| /* |
| * Copyright 2012-15 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| |
| |
| #include "reg_helper.h" |
| #include "dcn10_optc.h" |
| #include "dc.h" |
| |
| #define REG(reg)\ |
| optc1->tg_regs->reg |
| |
| #define CTX \ |
| optc1->base.ctx |
| |
| #undef FN |
| #define FN(reg_name, field_name) \ |
| optc1->tg_shift->field_name, optc1->tg_mask->field_name |
| |
| #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100 |
| |
| /** |
| * apply_front_porch_workaround TODO FPGA still need? |
| * |
| * This is a workaround for a bug that has existed since R5xx and has not been |
| * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive. |
| */ |
| static void apply_front_porch_workaround(struct dc_crtc_timing *timing) |
| { |
| if (timing->flags.INTERLACE == 1) { |
| if (timing->v_front_porch < 2) |
| timing->v_front_porch = 2; |
| } else { |
| if (timing->v_front_porch < 1) |
| timing->v_front_porch = 1; |
| } |
| } |
| |
| void optc1_program_global_sync( |
| struct timing_generator *optc, |
| int vready_offset, |
| int vstartup_start, |
| int vupdate_offset, |
| int vupdate_width) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| optc1->vready_offset = vready_offset; |
| optc1->vstartup_start = vstartup_start; |
| optc1->vupdate_offset = vupdate_offset; |
| optc1->vupdate_width = vupdate_width; |
| |
| if (optc1->vstartup_start == 0) { |
| BREAK_TO_DEBUGGER(); |
| return; |
| } |
| |
| REG_SET(OTG_VSTARTUP_PARAM, 0, |
| VSTARTUP_START, optc1->vstartup_start); |
| |
| REG_SET_2(OTG_VUPDATE_PARAM, 0, |
| VUPDATE_OFFSET, optc1->vupdate_offset, |
| VUPDATE_WIDTH, optc1->vupdate_width); |
| |
| REG_SET(OTG_VREADY_PARAM, 0, |
| VREADY_OFFSET, optc1->vready_offset); |
| } |
| |
| static void optc1_disable_stereo(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_STEREO_CONTROL, 0, |
| OTG_STEREO_EN, 0); |
| |
| REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0, |
| OTG_3D_STRUCTURE_EN, 0, |
| OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0); |
| } |
| |
| void optc1_setup_vertical_interrupt0( |
| struct timing_generator *optc, |
| uint32_t start_line, |
| uint32_t end_line) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0, |
| OTG_VERTICAL_INTERRUPT0_LINE_START, start_line, |
| OTG_VERTICAL_INTERRUPT0_LINE_END, end_line); |
| } |
| |
| void optc1_setup_vertical_interrupt1( |
| struct timing_generator *optc, |
| uint32_t start_line) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0, |
| OTG_VERTICAL_INTERRUPT1_LINE_START, start_line); |
| } |
| |
| void optc1_setup_vertical_interrupt2( |
| struct timing_generator *optc, |
| uint32_t start_line) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0, |
| OTG_VERTICAL_INTERRUPT2_LINE_START, start_line); |
| } |
| |
| /** |
| * Vupdate keepout can be set to a window to block the update lock for that pipe from changing. |
| * Start offset begins with vstartup and goes for x number of clocks, |
| * end offset starts from end of vupdate to x number of clocks. |
| */ |
| void optc1_set_vupdate_keepout(struct timing_generator *optc, |
| struct vupdate_keepout_params *params) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET_3(OTG_VUPDATE_KEEPOUT, 0, |
| MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, params->start_offset, |
| MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, params->end_offset, |
| OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, params->enable); |
| } |
| |
| /** |
| * program_timing_generator used by mode timing set |
| * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition. |
| * Including SYNC. Call BIOS command table to program Timings. |
| */ |
| void optc1_program_timing( |
| struct timing_generator *optc, |
| const struct dc_crtc_timing *dc_crtc_timing, |
| int vready_offset, |
| int vstartup_start, |
| int vupdate_offset, |
| int vupdate_width, |
| const enum signal_type signal, |
| bool use_vbios) |
| { |
| struct dc_crtc_timing patched_crtc_timing; |
| uint32_t asic_blank_end; |
| uint32_t asic_blank_start; |
| uint32_t v_total; |
| uint32_t v_sync_end; |
| uint32_t h_sync_polarity, v_sync_polarity; |
| uint32_t start_point = 0; |
| uint32_t field_num = 0; |
| enum h_timing_div_mode h_div = H_TIMING_NO_DIV; |
| |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| optc1->signal = signal; |
| optc1->vready_offset = vready_offset; |
| optc1->vstartup_start = vstartup_start; |
| optc1->vupdate_offset = vupdate_offset; |
| optc1->vupdate_width = vupdate_width; |
| patched_crtc_timing = *dc_crtc_timing; |
| apply_front_porch_workaround(&patched_crtc_timing); |
| |
| /* Load horizontal timing */ |
| |
| /* CRTC_H_TOTAL = vesa.h_total - 1 */ |
| REG_SET(OTG_H_TOTAL, 0, |
| OTG_H_TOTAL, patched_crtc_timing.h_total - 1); |
| |
| /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */ |
| REG_UPDATE_2(OTG_H_SYNC_A, |
| OTG_H_SYNC_A_START, 0, |
| OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width); |
| |
| /* blank_start = line end - front porch */ |
| asic_blank_start = patched_crtc_timing.h_total - |
| patched_crtc_timing.h_front_porch; |
| |
| /* blank_end = blank_start - active */ |
| asic_blank_end = asic_blank_start - |
| patched_crtc_timing.h_border_right - |
| patched_crtc_timing.h_addressable - |
| patched_crtc_timing.h_border_left; |
| |
| REG_UPDATE_2(OTG_H_BLANK_START_END, |
| OTG_H_BLANK_START, asic_blank_start, |
| OTG_H_BLANK_END, asic_blank_end); |
| |
| /* h_sync polarity */ |
| h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ? |
| 0 : 1; |
| |
| REG_UPDATE(OTG_H_SYNC_A_CNTL, |
| OTG_H_SYNC_A_POL, h_sync_polarity); |
| |
| v_total = patched_crtc_timing.v_total - 1; |
| |
| REG_SET(OTG_V_TOTAL, 0, |
| OTG_V_TOTAL, v_total); |
