock); |
| now = mftb(); |
| vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - |
| vcpu->arch.stolen_logged; |
| vcpu->arch.busy_preempt = now; |
| vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; |
| spin_unlock_irq(&vcpu->arch.tbacct_lock); |
| --vc->n_runnable; |
| WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); |
| } |
| |
| static int kvmppc_grab_hwthread(int cpu) |
| { |
| struct paca_struct *tpaca; |
| long timeout = 10000; |
| |
| tpaca = paca_ptrs[cpu]; |
| |
| /* Ensure the thread won't go into the kernel if it wakes */ |
| tpaca->kvm_hstate.kvm_vcpu = NULL; |
| tpaca->kvm_hstate.kvm_vcore = NULL; |
| tpaca->kvm_hstate.napping = 0; |
| smp_wmb(); |
| tpaca->kvm_hstate.hwthread_req = 1; |
| |
| /* |
| * If the thread is already executing in the kernel (e.g. handling |
| * a stray interrupt), wait for it to get back to nap mode. |
| * The smp_mb() is to ensure that our setting of hwthread_req |
| * is visible before we look at hwthread_state, so if this |
| * races with the code at system_reset_pSeries and the thread |
| * misses our setting of hwthread_req, we are sure to see its |
| * setting of hwthread_state, and vice versa. |
| */ |
| smp_mb(); |
| while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { |
| if (--timeout <= 0) { |
| pr_err("KVM: couldn't grab cpu %d\n", cpu); |
| return -EBUSY; |
| } |
| udelay(1); |
| } |
| return 0; |
| } |
| |
| static void kvmppc_release_hwthread(int cpu) |
| { |
| struct paca_struct *tpaca; |
| |
| tpaca = paca_ptrs[cpu]; |
| tpaca->kvm_hstate.hwthread_req = 0; |
| tpaca->kvm_hstate.kvm_vcpu = NULL; |
| tpaca->kvm_hstate.kvm_vcore = NULL; |
| tpaca->kvm_hstate.kvm_split_mode = NULL; |
| } |
| |
| static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) |
| { |
| struct kvm_nested_guest *nested = vcpu->arch.nested; |
| cpumask_t *cpu_in_guest; |
| int i; |
| |
| cpu = cpu_first_tlb_thread_sibling(cpu); |
| if (nested) { |
| cpumask_set_cpu(cpu, &nested->need_tlb_flush); |
| cpu_in_guest = &nested->cpu_in_guest; |
| } else { |
| cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); |
| cpu_in_guest = &kvm->arch.cpu_in_guest; |
| } |
| /* |
| * Make sure setting of bit in need_tlb_flush precedes |
| * testing of cpu_in_guest bits. The matching barrier on |
| * the other side is the first smp_mb() in kvmppc_run_core(). |
| */ |
| smp_mb(); |
| for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); |
| i += cpu_tlb_thread_sibling_step()) |
| if (cpumask_test_cpu(i, cpu_in_guest)) |
| smp_call_function_single(i, do_nothing, NULL, 1); |
| } |
| |
| static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) |
| { |
| struct kvm_nested_guest *nested = vcpu->arch.nested; |
| struct kvm *kvm = vcpu->kvm; |
| int prev_cpu; |
| |
| if (!cpu_has_feature(CPU_FTR_HVMODE)) |
| return; |
| |
| if (nested) |
| prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; |
| else |
| prev_cpu = vcpu->arch.prev_cpu; |
| |
| /* |
| * With radix, the guest can do TLB invalidations itself, |
| * and it could choose to use the local form (tlbiel) if |
| * it is invalidating a translation that has only ever been |
| * used on one vcpu. However, that doesn't mean it has |
| * only ever been used on one physical cpu, since vcpus |
| * can move around between pcpus. To cope with this, when |
| * a vcpu moves from one pcpu to another, we need to tell |
| * any vcpus running on the same core as this vcpu previously |
| * ran to flush the TLB. The TLB is shared between threads, |
| * so we use a single bit in .need_tlb_flush for all 4 threads. |
| */ |
| if (prev_cpu != pcpu) { |
| if (prev_cpu >= 0 && |
| cpu_first_tlb_thread_sibling(prev_cpu) != |
| cpu_first_tlb_thread_sibling(pcpu)) |
| radix_flush_cpu(kvm, prev_cpu, vcpu); |
| if (nested) |
| nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; |
| else |
| vcpu->arch.prev_cpu = pcpu; |
| } |
| } |
| |
| static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) |
| { |
| int cpu; |
| struct paca_struct *tpaca; |
| struct kvm *kvm = vc->kvm; |
| |
| cpu = vc->pcpu; |
| if (vcpu) { |
| if (vcpu->arch.timer_running) { |
| hrtimer_try_to_cancel(&vcpu->arch.dec_timer); |
| vcpu->arch.timer_running = 0; |
| } |
| cpu += vcpu->arch.ptid; |
| vcpu->cpu = vc->pcpu; |
| vcpu->arch.thread_cpu = cpu; |
| cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); |
| } |
| tpaca = paca_ptrs[cpu]; |
| tpaca->kvm_hstate.kvm_vcpu = vcpu; |
| tpaca->kvm_hstate.ptid = cpu - vc->pcpu; |
| tpaca->kvm_hstate.fake_suspend = 0; |
| /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ |
| smp_wmb(); |
| tpaca->kvm_hstate.kvm_vcore = vc; |
| if (cpu != smp_processor_id()) |
| kvmppc_ipi_thread(cpu); |
| } |
| |
| static void kvmppc_wait_for_nap(int n_threads) |
| { |
| int cpu = smp_processor_id(); |
| int i, loops; |
| |
| if (n_threads <= 1) |
| return; |
| for (loops = 0; loops < 1000000; ++loops) { |
| /* |
| * Check if all threads are finished. |
| * We set the vcore pointer when starting a thread |
| * and the thread clears it when finished, so we look |
| * for any threads that still have a non-NULL vcore ptr. |
| */ |
| for (i = 1; i < n_threads; ++i) |
| if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) |
| break; |
| if (i == n_threads) { |
| HMT_medium(); |
| return; |
| } |
| HMT_low(); |
| } |
| HMT_medium(); |
| for (i = 1; i < n_threads; ++i) |
| if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) |
| pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); |
| } |
| |
| /* |
| * Check that we are on thread 0 and that any other threads in |
| * this core are off-line. Then grab the threads so they can't |
| * enter the kernel. |
| */ |
| static int on_primary_thread(void) |
| { |
| int cpu = smp_processor_id(); |
| int thr; |
| |
| /* Are we on a primary subcore? */ |
| if (cpu_thread_in_subcore(cpu)) |
| return 0; |
| |
| thr = 0; |
| while (++thr < threads_per_subcore) |
| if (cpu_online(cpu + thr)) |
| return 0; |
| |
| /* Grab all hw threads so they can't go into the kernel */ |
| for (thr = 1; thr < threads_per_subcore; ++thr) { |
| if (kvmppc_grab_hwthread(cpu + thr)) { |
| /* Couldn't grab one; let the others go */ |
| do { |
| kvmppc_release_hwthread(cpu + thr); |
| } while (--thr > 0); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * A list of virtual cores for each physical CPU. |
| * These are vcores that could run but their runner VCPU tasks are |
| * (or may be) preempted. |
| */ |
| struct preempted_vcore_list { |
| struct list_head list; |
| spinlock_t lock; |
| }; |
| |
| static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); |
| |
| static void init_vcore_lists(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); |
| spin_lock_init(&lp->lock); |
| INIT_LIST_HEAD(&lp->list); |
| } |
| } |
| |
| static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) |
| { |
| struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); |
| |
| vc->vcore_state = VCORE_PREEMPT; |
| vc->pcpu = smp_processor_id(); |
| if (vc->num_threads < threads_per_vcore(vc->kvm)) { |
| spin_lock(&lp->lock); |
| list_add_tail(&vc->preempt_list, &lp->list); |
| spin_unlock(&lp->lock); |
| } |
| |
| /* Start accumulating stolen time */ |
| kvmppc_core_start_stolen(vc); |
| } |
| |
| static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) |
| { |
| struct preempted_vcore_list *lp; |
| |
| kvmppc_core_end_stolen(vc); |
| if (!list_empty(&vc->preempt_list)) { |
| lp = &per_cpu(preempted_vcores, vc->pcpu); |
| spin_lock(&lp->lock); |
| list_del_init(&vc->preempt_list); |
| spin_unlock(&lp->lock); |
| } |
| vc->vcore_state = VCORE_INACTIVE; |
| } |
| |
| /* |
| * This stores information about the virtual cores currently |
| * assigned to a physical core. |
| */ |
| struct core_info { |
| int n_subcores; |
| int max_subcore_threads; |
| int total_threads; |
| int subcore_threads[MAX_SUBCORES]; |
| struct kvmppc_vcore *vc[MAX_SUBCORES]; |
| }; |
| |
| /* |
| * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 |
| * respectively in 2-way micro-threading (split-core) mode on POWER8. |
| */ |
| static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; |
| |
| static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) |
| { |
| memset(cip, 0, sizeof(*cip)); |
| cip->n_subcores = 1; |
| cip->max_subcore_threads = vc->num_threads; |
| cip->total_threads = vc->num_threads; |
| cip->subcore_threads[0] = vc->num_threads; |
| cip->vc[0] = vc; |
| } |
| |
| static bool subcore_config_ok(int n_subcores, int n_threads) |
| { |
| /* |
| * POWER9 "SMT4" cores are permanently in what is effectively a 4-way |
| * split-core mode, with one thread per subcore. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| return n_subcores <= 4 && n_threads == 1; |
| |
| /* On POWER8, can only dynamically split if unsplit to begin with */ |
| if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) |
| return false; |
| if (n_subcores > MAX_SUBCORES) |
| return false; |
| if (n_subcores > 1) { |
| if (!(dynamic_mt_modes & 2)) |
| n_subcores = 4; |
| if (n_subcores > 2 && !(dynamic_mt_modes & 4)) |
| return false; |
| } |
| |
| return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; |
| } |
| |
| static void init_vcore_to_run(struct kvmppc_vcore *vc) |
| { |
| vc->entry_exit_map = 0; |
| vc->in_guest = 0; |
| vc->napping_threads = 0; |
| vc->conferring_threads = 0; |
| vc->tb_offset_applied = 0; |
| } |
| |
| static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) |
| { |
| int n_threads = vc->num_threads; |
| int sub; |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return false; |
| |
| /* In one_vm_per_core mode, require all vcores to be from the same vm */ |
| if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) |
| return false; |
| |
| if (n_threads < cip->max_subcore_threads) |
| n_threads = cip->max_subcore_threads; |
| if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) |
| return false; |
| cip->max_subcore_threads = n_threads; |
| |
| sub = cip->n_subcores; |
| ++cip->n_subcores; |
| cip->total_threads += vc->num_threads; |
| cip->subcore_threads[sub] = vc->num_threads; |
| cip->vc[sub] = vc; |
| init_vcore_to_run(vc); |
| list_del_init(&vc->preempt_list); |
| |
| return true; |
| } |
| |
| /* |
| * Work out whether it is possible to piggyback the execution of |
| * vcore *pvc onto the execution of the other vcores described in *cip. |
| */ |
| static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, |
| int target_threads) |
| { |
| if (cip->total_threads + pvc->num_threads > target_threads) |
| return false; |
| |
| return can_dynamic_split(pvc, cip); |
| } |
| |
| static void prepare_threads(struct kvmppc_vcore *vc) |
| { |
| int i; |
| struct kvm_vcpu *vcpu; |
| |
| for_each_runnable_thread(i, vcpu, vc) { |
| if (signal_pending(vcpu->arch.run_task)) |
| vcpu->arch.ret = -EINTR; |
| else if (vcpu->arch.vpa.update_pending || |
| vcpu->arch.slb_shadow.update_pending || |
| vcpu->arch.dtl.update_pending) |
| vcpu->arch.ret = RESUME_GUEST; |
| else |
| continue; |
| kvmppc_remove_runnable(vc, vcpu); |
| wake_up(&vcpu->arch.cpu_run); |
| } |
| } |
| |
| static void collect_piggybacks(struct core_info *cip, int target_threads) |
| { |
| struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); |
