| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * AMCC SoC PPC4xx Crypto Driver |
| * |
| * Copyright (c) 2008 Applied Micro Circuits Corporation. |
| * All rights reserved. James Hsiao <jhsiao@amcc.com> |
| * |
| * This file implements the Linux crypto algorithms. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock_types.h> |
| #include <linux/scatterlist.h> |
| #include <linux/crypto.h> |
| #include <linux/hash.h> |
| #include <crypto/internal/hash.h> |
| #include <linux/dma-mapping.h> |
| #include <crypto/algapi.h> |
| #include <crypto/aead.h> |
| #include <crypto/aes.h> |
| #include <crypto/gcm.h> |
| #include <crypto/sha1.h> |
| #include <crypto/ctr.h> |
| #include <crypto/skcipher.h> |
| #include "crypto4xx_reg_def.h" |
| #include "crypto4xx_core.h" |
| #include "crypto4xx_sa.h" |
| |
| static void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h, |
| u32 save_iv, u32 ld_h, u32 ld_iv, |
| u32 hdr_proc, u32 h, u32 c, u32 pad_type, |
| u32 op_grp, u32 op, u32 dir) |
| { |
| sa->sa_command_0.w = 0; |
| sa->sa_command_0.bf.save_hash_state = save_h; |
| sa->sa_command_0.bf.save_iv = save_iv; |
| sa->sa_command_0.bf.load_hash_state = ld_h; |
| sa->sa_command_0.bf.load_iv = ld_iv; |
| sa->sa_command_0.bf.hdr_proc = hdr_proc; |
| sa->sa_command_0.bf.hash_alg = h; |
| sa->sa_command_0.bf.cipher_alg = c; |
| sa->sa_command_0.bf.pad_type = pad_type & 3; |
| sa->sa_command_0.bf.extend_pad = pad_type >> 2; |
| sa->sa_command_0.bf.op_group = op_grp; |
| sa->sa_command_0.bf.opcode = op; |
| sa->sa_command_0.bf.dir = dir; |
| } |
| |
| static void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm, |
| u32 hmac_mc, u32 cfb, u32 esn, |
| u32 sn_mask, u32 mute, u32 cp_pad, |
| u32 cp_pay, u32 cp_hdr) |
| { |
| sa->sa_command_1.w = 0; |
| sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2; |
| sa->sa_command_1.bf.crypto_mode9_8 = cm & 3; |
| sa->sa_command_1.bf.feedback_mode = cfb; |
| sa->sa_command_1.bf.sa_rev = 1; |
| sa->sa_command_1.bf.hmac_muting = hmac_mc; |
| sa->sa_command_1.bf.extended_seq_num = esn; |
| sa->sa_command_1.bf.seq_num_mask = sn_mask; |
| sa->sa_command_1.bf.mutable_bit_proc = mute; |
| sa->sa_command_1.bf.copy_pad = cp_pad; |
| sa->sa_command_1.bf.copy_payload = cp_pay; |
| sa->sa_command_1.bf.copy_hdr = cp_hdr; |
| } |
| |
| static inline int crypto4xx_crypt(struct skcipher_request *req, |
| const unsigned int ivlen, bool decrypt, |
| bool check_blocksize) |
| { |
| struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); |
| __le32 iv[AES_IV_SIZE]; |
| |
| if (check_blocksize && !IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE)) |
| return -EINVAL; |
| |
| if (ivlen) |
| crypto4xx_memcpy_to_le32(iv, req->iv, ivlen); |
| |
| return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, |
| req->cryptlen, iv, ivlen, decrypt ? ctx->sa_in : ctx->sa_out, |
| ctx->sa_len, 0, NULL); |
| } |
| |
| int crypto4xx_encrypt_noiv_block(struct skcipher_request *req) |
| { |
| return crypto4xx_crypt(req, 0, false, true); |
| } |
| |
| int crypto4xx_encrypt_iv_stream(struct skcipher_request *req) |
| { |
| return crypto4xx_crypt(req, AES_IV_SIZE, false, false); |
| } |
| |
| int crypto4xx_decrypt_noiv_block(struct skcipher_request *req) |
| { |
| return crypto4xx_crypt(req, 0, true, true); |
| } |
| |
| int crypto4xx_decrypt_iv_stream(struct skcipher_request *req) |
| { |
| return crypto4xx_crypt(req, AES_IV_SIZE, true, false); |
| } |
| |
| int crypto4xx_encrypt_iv_block(struct skcipher_request *req) |
| { |
| return crypto4xx_crypt(req, AES_IV_SIZE, false, true); |
| } |
| |