| |
| /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and |
| * OTG_V_TOTAL_MIN are equal to V_TOTAL. |
| */ |
| REG_SET(OTG_V_TOTAL_MAX, 0, |
| OTG_V_TOTAL_MAX, v_total); |
| REG_SET(OTG_V_TOTAL_MIN, 0, |
| OTG_V_TOTAL_MIN, v_total); |
| |
| /* v_sync_start = 0, v_sync_end = v_sync_width */ |
| v_sync_end = patched_crtc_timing.v_sync_width; |
| |
| REG_UPDATE_2(OTG_V_SYNC_A, |
| OTG_V_SYNC_A_START, 0, |
| OTG_V_SYNC_A_END, v_sync_end); |
| |
| /* blank_start = frame end - front porch */ |
| asic_blank_start = patched_crtc_timing.v_total - |
| patched_crtc_timing.v_front_porch; |
| |
| /* blank_end = blank_start - active */ |
| asic_blank_end = asic_blank_start - |
| patched_crtc_timing.v_border_bottom - |
| patched_crtc_timing.v_addressable - |
| patched_crtc_timing.v_border_top; |
| |
| REG_UPDATE_2(OTG_V_BLANK_START_END, |
| OTG_V_BLANK_START, asic_blank_start, |
| OTG_V_BLANK_END, asic_blank_end); |
| |
| /* v_sync polarity */ |
| v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ? |
| 0 : 1; |
| |
| REG_UPDATE(OTG_V_SYNC_A_CNTL, |
| OTG_V_SYNC_A_POL, v_sync_polarity); |
| |
| if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT || |
| optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST || |
| optc1->signal == SIGNAL_TYPE_EDP) { |
| start_point = 1; |
| if (patched_crtc_timing.flags.INTERLACE == 1) |
| field_num = 1; |
| } |
| |
| /* Interlace */ |
| if (REG(OTG_INTERLACE_CONTROL)) { |
| if (patched_crtc_timing.flags.INTERLACE == 1) |
| REG_UPDATE(OTG_INTERLACE_CONTROL, |
| OTG_INTERLACE_ENABLE, 1); |
| else |
| REG_UPDATE(OTG_INTERLACE_CONTROL, |
| OTG_INTERLACE_ENABLE, 0); |
| } |
| |
| /* VTG enable set to 0 first VInit */ |
| REG_UPDATE(CONTROL, |
| VTG0_ENABLE, 0); |
| |
| /* original code is using VTG offset to address OTG reg, seems wrong */ |
| REG_UPDATE_2(OTG_CONTROL, |
| OTG_START_POINT_CNTL, start_point, |
| OTG_FIELD_NUMBER_CNTL, field_num); |
| |
| optc->funcs->program_global_sync(optc, |
| vready_offset, |
| vstartup_start, |
| vupdate_offset, |
| vupdate_width); |
| |
| optc->funcs->set_vtg_params(optc, dc_crtc_timing, true); |
| |
| /* TODO |
| * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1 |
| * program_horz_count_by_2 |
| * for DVI 30bpp mode, 0 otherwise |
| * program_horz_count_by_2(optc, &patched_crtc_timing); |
| */ |
| |
| /* Enable stereo - only when we need to pack 3D frame. Other types |
| * of stereo handled in explicit call |
| */ |
| |
| if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2) |
| h_div = H_TIMING_DIV_BY2; |
| |
| if (REG(OPTC_DATA_FORMAT_CONTROL)) { |
| uint32_t data_fmt = 0; |
| |
| if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) |
| data_fmt = 1; |
| else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) |
| data_fmt = 2; |
| |
| REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt); |
| } |
| |
| if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) { |
| if (optc1->opp_count == 4) |
| h_div = H_TIMING_DIV_BY4; |
| |
| REG_UPDATE(OTG_H_TIMING_CNTL, |
| OTG_H_TIMING_DIV_MODE, h_div); |
| } else { |
| REG_UPDATE(OTG_H_TIMING_CNTL, |
| OTG_H_TIMING_DIV_BY2, h_div); |
| } |
| } |
| |
| void optc1_set_vtg_params(struct timing_generator *optc, |
| const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2) |
| { |
| struct dc_crtc_timing patched_crtc_timing; |
| uint32_t asic_blank_end; |
| uint32_t v_init; |
| uint32_t v_fp2 = 0; |
| int32_t vertical_line_start; |
| |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| patched_crtc_timing = *dc_crtc_timing; |
| apply_front_porch_workaround(&patched_crtc_timing); |
| |
| /* VCOUNT_INIT is the start of blank */ |
| v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch; |
| |
| /* end of blank = v_init - active */ |
| asic_blank_end = v_init - |
| patched_crtc_timing.v_border_bottom - |
| patched_crtc_timing.v_addressable - |
| patched_crtc_timing.v_border_top; |
| |
| /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */ |
| vertical_line_start = asic_blank_end - optc1->vstartup_start + 1; |
| if (vertical_line_start < 0) |
| v_fp2 = -vertical_line_start; |
| |
| /* Interlace */ |
| if (REG(OTG_INTERLACE_CONTROL)) { |
| if (patched_crtc_timing.flags.INTERLACE == 1) { |
| v_init = v_init / 2; |
| if ((optc1->vstartup_start/2)*2 > asic_blank_end) |
| v_fp2 = v_fp2 / 2; |
| } |
| } |
| |
| if (program_fp2) |
| REG_UPDATE_2(CONTROL, |
| VTG0_FP2, v_fp2, |
| VTG0_VCOUNT_INIT, v_init); |
| else |
| REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init); |
| } |
| |
| void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| uint32_t blank_data_double_buffer_enable = enable ? 1 : 0; |
| |
| REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, |
| OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable); |
| } |
| |
| /** |
| * optc1_set_timing_double_buffer() - DRR double buffering control |
| * |
| * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN, |
| * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers. |
| * |
| * Options: any time, start of frame, dp start of frame (range timing) |
| */ |
| void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t mode = enable ? 2 : 0; |
| |
| REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, |
| OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode); |
| } |
| |
| /** |
| * unblank_crtc |
| * Call ASIC Control Object to UnBlank CRTC. |
| */ |
| static void optc1_unblank_crtc(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_UPDATE_2(OTG_BLANK_CONTROL, |
| OTG_BLANK_DATA_EN, 0, |
| OTG_BLANK_DE_MODE, 0); |
| |
| /* W/A for automated testing |
| * Automated testing will fail underflow test as there |
| * sporadic underflows which occur during the optc blank |
