| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * The file intends to implement PE based on the information from |
| * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. |
| * All the PEs should be organized as hierarchy tree. The first level |
| * of the tree will be associated to existing PHBs since the particular |
| * PE is only meaningful in one PHB domain. |
| * |
| * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/gfp.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/string.h> |
| |
| #include <asm/pci-bridge.h> |
| #include <asm/ppc-pci.h> |
| |
| static int eeh_pe_aux_size = 0; |
| static LIST_HEAD(eeh_phb_pe); |
| |
| /** |
| * eeh_set_pe_aux_size - Set PE auxillary data size |
| * @size: PE auxillary data size |
| * |
| * Set PE auxillary data size |
| */ |
| void eeh_set_pe_aux_size(int size) |
| { |
| if (size < 0) |
| return; |
| |
| eeh_pe_aux_size = size; |
| } |
| |
| /** |
| * eeh_pe_alloc - Allocate PE |
| * @phb: PCI controller |
| * @type: PE type |
| * |
| * Allocate PE instance dynamically. |
| */ |
| static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) |
| { |
| struct eeh_pe *pe; |
| size_t alloc_size; |
| |
| alloc_size = sizeof(struct eeh_pe); |
| if (eeh_pe_aux_size) { |
| alloc_size = ALIGN(alloc_size, cache_line_size()); |
| alloc_size += eeh_pe_aux_size; |
| } |
| |
| /* Allocate PHB PE */ |
| pe = kzalloc(alloc_size, GFP_KERNEL); |
| if (!pe) return NULL; |
| |
| /* Initialize PHB PE */ |
| pe->type = type; |
| pe->phb = phb; |
| INIT_LIST_HEAD(&pe->child_list); |
| INIT_LIST_HEAD(&pe->edevs); |
| |
| pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), |
| cache_line_size()); |
| return pe; |
| } |
| |
| /** |
| * eeh_phb_pe_create - Create PHB PE |
| * @phb: PCI controller |
| * |
| * The function should be called while the PHB is detected during |
| * system boot or PCI hotplug in order to create PHB PE. |
| */ |
| int eeh_phb_pe_create(struct pci_controller *phb) |
| { |
| struct eeh_pe *pe; |
| |
| /* Allocate PHB PE */ |
| pe = eeh_pe_alloc(phb, EEH_PE_PHB); |
| if (!pe) { |
| pr_err("%s: out of memory!\n", __func__); |
| return -ENOMEM; |
| } |
| |
| /* Put it into the list */ |
| list_add_tail(&pe->child, &eeh_phb_pe); |
| |
| pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number); |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_wait_state - Wait for PE state |
| * @pe: EEH PE |
| * @max_wait: maximal period in millisecond |
| * |
| * Wait for the state of associated PE. It might take some time |
| * to retrieve the PE's state. |
| */ |
| int eeh_wait_state(struct eeh_pe *pe, int max_wait) |
| { |
| int ret; |
| int mwait; |
| |
| /* |
| * According to PAPR, the state of PE might be temporarily |
| * unavailable. Under the circumstance, we have to wait |
| * for indicated time determined by firmware. The maximal |
| * wait time is 5 minutes, which is acquired from the original |
| * EEH implementation. Also, the original implementation |
| * also defined the minimal wait time as 1 second. |
| */ |
| #define EEH_STATE_MIN_WAIT_TIME (1000) |
| #define EEH_STATE_MAX_WAIT_TIME (300 * 1000) |
| |
| while (1) { |
| ret = eeh_ops->get_state(pe, &mwait); |
| |
| if (ret != EEH_STATE_UNAVAILABLE) |
| return ret; |
| |
| if (max_wait <= 0) { |
| pr_warn("%s: Timeout when getting PE's state (%d)\n", |
| __func__, max_wait); |
| return EEH_STATE_NOT_SUPPORT; |
| } |
| |
| if (mwait < EEH_STATE_MIN_WAIT_TIME) { |
| pr_warn("%s: Firmware returned bad wait value %d\n", |
| __func__, mwait); |
| mwait = EEH_STATE_MIN_WAIT_TIME; |
| } else if (mwait > EEH_STATE_MAX_WAIT_TIME) { |
| pr_warn("%s: Firmware returned too long wait value %d\n", |
| __func__, mwait); |
| mwait = EEH_STATE_MAX_WAIT_TIME; |
| } |
| |
| msleep(min(mwait, max_wait)); |
| max_wait -= mwait; |
| } |
| } |
| |
| /** |
| * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB |
| * @phb: PCI controller |
| * |
| * The overall PEs form hierarchy tree. The first layer of the |