| int crypto4xx_decrypt_iv_block(struct skcipher_request *req) |
| { |
| return crypto4xx_crypt(req, AES_IV_SIZE, true, true); |
| } |
| |
| /* |
| * AES Functions |
| */ |
| static int crypto4xx_setkey_aes(struct crypto_skcipher *cipher, |
| const u8 *key, |
| unsigned int keylen, |
| unsigned char cm, |
| u8 fb) |
| { |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); |
| struct dynamic_sa_ctl *sa; |
| int rc; |
| |
| if (keylen != AES_KEYSIZE_256 && keylen != AES_KEYSIZE_192 && |
| keylen != AES_KEYSIZE_128) |
| return -EINVAL; |
| |
| /* Create SA */ |
| if (ctx->sa_in || ctx->sa_out) |
| crypto4xx_free_sa(ctx); |
| |
| rc = crypto4xx_alloc_sa(ctx, SA_AES128_LEN + (keylen-16) / 4); |
| if (rc) |
| return rc; |
| |
| /* Setup SA */ |
| sa = ctx->sa_in; |
| |
| set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, (cm == CRYPTO_MODE_ECB ? |
| SA_NOT_SAVE_IV : SA_SAVE_IV), |
| SA_NOT_LOAD_HASH, (cm == CRYPTO_MODE_ECB ? |
| SA_LOAD_IV_FROM_SA : SA_LOAD_IV_FROM_STATE), |
| SA_NO_HEADER_PROC, SA_HASH_ALG_NULL, |
| SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, |
| SA_OP_GROUP_BASIC, SA_OPCODE_DECRYPT, |
| DIR_INBOUND); |
| |
| set_dynamic_sa_command_1(sa, cm, SA_HASH_MODE_HASH, |
| fb, SA_EXTENDED_SN_OFF, |
| SA_SEQ_MASK_OFF, SA_MC_ENABLE, |
| SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, |
| SA_NOT_COPY_HDR); |
| crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), |
| key, keylen); |
| sa->sa_contents.w = SA_AES_CONTENTS | (keylen << 2); |
| sa->sa_command_1.bf.key_len = keylen >> 3; |
| |
| memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); |
| sa = ctx->sa_out; |
| sa->sa_command_0.bf.dir = DIR_OUTBOUND; |
| /* |
| * SA_OPCODE_ENCRYPT is the same value as SA_OPCODE_DECRYPT. |
| * it's the DIR_(IN|OUT)BOUND that matters |
| */ |
| sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT; |
| |
| return 0; |
| } |
| |
| int crypto4xx_setkey_aes_cbc(struct crypto_skcipher *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CBC, |
| CRYPTO_FEEDBACK_MODE_NO_FB); |
| } |
| |
| int crypto4xx_setkey_aes_cfb(struct crypto_skcipher *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CFB, |
| CRYPTO_FEEDBACK_MODE_128BIT_CFB); |
| } |
| |
| int crypto4xx_setkey_aes_ecb(struct crypto_skcipher *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_ECB, |
| CRYPTO_FEEDBACK_MODE_NO_FB); |
| } |
| |
| int crypto4xx_setkey_aes_ofb(struct crypto_skcipher *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_OFB, |
| CRYPTO_FEEDBACK_MODE_64BIT_OFB); |
| } |
| |
| int crypto4xx_setkey_rfc3686(struct crypto_skcipher *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); |
| int rc; |
| |
| rc = crypto4xx_setkey_aes(cipher, key, keylen - CTR_RFC3686_NONCE_SIZE, |
| CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB); |
| if (rc) |
| return rc; |
| |
| ctx->iv_nonce = cpu_to_le32p((u32 *)&key[keylen - |
| CTR_RFC3686_NONCE_SIZE]); |
| |
| return 0; |
| } |
| |
| int crypto4xx_rfc3686_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); |
| __le32 iv[AES_IV_SIZE / 4] = { |
| ctx->iv_nonce, |
| cpu_to_le32p((u32 *) req->iv), |
| cpu_to_le32p((u32 *) (req->iv + 4)), |
| cpu_to_le32(1) }; |
| |
| return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, |
| req->cryptlen, iv, AES_IV_SIZE, |
| ctx->sa_out, ctx->sa_len, 0, NULL); |
| } |
| |
| int crypto4xx_rfc3686_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); |
| __le32 iv[AES_IV_SIZE / 4] = { |
| ctx->iv_nonce, |
| cpu_to_le32p((u32 *) req->iv), |
| cpu_to_le32p((u32 *) (req->iv + 4)), |
| cpu_to_le32(1) }; |
| |
| return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, |