| * sequence. As a w/a, clear underflow on unblank. |
| * This prevents the failure, but will not mask actual |
| * underflow that affect real use cases. |
| */ |
| optc1_clear_optc_underflow(optc); |
| } |
| |
| /** |
| * blank_crtc |
| * Call ASIC Control Object to Blank CRTC. |
| */ |
| |
| static void optc1_blank_crtc(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_UPDATE_2(OTG_BLANK_CONTROL, |
| OTG_BLANK_DATA_EN, 1, |
| OTG_BLANK_DE_MODE, 0); |
| |
| optc1_set_blank_data_double_buffer(optc, false); |
| } |
| |
| void optc1_set_blank(struct timing_generator *optc, |
| bool enable_blanking) |
| { |
| if (enable_blanking) |
| optc1_blank_crtc(optc); |
| else |
| optc1_unblank_crtc(optc); |
| } |
| |
| bool optc1_is_blanked(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t blank_en; |
| uint32_t blank_state; |
| |
| REG_GET_2(OTG_BLANK_CONTROL, |
| OTG_BLANK_DATA_EN, &blank_en, |
| OTG_CURRENT_BLANK_STATE, &blank_state); |
| |
| return blank_en && blank_state; |
| } |
| |
| void optc1_enable_optc_clock(struct timing_generator *optc, bool enable) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| if (enable) { |
| REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, |
| OPTC_INPUT_CLK_EN, 1, |
| OPTC_INPUT_CLK_GATE_DIS, 1); |
| |
| REG_WAIT(OPTC_INPUT_CLOCK_CONTROL, |
| OPTC_INPUT_CLK_ON, 1, |
| 1, 1000); |
| |
| /* Enable clock */ |
| REG_UPDATE_2(OTG_CLOCK_CONTROL, |
| OTG_CLOCK_EN, 1, |
| OTG_CLOCK_GATE_DIS, 1); |
| REG_WAIT(OTG_CLOCK_CONTROL, |
| OTG_CLOCK_ON, 1, |
| 1, 1000); |
| } else { |
| REG_UPDATE_2(OTG_CLOCK_CONTROL, |
| OTG_CLOCK_GATE_DIS, 0, |
| OTG_CLOCK_EN, 0); |
| |
| REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, |
| OPTC_INPUT_CLK_GATE_DIS, 0, |
| OPTC_INPUT_CLK_EN, 0); |
| } |
| } |
| |
| /** |
| * Enable CRTC |
| * Enable CRTC - call ASIC Control Object to enable Timing generator. |
| */ |
| static bool optc1_enable_crtc(struct timing_generator *optc) |
| { |
| /* TODO FPGA wait for answer |
| * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE |
| * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK |
| */ |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| /* opp instance for OTG. For DCN1.0, ODM is remoed. |
| * OPP and OPTC should 1:1 mapping |
| */ |
| REG_UPDATE(OPTC_DATA_SOURCE_SELECT, |
| OPTC_SRC_SEL, optc->inst); |
| |
| /* VTG enable first is for HW workaround */ |
| REG_UPDATE(CONTROL, |
| VTG0_ENABLE, 1); |
| |
| REG_SEQ_START(); |
| |
| /* Enable CRTC */ |
| REG_UPDATE_2(OTG_CONTROL, |
| OTG_DISABLE_POINT_CNTL, 3, |
| OTG_MASTER_EN, 1); |
| |
| REG_SEQ_SUBMIT(); |
| REG_SEQ_WAIT_DONE(); |
| |
| return true; |
| } |
| |
| /* disable_crtc - call ASIC Control Object to disable Timing generator. */ |
| bool optc1_disable_crtc(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| /* disable otg request until end of the first line |
| * in the vertical blank region |
| */ |
| REG_UPDATE_2(OTG_CONTROL, |
| OTG_DISABLE_POINT_CNTL, 3, |
| OTG_MASTER_EN, 0); |
| |
| REG_UPDATE(CONTROL, |
| VTG0_ENABLE, 0); |
| |
| /* CRTC disabled, so disable clock. */ |
| REG_WAIT(OTG_CLOCK_CONTROL, |
| OTG_BUSY, 0, |
| 1, 100000); |
| |
| return true; |
| } |
| |
| |
| void optc1_program_blank_color( |
| struct timing_generator *optc, |
| const struct tg_color *black_color) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET_3(OTG_BLACK_COLOR, 0, |
| OTG_BLACK_COLOR_B_CB, black_color->color_b_cb, |
| OTG_BLACK_COLOR_G_Y, black_color->color_g_y, |
| OTG_BLACK_COLOR_R_CR, black_color->color_r_cr); |
| } |
| |
| bool optc1_validate_timing( |
| struct timing_generator *optc, |
| const struct dc_crtc_timing *timing) |
| { |
| uint32_t v_blank; |
| uint32_t h_blank; |
| uint32_t min_v_blank; |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| ASSERT(timing != NULL); |
| |
| v_blank = (timing->v_total - timing->v_addressable - |
| timing->v_border_top - timing->v_border_bottom); |
| |
| h_blank = (timing->h_total - timing->h_addressable - |
| timing->h_border_right - |
| timing->h_border_left); |
| |
| if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE && |
| timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING && |
| timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM && |
| timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE && |
| timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE && |
| timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA) |
| return false; |
| |
| /* Temporarily blocking interlacing mode until it's supported */ |
| if (timing->flags.INTERLACE == 1) |
| return false; |
| |
| /* Check maximum number of pixels supported by Timing Generator |
| * (Currently will never fail, in order to fail needs display which |
| * needs more than 8192 horizontal and |
| * more than 8192 vertical total pixels) |
| */ |
| if (timing->h_total > optc1->max_h_total || |
| timing->v_total > optc1->max_v_total) |
| return false; |
| |
| |
| if (h_blank < optc1->min_h_blank) |
| return false; |
| |
| if (timing->h_sync_width < optc1->min_h_sync_width || |
| timing->v_sync_width < optc1->min_v_sync_width) |
| return false; |
| |
| min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank; |
| |
| if (v_blank < min_v_blank) |
| return false; |
| |
| return true; |
| |
| } |
| |
| /* |
| * get_vblank_counter |
| * |
| * @brief |
| * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which |
| * holds the counter of frames. |
| * |
| * @param |
| * struct timing_generator *optc - [in] timing generator which controls the |
| * desired CRTC |
| * |
| * @return |
| * Counter of frames, which should equal to number of vblanks. |
| */ |