| * hierarchy tree is composed of PHB PEs. The function is used |
| * to retrieve the corresponding PHB PE according to the given PHB. |
| */ |
| struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) |
| { |
| struct eeh_pe *pe; |
| |
| list_for_each_entry(pe, &eeh_phb_pe, child) { |
| /* |
| * Actually, we needn't check the type since |
| * the PE for PHB has been determined when that |
| * was created. |
| */ |
| if ((pe->type & EEH_PE_PHB) && pe->phb == phb) |
| return pe; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_pe_next - Retrieve the next PE in the tree |
| * @pe: current PE |
| * @root: root PE |
| * |
| * The function is used to retrieve the next PE in the |
| * hierarchy PE tree. |
| */ |
| struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root) |
| { |
| struct list_head *next = pe->child_list.next; |
| |
| if (next == &pe->child_list) { |
| while (1) { |
| if (pe == root) |
| return NULL; |
| next = pe->child.next; |
| if (next != &pe->parent->child_list) |
| break; |
| pe = pe->parent; |
| } |
| } |
| |
| return list_entry(next, struct eeh_pe, child); |
| } |
| |
| /** |
| * eeh_pe_traverse - Traverse PEs in the specified PHB |
| * @root: root PE |
| * @fn: callback |
| * @flag: extra parameter to callback |
| * |
| * The function is used to traverse the specified PE and its |
| * child PEs. The traversing is to be terminated once the |
| * callback returns something other than NULL, or no more PEs |
| * to be traversed. |
| */ |
| void *eeh_pe_traverse(struct eeh_pe *root, |
| eeh_pe_traverse_func fn, void *flag) |
| { |
| struct eeh_pe *pe; |
| void *ret; |
| |
| eeh_for_each_pe(root, pe) { |
| ret = fn(pe, flag); |
| if (ret) return ret; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_pe_dev_traverse - Traverse the devices from the PE |
| * @root: EEH PE |
| * @fn: function callback |
| * @flag: extra parameter to callback |
| * |
| * The function is used to traverse the devices of the specified |
| * PE and its child PEs. |
| */ |
| void eeh_pe_dev_traverse(struct eeh_pe *root, |
| eeh_edev_traverse_func fn, void *flag) |
| { |
| struct eeh_pe *pe; |
| struct eeh_dev *edev, *tmp; |
| |
| if (!root) { |
| pr_warn("%s: Invalid PE %p\n", |
| __func__, root); |
| return; |
| } |
| |
| /* Traverse root PE */ |
| eeh_for_each_pe(root, pe) |
| eeh_pe_for_each_dev(pe, edev, tmp) |
| fn(edev, flag); |
| } |
| |
| /** |
| * __eeh_pe_get - Check the PE address |
| * |
| * For one particular PE, it can be identified by PE address |
| * or tranditional BDF address. BDF address is composed of |
| * Bus/Device/Function number. The extra data referred by flag |
| * indicates which type of address should be used. |
| */ |
| static void *__eeh_pe_get(struct eeh_pe *pe, void *flag) |
| { |
| int *target_pe = flag; |
| |
| /* PHB PEs are special and should be ignored */ |
| if (pe->type & EEH_PE_PHB) |
| return NULL; |
| |
| if (*target_pe == pe->addr) |
| return pe; |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_pe_get - Search PE based on the given address |
| * @phb: PCI controller |
| * @pe_no: PE number |
| * |
| * Search the corresponding PE based on the specified address which |
| * is included in the eeh device. The function is used to check if |
| * the associated PE has been created against the PE address. It's |
| * notable that the PE address has 2 format: traditional PE address |
| * which is composed of PCI bus/device/function number, or unified |
| * PE address. |
| */ |
| struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no) |
| { |
| struct eeh_pe *root = eeh_phb_pe_get(phb); |
| |
| return eeh_pe_traverse(root, __eeh_pe_get, &pe_no); |
| } |
| |
| /** |
| * eeh_pe_tree_insert - Add EEH device to parent PE |
| * @edev: EEH device |
| * @new_pe_parent: PE to create additional PEs under |
| * |
| * Add EEH device to the PE in edev->pe_config_addr. If a PE already |
| * exists with that address then @edev is added to that PE. Otherwise |
| * a new PE is created and inserted into the PE tree as a child of |