| req->cryptlen, iv, AES_IV_SIZE, |
| ctx->sa_out, ctx->sa_len, 0, NULL); |
| } |
| |
| static int |
| crypto4xx_ctr_crypt(struct skcipher_request *req, bool encrypt) |
| { |
| struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); |
| size_t iv_len = crypto_skcipher_ivsize(cipher); |
| unsigned int counter = be32_to_cpup((__be32 *)(req->iv + iv_len - 4)); |
| unsigned int nblks = ALIGN(req->cryptlen, AES_BLOCK_SIZE) / |
| AES_BLOCK_SIZE; |
| |
| /* |
| * The hardware uses only the last 32-bits as the counter while the |
| * kernel tests (aes_ctr_enc_tv_template[4] for example) expect that |
| * the whole IV is a counter. So fallback if the counter is going to |
| * overlow. |
| */ |
| if (counter + nblks < counter) { |
| SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->sw_cipher.cipher); |
| int ret; |
| |
| skcipher_request_set_sync_tfm(subreq, ctx->sw_cipher.cipher); |
| skcipher_request_set_callback(subreq, req->base.flags, |
| NULL, NULL); |
| skcipher_request_set_crypt(subreq, req->src, req->dst, |
| req->cryptlen, req->iv); |
| ret = encrypt ? crypto_skcipher_encrypt(subreq) |
| : crypto_skcipher_decrypt(subreq); |
| skcipher_request_zero(subreq); |
| return ret; |
| } |
| |
| return encrypt ? crypto4xx_encrypt_iv_stream(req) |
| : crypto4xx_decrypt_iv_stream(req); |
| } |
| |
| static int crypto4xx_sk_setup_fallback(struct crypto4xx_ctx *ctx, |
| struct crypto_skcipher *cipher, |
| const u8 *key, |
| unsigned int keylen) |
| { |
| crypto_sync_skcipher_clear_flags(ctx->sw_cipher.cipher, |
| CRYPTO_TFM_REQ_MASK); |
| crypto_sync_skcipher_set_flags(ctx->sw_cipher.cipher, |
| crypto_skcipher_get_flags(cipher) & CRYPTO_TFM_REQ_MASK); |
| return crypto_sync_skcipher_setkey(ctx->sw_cipher.cipher, key, keylen); |
| } |
| |
| int crypto4xx_setkey_aes_ctr(struct crypto_skcipher *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); |
| int rc; |
| |
| rc = crypto4xx_sk_setup_fallback(ctx, cipher, key, keylen); |
| if (rc) |
| return rc; |
| |
| return crypto4xx_setkey_aes(cipher, key, keylen, |
| CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB); |
| } |
| |
| int crypto4xx_encrypt_ctr(struct skcipher_request *req) |
| { |
| return crypto4xx_ctr_crypt(req, true); |
| } |
| |
| int crypto4xx_decrypt_ctr(struct skcipher_request *req) |
| { |
| return crypto4xx_ctr_crypt(req, false); |
| } |
| |
| static inline bool crypto4xx_aead_need_fallback(struct aead_request *req, |
| unsigned int len, |
| bool is_ccm, bool decrypt) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| |
| /* authsize has to be a multiple of 4 */ |
| if (aead->authsize & 3) |
| return true; |
| |
| /* |
| * hardware does not handle cases where plaintext |
| * is less than a block. |
| */ |
| if (len < AES_BLOCK_SIZE) |
| return true; |
| |
| /* assoc len needs to be a multiple of 4 and <= 1020 */ |
| if (req->assoclen & 0x3 || req->assoclen > 1020) |
| return true; |
| |
| /* CCM supports only counter field length of 2 and 4 bytes */ |
| if (is_ccm && !(req->iv[0] == 1 || req->iv[0] == 3)) |
| return true; |
| |
| return false; |
| } |
| |
| static int crypto4xx_aead_fallback(struct aead_request *req, |
| struct crypto4xx_ctx *ctx, bool do_decrypt) |
| { |
| struct aead_request *subreq = aead_request_ctx(req); |
| |
| aead_request_set_tfm(subreq, ctx->sw_cipher.aead); |
| aead_request_set_callback(subreq, req->base.flags, |
| req->base.complete, req->base.data); |
| aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, |
| req->iv); |
| aead_request_set_ad(subreq, req->assoclen); |
| return do_decrypt ? crypto_aead_decrypt(subreq) : |