| struct kvmppc_vcore *pvc, *vcnext; |
| |
| spin_lock(&lp->lock); |
| list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { |
| if (!spin_trylock(&pvc->lock)) |
| continue; |
| prepare_threads(pvc); |
| if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { |
| list_del_init(&pvc->preempt_list); |
| if (pvc->runner == NULL) { |
| pvc->vcore_state = VCORE_INACTIVE; |
| kvmppc_core_end_stolen(pvc); |
| } |
| spin_unlock(&pvc->lock); |
| continue; |
| } |
| if (!can_piggyback(pvc, cip, target_threads)) { |
| spin_unlock(&pvc->lock); |
| continue; |
| } |
| kvmppc_core_end_stolen(pvc); |
| pvc->vcore_state = VCORE_PIGGYBACK; |
| if (cip->total_threads >= target_threads) |
| break; |
| } |
| spin_unlock(&lp->lock); |
| } |
| |
| static bool recheck_signals_and_mmu(struct core_info *cip) |
| { |
| int sub, i; |
| struct kvm_vcpu *vcpu; |
| struct kvmppc_vcore *vc; |
| |
| for (sub = 0; sub < cip->n_subcores; ++sub) { |
| vc = cip->vc[sub]; |
| if (!vc->kvm->arch.mmu_ready) |
| return true; |
| for_each_runnable_thread(i, vcpu, vc) |
| if (signal_pending(vcpu->arch.run_task)) |
| return true; |
| } |
| return false; |
| } |
| |
| static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) |
| { |
| int still_running = 0, i; |
| u64 now; |
| long ret; |
| struct kvm_vcpu *vcpu; |
| |
| spin_lock(&vc->lock); |
| now = get_tb(); |
| for_each_runnable_thread(i, vcpu, vc) { |
| /* |
| * It's safe to unlock the vcore in the loop here, because |
| * for_each_runnable_thread() is safe against removal of |
| * the vcpu, and the vcore state is VCORE_EXITING here, |
| * so any vcpus becoming runnable will have their arch.trap |
| * set to zero and can't actually run in the guest. |
| */ |
| spin_unlock(&vc->lock); |
| /* cancel pending dec exception if dec is positive */ |
| if (now < vcpu->arch.dec_expires && |
| kvmppc_core_pending_dec(vcpu)) |
| kvmppc_core_dequeue_dec(vcpu); |
| |
| trace_kvm_guest_exit(vcpu); |
| |
| ret = RESUME_GUEST; |
| if (vcpu->arch.trap) |
| ret = kvmppc_handle_exit_hv(vcpu, |
| vcpu->arch.run_task); |
| |
| vcpu->arch.ret = ret; |
| vcpu->arch.trap = 0; |
| |
| spin_lock(&vc->lock); |
| if (is_kvmppc_resume_guest(vcpu->arch.ret)) { |
| if (vcpu->arch.pending_exceptions) |
| kvmppc_core_prepare_to_enter(vcpu); |
| if (vcpu->arch.ceded) |
| kvmppc_set_timer(vcpu); |
| else |
| ++still_running; |
| } else { |
| kvmppc_remove_runnable(vc, vcpu); |
| wake_up(&vcpu->arch.cpu_run); |
| } |
| } |
| if (!is_master) { |
| if (still_running > 0) { |
| kvmppc_vcore_preempt(vc); |
| } else if (vc->runner) { |
| vc->vcore_state = VCORE_PREEMPT; |
| kvmppc_core_start_stolen(vc); |
| } else { |
| vc->vcore_state = VCORE_INACTIVE; |
| } |
| if (vc->n_runnable > 0 && vc->runner == NULL) { |
| /* make sure there's a candidate runner awake */ |
| i = -1; |
| vcpu = next_runnable_thread(vc, &i); |
| wake_up(&vcpu->arch.cpu_run); |
| } |
| } |
| spin_unlock(&vc->lock); |
| } |
| |
| /* |
| * Clear core from the list of active host cores as we are about to |
| * enter the guest. Only do this if it is the primary thread of the |
| * core (not if a subcore) that is entering the guest. |
| */ |
| static inline int kvmppc_clear_host_core(unsigned int cpu) |
| { |
| int core; |
| |
| if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) |
| return 0; |
| /* |
| * Memory barrier can be omitted here as we will do a smp_wmb() |
| * later in kvmppc_start_thread and we need ensure that state is |
| * visible to other CPUs only after we enter guest. |
| */ |
| core = cpu >> threads_shift; |
| kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; |
| return 0; |
| } |
| |
| /* |
| * Advertise this core as an active host core since we exited the guest |
| * Only need to do this if it is the primary thread of the core that is |
| * exiting. |
| */ |
| static inline int kvmppc_set_host_core(unsigned int cpu) |
| { |
| int core; |
| |
| if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) |
| return 0; |
| |
| /* |
| * Memory barrier can be omitted here because we do a spin_unlock |
| * immediately after this which provides the memory barrier. |
| */ |
| core = cpu >> threads_shift; |
| kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; |
| return 0; |
| } |
| |
| static void set_irq_happened(int trap) |
| { |
| switch (trap) { |
| case BOOK3S_INTERRUPT_EXTERNAL: |
| local_paca->irq_happened |= PACA_IRQ_EE; |
| break; |
| case BOOK3S_INTERRUPT_H_DOORBELL: |
| local_paca->irq_happened |= PACA_IRQ_DBELL; |
| break; |
| case BOOK3S_INTERRUPT_HMI: |
| local_paca->irq_happened |= PACA_IRQ_HMI; |
| break; |
| case BOOK3S_INTERRUPT_SYSTEM_RESET: |
| replay_system_reset(); |
| break; |
| } |
| } |
| |
| /* |
| * Run a set of guest threads on a physical core. |
| * Called with vc->lock held. |
| */ |
| static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) |
| { |
| struct kvm_vcpu *vcpu; |
| int i; |
| int srcu_idx; |
| struct core_info core_info; |
| struct kvmppc_vcore *pvc; |
| struct kvm_split_mode split_info, *sip; |
| int split, subcore_size, active; |
| int sub; |
| bool thr0_done; |
| unsigned long cmd_bit, stat_bit; |
| int pcpu, thr; |
| int target_threads; |
| int controlled_threads; |
| int trap; |
| bool is_power8; |
| |
| if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) |
| return; |
| |
| /* |
| * Remove from the list any threads that have a signal pending |
| * or need a VPA update done |
| */ |
| prepare_threads(vc); |
| |
| /* if the runner is no longer runnable, let the caller pick a new one */ |
| if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) |
| return; |
| |
| /* |
| * Initialize *vc. |
| */ |
| init_vcore_to_run(vc); |
| vc->preempt_tb = TB_NIL; |
| |
| /* |
| * Number of threads that we will be controlling: the same as |
| * the number of threads per subcore, except on POWER9, |
| * where it's 1 because the threads are (mostly) independent. |
| */ |
| controlled_threads = threads_per_vcore(vc->kvm); |
| |
| /* |
| * Make sure we are running on primary threads, and that secondary |
| * threads are offline. Also check if the number of threads in this |
| * guest are greater than the current system threads per guest. |
| */ |
| if ((controlled_threads > 1) && |
| ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { |
| for_each_runnable_thread(i, vcpu, vc) { |
| vcpu->arch.ret = -EBUSY; |
| kvmppc_remove_runnable(vc, vcpu); |
| wake_up(&vcpu->arch.cpu_run); |
| } |
| goto out; |
| } |
| |
| /* |
| * See if we could run any other vcores on the physical core |
| * along with this one. |
| */ |
| init_core_info(&core_info, vc); |
| pcpu = smp_processor_id(); |
| target_threads = controlled_threads; |
| if (target_smt_mode && target_smt_mode < target_threads) |
| target_threads = target_smt_mode; |
| if (vc->num_threads < target_threads) |
| collect_piggybacks(&core_info, target_threads); |
| |
| /* |
| * Hard-disable interrupts, and check resched flag and signals. |
| * If we need to reschedule or deliver a signal, clean up |
| * and return without going into the guest(s). |
| * If the mmu_ready flag has been cleared, don't go into the |
| * guest because that means a HPT resize operation is in progress. |
| */ |
| local_irq_disable(); |
| hard_irq_disable(); |
| if (lazy_irq_pending() || need_resched() || |
| recheck_signals_and_mmu(&core_info)) { |
| local_irq_enable(); |
| vc->vcore_state = VCORE_INACTIVE; |
| /* Unlock all except the primary vcore */ |
| for (sub = 1; sub < core_info.n_subcores; ++sub) { |
| pvc = core_info.vc[sub]; |
| /* Put back on to the preempted vcores list */ |
| kvmppc_vcore_preempt(pvc); |
| spin_unlock(&pvc->lock); |
| } |
| for (i = 0; i < controlled_threads; ++i) |
| kvmppc_release_hwthread(pcpu + i); |
| return; |
| } |
| |
| kvmppc_clear_host_core(pcpu); |
| |
| /* Decide on micro-threading (split-core) mode */ |
| subcore_size = threads_per_subcore; |
| cmd_bit = stat_bit = 0; |
| split = core_info.n_subcores; |
| sip = NULL; |
| is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); |
| |
| if (split > 1) { |
| sip = &split_info; |
| memset(&split_info, 0, sizeof(split_info)); |
| for (sub = 0; sub < core_info.n_subcores; ++sub) |
| split_info.vc[sub] = core_info.vc[sub]; |
| |
| if (is_power8) { |
| if (split == 2 && (dynamic_mt_modes & 2)) { |
| cmd_bit = HID0_POWER8_1TO2LPAR; |
| stat_bit = HID0_POWER8_2LPARMODE; |
| } else { |
| split = 4; |
| cmd_bit = HID0_POWER8_1TO4LPAR; |
| stat_bit = HID0_POWER8_4LPARMODE; |
| } |
| subcore_size = MAX_SMT_THREADS / split; |
| split_info.rpr = mfspr(SPRN_RPR); |
| split_info.pmmar = mfspr(SPRN_PMMAR); |
| split_info.ldbar = mfspr(SPRN_LDBAR); |
| split_info.subcore_size = subcore_size; |
| } else { |
| split_info.subcore_size = 1; |
| } |
| |
| /* order writes to split_info before kvm_split_mode pointer */ |
| smp_wmb(); |
| } |
| |
| for (thr = 0; thr < controlled_threads; ++thr) { |
| struct paca_struct *paca = paca_ptrs[pcpu + thr]; |
| |
| paca->kvm_hstate.napping = 0; |
| paca->kvm_hstate.kvm_split_mode = sip; |
| } |
| |
| /* Initiate micro-threading (split-core) on POWER8 if required */ |
| if (cmd_bit) { |
| unsigned long hid0 = mfspr(SPRN_HID0); |
| |
| hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; |
| mb(); |
| mtspr(SPRN_HID0, hid0); |
| isync(); |
| for (;;) { |
| hid0 = mfspr(SPRN_HID0); |
| if (hid0 & stat_bit) |
| break; |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * On POWER8, set RWMR register. |
| * Since it only affects PURR and SPURR, it doesn't affect |
| * the host, so we don't save/restore the host value. |
| */ |
| if (is_power8) { |
| unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; |
| int n_online = atomic_read(&vc->online_count); |
| |
| /* |
| * Use the 8-thread value if we're doing split-core |
| * or if the vcore's online count looks bogus. |
| */ |
| if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && |
| n_online >= 1 && n_online <= MAX_SMT_THREADS) |
| rwmr_val = p8_rwmr_values[n_online]; |
| mtspr(SPRN_RWMR, rwmr_val); |
| } |
| |
| /* Start all the threads */ |
| active = 0; |
| for (sub = 0; sub < core_info.n_subcores; ++sub) { |
| thr = is_power8 ? subcore_thread_map[sub] : sub; |
| thr0_done = false; |
| active |= 1 << thr; |
| pvc = core_info.vc[sub]; |
| pvc->pcpu = pcpu + thr; |
| for_each_runnable_thread(i, vcpu, pvc) { |
| kvmppc_start_thread(vcpu, pvc); |
| kvmppc_create_dtl_entry(vcpu, pvc); |
| trace_kvm_guest_enter(vcpu); |
| if (!vcpu->arch.ptid) |
| thr0_done = true; |
| active |= 1 << (thr + vcpu->arch.ptid); |
| } |
| /* |
| * We need to start the first thread of each subcore |
| * even if it doesn't have a vcpu. |
| */ |
| if (!thr0_done) |
| kvmppc_start_thread(NULL, pvc); |
| } |
| |
| /* |
| * Ensure that split_info.do_nap is set after setting |
| * the vcore pointer in the PACA of the secondaries. |
| */ |
| smp_mb(); |
| |
| /* |
| * When doing micro-threading, poke the inactive threads as well. |
| * This gets them to the nap instruction after kvm_do_nap, |
| * which reduces the time taken to unsplit later. |
| */ |
| if (cmd_bit) { |
| split_info.do_nap = 1; /* ask secondaries to nap when done */ |
| for (thr = 1; thr < threads_per_subcore; ++thr) |
| if (!(active & (1 << thr))) |
| kvmppc_ipi_thread(pcpu + thr); |
| } |
| |
| vc->vcore_state = VCORE_RUNNING; |