| * @new_pe_parent. |
| * |
| * If @new_pe_parent is NULL then the new PE will be inserted under |
| * directly under the the PHB. |
| */ |
| int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent) |
| { |
| struct pci_controller *hose = edev->controller; |
| struct eeh_pe *pe, *parent; |
| |
| /* |
| * Search the PE has been existing or not according |
| * to the PE address. If that has been existing, the |
| * PE should be composed of PCI bus and its subordinate |
| * components. |
| */ |
| pe = eeh_pe_get(hose, edev->pe_config_addr); |
| if (pe) { |
| if (pe->type & EEH_PE_INVALID) { |
| list_add_tail(&edev->entry, &pe->edevs); |
| edev->pe = pe; |
| /* |
| * We're running to here because of PCI hotplug caused by |
| * EEH recovery. We need clear EEH_PE_INVALID until the top. |
| */ |
| parent = pe; |
| while (parent) { |
| if (!(parent->type & EEH_PE_INVALID)) |
| break; |
| parent->type &= ~EEH_PE_INVALID; |
| parent = parent->parent; |
| } |
| |
| eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n", |
| pe->parent->addr); |
| } else { |
| /* Mark the PE as type of PCI bus */ |
| pe->type = EEH_PE_BUS; |
| edev->pe = pe; |
| |
| /* Put the edev to PE */ |
| list_add_tail(&edev->entry, &pe->edevs); |
| eeh_edev_dbg(edev, "Added to bus PE\n"); |
| } |
| return 0; |
| } |
| |
| /* Create a new EEH PE */ |
| if (edev->physfn) |
| pe = eeh_pe_alloc(hose, EEH_PE_VF); |
| else |
| pe = eeh_pe_alloc(hose, EEH_PE_DEVICE); |
| if (!pe) { |
| pr_err("%s: out of memory!\n", __func__); |
| return -ENOMEM; |
| } |
| |
| pe->addr = edev->pe_config_addr; |
| |
| /* |
| * Put the new EEH PE into hierarchy tree. If the parent |
| * can't be found, the newly created PE will be attached |
| * to PHB directly. Otherwise, we have to associate the |
| * PE with its parent. |
| */ |
| if (!new_pe_parent) { |
| new_pe_parent = eeh_phb_pe_get(hose); |
| if (!new_pe_parent) { |
| pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", |
| __func__, hose->global_number); |
| edev->pe = NULL; |
| kfree(pe); |
| return -EEXIST; |
| } |
| } |
| |
| /* link new PE into the tree */ |
| pe->parent = new_pe_parent; |
| list_add_tail(&pe->child, &new_pe_parent->child_list); |
| |
| /* |
| * Put the newly created PE into the child list and |
| * link the EEH device accordingly. |
| */ |
| list_add_tail(&edev->entry, &pe->edevs); |
| edev->pe = pe; |
| eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n", |
| new_pe_parent->addr); |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_pe_tree_remove - Remove one EEH device from the associated PE |
| * @edev: EEH device |
| * |
| * The PE hierarchy tree might be changed when doing PCI hotplug. |
| * Also, the PCI devices or buses could be removed from the system |
| * during EEH recovery. So we have to call the function remove the |
| * corresponding PE accordingly if necessary. |
| */ |
| int eeh_pe_tree_remove(struct eeh_dev *edev) |
| { |
| struct eeh_pe *pe, *parent, *child; |
| bool keep, recover; |
| int cnt; |
| |
| pe = eeh_dev_to_pe(edev); |
| if (!pe) { |
| eeh_edev_dbg(edev, "No PE found for device.\n"); |
| return -EEXIST; |
| } |
| |
| /* Remove the EEH device */ |
| edev->pe = NULL; |
| list_del(&edev->entry); |
| |
| /* |
| * Check if the parent PE includes any EEH devices. |
| * If not, we should delete that. Also, we should |
| * delete the parent PE if it doesn't have associated |
| * child PEs and EEH devices. |
| */ |
| while (1) { |
| parent = pe->parent; |
| |
| /* PHB PEs should never be removed */ |
| if (pe->type & EEH_PE_PHB) |
| break; |
| |
| /* |
| * XXX: KEEP is set while resetting a PE. I don't think it's |
| * ever set without RECOVERING also being set. I could |
| * be wrong though so catch that with a WARN. |
| */ |
| keep = !!(pe->state & EEH_PE_KEEP); |
| recover = !!(pe->state & EEH_PE_RECOVERING); |
| WARN_ON(keep && !recover); |
| |
| if (!keep && !recover) { |
| if (list_empty(&pe->edevs) && |
| list_empty(&pe->child_list)) { |
| list_del(&pe->child); |
| kfree(pe); |
| } else { |