| uint32_t optc1_get_vblank_counter(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t frame_count; |
| |
| REG_GET(OTG_STATUS_FRAME_COUNT, |
| OTG_FRAME_COUNT, &frame_count); |
| |
| return frame_count; |
| } |
| |
| void optc1_lock(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t regval = 0; |
| |
| regval = REG_READ(OTG_CONTROL); |
| |
| /* otg is not running, do not need to be locked */ |
| if ((regval & 0x1) == 0x0) |
| return; |
| |
| REG_SET(OTG_GLOBAL_CONTROL0, 0, |
| OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); |
| REG_SET(OTG_MASTER_UPDATE_LOCK, 0, |
| OTG_MASTER_UPDATE_LOCK, 1); |
| |
| /* Should be fast, status does not update on maximus */ |
| if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) { |
| |
| REG_WAIT(OTG_MASTER_UPDATE_LOCK, |
| UPDATE_LOCK_STATUS, 1, |
| 1, 10); |
| } |
| } |
| |
| void optc1_unlock(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_MASTER_UPDATE_LOCK, 0, |
| OTG_MASTER_UPDATE_LOCK, 0); |
| } |
| |
| bool optc1_is_locked(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t locked; |
| |
| REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked); |
| |
| return (locked == 1); |
| } |
| |
| void optc1_get_position(struct timing_generator *optc, |
| struct crtc_position *position) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_GET_2(OTG_STATUS_POSITION, |
| OTG_HORZ_COUNT, &position->horizontal_count, |
| OTG_VERT_COUNT, &position->vertical_count); |
| |
| REG_GET(OTG_NOM_VERT_POSITION, |
| OTG_VERT_COUNT_NOM, &position->nominal_vcount); |
| } |
| |
| bool optc1_is_counter_moving(struct timing_generator *optc) |
| { |
| struct crtc_position position1, position2; |
| |
| optc->funcs->get_position(optc, &position1); |
| optc->funcs->get_position(optc, &position2); |
| |
| if (position1.horizontal_count == position2.horizontal_count && |
| position1.vertical_count == position2.vertical_count) |
| return false; |
| else |
| return true; |
| } |
| |
| bool optc1_did_triggered_reset_occur( |
| struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t occurred_force, occurred_vsync; |
| |
| REG_GET(OTG_FORCE_COUNT_NOW_CNTL, |
| OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force); |
| |
| REG_GET(OTG_VERT_SYNC_CONTROL, |
| OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync); |
| |
| return occurred_vsync != 0 || occurred_force != 0; |
| } |
| |
| void optc1_disable_reset_trigger(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_WRITE(OTG_TRIGA_CNTL, 0); |
| |
| REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, |
| OTG_FORCE_COUNT_NOW_CLEAR, 1); |
| |
| REG_SET(OTG_VERT_SYNC_CONTROL, 0, |
| OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1); |
| } |
| |
| void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t falling_edge; |
| |
| REG_GET(OTG_V_SYNC_A_CNTL, |
| OTG_V_SYNC_A_POL, &falling_edge); |
| |
| if (falling_edge) |
| REG_SET_3(OTG_TRIGA_CNTL, 0, |
| /* vsync signal from selected OTG pipe based |
| * on OTG_TRIG_SOURCE_PIPE_SELECT setting |
| */ |
| OTG_TRIGA_SOURCE_SELECT, 20, |
| OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, |
| /* always detect falling edge */ |
| OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1); |
| else |
| REG_SET_3(OTG_TRIGA_CNTL, 0, |
| /* vsync signal from selected OTG pipe based |
| * on OTG_TRIG_SOURCE_PIPE_SELECT setting |
| */ |
| OTG_TRIGA_SOURCE_SELECT, 20, |
| OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, |
| /* always detect rising edge */ |
| OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1); |
| |
| REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, |
| /* force H count to H_TOTAL and V count to V_TOTAL in |
| * progressive mode and V_TOTAL-1 in interlaced mode |
| */ |
| OTG_FORCE_COUNT_NOW_MODE, 2); |
| } |
| |
| void optc1_enable_crtc_reset( |
| struct timing_generator *optc, |
| int source_tg_inst, |
| struct crtc_trigger_info *crtc_tp) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t falling_edge = 0; |
| uint32_t rising_edge = 0; |
| |
| switch (crtc_tp->event) { |
| |
| case CRTC_EVENT_VSYNC_RISING: |
| rising_edge = 1; |
| break; |
| |
| case CRTC_EVENT_VSYNC_FALLING: |
| falling_edge = 1; |
| break; |
| } |
| |
| REG_SET_4(OTG_TRIGA_CNTL, 0, |
| /* vsync signal from selected OTG pipe based |
| * on OTG_TRIG_SOURCE_PIPE_SELECT setting |
| */ |
| OTG_TRIGA_SOURCE_SELECT, 20, |
| OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, |
| /* always detect falling edge */ |
| OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge, |
| OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge); |
| |
| switch (crtc_tp->delay) { |
| case TRIGGER_DELAY_NEXT_LINE: |
| REG_SET(OTG_VERT_SYNC_CONTROL, 0, |
| OTG_AUTO_FORCE_VSYNC_MODE, 1); |
| break; |
| case TRIGGER_DELAY_NEXT_PIXEL: |
| REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, |
| /* force H count to H_TOTAL and V count to V_TOTAL in |
| * progressive mode and V_TOTAL-1 in interlaced mode |
| */ |
| OTG_FORCE_COUNT_NOW_MODE, 2); |
| break; |
| } |
| } |
| |
| void optc1_wait_for_state(struct timing_generator *optc, |
| enum crtc_state state) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| switch (state) { |
| case CRTC_STATE_VBLANK: |
| REG_WAIT(OTG_STATUS, |
| OTG_V_BLANK, 1, |
| 1, 100000); /* 1 vupdate at 10hz */ |
| break; |
| |
| case CRTC_STATE_VACTIVE: |
| REG_WAIT(OTG_STATUS, |
| OTG_V_ACTIVE_DISP, 1, |
| 1, 100000); /* 1 vupdate at 10hz */ |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void optc1_set_early_control( |
| struct timing_generator *optc, |
| uint32_t early_cntl) |
| { |
| /* asic design change, do not need this control |
| * empty for share caller logic |
| */ |
| } |
| |
| |
| void optc1_set_static_screen_control( |