| preempt_disable(); |
| |
| trace_kvmppc_run_core(vc, 0); |
| |
| for (sub = 0; sub < core_info.n_subcores; ++sub) |
| spin_unlock(&core_info.vc[sub]->lock); |
| |
| guest_enter_irqoff(); |
| |
| srcu_idx = srcu_read_lock(&vc->kvm->srcu); |
| |
| this_cpu_disable_ftrace(); |
| |
| /* |
| * Interrupts will be enabled once we get into the guest, |
| * so tell lockdep that we're about to enable interrupts. |
| */ |
| trace_hardirqs_on(); |
| |
| trap = __kvmppc_vcore_entry(); |
| |
| trace_hardirqs_off(); |
| |
| this_cpu_enable_ftrace(); |
| |
| srcu_read_unlock(&vc->kvm->srcu, srcu_idx); |
| |
| set_irq_happened(trap); |
| |
| spin_lock(&vc->lock); |
| /* prevent other vcpu threads from doing kvmppc_start_thread() now */ |
| vc->vcore_state = VCORE_EXITING; |
| |
| /* wait for secondary threads to finish writing their state to memory */ |
| kvmppc_wait_for_nap(controlled_threads); |
| |
| /* Return to whole-core mode if we split the core earlier */ |
| if (cmd_bit) { |
| unsigned long hid0 = mfspr(SPRN_HID0); |
| unsigned long loops = 0; |
| |
| hid0 &= ~HID0_POWER8_DYNLPARDIS; |
| stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; |
| mb(); |
| mtspr(SPRN_HID0, hid0); |
| isync(); |
| for (;;) { |
| hid0 = mfspr(SPRN_HID0); |
| if (!(hid0 & stat_bit)) |
| break; |
| cpu_relax(); |
| ++loops; |
| } |
| split_info.do_nap = 0; |
| } |
| |
| kvmppc_set_host_core(pcpu); |
| |
| context_tracking_guest_exit(); |
| if (!vtime_accounting_enabled_this_cpu()) { |
| local_irq_enable(); |
| /* |
| * Service IRQs here before vtime_account_guest_exit() so any |
| * ticks that occurred while running the guest are accounted to |
| * the guest. If vtime accounting is enabled, accounting uses |
| * TB rather than ticks, so it can be done without enabling |
| * interrupts here, which has the problem that it accounts |
| * interrupt processing overhead to the host. |
| */ |
| local_irq_disable(); |
| } |
| vtime_account_guest_exit(); |
| |
| local_irq_enable(); |
| |
| /* Let secondaries go back to the offline loop */ |
| for (i = 0; i < controlled_threads; ++i) { |
| kvmppc_release_hwthread(pcpu + i); |
| if (sip && sip->napped[i]) |
| kvmppc_ipi_thread(pcpu + i); |
| cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); |
| } |
| |
| spin_unlock(&vc->lock); |
| |
| /* make sure updates to secondary vcpu structs are visible now */ |
| smp_mb(); |
| |
| preempt_enable(); |
| |
| for (sub = 0; sub < core_info.n_subcores; ++sub) { |
| pvc = core_info.vc[sub]; |
| post_guest_process(pvc, pvc == vc); |
| } |
| |
| spin_lock(&vc->lock); |
| |
| out: |
| vc->vcore_state = VCORE_INACTIVE; |
| trace_kvmppc_run_core(vc, 1); |
| } |
| |
| static void load_spr_state(struct kvm_vcpu *vcpu) |
| { |
| mtspr(SPRN_DSCR, vcpu->arch.dscr); |
| mtspr(SPRN_IAMR, vcpu->arch.iamr); |
| mtspr(SPRN_PSPB, vcpu->arch.pspb); |
| mtspr(SPRN_FSCR, vcpu->arch.fscr); |
| mtspr(SPRN_TAR, vcpu->arch.tar); |
| mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); |
| mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); |
| mtspr(SPRN_BESCR, vcpu->arch.bescr); |
| mtspr(SPRN_TIDR, vcpu->arch.tid); |
| mtspr(SPRN_AMR, vcpu->arch.amr); |
| mtspr(SPRN_UAMOR, vcpu->arch.uamor); |
| |
| /* |
| * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI] |
| * clear (or hstate set appropriately to catch those registers |
| * being clobbered if we take a MCE or SRESET), so those are done |
| * later. |
| */ |
| |
| if (!(vcpu->arch.ctrl & 1)) |
| mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); |
| } |
| |
| static void store_spr_state(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.ctrl = mfspr(SPRN_CTRLF); |
| |
| vcpu->arch.iamr = mfspr(SPRN_IAMR); |
| vcpu->arch.pspb = mfspr(SPRN_PSPB); |
| vcpu->arch.fscr = mfspr(SPRN_FSCR); |
| vcpu->arch.tar = mfspr(SPRN_TAR); |
| vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); |
| vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); |
| vcpu->arch.bescr = mfspr(SPRN_BESCR); |
| vcpu->arch.tid = mfspr(SPRN_TIDR); |
| vcpu->arch.amr = mfspr(SPRN_AMR); |
| vcpu->arch.uamor = mfspr(SPRN_UAMOR); |
| vcpu->arch.dscr = mfspr(SPRN_DSCR); |
| } |
| |
| /* |
| * Privileged (non-hypervisor) host registers to save. |
| */ |
| struct p9_host_os_sprs { |
| unsigned long dscr; |
| unsigned long tidr; |
| unsigned long iamr; |
| unsigned long amr; |
| unsigned long fscr; |
| }; |
| |
| static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs) |
| { |
| host_os_sprs->dscr = mfspr(SPRN_DSCR); |
| host_os_sprs->tidr = mfspr(SPRN_TIDR); |
| host_os_sprs->iamr = mfspr(SPRN_IAMR); |
| host_os_sprs->amr = mfspr(SPRN_AMR); |
| host_os_sprs->fscr = mfspr(SPRN_FSCR); |
| } |
| |
| /* vcpu guest regs must already be saved */ |
| static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu, |
| struct p9_host_os_sprs *host_os_sprs) |
| { |
| mtspr(SPRN_PSPB, 0); |
| mtspr(SPRN_UAMOR, 0); |
| |
| mtspr(SPRN_DSCR, host_os_sprs->dscr); |
| mtspr(SPRN_TIDR, host_os_sprs->tidr); |
| mtspr(SPRN_IAMR, host_os_sprs->iamr); |
| |
| if (host_os_sprs->amr != vcpu->arch.amr) |
| mtspr(SPRN_AMR, host_os_sprs->amr); |
| |
| if (host_os_sprs->fscr != vcpu->arch.fscr) |
| mtspr(SPRN_FSCR, host_os_sprs->fscr); |
| |
| /* Save guest CTRL register, set runlatch to 1 */ |
| if (!(vcpu->arch.ctrl & 1)) |
| mtspr(SPRN_CTRLT, 1); |
| } |
| |
| static inline bool hcall_is_xics(unsigned long req) |
| { |
| return req == H_EOI || req == H_CPPR || req == H_IPI || |
| req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; |
| } |
| |
| /* |
| * Guest entry for POWER9 and later CPUs. |
| */ |
| static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, |
| unsigned long lpcr) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| struct p9_host_os_sprs host_os_sprs; |
| s64 dec; |
| u64 tb; |
| int trap, save_pmu; |
| |
| WARN_ON_ONCE(vcpu->arch.ceded); |
| |
| dec = mfspr(SPRN_DEC); |
| tb = mftb(); |
| if (dec < 0) |
| return BOOK3S_INTERRUPT_HV_DECREMENTER; |
| local_paca->kvm_hstate.dec_expires = dec + tb; |
| if (local_paca->kvm_hstate.dec_expires < time_limit) |
| time_limit = local_paca->kvm_hstate.dec_expires; |
| |
| save_p9_host_os_sprs(&host_os_sprs); |
| |
| kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ |
| |
| kvmppc_subcore_enter_guest(); |
| |
| vc->entry_exit_map = 1; |
| vc->in_guest = 1; |
| |
| if (vcpu->arch.vpa.pinned_addr) { |
| struct lppaca *lp = vcpu->arch.vpa.pinned_addr; |
| u32 yield_count = be32_to_cpu(lp->yield_count) + 1; |
| lp->yield_count = cpu_to_be32(yield_count); |
| vcpu->arch.vpa.dirty = 1; |
| } |
| |
| if (cpu_has_feature(CPU_FTR_TM) || |
| cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) |
| kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); |
| |
| #ifdef CONFIG_PPC_PSERIES |
| if (kvmhv_on_pseries()) { |
| barrier(); |
| if (vcpu->arch.vpa.pinned_addr) { |
| struct lppaca *lp = vcpu->arch.vpa.pinned_addr; |
| get_lppaca()->pmcregs_in_use = lp->pmcregs_in_use; |
| } else { |
| get_lppaca()->pmcregs_in_use = 1; |
| } |
| barrier(); |
| } |
| #endif |
| kvmhv_load_guest_pmu(vcpu); |
| |
| msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); |
| load_fp_state(&vcpu->arch.fp); |
| #ifdef CONFIG_ALTIVEC |
| load_vr_state(&vcpu->arch.vr); |
| #endif |
| mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); |
| |
| load_spr_state(vcpu); |
| |
| /* |
| * When setting DEC, we must always deal with irq_work_raise via NMI vs |
| * setting DEC. The problem occurs right as we switch into guest mode |
| * if a NMI hits and sets pending work and sets DEC, then that will |
| * apply to the guest and not bring us back to the host. |
| * |
| * irq_work_raise could check a flag (or possibly LPCR[HDICE] for |
| * example) and set HDEC to 1? That wouldn't solve the nested hv |
| * case which needs to abort the hcall or zero the time limit. |
| * |
| * XXX: Another day's problem. |
| */ |
| mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); |
| |
| if (kvmhv_on_pseries()) { |
| /* |
| * We need to save and restore the guest visible part of the |
| * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor |
| * doesn't do this for us. Note only required if pseries since |
| * this is done in kvmhv_vcpu_entry_p9() below otherwise. |
| */ |
| unsigned long host_psscr; |
| /* call our hypervisor to load up HV regs and go */ |
| struct hv_guest_state hvregs; |
| |
| host_psscr = mfspr(SPRN_PSSCR_PR); |
| mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); |
| kvmhv_save_hv_regs(vcpu, &hvregs); |
| hvregs.lpcr = lpcr; |
| vcpu->arch.regs.msr = vcpu->arch.shregs.msr; |
| hvregs.version = HV_GUEST_STATE_VERSION; |
| if (vcpu->arch.nested) { |
| hvregs.lpid = vcpu->arch.nested->shadow_lpid; |
| hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; |
| } else { |
| hvregs.lpid = vcpu->kvm->arch.lpid; |
| hvregs.vcpu_token = vcpu->vcpu_id; |
| } |
| hvregs.hdec_expiry = time_limit; |
| mtspr(SPRN_DAR, vcpu->arch.shregs.dar); |
| mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); |
| trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), |
| __pa(&vcpu->arch.regs)); |
| kvmhv_restore_hv_return_state(vcpu, &hvregs); |
| vcpu->arch.shregs.msr = vcpu->arch.regs.msr; |
| vcpu->arch.shregs.dar = mfspr(SPRN_DAR); |
| vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); |
| vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); |
| mtspr(SPRN_PSSCR_PR, host_psscr); |
| |
| /* H_CEDE has to be handled now, not later */ |
| if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && |
| kvmppc_get_gpr(vcpu, 3) == H_CEDE) { |
| kvmppc_cede(vcpu); |
| kvmppc_set_gpr(vcpu, 3, 0); |
| trap = 0; |
| } |
| } else { |
| kvmppc_xive_push_vcpu(vcpu); |
| trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr); |
| if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && |
| !(vcpu->arch.shregs.msr & MSR_PR)) { |
| unsigned long req = kvmppc_get_gpr(vcpu, 3); |
| |
| /* H_CEDE has to be handled now, not later */ |
| if (req == H_CEDE) { |
| kvmppc_cede(vcpu); |
| kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */ |
| kvmppc_set_gpr(vcpu, 3, 0); |
| trap = 0; |
| |
| /* XICS hcalls must be handled before xive is pulled */ |
| } else if (hcall_is_xics(req)) { |
| int ret; |
| |
| ret = kvmppc_xive_xics_hcall(vcpu, req); |
| if (ret != H_TOO_HARD) { |
| kvmppc_set_gpr(vcpu, 3, ret); |
| trap = 0; |
| } |
| } |
| } |
| kvmppc_xive_pull_vcpu(vcpu); |
| |
| if (kvm_is_radix(vcpu->kvm)) |
| vcpu->arch.slb_max = 0; |
| } |
| |
| dec = mfspr(SPRN_DEC); |
| if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ |
| dec = (s32) dec; |
| tb = mftb(); |
| vcpu->arch.dec_expires = dec + tb; |
| vcpu->cpu = -1; |
| vcpu->arch.thread_cpu = -1; |
| |
| store_spr_state(vcpu); |
| |
| restore_p9_host_os_sprs(vcpu, &host_os_sprs); |
| |
| msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); |
| store_fp_state(&vcpu->arch.fp); |
| #ifdef CONFIG_ALTIVEC |
| store_vr_state(&vcpu->arch.vr); |
| #endif |
| vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); |
| |
| if (cpu_has_feature(CPU_FTR_TM) || |
| cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) |
| kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); |
| |
| save_pmu = 1; |
| if (vcpu->arch.vpa.pinned_addr) { |
| struct lppaca *lp = vcpu->arch.vpa.pinned_addr; |