| crypto_aead_encrypt(subreq); |
| } |
| |
| static int crypto4xx_aead_setup_fallback(struct crypto4xx_ctx *ctx, |
| struct crypto_aead *cipher, |
| const u8 *key, |
| unsigned int keylen) |
| { |
| crypto_aead_clear_flags(ctx->sw_cipher.aead, CRYPTO_TFM_REQ_MASK); |
| crypto_aead_set_flags(ctx->sw_cipher.aead, |
| crypto_aead_get_flags(cipher) & CRYPTO_TFM_REQ_MASK); |
| return crypto_aead_setkey(ctx->sw_cipher.aead, key, keylen); |
| } |
| |
| /* |
| * AES-CCM Functions |
| */ |
| |
| int crypto4xx_setkey_aes_ccm(struct crypto_aead *cipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct crypto_tfm *tfm = crypto_aead_tfm(cipher); |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct dynamic_sa_ctl *sa; |
| int rc = 0; |
| |
| rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen); |
| if (rc) |
| return rc; |
| |
| if (ctx->sa_in || ctx->sa_out) |
| crypto4xx_free_sa(ctx); |
| |
| rc = crypto4xx_alloc_sa(ctx, SA_AES128_CCM_LEN + (keylen - 16) / 4); |
| if (rc) |
| return rc; |
| |
| /* Setup SA */ |
| sa = (struct dynamic_sa_ctl *) ctx->sa_in; |
| sa->sa_contents.w = SA_AES_CCM_CONTENTS | (keylen << 2); |
| |
| set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, |
| SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, |
| SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, |
| SA_CIPHER_ALG_AES, |
| SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, |
| SA_OPCODE_HASH_DECRYPT, DIR_INBOUND); |
| |
| set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, |
| CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, |
| SA_SEQ_MASK_OFF, SA_MC_ENABLE, |
| SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, |
| SA_NOT_COPY_HDR); |
| |
| sa->sa_command_1.bf.key_len = keylen >> 3; |
| |
| crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen); |
| |
| memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); |
| sa = (struct dynamic_sa_ctl *) ctx->sa_out; |
| |
| set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, |
| SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, |
| SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, |
| SA_CIPHER_ALG_AES, |
| SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, |
| SA_OPCODE_ENCRYPT_HASH, DIR_OUTBOUND); |
| |
| set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, |
| CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, |
| SA_SEQ_MASK_OFF, SA_MC_ENABLE, |
| SA_COPY_PAD, SA_COPY_PAYLOAD, |
| SA_NOT_COPY_HDR); |
| |
| sa->sa_command_1.bf.key_len = keylen >> 3; |
| return 0; |
| } |
| |
| static int crypto4xx_crypt_aes_ccm(struct aead_request *req, bool decrypt) |
| { |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); |
| struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req); |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| __le32 iv[16]; |
| u32 tmp_sa[SA_AES128_CCM_LEN + 4]; |
| struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *)tmp_sa; |
| unsigned int len = req->cryptlen; |
| |
| if (decrypt) |
| len -= crypto_aead_authsize(aead); |
| |
| if (crypto4xx_aead_need_fallback(req, len, true, decrypt)) |
| return crypto4xx_aead_fallback(req, ctx, decrypt); |
| |
| memcpy(tmp_sa, decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len * 4); |
| sa->sa_command_0.bf.digest_len = crypto_aead_authsize(aead) >> 2; |
| |
| if (req->iv[0] == 1) { |
| /* CRYPTO_MODE_AES_ICM */ |
| sa->sa_command_1.bf.crypto_mode9_8 = 1; |
| } |
| |
| iv[3] = cpu_to_le32(0); |
| crypto4xx_memcpy_to_le32(iv, req->iv, 16 - (req->iv[0] + 1)); |
| |
| return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, |