| struct timing_generator *optc, |
| uint32_t event_triggers, |
| uint32_t num_frames) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| // By register spec, it only takes 8 bit value |
| if (num_frames > 0xFF) |
| num_frames = 0xFF; |
| |
| /* Bit 8 is no longer applicable in RV for PSR case, |
| * set bit 8 to 0 if given |
| */ |
| if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN) |
| != 0) |
| event_triggers = event_triggers & |
| ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN; |
| |
| REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0, |
| OTG_STATIC_SCREEN_EVENT_MASK, event_triggers, |
| OTG_STATIC_SCREEN_FRAME_COUNT, num_frames); |
| } |
| |
| void optc1_setup_manual_trigger(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_GLOBAL_CONTROL2, 0, |
| MANUAL_FLOW_CONTROL_SEL, optc->inst); |
| |
| REG_SET_8(OTG_TRIGA_CNTL, 0, |
| OTG_TRIGA_SOURCE_SELECT, 22, |
| OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, |
| OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, |
| OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, |
| OTG_TRIGA_POLARITY_SELECT, 0, |
| OTG_TRIGA_FREQUENCY_SELECT, 0, |
| OTG_TRIGA_DELAY, 0, |
| OTG_TRIGA_CLEAR, 1); |
| } |
| |
| void optc1_program_manual_trigger(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, |
| MANUAL_FLOW_CONTROL, 1); |
| |
| REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, |
| MANUAL_FLOW_CONTROL, 0); |
| } |
| |
| |
| /** |
| ***************************************************************************** |
| * Function: set_drr |
| * |
| * @brief |
| * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*. |
| * |
| ***************************************************************************** |
| */ |
| void optc1_set_drr( |
| struct timing_generator *optc, |
| const struct drr_params *params) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| if (params != NULL && |
| params->vertical_total_max > 0 && |
| params->vertical_total_min > 0) { |
| |
| if (params->vertical_total_mid != 0) { |
| |
| REG_SET(OTG_V_TOTAL_MID, 0, |
| OTG_V_TOTAL_MID, params->vertical_total_mid - 1); |
| |
| REG_UPDATE_2(OTG_V_TOTAL_CONTROL, |
| OTG_VTOTAL_MID_REPLACING_MAX_EN, 1, |
| OTG_VTOTAL_MID_FRAME_NUM, |
| (uint8_t)params->vertical_total_mid_frame_num); |
| |
| } |
| |
| REG_SET(OTG_V_TOTAL_MAX, 0, |
| OTG_V_TOTAL_MAX, params->vertical_total_max - 1); |
| |
| REG_SET(OTG_V_TOTAL_MIN, 0, |
| OTG_V_TOTAL_MIN, params->vertical_total_min - 1); |
| |
| REG_UPDATE_5(OTG_V_TOTAL_CONTROL, |
| OTG_V_TOTAL_MIN_SEL, 1, |
| OTG_V_TOTAL_MAX_SEL, 1, |
| OTG_FORCE_LOCK_ON_EVENT, 0, |
| OTG_SET_V_TOTAL_MIN_MASK_EN, 0, |
| OTG_SET_V_TOTAL_MIN_MASK, 0); |
| |
| // Setup manual flow control for EOF via TRIG_A |
| optc->funcs->setup_manual_trigger(optc); |
| |
| } else { |
| REG_UPDATE_4(OTG_V_TOTAL_CONTROL, |
| OTG_SET_V_TOTAL_MIN_MASK, 0, |
| OTG_V_TOTAL_MIN_SEL, 0, |
| OTG_V_TOTAL_MAX_SEL, 0, |
| OTG_FORCE_LOCK_ON_EVENT, 0); |
| |
| REG_SET(OTG_V_TOTAL_MIN, 0, |
| OTG_V_TOTAL_MIN, 0); |
| |
| REG_SET(OTG_V_TOTAL_MAX, 0, |
| OTG_V_TOTAL_MAX, 0); |
| } |
| } |
| |
| void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_V_TOTAL_MAX, 0, |
| OTG_V_TOTAL_MAX, vtotal_max); |
| |
| REG_SET(OTG_V_TOTAL_MIN, 0, |
| OTG_V_TOTAL_MIN, vtotal_min); |
| } |
| |
| static void optc1_set_test_pattern( |
| struct timing_generator *optc, |
| /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode' |
| * because this is not DP-specific (which is probably somewhere in DP |
| * encoder) */ |
| enum controller_dp_test_pattern test_pattern, |
| enum dc_color_depth color_depth) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| enum test_pattern_color_format bit_depth; |
| enum test_pattern_dyn_range dyn_range; |
| enum test_pattern_mode mode; |
| uint32_t pattern_mask; |
| uint32_t pattern_data; |
| /* color ramp generator mixes 16-bits color */ |
| uint32_t src_bpc = 16; |
| /* requested bpc */ |
| uint32_t dst_bpc; |
| uint32_t index; |
| /* RGB values of the color bars. |
| * Produce two RGB colors: RGB0 - white (all Fs) |
| * and RGB1 - black (all 0s) |
| * (three RGB components for two colors) |
| */ |
| uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000, |
| 0x0000, 0x0000}; |
| /* dest color (converted to the specified color format) */ |
| uint16_t dst_color[6]; |
| uint32_t inc_base; |
| |
| /* translate to bit depth */ |
| switch (color_depth) { |
| case COLOR_DEPTH_666: |
| bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6; |
| break; |
| case COLOR_DEPTH_888: |
| bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; |
| break; |
| case COLOR_DEPTH_101010: |
| bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10; |
| break; |
| case COLOR_DEPTH_121212: |
| bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12; |
| break; |
| default: |
| bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; |
| break; |
| } |
| |
| switch (test_pattern) { |
| case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES: |
| case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA: |
| { |
| dyn_range = (test_pattern == |
| CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ? |
| TEST_PATTERN_DYN_RANGE_CEA : |
| TEST_PATTERN_DYN_RANGE_VESA); |
| mode = TEST_PATTERN_MODE_COLORSQUARES_RGB; |
| |
| REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS, |
| OTG_TEST_PATTERN_VRES, 6, |
| OTG_TEST_PATTERN_HRES, 6); |
| |
| REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, |
| OTG_TEST_PATTERN_EN, 1, |
| OTG_TEST_PATTERN_MODE, mode, |
| OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range, |
| OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); |
| } |
| break; |
| |
| case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS: |