| u32 yield_count = be32_to_cpu(lp->yield_count) + 1; |
| lp->yield_count = cpu_to_be32(yield_count); |
| vcpu->arch.vpa.dirty = 1; |
| save_pmu = lp->pmcregs_in_use; |
| } |
| /* Must save pmu if this guest is capable of running nested guests */ |
| save_pmu |= nesting_enabled(vcpu->kvm); |
| |
| kvmhv_save_guest_pmu(vcpu, save_pmu); |
| #ifdef CONFIG_PPC_PSERIES |
| if (kvmhv_on_pseries()) { |
| barrier(); |
| get_lppaca()->pmcregs_in_use = ppc_get_pmu_inuse(); |
| barrier(); |
| } |
| #endif |
| |
| vc->entry_exit_map = 0x101; |
| vc->in_guest = 0; |
| |
| mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); |
| /* We may have raced with new irq work */ |
| if (test_irq_work_pending()) |
| set_dec(1); |
| mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); |
| |
| kvmhv_load_host_pmu(); |
| |
| kvmppc_subcore_exit_guest(); |
| |
| return trap; |
| } |
| |
| /* |
| * Wait for some other vcpu thread to execute us, and |
| * wake us up when we need to handle something in the host. |
| */ |
| static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, |
| struct kvm_vcpu *vcpu, int wait_state) |
| { |
| DEFINE_WAIT(wait); |
| |
| prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); |
| if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { |
| spin_unlock(&vc->lock); |
| schedule(); |
| spin_lock(&vc->lock); |
| } |
| finish_wait(&vcpu->arch.cpu_run, &wait); |
| } |
| |
| static void grow_halt_poll_ns(struct kvmppc_vcore *vc) |
| { |
| if (!halt_poll_ns_grow) |
| return; |
| |
| vc->halt_poll_ns *= halt_poll_ns_grow; |
| if (vc->halt_poll_ns < halt_poll_ns_grow_start) |
| vc->halt_poll_ns = halt_poll_ns_grow_start; |
| } |
| |
| static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) |
| { |
| if (halt_poll_ns_shrink == 0) |
| vc->halt_poll_ns = 0; |
| else |
| vc->halt_poll_ns /= halt_poll_ns_shrink; |
| } |
| |
| #ifdef CONFIG_KVM_XICS |
| static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) |
| { |
| if (!xics_on_xive()) |
| return false; |
| return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < |
| vcpu->arch.xive_saved_state.cppr; |
| } |
| #else |
| static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) |
| { |
| return false; |
| } |
| #endif /* CONFIG_KVM_XICS */ |
| |
| static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || |
| kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Check to see if any of the runnable vcpus on the vcore have pending |
| * exceptions or are no longer ceded |
| */ |
| static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) |
| { |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| for_each_runnable_thread(i, vcpu, vc) { |
| if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * All the vcpus in this vcore are idle, so wait for a decrementer |
| * or external interrupt to one of the vcpus. vc->lock is held. |
| */ |
| static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) |
| { |
| ktime_t cur, start_poll, start_wait; |
| int do_sleep = 1; |
| u64 block_ns; |
| |
| /* Poll for pending exceptions and ceded state */ |
| cur = start_poll = ktime_get(); |
| if (vc->halt_poll_ns) { |
| ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); |
| ++vc->runner->stat.generic.halt_attempted_poll; |
| |
| vc->vcore_state = VCORE_POLLING; |
| spin_unlock(&vc->lock); |
| |
| do { |
| if (kvmppc_vcore_check_block(vc)) { |
| do_sleep = 0; |
| break; |
| } |
| cur = ktime_get(); |
| } while (kvm_vcpu_can_poll(cur, stop)); |
| |
| spin_lock(&vc->lock); |
| vc->vcore_state = VCORE_INACTIVE; |
| |
| if (!do_sleep) { |
| ++vc->runner->stat.generic.halt_successful_poll; |
| goto out; |
| } |
| } |
| |
| prepare_to_rcuwait(&vc->wait); |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (kvmppc_vcore_check_block(vc)) { |
| finish_rcuwait(&vc->wait); |
| do_sleep = 0; |
| /* If we polled, count this as a successful poll */ |
| if (vc->halt_poll_ns) |
| ++vc->runner->stat.generic.halt_successful_poll; |
| goto out; |
| } |
| |
| start_wait = ktime_get(); |
| |
| vc->vcore_state = VCORE_SLEEPING; |
| trace_kvmppc_vcore_blocked(vc, 0); |
| spin_unlock(&vc->lock); |
| schedule(); |
| finish_rcuwait(&vc->wait); |
| spin_lock(&vc->lock); |
| vc->vcore_state = VCORE_INACTIVE; |
| trace_kvmppc_vcore_blocked(vc, 1); |
| ++vc->runner->stat.halt_successful_wait; |
| |
| cur = ktime_get(); |
| |
| out: |
| block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); |
| |
| /* Attribute wait time */ |
| if (do_sleep) { |
| vc->runner->stat.generic.halt_wait_ns += |
| ktime_to_ns(cur) - ktime_to_ns(start_wait); |
| KVM_STATS_LOG_HIST_UPDATE( |
| vc->runner->stat.generic.halt_wait_hist, |
| ktime_to_ns(cur) - ktime_to_ns(start_wait)); |
| /* Attribute failed poll time */ |
| if (vc->halt_poll_ns) { |
| vc->runner->stat.generic.halt_poll_fail_ns += |
| ktime_to_ns(start_wait) - |
| ktime_to_ns(start_poll); |
| KVM_STATS_LOG_HIST_UPDATE( |
| vc->runner->stat.generic.halt_poll_fail_hist, |
| ktime_to_ns(start_wait) - |
| ktime_to_ns(start_poll)); |
| } |
| } else { |
| /* Attribute successful poll time */ |
| if (vc->halt_poll_ns) { |
| vc->runner->stat.generic.halt_poll_success_ns += |
| ktime_to_ns(cur) - |
| ktime_to_ns(start_poll); |
| KVM_STATS_LOG_HIST_UPDATE( |
| vc->runner->stat.generic.halt_poll_success_hist, |
| ktime_to_ns(cur) - ktime_to_ns(start_poll)); |
| } |
| } |
| |
| /* Adjust poll time */ |
| if (halt_poll_ns) { |
| if (block_ns <= vc->halt_poll_ns) |
| ; |
| /* We slept and blocked for longer than the max halt time */ |
| else if (vc->halt_poll_ns && block_ns > halt_poll_ns) |
| shrink_halt_poll_ns(vc); |
| /* We slept and our poll time is too small */ |
| else if (vc->halt_poll_ns < halt_poll_ns && |
| block_ns < halt_poll_ns) |
| grow_halt_poll_ns(vc); |
| if (vc->halt_poll_ns > halt_poll_ns) |
| vc->halt_poll_ns = halt_poll_ns; |
| } else |
| vc->halt_poll_ns = 0; |
| |
| trace_kvmppc_vcore_wakeup(do_sleep, block_ns); |
| } |
| |
| /* |
| * This never fails for a radix guest, as none of the operations it does |
| * for a radix guest can fail or have a way to report failure. |
| */ |
| static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) |
| { |
| int r = 0; |
| struct kvm *kvm = vcpu->kvm; |
| |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| if (!kvm->arch.mmu_ready) { |
| if (!kvm_is_radix(kvm)) |
| r = kvmppc_hv_setup_htab_rma(vcpu); |
| if (!r) { |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| kvmppc_setup_partition_table(kvm); |
| kvm->arch.mmu_ready = 1; |
| } |
| } |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| return r; |
| } |
| |
| static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| int n_ceded, i, r; |
| struct kvmppc_vcore *vc; |
| struct kvm_vcpu *v; |
| |
| trace_kvmppc_run_vcpu_enter(vcpu); |
| |
| run->exit_reason = 0; |
| vcpu->arch.ret = RESUME_GUEST; |
| vcpu->arch.trap = 0; |
| kvmppc_update_vpas(vcpu); |
| |
| /* |
| * Synchronize with other threads in this virtual core |
| */ |
| vc = vcpu->arch.vcore; |
| spin_lock(&vc->lock); |
| vcpu->arch.ceded = 0; |
| vcpu->arch.run_task = current; |
| vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); |
| vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; |
| vcpu->arch.busy_preempt = TB_NIL; |
| WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); |
| ++vc->n_runnable; |
| |
| /* |
| * This happens the first time this is called for a vcpu. |
| * If the vcore is already running, we may be able to start |
| * this thread straight away and have it join in. |
| */ |
| if (!signal_pending(current)) { |
| if ((vc->vcore_state == VCORE_PIGGYBACK || |
| vc->vcore_state == VCORE_RUNNING) && |
| !VCORE_IS_EXITING(vc)) { |
| kvmppc_create_dtl_entry(vcpu, vc); |
| kvmppc_start_thread(vcpu, vc); |
| trace_kvm_guest_enter(vcpu); |
| } else if (vc->vcore_state == VCORE_SLEEPING) { |
| rcuwait_wake_up(&vc->wait); |
| } |
| |
| } |
| |
| while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && |
| !signal_pending(current)) { |
| /* See if the MMU is ready to go */ |
| if (!vcpu->kvm->arch.mmu_ready) { |
| spin_unlock(&vc->lock); |
| r = kvmhv_setup_mmu(vcpu); |
| spin_lock(&vc->lock); |
| if (r) { |
| run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| run->fail_entry. |
| hardware_entry_failure_reason = 0; |
| vcpu->arch.ret = r; |
| break; |
| } |
| } |
| |
| if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) |
| kvmppc_vcore_end_preempt(vc); |
| |
| if (vc->vcore_state != VCORE_INACTIVE) { |
| kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); |
| continue; |
| } |
| for_each_runnable_thread(i, v, vc) { |
| kvmppc_core_prepare_to_enter(v); |
| if (signal_pending(v->arch.run_task)) { |
| kvmppc_remove_runnable(vc, v); |
| v->stat.signal_exits++; |
| v->run->exit_reason = KVM_EXIT_INTR; |
| v->arch.ret = -EINTR; |
| wake_up(&v->arch.cpu_run); |
| } |
| } |
| if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) |
| break; |
| n_ceded = 0; |
| for_each_runnable_thread(i, v, vc) { |
| if (!kvmppc_vcpu_woken(v)) |
| n_ceded += v->arch.ceded; |
| else |
| v->arch.ceded = 0; |
| } |
| vc->runner = vcpu; |
| if (n_ceded == vc->n_runnable) { |
| kvmppc_vcore_blocked(vc); |
| } else if (need_resched()) { |
| kvmppc_vcore_preempt(vc); |
| /* Let something else run */ |
| cond_resched_lock(&vc->lock); |
| if (vc->vcore_state == VCORE_PREEMPT) |
| kvmppc_vcore_end_preempt(vc); |
| } else { |
| kvmppc_run_core(vc); |
| } |
| vc->runner = NULL; |
| } |
| |
| while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && |
| (vc->vcore_state == VCORE_RUNNING || |
| vc->vcore_state == VCORE_EXITING || |
| vc->vcore_state == VCORE_PIGGYBACK)) |
| kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); |
| |
| if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) |
| kvmppc_vcore_end_preempt(vc); |
| |
| if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { |
| kvmppc_remove_runnable(vc, vcpu); |
| vcpu->stat.signal_exits++; |
| run->exit_reason = KVM_EXIT_INTR; |
| vcpu->arch.ret = -EINTR; |
| } |
| |
| if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { |
| /* Wake up some vcpu to run the core */ |
| i = -1; |
| v = next_runnable_thread(vc, &i); |
| wake_up(&v->arch.cpu_run); |
| } |
| |
| trace_kvmppc_run_vcpu_exit(vcpu); |
| spin_unlock(&vc->lock); |
| return vcpu->arch.ret; |
| } |
| |
| int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, |
| unsigned long lpcr) |
| { |
| struct kvm_run *run = vcpu->run; |
| int trap, r, pcpu; |
| int srcu_idx; |
| struct kvmppc_vcore *vc; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_nested_guest *nested = vcpu->arch.nested; |
| |
| trace_kvmppc_run_vcpu_enter(vcpu); |
| |
| run->exit_reason = 0; |
| vcpu->arch.ret = RESUME_GUEST; |
| vcpu->arch.trap = 0; |
| |
| vc = vcpu->arch.vcore; |
| vcpu->arch.ceded = 0; |
| vcpu->arch.run_task = current; |
| vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); |
| vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; |
| vcpu->arch.busy_preempt = TB_NIL; |
| vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; |
| vc->runnable_threads[0] = vcpu; |
| vc->n_runnable = 1; |
| vc->runner = vcpu; |
| |
| /* See if the MMU is ready to go */ |
| if (!kvm->arch.mmu_ready) { |
| r = kvmhv_setup_mmu(vcpu); |
| if (r) { |