| len, iv, sizeof(iv), |
| sa, ctx->sa_len, req->assoclen, rctx->dst); |
| } |
| |
| int crypto4xx_encrypt_aes_ccm(struct aead_request *req) |
| { |
| return crypto4xx_crypt_aes_ccm(req, false); |
| } |
| |
| int crypto4xx_decrypt_aes_ccm(struct aead_request *req) |
| { |
| return crypto4xx_crypt_aes_ccm(req, true); |
| } |
| |
| int crypto4xx_setauthsize_aead(struct crypto_aead *cipher, |
| unsigned int authsize) |
| { |
| struct crypto_tfm *tfm = crypto_aead_tfm(cipher); |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| return crypto_aead_setauthsize(ctx->sw_cipher.aead, authsize); |
| } |
| |
| /* |
| * AES-GCM Functions |
| */ |
| |
| static int crypto4xx_aes_gcm_validate_keylen(unsigned int keylen) |
| { |
| switch (keylen) { |
| case 16: |
| case 24: |
| case 32: |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int crypto4xx_compute_gcm_hash_key_sw(__le32 *hash_start, const u8 *key, |
| unsigned int keylen) |
| { |
| struct crypto_aes_ctx ctx; |
| uint8_t src[16] = { 0 }; |
| int rc; |
| |
| rc = aes_expandkey(&ctx, key, keylen); |
| if (rc) { |
| pr_err("aes_expandkey() failed: %d\n", rc); |
| return rc; |
| } |
| |
| aes_encrypt(&ctx, src, src); |
| crypto4xx_memcpy_to_le32(hash_start, src, 16); |
| memzero_explicit(&ctx, sizeof(ctx)); |
| return 0; |
| } |
| |
| int crypto4xx_setkey_aes_gcm(struct crypto_aead *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| struct crypto_tfm *tfm = crypto_aead_tfm(cipher); |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct dynamic_sa_ctl *sa; |
| int rc = 0; |
| |
| if (crypto4xx_aes_gcm_validate_keylen(keylen) != 0) |
| return -EINVAL; |
| |
| rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen); |
| if (rc) |
| return rc; |
| |
| if (ctx->sa_in || ctx->sa_out) |
| crypto4xx_free_sa(ctx); |
| |
| rc = crypto4xx_alloc_sa(ctx, SA_AES128_GCM_LEN + (keylen - 16) / 4); |
| if (rc) |
| return rc; |
| |
| sa = (struct dynamic_sa_ctl *) ctx->sa_in; |
| |
| sa->sa_contents.w = SA_AES_GCM_CONTENTS | (keylen << 2); |
| set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, |
| SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, |
| SA_NO_HEADER_PROC, SA_HASH_ALG_GHASH, |
| SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, |
| SA_OP_GROUP_BASIC, SA_OPCODE_HASH_DECRYPT, |
| DIR_INBOUND); |
| set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, |
| CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, |
| SA_SEQ_MASK_ON, SA_MC_DISABLE, |
| SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, |
| SA_NOT_COPY_HDR); |
| |
| sa->sa_command_1.bf.key_len = keylen >> 3; |
| |
| crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), |
| key, keylen); |
| |
| rc = crypto4xx_compute_gcm_hash_key_sw(get_dynamic_sa_inner_digest(sa), |
| key, keylen); |
| if (rc) { |
| pr_err("GCM hash key setting failed = %d\n", rc); |
| goto err; |
| } |
| |
| memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); |
| sa = (struct dynamic_sa_ctl *) ctx->sa_out; |
| sa->sa_command_0.bf.dir = DIR_OUTBOUND; |
| sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT_HASH; |
| |
| return 0; |
| err: |
| crypto4xx_free_sa(ctx); |
| return rc; |
| } |
| |
| static inline int crypto4xx_crypt_aes_gcm(struct aead_request *req, |
| bool decrypt) |
| { |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); |
| struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req); |
| __le32 iv[4]; |
| unsigned int len = req->cryptlen; |
| |
| if (decrypt) |
| len -= crypto_aead_authsize(crypto_aead_reqtfm(req)); |
| |
| if (crypto4xx_aead_need_fallback(req, len, false, decrypt)) |