| case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS: |
| { |
| mode = (test_pattern == |
| CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ? |
| TEST_PATTERN_MODE_VERTICALBARS : |
| TEST_PATTERN_MODE_HORIZONTALBARS); |
| |
| switch (bit_depth) { |
| case TEST_PATTERN_COLOR_FORMAT_BPC_6: |
| dst_bpc = 6; |
| break; |
| case TEST_PATTERN_COLOR_FORMAT_BPC_8: |
| dst_bpc = 8; |
| break; |
| case TEST_PATTERN_COLOR_FORMAT_BPC_10: |
| dst_bpc = 10; |
| break; |
| default: |
| dst_bpc = 8; |
| break; |
| } |
| |
| /* adjust color to the required colorFormat */ |
| for (index = 0; index < 6; index++) { |
| /* dst = 2^dstBpc * src / 2^srcBpc = src >> |
| * (srcBpc - dstBpc); |
| */ |
| dst_color[index] = |
| src_color[index] >> (src_bpc - dst_bpc); |
| /* CRTC_TEST_PATTERN_DATA has 16 bits, |
| * lowest 6 are hardwired to ZERO |
| * color bits should be left aligned aligned to MSB |
| * XXXXXXXXXX000000 for 10 bit, |
| * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6 |
| */ |
| dst_color[index] <<= (16 - dst_bpc); |
| } |
| |
| REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); |
| |
| /* We have to write the mask before data, similar to pipeline. |
| * For example, for 8 bpc, if we want RGB0 to be magenta, |
| * and RGB1 to be cyan, |
| * we need to make 7 writes: |
| * MASK DATA |
| * 000001 00000000 00000000 set mask to R0 |
| * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0 |
| * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0 |
| * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1 |
| * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1 |
| * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1 |
| * 100000 11111111 00000000 B1 255, 0xFF00 |
| * |
| * we will make a loop of 6 in which we prepare the mask, |
| * then write, then prepare the color for next write. |
| * first iteration will write mask only, |
| * but each next iteration color prepared in |
| * previous iteration will be written within new mask, |
| * the last component will written separately, |
| * mask is not changing between 6th and 7th write |
| * and color will be prepared by last iteration |
| */ |
| |
| /* write color, color values mask in CRTC_TEST_PATTERN_MASK |
| * is B1, G1, R1, B0, G0, R0 |
| */ |
| pattern_data = 0; |
| for (index = 0; index < 6; index++) { |
| /* prepare color mask, first write PATTERN_DATA |
| * will have all zeros |
| */ |
| pattern_mask = (1 << index); |
| |
| /* write color component */ |
| REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, |
| OTG_TEST_PATTERN_MASK, pattern_mask, |
| OTG_TEST_PATTERN_DATA, pattern_data); |
| |
| /* prepare next color component, |
| * will be written in the next iteration |
| */ |
| pattern_data = dst_color[index]; |
| } |
| /* write last color component, |
| * it's been already prepared in the loop |
| */ |
| REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, |
| OTG_TEST_PATTERN_MASK, pattern_mask, |
| OTG_TEST_PATTERN_DATA, pattern_data); |
| |
| /* enable test pattern */ |
| REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, |
| OTG_TEST_PATTERN_EN, 1, |
| OTG_TEST_PATTERN_MODE, mode, |
| OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, |
| OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); |
| } |
| break; |
| |
| case CONTROLLER_DP_TEST_PATTERN_COLORRAMP: |
| { |
| mode = (bit_depth == |
| TEST_PATTERN_COLOR_FORMAT_BPC_10 ? |
| TEST_PATTERN_MODE_DUALRAMP_RGB : |
| TEST_PATTERN_MODE_SINGLERAMP_RGB); |
| |
| switch (bit_depth) { |
| case TEST_PATTERN_COLOR_FORMAT_BPC_6: |
| dst_bpc = 6; |
| break; |
| case TEST_PATTERN_COLOR_FORMAT_BPC_8: |
| dst_bpc = 8; |
| break; |
| case TEST_PATTERN_COLOR_FORMAT_BPC_10: |
| dst_bpc = 10; |
| break; |
| default: |
| dst_bpc = 8; |
| break; |
| } |
| |
| /* increment for the first ramp for one color gradation |
| * 1 gradation for 6-bit color is 2^10 |
| * gradations in 16-bit color |
| */ |
| inc_base = (src_bpc - dst_bpc); |
| |
| switch (bit_depth) { |
| case TEST_PATTERN_COLOR_FORMAT_BPC_6: |
| { |
| REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, |
| OTG_TEST_PATTERN_INC0, inc_base, |
| OTG_TEST_PATTERN_INC1, 0, |
| OTG_TEST_PATTERN_HRES, 6, |
| OTG_TEST_PATTERN_VRES, 6, |
| OTG_TEST_PATTERN_RAMP0_OFFSET, 0); |
| } |
| break; |
| case TEST_PATTERN_COLOR_FORMAT_BPC_8: |
| { |
| REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, |
| OTG_TEST_PATTERN_INC0, inc_base, |
| OTG_TEST_PATTERN_INC1, 0, |
| OTG_TEST_PATTERN_HRES, 8, |
| OTG_TEST_PATTERN_VRES, 6, |
| OTG_TEST_PATTERN_RAMP0_OFFSET, 0); |
| } |
| break; |
| case TEST_PATTERN_COLOR_FORMAT_BPC_10: |
| { |
| REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, |
| OTG_TEST_PATTERN_INC0, inc_base, |
| OTG_TEST_PATTERN_INC1, inc_base + 2, |
| OTG_TEST_PATTERN_HRES, 8, |
| OTG_TEST_PATTERN_VRES, 5, |
| OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); |
| |
| /* enable test pattern */ |
| REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); |
| |
| REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0, |
| OTG_TEST_PATTERN_EN, 1, |
| OTG_TEST_PATTERN_MODE, mode, |
| OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, |
| OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); |
| } |
| break; |
| case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE: |
| { |
| REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); |
| REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); |
| REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); |
| } |
| break; |
| default: |
| break; |
| |
| } |
| } |
| |
| void optc1_get_crtc_scanoutpos( |
| struct timing_generator *optc, |
| uint32_t *v_blank_start, |