| run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| run->fail_entry.hardware_entry_failure_reason = 0; |
| vcpu->arch.ret = r; |
| return r; |
| } |
| } |
| |
| if (need_resched()) |
| cond_resched(); |
| |
| kvmppc_update_vpas(vcpu); |
| |
| init_vcore_to_run(vc); |
| vc->preempt_tb = TB_NIL; |
| |
| preempt_disable(); |
| pcpu = smp_processor_id(); |
| vc->pcpu = pcpu; |
| if (kvm_is_radix(kvm)) |
| kvmppc_prepare_radix_vcpu(vcpu, pcpu); |
| |
| local_irq_disable(); |
| hard_irq_disable(); |
| if (signal_pending(current)) |
| goto sigpend; |
| if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) |
| goto out; |
| |
| if (!nested) { |
| kvmppc_core_prepare_to_enter(vcpu); |
| if (vcpu->arch.doorbell_request) { |
| vc->dpdes = 1; |
| smp_wmb(); |
| vcpu->arch.doorbell_request = 0; |
| } |
| if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, |
| &vcpu->arch.pending_exceptions)) |
| lpcr |= LPCR_MER; |
| } else if (vcpu->arch.pending_exceptions || |
| vcpu->arch.doorbell_request || |
| xive_interrupt_pending(vcpu)) { |
| vcpu->arch.ret = RESUME_HOST; |
| goto out; |
| } |
| |
| kvmppc_clear_host_core(pcpu); |
| |
| local_paca->kvm_hstate.napping = 0; |
| local_paca->kvm_hstate.kvm_split_mode = NULL; |
| kvmppc_start_thread(vcpu, vc); |
| kvmppc_create_dtl_entry(vcpu, vc); |
| trace_kvm_guest_enter(vcpu); |
| |
| vc->vcore_state = VCORE_RUNNING; |
| trace_kvmppc_run_core(vc, 0); |
| |
| guest_enter_irqoff(); |
| |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| |
| this_cpu_disable_ftrace(); |
| |
| /* Tell lockdep that we're about to enable interrupts */ |
| trace_hardirqs_on(); |
| |
| trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); |
| vcpu->arch.trap = trap; |
| |
| trace_hardirqs_off(); |
| |
| this_cpu_enable_ftrace(); |
| |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| set_irq_happened(trap); |
| |
| kvmppc_set_host_core(pcpu); |
| |
| context_tracking_guest_exit(); |
| if (!vtime_accounting_enabled_this_cpu()) { |
| local_irq_enable(); |
| /* |
| * Service IRQs here before vtime_account_guest_exit() so any |
| * ticks that occurred while running the guest are accounted to |
| * the guest. If vtime accounting is enabled, accounting uses |
| * TB rather than ticks, so it can be done without enabling |
| * interrupts here, which has the problem that it accounts |
| * interrupt processing overhead to the host. |
| */ |
| local_irq_disable(); |
| } |
| vtime_account_guest_exit(); |
| |
| local_irq_enable(); |
| |
| cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); |
| |
| preempt_enable(); |
| |
| /* |
| * cancel pending decrementer exception if DEC is now positive, or if |
| * entering a nested guest in which case the decrementer is now owned |
| * by L2 and the L1 decrementer is provided in hdec_expires |
| */ |
| if (kvmppc_core_pending_dec(vcpu) && |
| ((get_tb() < vcpu->arch.dec_expires) || |
| (trap == BOOK3S_INTERRUPT_SYSCALL && |
| kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) |
| kvmppc_core_dequeue_dec(vcpu); |
| |
| trace_kvm_guest_exit(vcpu); |
| r = RESUME_GUEST; |
| if (trap) { |
| if (!nested) |
| r = kvmppc_handle_exit_hv(vcpu, current); |
| else |
| r = kvmppc_handle_nested_exit(vcpu); |
| } |
| vcpu->arch.ret = r; |
| |
| if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && |
| !kvmppc_vcpu_woken(vcpu)) { |
| kvmppc_set_timer(vcpu); |
| while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { |
| if (signal_pending(current)) { |
| vcpu->stat.signal_exits++; |
| run->exit_reason = KVM_EXIT_INTR; |
| vcpu->arch.ret = -EINTR; |
| break; |
| } |
| spin_lock(&vc->lock); |
| kvmppc_vcore_blocked(vc); |
| spin_unlock(&vc->lock); |
| } |
| } |
| vcpu->arch.ceded = 0; |
| |
| vc->vcore_state = VCORE_INACTIVE; |
| trace_kvmppc_run_core(vc, 1); |
| |
| done: |
| kvmppc_remove_runnable(vc, vcpu); |
| trace_kvmppc_run_vcpu_exit(vcpu); |
| |
| return vcpu->arch.ret; |
| |
| sigpend: |
| vcpu->stat.signal_exits++; |
| run->exit_reason = KVM_EXIT_INTR; |
| vcpu->arch.ret = -EINTR; |
| out: |
| local_irq_enable(); |
| preempt_enable(); |
| goto done; |
| } |
| |
| static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| int r; |
| int srcu_idx; |
| unsigned long ebb_regs[3] = {}; /* shut up GCC */ |
| unsigned long user_tar = 0; |
| unsigned int user_vrsave; |
| struct kvm *kvm; |
| |
| if (!vcpu->arch.sane) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return -EINVAL; |
| } |
| |
| /* |
| * Don't allow entry with a suspended transaction, because |
| * the guest entry/exit code will lose it. |
| * If the guest has TM enabled, save away their TM-related SPRs |
| * (they will get restored by the TM unavailable interrupt). |
| */ |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && |
| (current->thread.regs->msr & MSR_TM)) { |
| if (MSR_TM_ACTIVE(current->thread.regs->msr)) { |
| run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| run->fail_entry.hardware_entry_failure_reason = 0; |
| return -EINVAL; |
| } |
| /* Enable TM so we can read the TM SPRs */ |
| mtmsr(mfmsr() | MSR_TM); |
| current->thread.tm_tfhar = mfspr(SPRN_TFHAR); |
| current->thread.tm_tfiar = mfspr(SPRN_TFIAR); |
| current->thread.tm_texasr = mfspr(SPRN_TEXASR); |
| current->thread.regs->msr &= ~MSR_TM; |
| } |
| #endif |
| |
| /* |
| * Force online to 1 for the sake of old userspace which doesn't |
| * set it. |
| */ |
| if (!vcpu->arch.online) { |
| atomic_inc(&vcpu->arch.vcore->online_count); |
| vcpu->arch.online = 1; |
| } |
| |
| kvmppc_core_prepare_to_enter(vcpu); |
| |
| /* No need to go into the guest when all we'll do is come back out */ |
| if (signal_pending(current)) { |
| run->exit_reason = KVM_EXIT_INTR; |
| return -EINTR; |
| } |
| |
| kvm = vcpu->kvm; |
| atomic_inc(&kvm->arch.vcpus_running); |
| /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ |
| smp_mb(); |
| |
| flush_all_to_thread(current); |
| |
| /* Save userspace EBB and other register values */ |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| ebb_regs[0] = mfspr(SPRN_EBBHR); |
| ebb_regs[1] = mfspr(SPRN_EBBRR); |
| ebb_regs[2] = mfspr(SPRN_BESCR); |
| user_tar = mfspr(SPRN_TAR); |
| } |
| user_vrsave = mfspr(SPRN_VRSAVE); |
| |
| vcpu->arch.waitp = &vcpu->arch.vcore->wait; |
| vcpu->arch.pgdir = kvm->mm->pgd; |
| vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; |
| |
| do { |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, |
| vcpu->arch.vcore->lpcr); |
| else |
| r = kvmppc_run_vcpu(vcpu); |
| |
| if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { |
| if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) { |
| /* |
| * These should have been caught reflected |
| * into the guest by now. Final sanity check: |
| * don't allow userspace to execute hcalls in |
| * the hypervisor. |
| */ |
| r = RESUME_GUEST; |
| continue; |
| } |
| trace_kvm_hcall_enter(vcpu); |
| r = kvmppc_pseries_do_hcall(vcpu); |
| trace_kvm_hcall_exit(vcpu, r); |
| kvmppc_core_prepare_to_enter(vcpu); |
| } else if (r == RESUME_PAGE_FAULT) { |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| r = kvmppc_book3s_hv_page_fault(vcpu, |
| vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| } else if (r == RESUME_PASSTHROUGH) { |
| if (WARN_ON(xics_on_xive())) |
| r = H_SUCCESS; |
| else |
| r = kvmppc_xics_rm_complete(vcpu, 0); |
| } |
| } while (is_kvmppc_resume_guest(r)); |
| |
| /* Restore userspace EBB and other register values */ |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| mtspr(SPRN_EBBHR, ebb_regs[0]); |
| mtspr(SPRN_EBBRR, ebb_regs[1]); |
| mtspr(SPRN_BESCR, ebb_regs[2]); |
| mtspr(SPRN_TAR, user_tar); |
| } |
| mtspr(SPRN_VRSAVE, user_vrsave); |
| |
| vcpu->arch.state = KVMPPC_VCPU_NOTREADY; |
| atomic_dec(&kvm->arch.vcpus_running); |
| |
| srr_regs_clobbered(); |
| |
| return r; |
| } |
| |
| static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, |
| int shift, int sllp) |
| { |
| (*sps)->page_shift = shift; |
| (*sps)->slb_enc = sllp; |
| (*sps)->enc[0].page_shift = shift; |
| (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); |
| /* |
| * Add 16MB MPSS support (may get filtered out by userspace) |
| */ |
| if (shift != 24) { |
| int penc = kvmppc_pgsize_lp_encoding(shift, 24); |
| if (penc != -1) { |
| (*sps)->enc[1].page_shift = 24; |
| (*sps)->enc[1].pte_enc = penc; |
| } |
| } |
| (*sps)++; |
| } |
| |
| static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, |
| struct kvm_ppc_smmu_info *info) |
| { |
| struct kvm_ppc_one_seg_page_size *sps; |
| |
| /* |
| * POWER7, POWER8 and POWER9 all support 32 storage keys for data. |
| * POWER7 doesn't support keys for instruction accesses, |
| * POWER8 and POWER9 do. |
| */ |
| info->data_keys = 32; |
| info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; |
| |
| /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ |
| info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; |
| info->slb_size = 32; |
| |
| /* We only support these sizes for now, and no muti-size segments */ |
| sps = &info->sps[0]; |
| kvmppc_add_seg_page_size(&sps, 12, 0); |
| kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); |
| kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); |
| |
| /* If running as a nested hypervisor, we don't support HPT guests */ |
| if (kvmhv_on_pseries()) |
| info->flags |= KVM_PPC_NO_HASH; |
| |
| return 0; |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, |
| struct kvm_dirty_log *log) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| int i, r; |
| unsigned long n; |
| unsigned long *buf, *p; |
| struct kvm_vcpu *vcpu; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| r = -EINVAL; |
| if (log->slot >= KVM_USER_MEM_SLOTS) |
| goto out; |
| |
| slots = kvm_memslots(kvm); |
| memslot = id_to_memslot(slots, log->slot); |
| r = -ENOENT; |
| if (!memslot || !memslot->dirty_bitmap) |
| goto out; |
| |
| /* |
| * Use second half of bitmap area because both HPT and radix |
| * accumulate bits in the first half. |
| */ |
| n = kvm_dirty_bitmap_bytes(memslot); |
| buf = memslot->dirty_bitmap + n / sizeof(long); |
| memset(buf, 0, n); |
| |
| if (kvm_is_radix(kvm)) |
| r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); |
| else |
| r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); |
| if (r) |
| goto out; |
| |
| /* |
| * We accumulate dirty bits in the first half of the |
| * memslot's dirty_bitmap area, for when pages are paged |
| * out or modified by the host directly. Pick up these |
| * bits and add them to the map. |
| */ |
| p = memslot->dirty_bitmap; |
| for (i = 0; i < n / sizeof(long); ++i) |
| buf[i] |= xchg(&p[i], 0); |
| |
| /* Harvest dirty bits from VPA and DTL updates */ |
| /* Note: we never modify the SLB shadow buffer areas */ |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); |
| kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| } |
| |
| r = -EFAULT; |
| if (copy_to_user(log->dirty_bitmap, buf, n)) |
| goto out; |
| |
| r = 0; |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) |
| { |
| vfree(slot->arch.rmap); |
| slot->arch.rmap = NULL; |
| } |
| |
| static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| const struct kvm_userspace_memory_region *mem, |
| enum kvm_mr_change change) |
| { |
| unsigned long npages = mem->memory_size >> PAGE_SHIFT; |
| |
| if (change == KVM_MR_CREATE) { |