| return crypto4xx_aead_fallback(req, ctx, decrypt); |
| |
| crypto4xx_memcpy_to_le32(iv, req->iv, GCM_AES_IV_SIZE); |
| iv[3] = cpu_to_le32(1); |
| |
| return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, |
| len, iv, sizeof(iv), |
| decrypt ? ctx->sa_in : ctx->sa_out, |
| ctx->sa_len, req->assoclen, rctx->dst); |
| } |
| |
| int crypto4xx_encrypt_aes_gcm(struct aead_request *req) |
| { |
| return crypto4xx_crypt_aes_gcm(req, false); |
| } |
| |
| int crypto4xx_decrypt_aes_gcm(struct aead_request *req) |
| { |
| return crypto4xx_crypt_aes_gcm(req, true); |
| } |
| |
| /* |
| * HASH SHA1 Functions |
| */ |
| static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm, |
| unsigned int sa_len, |
| unsigned char ha, |
| unsigned char hm) |
| { |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct crypto4xx_alg *my_alg; |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct dynamic_sa_hash160 *sa; |
| int rc; |
| |
| my_alg = container_of(__crypto_ahash_alg(alg), struct crypto4xx_alg, |
| alg.u.hash); |
| ctx->dev = my_alg->dev; |
| |
| /* Create SA */ |
| if (ctx->sa_in || ctx->sa_out) |
| crypto4xx_free_sa(ctx); |
| |
| rc = crypto4xx_alloc_sa(ctx, sa_len); |
| if (rc) |
| return rc; |
| |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct crypto4xx_ctx)); |
| sa = (struct dynamic_sa_hash160 *)ctx->sa_in; |
| set_dynamic_sa_command_0(&sa->ctrl, SA_SAVE_HASH, SA_NOT_SAVE_IV, |
| SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA, |
| SA_NO_HEADER_PROC, ha, SA_CIPHER_ALG_NULL, |
| SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, |
| SA_OPCODE_HASH, DIR_INBOUND); |
| set_dynamic_sa_command_1(&sa->ctrl, 0, SA_HASH_MODE_HASH, |
| CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, |
| SA_SEQ_MASK_OFF, SA_MC_ENABLE, |
| SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, |
| SA_NOT_COPY_HDR); |
| /* Need to zero hash digest in SA */ |
| memset(sa->inner_digest, 0, sizeof(sa->inner_digest)); |
| memset(sa->outer_digest, 0, sizeof(sa->outer_digest)); |
| |
| return 0; |
| } |
| |
| int crypto4xx_hash_init(struct ahash_request *req) |
| { |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); |
| int ds; |
| struct dynamic_sa_ctl *sa; |
| |
| sa = ctx->sa_in; |
| ds = crypto_ahash_digestsize( |
| __crypto_ahash_cast(req->base.tfm)); |
| sa->sa_command_0.bf.digest_len = ds >> 2; |
| sa->sa_command_0.bf.load_hash_state = SA_LOAD_HASH_FROM_SA; |
| |
| return 0; |
| } |
| |
| int crypto4xx_hash_update(struct ahash_request *req) |
| { |
| struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); |
| struct scatterlist dst; |
| unsigned int ds = crypto_ahash_digestsize(ahash); |
| |
| sg_init_one(&dst, req->result, ds); |
| |
| return crypto4xx_build_pd(&req->base, ctx, req->src, &dst, |
| req->nbytes, NULL, 0, ctx->sa_in, |
| ctx->sa_len, 0, NULL); |
| } |
| |
| int crypto4xx_hash_final(struct ahash_request *req) |
| { |
| return 0; |
| } |
| |
| int crypto4xx_hash_digest(struct ahash_request *req) |
| { |
| struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); |
| struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); |
| struct scatterlist dst; |
| unsigned int ds = crypto_ahash_digestsize(ahash); |
| |
| sg_init_one(&dst, req->result, ds); |
| |
| return crypto4xx_build_pd(&req->base, ctx, req->src, &dst, |
| req->nbytes, NULL, 0, ctx->sa_in, |
| ctx->sa_len, 0, NULL); |
| } |
| |
| /* |
| * SHA1 Algorithm |
| */ |
| int crypto4xx_sha1_alg_init(struct crypto_tfm *tfm) |
| { |
| return crypto4xx_hash_alg_init(tfm, SA_HASH160_LEN, SA_HASH_ALG_SHA1, |
| SA_HASH_MODE_HASH); |
| } |