| break; |
| } |
| } else { |
| /* |
| * Mark the PE as invalid. At the end of the recovery |
| * process any invalid PEs will be garbage collected. |
| * |
| * We need to delay the free()ing of them since we can |
| * remove edev's while traversing the PE tree which |
| * might trigger the removal of a PE and we can't |
| * deal with that (yet). |
| */ |
| if (list_empty(&pe->edevs)) { |
| cnt = 0; |
| list_for_each_entry(child, &pe->child_list, child) { |
| if (!(child->type & EEH_PE_INVALID)) { |
| cnt++; |
| break; |
| } |
| } |
| |
| if (!cnt) |
| pe->type |= EEH_PE_INVALID; |
| else |
| break; |
| } |
| } |
| |
| pe = parent; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_pe_update_time_stamp - Update PE's frozen time stamp |
| * @pe: EEH PE |
| * |
| * We have time stamp for each PE to trace its time of getting |
| * frozen in last hour. The function should be called to update |
| * the time stamp on first error of the specific PE. On the other |
| * handle, we needn't account for errors happened in last hour. |
| */ |
| void eeh_pe_update_time_stamp(struct eeh_pe *pe) |
| { |
| time64_t tstamp; |
| |
| if (!pe) return; |
| |
| if (pe->freeze_count <= 0) { |
| pe->freeze_count = 0; |
| pe->tstamp = ktime_get_seconds(); |
| } else { |
| tstamp = ktime_get_seconds(); |
| if (tstamp - pe->tstamp > 3600) { |
| pe->tstamp = tstamp; |
| pe->freeze_count = 0; |
| } |
| } |
| } |
| |
| /** |
| * eeh_pe_state_mark - Mark specified state for PE and its associated device |
| * @pe: EEH PE |
| * |
| * EEH error affects the current PE and its child PEs. The function |
| * is used to mark appropriate state for the affected PEs and the |
| * associated devices. |
| */ |
| void eeh_pe_state_mark(struct eeh_pe *root, int state) |
| { |
| struct eeh_pe *pe; |
| |
| eeh_for_each_pe(root, pe) |
| if (!(pe->state & EEH_PE_REMOVED)) |
| pe->state |= state; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_state_mark); |
| |
| /** |
| * eeh_pe_mark_isolated |
| * @pe: EEH PE |
| * |
| * Record that a PE has been isolated by marking the PE and it's children as |
| * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices |
| * as pci_channel_io_frozen. |
| */ |
| void eeh_pe_mark_isolated(struct eeh_pe *root) |
| { |
| struct eeh_pe *pe; |
| struct eeh_dev *edev; |
| struct pci_dev *pdev; |
| |
| eeh_pe_state_mark(root, EEH_PE_ISOLATED); |
| eeh_for_each_pe(root, pe) { |
| list_for_each_entry(edev, &pe->edevs, entry) { |
| pdev = eeh_dev_to_pci_dev(edev); |
| if (pdev) |
| pdev->error_state = pci_channel_io_frozen; |
| } |
| /* Block PCI config access if required */ |
| if (pe->state & EEH_PE_CFG_RESTRICTED) |
| pe->state |= EEH_PE_CFG_BLOCKED; |
| } |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated); |
| |
| static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag) |
| { |
| int mode = *((int *)flag); |
| |
| edev->mode |= mode; |
| } |
| |
| /** |
| * eeh_pe_dev_state_mark - Mark state for all device under the PE |
| * @pe: EEH PE |
| * |
| * Mark specific state for all child devices of the PE. |
| */ |
| void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) |
| { |
| eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); |
| } |
| |
| /** |
| * eeh_pe_state_clear - Clear state for the PE |
| * @data: EEH PE |
| * @state: state |
| * @include_passed: include passed-through devices? |
| * |
| * The function is used to clear the indicated state from the |
| * given PE. Besides, we also clear the check count of the PE |
| * as well. |
| */ |
| void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed) |
| { |
| struct eeh_pe *pe; |
| struct eeh_dev *edev, *tmp; |
| struct pci_dev *pdev; |
| |
| eeh_for_each_pe(root, pe) { |
| /* Keep the state of permanently removed PE intact */ |
| if (pe->state & EEH_PE_REMOVED) |
| continue; |
| |
| if (!include_passed && eeh_pe_passed(pe)) |
| continue; |
| |
| pe->state &= ~state; |
| |
| /* |
| * Special treatment on clearing isolated state. Clear |
| * check count since last isolation and put all affected |