| slot->arch.rmap = vzalloc(array_size(npages, |
| sizeof(*slot->arch.rmap))); |
| if (!slot->arch.rmap) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, |
| const struct kvm_userspace_memory_region *mem, |
| const struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| unsigned long npages = mem->memory_size >> PAGE_SHIFT; |
| |
| /* |
| * If we are making a new memslot, it might make |
| * some address that was previously cached as emulated |
| * MMIO be no longer emulated MMIO, so invalidate |
| * all the caches of emulated MMIO translations. |
| */ |
| if (npages) |
| atomic64_inc(&kvm->arch.mmio_update); |
| |
| /* |
| * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels |
| * have already called kvm_arch_flush_shadow_memslot() to |
| * flush shadow mappings. For KVM_MR_CREATE we have no |
| * previous mappings. So the only case to handle is |
| * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit |
| * has been changed. |
| * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES |
| * to get rid of any THP PTEs in the partition-scoped page tables |
| * so we can track dirtiness at the page level; we flush when |
| * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to |
| * using THP PTEs. |
| */ |
| if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && |
| ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) |
| kvmppc_radix_flush_memslot(kvm, old); |
| /* |
| * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. |
| */ |
| if (!kvm->arch.secure_guest) |
| return; |
| |
| switch (change) { |
| case KVM_MR_CREATE: |
| /* |
| * @TODO kvmppc_uvmem_memslot_create() can fail and |
| * return error. Fix this. |
| */ |
| kvmppc_uvmem_memslot_create(kvm, new); |
| break; |
| case KVM_MR_DELETE: |
| kvmppc_uvmem_memslot_delete(kvm, old); |
| break; |
| default: |
| /* TODO: Handle KVM_MR_MOVE */ |
| break; |
| } |
| } |
| |
| /* |
| * Update LPCR values in kvm->arch and in vcores. |
| * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion |
| * of kvm->arch.lpcr update). |
| */ |
| void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) |
| { |
| long int i; |
| u32 cores_done = 0; |
| |
| if ((kvm->arch.lpcr & mask) == lpcr) |
| return; |
| |
| kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; |
| |
| for (i = 0; i < KVM_MAX_VCORES; ++i) { |
| struct kvmppc_vcore *vc = kvm->arch.vcores[i]; |
| if (!vc) |
| continue; |
| |
| spin_lock(&vc->lock); |
| vc->lpcr = (vc->lpcr & ~mask) | lpcr; |
| verify_lpcr(kvm, vc->lpcr); |
| spin_unlock(&vc->lock); |
| if (++cores_done >= kvm->arch.online_vcores) |
| break; |
| } |
| } |
| |
| void kvmppc_setup_partition_table(struct kvm *kvm) |
| { |
| unsigned long dw0, dw1; |
| |
| if (!kvm_is_radix(kvm)) { |
| /* PS field - page size for VRMA */ |
| dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | |
| ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); |
| /* HTABSIZE and HTABORG fields */ |
| dw0 |= kvm->arch.sdr1; |
| |
| /* Second dword as set by userspace */ |
| dw1 = kvm->arch.process_table; |
| } else { |
| dw0 = PATB_HR | radix__get_tree_size() | |
| __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; |
| dw1 = PATB_GR | kvm->arch.process_table; |
| } |
| kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); |
| } |
| |
| /* |
| * Set up HPT (hashed page table) and RMA (real-mode area). |
| * Must be called with kvm->arch.mmu_setup_lock held. |
| */ |
| static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) |
| { |
| int err = 0; |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long hva; |
| struct kvm_memory_slot *memslot; |
| struct vm_area_struct *vma; |
| unsigned long lpcr = 0, senc; |
| unsigned long psize, porder; |
| int srcu_idx; |
| |
| /* Allocate hashed page table (if not done already) and reset it */ |
| if (!kvm->arch.hpt.virt) { |
| int order = KVM_DEFAULT_HPT_ORDER; |
| struct kvm_hpt_info info; |
| |
| err = kvmppc_allocate_hpt(&info, order); |
| /* If we get here, it means userspace didn't specify a |
| * size explicitly. So, try successively smaller |
| * sizes if the default failed. */ |
| while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) |
| err = kvmppc_allocate_hpt(&info, order); |
| |
| if (err < 0) { |
| pr_err("KVM: Couldn't alloc HPT\n"); |
| goto out; |
| } |
| |
| kvmppc_set_hpt(kvm, &info); |
| } |
| |
| /* Look up the memslot for guest physical address 0 */ |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| memslot = gfn_to_memslot(kvm, 0); |
| |
| /* We must have some memory at 0 by now */ |
| err = -EINVAL; |
| if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) |
| goto out_srcu; |
| |
| /* Look up the VMA for the start of this memory slot */ |
| hva = memslot->userspace_addr; |
| mmap_read_lock(kvm->mm); |
| vma = vma_lookup(kvm->mm, hva); |
| if (!vma || (vma->vm_flags & VM_IO)) |
| goto up_out; |
| |
| psize = vma_kernel_pagesize(vma); |
| |
| mmap_read_unlock(kvm->mm); |
| |
| /* We can handle 4k, 64k or 16M pages in the VRMA */ |
| if (psize >= 0x1000000) |
| psize = 0x1000000; |
| else if (psize >= 0x10000) |
| psize = 0x10000; |
| else |
| psize = 0x1000; |
| porder = __ilog2(psize); |
| |
| senc = slb_pgsize_encoding(psize); |
| kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | |
| (VRMA_VSID << SLB_VSID_SHIFT_1T); |
| /* Create HPTEs in the hash page table for the VRMA */ |
| kvmppc_map_vrma(vcpu, memslot, porder); |
| |
| /* Update VRMASD field in the LPCR */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) { |
| /* the -4 is to account for senc values starting at 0x10 */ |
| lpcr = senc << (LPCR_VRMASD_SH - 4); |
| kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); |
| } |
| |
| /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ |
| smp_wmb(); |
| err = 0; |
| out_srcu: |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| out: |
| return err; |
| |
| up_out: |
| mmap_read_unlock(kvm->mm); |
| goto out_srcu; |
| } |
| |
| /* |
| * Must be called with kvm->arch.mmu_setup_lock held and |
| * mmu_ready = 0 and no vcpus running. |
| */ |
| int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) |
| { |
| if (nesting_enabled(kvm)) |
| kvmhv_release_all_nested(kvm); |
| kvmppc_rmap_reset(kvm); |
| kvm->arch.process_table = 0; |
| /* Mutual exclusion with kvm_unmap_gfn_range etc. */ |
| spin_lock(&kvm->mmu_lock); |
| kvm->arch.radix = 0; |
| spin_unlock(&kvm->mmu_lock); |
| kvmppc_free_radix(kvm); |
| kvmppc_update_lpcr(kvm, LPCR_VPM1, |
| LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); |
| return 0; |
| } |
| |
| /* |
| * Must be called with kvm->arch.mmu_setup_lock held and |
| * mmu_ready = 0 and no vcpus running. |
| */ |
| int kvmppc_switch_mmu_to_radix(struct kvm *kvm) |
| { |
| int err; |
| |
| err = kvmppc_init_vm_radix(kvm); |
| if (err) |
| return err; |
| kvmppc_rmap_reset(kvm); |
| /* Mutual exclusion with kvm_unmap_gfn_range etc. */ |
| spin_lock(&kvm->mmu_lock); |
| kvm->arch.radix = 1; |
| spin_unlock(&kvm->mmu_lock); |
| kvmppc_free_hpt(&kvm->arch.hpt); |
| kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, |
| LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); |
| return 0; |
| } |
| |
| #ifdef CONFIG_KVM_XICS |
| /* |
| * Allocate a per-core structure for managing state about which cores are |
| * running in the host versus the guest and for exchanging data between |
| * real mode KVM and CPU running in the host. |
| * This is only done for the first VM. |
| * The allocated structure stays even if all VMs have stopped. |
| * It is only freed when the kvm-hv module is unloaded. |
| * It's OK for this routine to fail, we just don't support host |
| * core operations like redirecting H_IPI wakeups. |
| */ |
| void kvmppc_alloc_host_rm_ops(void) |
| { |
| struct kvmppc_host_rm_ops *ops; |
| unsigned long l_ops; |
| int cpu, core; |
| int size; |
| |
| /* Not the first time here ? */ |
| if (kvmppc_host_rm_ops_hv != NULL) |
| return; |
| |
| ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); |
| if (!ops) |
| return; |
| |
| size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); |
| ops->rm_core = kzalloc(size, GFP_KERNEL); |
| |
| if (!ops->rm_core) { |
| kfree(ops); |
| return; |
| } |
| |
| cpus_read_lock(); |
| |
| for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { |
| if (!cpu_online(cpu)) |
| continue; |
| |
| core = cpu >> threads_shift; |
| ops->rm_core[core].rm_state.in_host = 1; |
| } |
| |
| ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; |
| |
| /* |
| * Make the contents of the kvmppc_host_rm_ops structure visible |
| * to other CPUs before we assign it to the global variable. |
| * Do an atomic assignment (no locks used here), but if someone |
| * beats us to it, just free our copy and return. |
| */ |
| smp_wmb(); |
| l_ops = (unsigned long) ops; |
| |
| if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { |
| cpus_read_unlock(); |
| kfree(ops->rm_core); |
| kfree(ops); |
| return; |
| } |
| |
| cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, |
| "ppc/kvm_book3s:prepare", |
| kvmppc_set_host_core, |
| kvmppc_clear_host_core); |
| cpus_read_unlock(); |
| } |
| |
| void kvmppc_free_host_rm_ops(void) |
| { |
| if (kvmppc_host_rm_ops_hv) { |
| cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); |
| kfree(kvmppc_host_rm_ops_hv->rm_core); |
| kfree(kvmppc_host_rm_ops_hv); |
| kvmppc_host_rm_ops_hv = NULL; |
| } |
| } |
| #endif |
| |
| static int kvmppc_core_init_vm_hv(struct kvm *kvm) |
| { |
| unsigned long lpcr, lpid; |
| char buf[32]; |
| int ret; |
| |
| mutex_init(&kvm->arch.uvmem_lock); |
| INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); |
| mutex_init(&kvm->arch.mmu_setup_lock); |
| |
| /* Allocate the guest's logical partition ID */ |
| |
| lpid = kvmppc_alloc_lpid(); |
| if ((long)lpid < 0) |
| return -ENOMEM; |
| kvm->arch.lpid = lpid; |
| |
| kvmppc_alloc_host_rm_ops(); |
| |
| kvmhv_vm_nested_init(kvm); |
| |
| /* |
| * Since we don't flush the TLB when tearing down a VM, |
| * and this lpid might have previously been used, |
| * make sure we flush on each core before running the new VM. |
| * On POWER9, the tlbie in mmu_partition_table_set_entry() |
| * does this flush for us. |
| */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| cpumask_setall(&kvm->arch.need_tlb_flush); |
| |
| /* Start out with the default set of hcalls enabled */ |
| memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, |
| sizeof(kvm->arch.enabled_hcalls)); |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); |
| |
| /* Init LPCR for virtual RMA mode */ |
| if (cpu_has_feature(CPU_FTR_HVMODE)) { |
| kvm->arch.host_lpid = mfspr(SPRN_LPID); |
| kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); |
| lpcr &= LPCR_PECE | LPCR_LPES; |
| } else { |
| lpcr = 0; |
| } |
| lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | |
| LPCR_VPM0 | LPCR_VPM1; |
| kvm->arch.vrma_slb_v = SLB_VSID_B_1T | |
| (VRMA_VSID << SLB_VSID_SHIFT_1T); |
| /* On POWER8 turn on online bit to enable PURR/SPURR */ |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| lpcr |= LPCR_ONL; |
| /* |
| * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) |
| * Set HVICE bit to enable hypervisor virtualization interrupts. |
| * Set HEIC to prevent OS interrupts to go to hypervisor (should |