| uint32_t *v_blank_end, |
| uint32_t *h_position, |
| uint32_t *v_position) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| struct crtc_position position; |
| |
| REG_GET_2(OTG_V_BLANK_START_END, |
| OTG_V_BLANK_START, v_blank_start, |
| OTG_V_BLANK_END, v_blank_end); |
| |
| optc1_get_position(optc, &position); |
| |
| *h_position = position.horizontal_count; |
| *v_position = position.vertical_count; |
| } |
| |
| static void optc1_enable_stereo(struct timing_generator *optc, |
| const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| if (flags) { |
| uint32_t stereo_en; |
| stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0; |
| |
| if (flags->PROGRAM_STEREO) |
| REG_UPDATE_3(OTG_STEREO_CONTROL, |
| OTG_STEREO_EN, stereo_en, |
| OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0, |
| OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); |
| |
| if (flags->PROGRAM_POLARITY) |
| REG_UPDATE(OTG_STEREO_CONTROL, |
| OTG_STEREO_EYE_FLAG_POLARITY, |
| flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); |
| |
| if (flags->DISABLE_STEREO_DP_SYNC) |
| REG_UPDATE(OTG_STEREO_CONTROL, |
| OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1); |
| |
| if (flags->PROGRAM_STEREO) |
| REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL, |
| OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED, |
| OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED); |
| |
| } |
| } |
| |
| void optc1_program_stereo(struct timing_generator *optc, |
| const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) |
| { |
| if (flags->PROGRAM_STEREO) |
| optc1_enable_stereo(optc, timing, flags); |
| else |
| optc1_disable_stereo(optc); |
| } |
| |
| |
| bool optc1_is_stereo_left_eye(struct timing_generator *optc) |
| { |
| bool ret = false; |
| uint32_t left_eye = 0; |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_GET(OTG_STEREO_STATUS, |
| OTG_STEREO_CURRENT_EYE, &left_eye); |
| if (left_eye == 1) |
| ret = true; |
| else |
| ret = false; |
| |
| return ret; |
| } |
| |
| bool optc1_get_hw_timing(struct timing_generator *tg, |
| struct dc_crtc_timing *hw_crtc_timing) |
| { |
| struct dcn_otg_state s = {0}; |
| |
| if (tg == NULL || hw_crtc_timing == NULL) |
| return false; |
| |
| optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s); |
| |
| hw_crtc_timing->h_total = s.h_total + 1; |
| hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end); |
| hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start; |
| hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start; |
| |
| hw_crtc_timing->v_total = s.v_total + 1; |
| hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end); |
| hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start; |
| hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start; |
| |
| return true; |
| } |
| |
| |
| void optc1_read_otg_state(struct optc *optc1, |
| struct dcn_otg_state *s) |
| { |
| REG_GET(OTG_CONTROL, |
| OTG_MASTER_EN, &s->otg_enabled); |
| |
| REG_GET_2(OTG_V_BLANK_START_END, |
| OTG_V_BLANK_START, &s->v_blank_start, |
| OTG_V_BLANK_END, &s->v_blank_end); |
| |
| REG_GET(OTG_V_SYNC_A_CNTL, |
| OTG_V_SYNC_A_POL, &s->v_sync_a_pol); |
| |
| REG_GET(OTG_V_TOTAL, |
| OTG_V_TOTAL, &s->v_total); |
| |
| REG_GET(OTG_V_TOTAL_MAX, |
| OTG_V_TOTAL_MAX, &s->v_total_max); |
| |
| REG_GET(OTG_V_TOTAL_MIN, |
| OTG_V_TOTAL_MIN, &s->v_total_min); |
| |
| REG_GET(OTG_V_TOTAL_CONTROL, |
| OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel); |
| |
| REG_GET(OTG_V_TOTAL_CONTROL, |
| OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel); |
| |
| REG_GET_2(OTG_V_SYNC_A, |
| OTG_V_SYNC_A_START, &s->v_sync_a_start, |
| OTG_V_SYNC_A_END, &s->v_sync_a_end); |
| |
| REG_GET_2(OTG_H_BLANK_START_END, |
| OTG_H_BLANK_START, &s->h_blank_start, |
| OTG_H_BLANK_END, &s->h_blank_end); |
| |
| REG_GET_2(OTG_H_SYNC_A, |
| OTG_H_SYNC_A_START, &s->h_sync_a_start, |
| OTG_H_SYNC_A_END, &s->h_sync_a_end); |
| |
| REG_GET(OTG_H_SYNC_A_CNTL, |
| OTG_H_SYNC_A_POL, &s->h_sync_a_pol); |
| |
| REG_GET(OTG_H_TOTAL, |
| OTG_H_TOTAL, &s->h_total); |
| |
| REG_GET(OPTC_INPUT_GLOBAL_CONTROL, |
| OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status); |
| |
| REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL, |
| OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en); |
| |
| REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION, |
| OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line); |
| } |
| |
| bool optc1_get_otg_active_size(struct timing_generator *optc, |
| uint32_t *otg_active_width, |
| uint32_t *otg_active_height) |
| { |
| uint32_t otg_enabled; |
| uint32_t v_blank_start; |
| uint32_t v_blank_end; |
| uint32_t h_blank_start; |
| uint32_t h_blank_end; |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| |
| REG_GET(OTG_CONTROL, |
| OTG_MASTER_EN, &otg_enabled); |
| |
| if (otg_enabled == 0) |
| return false; |
| |
| REG_GET_2(OTG_V_BLANK_START_END, |
| OTG_V_BLANK_START, &v_blank_start, |
| OTG_V_BLANK_END, &v_blank_end); |
| |
| REG_GET_2(OTG_H_BLANK_START_END, |
| OTG_H_BLANK_START, &h_blank_start, |
| OTG_H_BLANK_END, &h_blank_end); |
| |
| *otg_active_width = v_blank_start - v_blank_end; |
| *otg_active_height = h_blank_start - h_blank_end; |
| return true; |
| } |
| |
| void optc1_clear_optc_underflow(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1); |
| } |
| |
| void optc1_tg_init(struct timing_generator *optc) |
| { |
| optc1_set_blank_data_double_buffer(optc, true); |
| optc1_set_timing_double_buffer(optc, true); |
| optc1_clear_optc_underflow(optc); |
| } |
| |
| bool optc1_is_tg_enabled(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t otg_enabled = 0; |
| |
| REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled); |
| |
| return (otg_enabled != 0); |
| |
| } |
| |
| bool optc1_is_optc_underflow_occurred(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t underflow_occurred = 0; |
| |
| REG_GET(OPTC_INPUT_GLOBAL_CONTROL, |
| OPTC_UNDERFLOW_OCCURRED_STATUS, |
| &underflow_occurred); |
| |
| return (underflow_occurred == 1); |
| } |
| |
| bool optc1_configure_crc(struct timing_generator *optc, |
| const struct crc_params *params) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| /* Cannot configure crc on a CRTC that is disabled */ |
| if (!optc1_is_tg_enabled(optc)) |
| return false; |
| |
| REG_WRITE(OTG_CRC_CNTL, 0); |
| |
| if (!params->enable) |
| return true; |
| |
| /* Program frame boundaries */ |
| /* Window A x axis start and end. */ |
| REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL, |
| OTG_CRC0_WINDOWA_X_START, params->windowa_x_start, |
| OTG_CRC0_WINDOWA_X_END, params->windowa_x_end); |
| |
| /* Window A y axis start and end. */ |
| REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL, |
| OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start, |
| OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end); |
| |
| /* Window B x axis start and end. */ |
| REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL, |
| OTG_CRC0_WINDOWB_X_START, params->windowb_x_start, |
| OTG_CRC0_WINDOWB_X_END, params->windowb_x_end); |
| |
| /* Window B y axis start and end. */ |
| REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL, |
| OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start, |
| OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end); |
| |
| /* Set crc mode and selection, and enable. Only using CRC0*/ |
| REG_UPDATE_3(OTG_CRC_CNTL, |
| OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0, |
| OTG_CRC0_SELECT, params->selection, |
| OTG_CRC_EN, 1); |
| |
| return true; |
| } |
| |
| bool optc1_get_crc(struct timing_generator *optc, |
| uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) |
| { |
| uint32_t field = 0; |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field); |
| |
| /* Early return if CRC is not enabled for this CRTC */ |
| if (!field) |
| return false; |
| |
| REG_GET_2(OTG_CRC0_DATA_RG, |
| CRC0_R_CR, r_cr, |
| CRC0_G_Y, g_y); |
| |
| REG_GET(OTG_CRC0_DATA_B, |
| CRC0_B_CB, b_cb); |
| |
| return true; |
| } |
| |
| static const struct timing_generator_funcs dcn10_tg_funcs = { |
| .validate_timing = optc1_validate_timing, |
| .program_timing = optc1_program_timing, |
| .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, |
| .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, |
| .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, |
| .program_global_sync = optc1_program_global_sync, |
| .enable_crtc = optc1_enable_crtc, |
| .disable_crtc = optc1_disable_crtc, |
| /* used by enable_timing_synchronization. Not need for FPGA */ |
| .is_counter_moving = optc1_is_counter_moving, |
| .get_position = optc1_get_position, |
| .get_frame_count = optc1_get_vblank_counter, |
| .get_scanoutpos = optc1_get_crtc_scanoutpos, |
| .get_otg_active_size = optc1_get_otg_active_size, |
| .set_early_control = optc1_set_early_control, |
| /* used by enable_timing_synchronization. Not need for FPGA */ |
| .wait_for_state = optc1_wait_for_state, |
| .set_blank = optc1_set_blank, |
| .is_blanked = optc1_is_blanked, |
| .set_blank_color = optc1_program_blank_color, |
| .did_triggered_reset_occur = optc1_did_triggered_reset_occur, |
| .enable_reset_trigger = optc1_enable_reset_trigger, |
| .enable_crtc_reset = optc1_enable_crtc_reset, |
| .disable_reset_trigger = optc1_disable_reset_trigger, |
| .lock = optc1_lock, |
| .is_locked = optc1_is_locked, |
| .unlock = optc1_unlock, |
| .enable_optc_clock = optc1_enable_optc_clock, |
| .set_drr = optc1_set_drr, |
| .get_last_used_drr_vtotal = NULL, |
| .set_static_screen_control = optc1_set_static_screen_control, |
| .set_test_pattern = optc1_set_test_pattern, |
| .program_stereo = optc1_program_stereo, |
| .is_stereo_left_eye = optc1_is_stereo_left_eye, |
| .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, |
| .tg_init = optc1_tg_init, |
| .is_tg_enabled = optc1_is_tg_enabled, |
| .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, |
| .clear_optc_underflow = optc1_clear_optc_underflow, |
| .get_crc = optc1_get_crc, |
| .configure_crc = optc1_configure_crc, |
| .set_vtg_params = optc1_set_vtg_params, |
| .program_manual_trigger = optc1_program_manual_trigger, |
| .setup_manual_trigger = optc1_setup_manual_trigger, |
| .get_hw_timing = optc1_get_hw_timing, |
| }; |
| |
| void dcn10_timing_generator_init(struct optc *optc1) |
| { |
| optc1->base.funcs = &dcn10_tg_funcs; |
| |
| optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; |
| optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; |
| |
| optc1->min_h_blank = 32; |
| optc1->min_v_blank = 3; |
| optc1->min_v_blank_interlace = 5; |
| optc1->min_h_sync_width = 4; |
| optc1->min_v_sync_width = 1; |
| } |
| |
| /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this: |
| * |
| * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as |
| * containter rate. |
| * |
| * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be |
| * halved to maintain the correct pixel rate. |
| * |
| * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied |
| * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well. |
| * |
| */ |
| bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) |
| { |
| bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420; |
| |
| two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422 |
| && !timing->dsc_cfg.ycbcr422_simple); |
| return two_pix; |
| } |
| |