| * devices to normal state. |
| */ |
| if (!(state & EEH_PE_ISOLATED)) |
| continue; |
| |
| pe->check_count = 0; |
| eeh_pe_for_each_dev(pe, edev, tmp) { |
| pdev = eeh_dev_to_pci_dev(edev); |
| if (!pdev) |
| continue; |
| |
| pdev->error_state = pci_channel_io_normal; |
| } |
| |
| /* Unblock PCI config access if required */ |
| if (pe->state & EEH_PE_CFG_RESTRICTED) |
| pe->state &= ~EEH_PE_CFG_BLOCKED; |
| } |
| } |
| |
| /* |
| * Some PCI bridges (e.g. PLX bridges) have primary/secondary |
| * buses assigned explicitly by firmware, and we probably have |
| * lost that after reset. So we have to delay the check until |
| * the PCI-CFG registers have been restored for the parent |
| * bridge. |
| * |
| * Don't use normal PCI-CFG accessors, which probably has been |
| * blocked on normal path during the stage. So we need utilize |
| * eeh operations, which is always permitted. |
| */ |
| static void eeh_bridge_check_link(struct eeh_dev *edev) |
| { |
| int cap; |
| uint32_t val; |
| int timeout = 0; |
| |
| /* |
| * We only check root port and downstream ports of |
| * PCIe switches |
| */ |
| if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) |
| return; |
| |
| eeh_edev_dbg(edev, "Checking PCIe link...\n"); |
| |
| /* Check slot status */ |
| cap = edev->pcie_cap; |
| eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val); |
| if (!(val & PCI_EXP_SLTSTA_PDS)) { |
| eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val); |
| return; |
| } |
| |
| /* Check power status if we have the capability */ |
| eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val); |
| if (val & PCI_EXP_SLTCAP_PCP) { |
| eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val); |
| if (val & PCI_EXP_SLTCTL_PCC) { |
| eeh_edev_dbg(edev, "In power-off state, power it on ...\n"); |
| val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); |
| val |= (0x0100 & PCI_EXP_SLTCTL_PIC); |
| eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val); |
| msleep(2 * 1000); |
| } |
| } |
| |
| /* Enable link */ |
| eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val); |
| val &= ~PCI_EXP_LNKCTL_LD; |
| eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val); |
| |
| /* Check link */ |
| eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val); |
| if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { |
| eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val); |
| msleep(1000); |
| return; |
| } |
| |
| /* Wait the link is up until timeout (5s) */ |
| timeout = 0; |
| while (timeout < 5000) { |
| msleep(20); |
| timeout += 20; |
| |
| eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val); |
| if (val & PCI_EXP_LNKSTA_DLLLA) |
| break; |
| } |
| |
| if (val & PCI_EXP_LNKSTA_DLLLA) |
| eeh_edev_dbg(edev, "Link up (%s)\n", |
| (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); |
| else |
| eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val); |
| } |
| |
| #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) |
| #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) |
| |
| static void eeh_restore_bridge_bars(struct eeh_dev *edev) |
| { |
| int i; |
| |
| /* |
| * Device BARs: 0x10 - 0x18 |
| * Bus numbers and windows: 0x18 - 0x30 |
| */ |
| for (i = 4; i < 13; i++) |
| eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); |
| /* Rom: 0x38 */ |
| eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]); |
| |
| /* Cache line & Latency timer: 0xC 0xD */ |
| eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, |
| SAVED_BYTE(PCI_CACHE_LINE_SIZE)); |
| eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, |
| SAVED_BYTE(PCI_LATENCY_TIMER)); |
| /* Max latency, min grant, interrupt ping and line: 0x3C */ |
| eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); |
| |
| /* PCI Command: 0x4 */ |
| eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] | |
| PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| |
| /* Check the PCIe link is ready */ |
| eeh_bridge_check_link(edev); |