| * be unnecessary but better safe than sorry in case we re-enable |
| * EE in HV mode with this LPCR still set) |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| lpcr &= ~LPCR_VPM0; |
| lpcr |= LPCR_HVICE | LPCR_HEIC; |
| |
| /* |
| * If xive is enabled, we route 0x500 interrupts directly |
| * to the guest. |
| */ |
| if (xics_on_xive()) |
| lpcr |= LPCR_LPES; |
| } |
| |
| /* |
| * If the host uses radix, the guest starts out as radix. |
| */ |
| if (radix_enabled()) { |
| kvm->arch.radix = 1; |
| kvm->arch.mmu_ready = 1; |
| lpcr &= ~LPCR_VPM1; |
| lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; |
| ret = kvmppc_init_vm_radix(kvm); |
| if (ret) { |
| kvmppc_free_lpid(kvm->arch.lpid); |
| return ret; |
| } |
| kvmppc_setup_partition_table(kvm); |
| } |
| |
| verify_lpcr(kvm, lpcr); |
| kvm->arch.lpcr = lpcr; |
| |
| /* Initialization for future HPT resizes */ |
| kvm->arch.resize_hpt = NULL; |
| |
| /* |
| * Work out how many sets the TLB has, for the use of |
| * the TLB invalidation loop in book3s_hv_rmhandlers.S. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| /* |
| * P10 will flush all the congruence class with a single tlbiel |
| */ |
| kvm->arch.tlb_sets = 1; |
| } else if (radix_enabled()) |
| kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ |
| else if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ |
| else if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ |
| else |
| kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ |
| |
| /* |
| * Track that we now have a HV mode VM active. This blocks secondary |
| * CPU threads from coming online. |
| */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| kvm_hv_vm_activated(); |
| |
| /* |
| * Initialize smt_mode depending on processor. |
| * POWER8 and earlier have to use "strict" threading, where |
| * all vCPUs in a vcore have to run on the same (sub)core, |
| * whereas on POWER9 the threads can each run a different |
| * guest. |
| */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| kvm->arch.smt_mode = threads_per_subcore; |
| else |
| kvm->arch.smt_mode = 1; |
| kvm->arch.emul_smt_mode = 1; |
| |
| /* |
| * Create a debugfs directory for the VM |
| */ |
| snprintf(buf, sizeof(buf), "vm%d", current->pid); |
| kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); |
| kvmppc_mmu_debugfs_init(kvm); |
| if (radix_enabled()) |
| kvmhv_radix_debugfs_init(kvm); |
| |
| return 0; |
| } |
| |
| static void kvmppc_free_vcores(struct kvm *kvm) |
| { |
| long int i; |
| |
| for (i = 0; i < KVM_MAX_VCORES; ++i) |
| kfree(kvm->arch.vcores[i]); |
| kvm->arch.online_vcores = 0; |
| } |
| |
| static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) |
| { |
| debugfs_remove_recursive(kvm->arch.debugfs_dir); |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| kvm_hv_vm_deactivated(); |
| |
| kvmppc_free_vcores(kvm); |
| |
| |
| if (kvm_is_radix(kvm)) |
| kvmppc_free_radix(kvm); |
| else |
| kvmppc_free_hpt(&kvm->arch.hpt); |
| |
| /* Perform global invalidation and return lpid to the pool */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| if (nesting_enabled(kvm)) |
| kvmhv_release_all_nested(kvm); |
| kvm->arch.process_table = 0; |
| if (kvm->arch.secure_guest) |
| uv_svm_terminate(kvm->arch.lpid); |
| kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); |
| } |
| |
| kvmppc_free_lpid(kvm->arch.lpid); |
| |
| kvmppc_free_pimap(kvm); |
| } |
| |
| /* We don't need to emulate any privileged instructions or dcbz */ |
| static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, |
| unsigned int inst, int *advance) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, |
| ulong spr_val) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, |
| ulong *spr_val) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| static int kvmppc_core_check_processor_compat_hv(void) |
| { |
| if (cpu_has_feature(CPU_FTR_HVMODE) && |
| cpu_has_feature(CPU_FTR_ARCH_206)) |
| return 0; |
| |
| /* POWER9 in radix mode is capable of being a nested hypervisor. */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) |
| return 0; |
| |
| return -EIO; |
| } |
| |
| #ifdef CONFIG_KVM_XICS |
| |
| void kvmppc_free_pimap(struct kvm *kvm) |
| { |
| kfree(kvm->arch.pimap); |
| } |
| |
| static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) |
| { |
| return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); |
| } |
| |
| static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) |
| { |
| struct irq_desc *desc; |
| struct kvmppc_irq_map *irq_map; |
| struct kvmppc_passthru_irqmap *pimap; |
| struct irq_chip *chip; |
| int i, rc = 0; |
| struct irq_data *host_data; |
| |
| if (!kvm_irq_bypass) |
| return 1; |
| |
| desc = irq_to_desc(host_irq); |
| if (!desc) |
| return -EIO; |
| |
| mutex_lock(&kvm->lock); |
| |
| pimap = kvm->arch.pimap; |
| if (pimap == NULL) { |
| /* First call, allocate structure to hold IRQ map */ |
| pimap = kvmppc_alloc_pimap(); |
| if (pimap == NULL) { |
| mutex_unlock(&kvm->lock); |
| return -ENOMEM; |
| } |
| kvm->arch.pimap = pimap; |
| } |
| |
| /* |
| * For now, we only support interrupts for which the EOI operation |
| * is an OPAL call followed by a write to XIRR, since that's |
| * what our real-mode EOI code does, or a XIVE interrupt |
| */ |
| chip = irq_data_get_irq_chip(&desc->irq_data); |
| if (!chip || !is_pnv_opal_msi(chip)) { |
| pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", |
| host_irq, guest_gsi); |
| mutex_unlock(&kvm->lock); |
| return -ENOENT; |
| } |
| |
| /* |
| * See if we already have an entry for this guest IRQ number. |
| * If it's mapped to a hardware IRQ number, that's an error, |
| * otherwise re-use this entry. |
| */ |
| for (i = 0; i < pimap->n_mapped; i++) { |
| if (guest_gsi == pimap->mapped[i].v_hwirq) { |
| if (pimap->mapped[i].r_hwirq) { |
| mutex_unlock(&kvm->lock); |
| return -EINVAL; |
| } |
| break; |
| } |
| } |
| |
| if (i == KVMPPC_PIRQ_MAPPED) { |
| mutex_unlock(&kvm->lock); |
| return -EAGAIN; /* table is full */ |
| } |
| |
| irq_map = &pimap->mapped[i]; |
| |
| irq_map->v_hwirq = guest_gsi; |
| irq_map->desc = desc; |
| |
| /* |
| * Order the above two stores before the next to serialize with |
| * the KVM real mode handler. |
| */ |
| smp_wmb(); |
| |
| /* |
| * The 'host_irq' number is mapped in the PCI-MSI domain but |
| * the underlying calls, which will EOI the interrupt in real |
| * mode, need an HW IRQ number mapped in the XICS IRQ domain. |
| */ |
| host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); |
| irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); |
| |
| if (i == pimap->n_mapped) |
| pimap->n_mapped++; |
| |
| if (xics_on_xive()) |
| rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); |
| else |
| kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); |
| if (rc) |
| irq_map->r_hwirq = 0; |
| |
| mutex_unlock(&kvm->lock); |
| |
| return 0; |
| } |
| |
| static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) |
| { |
| struct irq_desc *desc; |
| struct kvmppc_passthru_irqmap *pimap; |
| int i, rc = 0; |
| |
| if (!kvm_irq_bypass) |
| return 0; |
| |
| desc = irq_to_desc(host_irq); |
| if (!desc) |
| return -EIO; |
| |
| mutex_lock(&kvm->lock); |
| if (!kvm->arch.pimap) |
| goto unlock; |
| |
| pimap = kvm->arch.pimap; |
| |
| for (i = 0; i < pimap->n_mapped; i++) { |
| if (guest_gsi == pimap->mapped[i].v_hwirq) |
| break; |
| } |
| |
| if (i == pimap->n_mapped) { |
| mutex_unlock(&kvm->lock); |
| return -ENODEV; |
| } |
| |
| if (xics_on_xive()) |
| rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); |
| else |
| kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); |
| |
| /* invalidate the entry (what do do on error from the above ?) */ |
| pimap->mapped[i].r_hwirq = 0; |
| |
| /* |
| * We don't free this structure even when the count goes to |
| * zero. The structure is freed when we destroy the VM. |
| */ |
| unlock: |
| mutex_unlock(&kvm->lock); |
| return rc; |
| } |
| |
| static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| int ret = 0; |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| irqfd->producer = prod; |
| |
| ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); |
| if (ret) |
| pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", |
| prod->irq, irqfd->gsi, ret); |
| |
| return ret; |
| } |
| |
| static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| int ret; |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| irqfd->producer = NULL; |
| |
| /* |
| * When producer of consumer is unregistered, we change back to |
| * default external interrupt handling mode - KVM real mode |
| * will switch back to host. |
| */ |
| ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); |
| if (ret) |
| pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", |
| prod->irq, irqfd->gsi, ret); |
| } |
| #endif |
| |
| static long kvm_arch_vm_ioctl_hv(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm __maybe_unused = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| long r; |
| |
| switch (ioctl) { |
| |
| case KVM_PPC_ALLOCATE_HTAB: { |
| u32 htab_order; |
| |
| /* If we're a nested hypervisor, we currently only support radix */ |
| if (kvmhv_on_pseries()) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| |
| r = -EFAULT; |
| if (get_user(htab_order, (u32 __user *)argp)) |
| break; |
| r = kvmppc_alloc_reset_hpt(kvm, htab_order); |
| if (r) |
| break; |
| r = 0; |
| break; |
| } |
| |
| case KVM_PPC_GET_HTAB_FD: { |
| struct kvm_get_htab_fd ghf; |
| |
| r = -EFAULT; |
| if (copy_from_user(&ghf, argp, sizeof(ghf))) |
| break; |
| r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); |
| break; |
| } |
| |
| case KVM_PPC_RESIZE_HPT_PREPARE: { |
| struct kvm_ppc_resize_hpt rhpt; |
| |
| r = -EFAULT; |
| if (copy_from_user(&rhpt, argp, sizeof(rhpt))) |
| break; |
| |
| r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); |
| break; |
| } |
| |
| case KVM_PPC_RESIZE_HPT_COMMIT: { |
| struct kvm_ppc_resize_hpt rhpt; |
| |
| r = -EFAULT; |
| if (copy_from_user(&rhpt, argp, sizeof(rhpt))) |
| break; |
| |
| r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); |
| break; |
| } |
| |
| default: |
| r = -ENOTTY; |
| } |
| |
| return r; |
| } |
| |
| /* |
| * List of hcall numbers to enable by default. |
| * For compatibility with old userspace, we enable by default |
| * all hcalls that were implemented before the hcall-enabling |
| * facility was added. Note this list should not include H_RTAS. |
| */ |
| static unsigned int default_hcall_list[] = { |
| H_REMOVE, |
| H_ENTER, |
| H_READ, |
| H_PROTECT, |
| H_BULK_REMOVE, |
| #ifdef CONFIG_SPAPR_TCE_IOMMU |
| H_GET_TCE, |
| H_PUT_TCE, |
| #endif |
| H_SET_DABR, |
| H_SET_XDABR, |
| H_CEDE, |
| H_PROD, |
| H_CONFER, |
| H_REGISTER_VPA, |
| #ifdef CONFIG_KVM_XICS |
| H_EOI, |
| H_CPPR, |
| H_IPI, |
| H_IPOLL, |
| H_XIRR, |
| H_XIRR_X, |
| #endif |
| 0 |
| }; |
| |
| static void init_default_hcalls(void) |
| { |
| int i; |
| unsigned int hcall; |
| |
| for (i = 0; default_hcall_list[i]; ++i) { |
| hcall = default_hcall_list[i]; |
| WARN_ON(!kvmppc_hcall_impl_hv(hcall)); |
| __set_bit(hcall / 4, default_enabled_hcalls); |
| } |
| } |
| |
| static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) |
| { |
| unsigned long lpcr; |
| int radix; |
| int err; |
| |
| /* If not on a POWER9, reject it */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| return -ENODEV; |
| |
| /* If any unknown flags set, reject it */ |
| if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) |
| return -EINVAL; |
| |
| /* GR (guest radix) bit in process_table field must match */ |
| radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); |
| if (!!(cfg->process_table & PATB_GR) != radix) |
| return -EINVAL; |
| |
| /* Process table size field must be reasonable, i.e. <= 24 */ |
| if ((cfg->process_table & PRTS_MASK) > 24) |
| return -EINVAL; |
| |
| /* We can change a guest to/from radix now, if the host is radix */ |
| if (radix && !radix_enabled()) |
| return -EINVAL; |
| |
| /* If we're a nested hypervisor, we currently only support radix */ |
| if (kvmhv_on_pseries() && !radix) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| if (radix != kvm_is_radix(kvm)) { |
| if (kvm->arch.mmu_ready) { |
| kvm->arch.mmu_ready = 0; |
| /* order mmu_ready vs. vcpus_running */ |
| smp_mb(); |
| if (atomic_read(&kvm->arch.vcpus_running)) { |
| kvm->arch.mmu_ready = 1; |
| err = -EBUSY; |
| goto out_unlock; |
| } |
| } |
| if (radix) |
| err = kvmppc_switch_mmu_to_radix(kvm); |
| else |
| err = kvmppc_switch_mmu_to_hpt(kvm); |
| if (err) |
| goto out_unlock; |
| } |
| |
| kvm->arch.process_table = cfg->process_table; |
| kvmppc_setup_partition_table(kvm); |
| |
| lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; |
| kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); |
| err = 0; |
| |
| out_unlock: |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| return err; |
| } |
| |
| static int kvmhv_enable_nested(struct kvm *kvm) |
| { |
| if (!nested) |
| return -EPERM; |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| return -ENODEV; |
| if (!radix_enabled()) |
| return -ENODEV; |
| |
| /* kvm == NULL means the caller is testing if the capability exists */ |
| if (kvm) |
| kvm->arch.nested_enable = true; |
| return 0; |
| } |
| |
| static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, |
| int size) |
| { |
| int rc = -EINVAL; |
| |
| if (kvmhv_vcpu_is_radix(vcpu)) { |
| rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); |
| |
| if (rc > 0) |
| rc = -EINVAL; |
| } |
| |
| /* For now quadrants are the only way to access nested guest memory */ |
| if (rc && vcpu->arch.nested) |
| rc = -EAGAIN; |
| |
| return rc; |
| } |
| |
| static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, |
| int size) |
| { |
| int rc = -EINVAL; |
| |
| if (kvmhv_vcpu_is_radix(vcpu)) { |
| rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); |
| |
| if (rc > 0) |
| rc = -EINVAL; |
| } |
| |
| /* For now quadrants are the only way to access nested guest memory */ |
| if (rc && vcpu->arch.nested) |
| rc = -EAGAIN; |
| |
| return rc; |
| } |
| |
| static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) |
| { |
| unpin_vpa(kvm, vpa); |
| vpa->gpa = 0; |
| vpa->pinned_addr = NULL; |
| vpa->dirty = false; |
| vpa->update_pending = 0; |
| } |
| |
| /* |
| * Enable a guest to become a secure VM, or test whether |
| * that could be enabled. |
| * Called when the KVM_CAP_PPC_SECURE_GUEST capability is |
| * tested (kvm == NULL) or enabled (kvm != NULL). |
| */ |
| static int kvmhv_enable_svm(struct kvm *kvm) |
| { |
| if (!kvmppc_uvmem_available()) |
| return -EINVAL; |
| if (kvm) |
| kvm->arch.svm_enabled = 1; |
| return 0; |
| } |
| |
| /* |
| * IOCTL handler to turn off secure mode of guest |
| * |
| * - Release all device pages |
| * - Issue ucall to terminate the guest on the UV side |
| * - Unpin the VPA pages. |
| * - Reinit the partition scoped page tables |
| */ |
| static int kvmhv_svm_off(struct kvm *kvm) |
| { |
| struct kvm_vcpu *vcpu; |
| int mmu_was_ready; |
| int srcu_idx; |
| int ret = 0; |
| int i; |
| |
| if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) |
| return ret; |
| |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| mmu_was_ready = kvm->arch.mmu_ready; |
| if (kvm->arch.mmu_ready) { |
| kvm->arch.mmu_ready = 0; |
| /* order mmu_ready vs. vcpus_running */ |
| smp_mb(); |
| if (atomic_read(&kvm->arch.vcpus_running)) { |
| kvm->arch.mmu_ready = 1; |
| ret = -EBUSY; |
| goto out; |
| } |
| } |
| |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
| struct kvm_memory_slot *memslot; |
| struct kvm_memslots *slots = __kvm_memslots(kvm, i); |
| |
| if (!slots) |
| continue; |
| |
| kvm_for_each_memslot(memslot, slots) { |
| kvmppc_uvmem_drop_pages(memslot, kvm, true); |
| uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); |
| } |
| } |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| ret = uv_svm_terminate(kvm->arch.lpid); |
| if (ret != U_SUCCESS) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * When secure guest is reset, all the guest pages are sent |
| * to UV via UV_PAGE_IN before the non-boot vcpus get a |
| * chance to run and unpin their VPA pages. Unpinning of all |
| * VPA pages is done here explicitly so that VPA pages |
| * can be migrated to the secure side. |
| * |
| * This is required to for the secure SMP guest to reboot |
| * correctly. |
| */ |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| unpin_vpa_reset(kvm, &vcpu->arch.dtl); |
| unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); |
| unpin_vpa_reset(kvm, &vcpu->arch.vpa); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| } |
| |
| kvmppc_setup_partition_table(kvm); |
| kvm->arch.secure_guest = 0; |
| kvm->arch.mmu_ready = mmu_was_ready; |
| out: |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| return ret; |
| } |
| |
| static int kvmhv_enable_dawr1(struct kvm *kvm) |
| { |
| if (!cpu_has_feature(CPU_FTR_DAWR1)) |
| return -ENODEV; |
| |
| /* kvm == NULL means the caller is testing if the capability exists */ |
| if (kvm) |
| kvm->arch.dawr1_enabled = true; |
| return 0; |
| } |
| |
| static bool kvmppc_hash_v3_possible(void) |
| { |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| return false; |
| |
| if (!cpu_has_feature(CPU_FTR_HVMODE)) |
| return false; |
| |
| /* |
| * POWER9 chips before version 2.02 can't have some threads in |
| * HPT mode and some in radix mode on the same core. |
| */ |
| if (radix_enabled()) { |
| unsigned int pvr = mfspr(SPRN_PVR); |
| if ((pvr >> 16) == PVR_POWER9 && |
| (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || |
| ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static struct kvmppc_ops kvm_ops_hv = { |
| .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, |
| .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, |
| .get_one_reg = kvmppc_get_one_reg_hv, |
| .set_one_reg = kvmppc_set_one_reg_hv, |
| .vcpu_load = kvmppc_core_vcpu_load_hv, |
| .vcpu_put = kvmppc_core_vcpu_put_hv, |
| .inject_interrupt = kvmppc_inject_interrupt_hv, |
| .set_msr = kvmppc_set_msr_hv, |
| .vcpu_run = kvmppc_vcpu_run_hv, |
| .vcpu_create = kvmppc_core_vcpu_create_hv, |
| .vcpu_free = kvmppc_core_vcpu_free_hv, |
| .check_requests = kvmppc_core_check_requests_hv, |
| .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, |
| .flush_memslot = kvmppc_core_flush_memslot_hv, |
| .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, |
| .commit_memory_region = kvmppc_core_commit_memory_region_hv, |
| .unmap_gfn_range = kvm_unmap_gfn_range_hv, |
| .age_gfn = kvm_age_gfn_hv, |
| .test_age_gfn = kvm_test_age_gfn_hv, |
| .set_spte_gfn = kvm_set_spte_gfn_hv, |
| .free_memslot = kvmppc_core_free_memslot_hv, |
| .init_vm = kvmppc_core_init_vm_hv, |
| .destroy_vm = kvmppc_core_destroy_vm_hv, |
| .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, |
| .emulate_op = kvmppc_core_emulate_op_hv, |
| .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, |
| .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, |
| .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, |
| .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, |
| .hcall_implemented = kvmppc_hcall_impl_hv, |
| #ifdef CONFIG_KVM_XICS |
| .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, |
| .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, |
| #endif |
| .configure_mmu = kvmhv_configure_mmu, |
| .get_rmmu_info = kvmhv_get_rmmu_info, |
| .set_smt_mode = kvmhv_set_smt_mode, |
| .enable_nested = kvmhv_enable_nested, |
| .load_from_eaddr = kvmhv_load_from_eaddr, |
| .store_to_eaddr = kvmhv_store_to_eaddr, |
| .enable_svm = kvmhv_enable_svm, |
| .svm_off = kvmhv_svm_off, |
| .enable_dawr1 = kvmhv_enable_dawr1, |
| .hash_v3_possible = kvmppc_hash_v3_possible, |
| }; |
| |
| static int kvm_init_subcore_bitmap(void) |
| { |
| int i, j; |
| int nr_cores = cpu_nr_cores(); |
| struct sibling_subcore_state *sibling_subcore_state; |
| |
| for (i = 0; i < nr_cores; i++) { |
| int first_cpu = i * threads_per_core; |
| int node = cpu_to_node(first_cpu); |
| |
| /* Ignore if it is already allocated. */ |
| if (paca_ptrs[first_cpu]->sibling_subcore_state) |
| continue; |
| |
| sibling_subcore_state = |
| kzalloc_node(sizeof(struct sibling_subcore_state), |
| GFP_KERNEL, node); |
| if (!sibling_subcore_state) |
| return -ENOMEM; |
| |
| |
| for (j = 0; j < threads_per_core; j++) { |
| int cpu = first_cpu + j; |
| |
| paca_ptrs[cpu]->sibling_subcore_state = |
| sibling_subcore_state; |
| } |
| } |
| return 0; |
| } |
| |
| static int kvmppc_radix_possible(void) |
| { |
| return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); |
| } |
| |
| static int kvmppc_book3s_init_hv(void) |
| { |
| int r; |
| |
| if (!tlbie_capable) { |
| pr_err("KVM-HV: Host does not support TLBIE\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * FIXME!! Do we need to check on all cpus ? |
| */ |
| r = kvmppc_core_check_processor_compat_hv(); |
| if (r < 0) |
| return -ENODEV; |
| |
| r = kvmhv_nested_init(); |
| if (r) |
| return r; |
| |
| r = kvm_init_subcore_bitmap(); |
| if (r) |
| return r; |
| |
| /* |
| * We need a way of accessing the XICS interrupt controller, |
| * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or |
| * indirectly, via OPAL. |
| */ |
| #ifdef CONFIG_SMP |
| if (!xics_on_xive() && !kvmhv_on_pseries() && |
| !local_paca->kvm_hstate.xics_phys) { |
| struct device_node *np; |
| |
| np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); |
| if (!np) { |
| pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); |
| return -ENODEV; |
| } |
| /* presence of intc confirmed - node can be dropped again */ |
| of_node_put(np); |
| } |
| #endif |
| |
| kvm_ops_hv.owner = THIS_MODULE; |
| kvmppc_hv_ops = &kvm_ops_hv; |
| |
| init_default_hcalls(); |
| |
| init_vcore_lists(); |
| |
| r = kvmppc_mmu_hv_init(); |
| if (r) |
| return r; |
| |
| if (kvmppc_radix_possible()) |
| r = kvmppc_radix_init(); |
| |
| r = kvmppc_uvmem_init(); |
| if (r < 0) |
| pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); |
| |
| return r; |
| } |
| |
| static void kvmppc_book3s_exit_hv(void) |
| { |
| kvmppc_uvmem_free(); |
| kvmppc_free_host_rm_ops(); |
| if (kvmppc_radix_possible()) |
| kvmppc_radix_exit(); |
| kvmppc_hv_ops = NULL; |
| kvmhv_nested_exit(); |
| } |
| |
| module_init(kvmppc_book3s_init_hv); |
| module_exit(kvmppc_book3s_exit_hv); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS_MISCDEV(KVM_MINOR); |
| MODULE_ALIAS("devname:kvm"); |