| } |
| |
| static void eeh_restore_device_bars(struct eeh_dev *edev) |
| { |
| int i; |
| u32 cmd; |
| |
| for (i = 4; i < 10; i++) |
| eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); |
| /* 12 == Expansion ROM Address */ |
| eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]); |
| |
| eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, |
| SAVED_BYTE(PCI_CACHE_LINE_SIZE)); |
| eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, |
| SAVED_BYTE(PCI_LATENCY_TIMER)); |
| |
| /* max latency, min grant, interrupt pin and line */ |
| eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); |
| |
| /* |
| * Restore PERR & SERR bits, some devices require it, |
| * don't touch the other command bits |
| */ |
| eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd); |
| if (edev->config_space[1] & PCI_COMMAND_PARITY) |
| cmd |= PCI_COMMAND_PARITY; |
| else |
| cmd &= ~PCI_COMMAND_PARITY; |
| if (edev->config_space[1] & PCI_COMMAND_SERR) |
| cmd |= PCI_COMMAND_SERR; |
| else |
| cmd &= ~PCI_COMMAND_SERR; |
| eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd); |
| } |
| |
| /** |
| * eeh_restore_one_device_bars - Restore the Base Address Registers for one device |
| * @data: EEH device |
| * @flag: Unused |
| * |
| * Loads the PCI configuration space base address registers, |
| * the expansion ROM base address, the latency timer, and etc. |
| * from the saved values in the device node. |
| */ |
| static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag) |
| { |
| /* Do special restore for bridges */ |
| if (edev->mode & EEH_DEV_BRIDGE) |
| eeh_restore_bridge_bars(edev); |
| else |
| eeh_restore_device_bars(edev); |
| |
| if (eeh_ops->restore_config) |
| eeh_ops->restore_config(edev); |
| } |
| |
| /** |
| * eeh_pe_restore_bars - Restore the PCI config space info |
| * @pe: EEH PE |
| * |
| * This routine performs a recursive walk to the children |
| * of this device as well. |
| */ |
| void eeh_pe_restore_bars(struct eeh_pe *pe) |
| { |
| /* |
| * We needn't take the EEH lock since eeh_pe_dev_traverse() |
| * will take that. |
| */ |
| eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); |
| } |
| |
| /** |
| * eeh_pe_loc_get - Retrieve location code binding to the given PE |
| * @pe: EEH PE |
| * |
| * Retrieve the location code of the given PE. If the primary PE bus |
| * is root bus, we will grab location code from PHB device tree node |
| * or root port. Otherwise, the upstream bridge's device tree node |
| * of the primary PE bus will be checked for the location code. |
| */ |
| const char *eeh_pe_loc_get(struct eeh_pe *pe) |
| { |
| struct pci_bus *bus = eeh_pe_bus_get(pe); |
| struct device_node *dn; |
| const char *loc = NULL; |
| |
| while (bus) { |
| dn = pci_bus_to_OF_node(bus); |
| if (!dn) { |
| bus = bus->parent; |
| continue; |
| } |
| |
| if (pci_is_root_bus(bus)) |
| loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); |
| else |
| loc = of_get_property(dn, "ibm,slot-location-code", |
| NULL); |
| |
| if (loc) |
| return loc; |
| |
| bus = bus->parent; |
| } |
| |
| return "N/A"; |
| } |
| |
| /** |
| * eeh_pe_bus_get - Retrieve PCI bus according to the given PE |
| * @pe: EEH PE |
| * |
| * Retrieve the PCI bus according to the given PE. Basically, |
| * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the |
| * primary PCI bus will be retrieved. The parent bus will be |
| * returned for BUS PE. However, we don't have associated PCI |
| * bus for DEVICE PE. |
| */ |
| struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) |
| { |
| struct eeh_dev *edev; |
| struct pci_dev *pdev; |
| |
| if (pe->type & EEH_PE_PHB) |
| return pe->phb->bus; |
| |
| /* The primary bus might be cached during probe time */ |
| if (pe->state & EEH_PE_PRI_BUS) |
| return pe->bus; |
| |
| /* Retrieve the parent PCI bus of first (top) PCI device */ |
| edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); |
| pdev = eeh_dev_to_pci_dev(edev); |
| if (pdev) |
| return pdev->bus; |
| |
| return NULL; |
| } |