blob: 50c71e0ba5e4e8672d05e87103ad3b58d5272153 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
*
* Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/mmc/mmc.h>
#include <linux/pm_runtime.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/iopoll.h>
#include <linux/qcom_scm.h>
#include <linux/regulator/consumer.h>
#include <linux/interconnect.h>
#include <linux/pinctrl/consumer.h>
#include "sdhci-pltfm.h"
#include "cqhci.h"
#define CORE_MCI_VERSION 0x50
#define CORE_VERSION_MAJOR_SHIFT 28
#define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
#define CORE_VERSION_MINOR_MASK 0xff
#define CORE_MCI_GENERICS 0x70
#define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
#define HC_MODE_EN 0x1
#define CORE_POWER 0x0
#define CORE_SW_RST BIT(7)
#define FF_CLK_SW_RST_DIS BIT(13)
#define CORE_PWRCTL_BUS_OFF BIT(0)
#define CORE_PWRCTL_BUS_ON BIT(1)
#define CORE_PWRCTL_IO_LOW BIT(2)
#define CORE_PWRCTL_IO_HIGH BIT(3)
#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
#define CORE_PWRCTL_BUS_FAIL BIT(1)
#define CORE_PWRCTL_IO_SUCCESS BIT(2)
#define CORE_PWRCTL_IO_FAIL BIT(3)
#define REQ_BUS_OFF BIT(0)
#define REQ_BUS_ON BIT(1)
#define REQ_IO_LOW BIT(2)
#define REQ_IO_HIGH BIT(3)
#define INT_MASK 0xf
#define MAX_PHASES 16
#define CORE_DLL_LOCK BIT(7)
#define CORE_DDR_DLL_LOCK BIT(11)
#define CORE_DLL_EN BIT(16)
#define CORE_CDR_EN BIT(17)
#define CORE_CK_OUT_EN BIT(18)
#define CORE_CDR_EXT_EN BIT(19)
#define CORE_DLL_PDN BIT(29)
#define CORE_DLL_RST BIT(30)
#define CORE_CMD_DAT_TRACK_SEL BIT(0)
#define CORE_DDR_CAL_EN BIT(0)
#define CORE_FLL_CYCLE_CNT BIT(18)
#define CORE_DLL_CLOCK_DISABLE BIT(21)
#define DLL_USR_CTL_POR_VAL 0x10800
#define ENABLE_DLL_LOCK_STATUS BIT(26)
#define FINE_TUNE_MODE_EN BIT(27)
#define BIAS_OK_SIGNAL BIT(29)
#define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
#define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
#define CORE_CLK_PWRSAVE BIT(1)
#define CORE_HC_MCLK_SEL_DFLT (2 << 8)
#define CORE_HC_MCLK_SEL_HS400 (3 << 8)
#define CORE_HC_MCLK_SEL_MASK (3 << 8)
#define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
#define CORE_IO_PAD_PWR_SWITCH BIT(16)
#define CORE_HC_SELECT_IN_EN BIT(18)
#define CORE_HC_SELECT_IN_HS400 (6 << 19)
#define CORE_HC_SELECT_IN_MASK (7 << 19)
#define CORE_3_0V_SUPPORT BIT(25)
#define CORE_1_8V_SUPPORT BIT(26)
#define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
#define CORE_CSR_CDC_CTLR_CFG0 0x130
#define CORE_SW_TRIG_FULL_CALIB BIT(16)
#define CORE_HW_AUTOCAL_ENA BIT(17)
#define CORE_CSR_CDC_CTLR_CFG1 0x134
#define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
#define CORE_TIMER_ENA BIT(16)
#define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
#define CORE_CSR_CDC_REFCOUNT_CFG 0x140
#define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
#define CORE_CDC_OFFSET_CFG 0x14C
#define CORE_CSR_CDC_DELAY_CFG 0x150
#define CORE_CDC_SLAVE_DDA_CFG 0x160
#define CORE_CSR_CDC_STATUS0 0x164
#define CORE_CALIBRATION_DONE BIT(0)
#define CORE_CDC_ERROR_CODE_MASK 0x7000000
#define CORE_CSR_CDC_GEN_CFG 0x178
#define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
#define CORE_CDC_SWITCH_RC_EN BIT(1)
#define CORE_CDC_T4_DLY_SEL BIT(0)
#define CORE_CMDIN_RCLK_EN BIT(1)
#define CORE_START_CDC_TRAFFIC BIT(6)
#define CORE_PWRSAVE_DLL BIT(3)
#define DDR_CONFIG_POR_VAL 0x80040873
#define INVALID_TUNING_PHASE -1
#define SDHCI_MSM_MIN_CLOCK 400000
#define CORE_FREQ_100MHZ (100 * 1000 * 1000)
#define CDR_SELEXT_SHIFT 20
#define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
#define CMUX_SHIFT_PHASE_SHIFT 24
#define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
#define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
/* Timeout value to avoid infinite waiting for pwr_irq */
#define MSM_PWR_IRQ_TIMEOUT_MS 5000
/* Max load for eMMC Vdd-io supply */
#define MMC_VQMMC_MAX_LOAD_UA 325000
#define msm_host_readl(msm_host, host, offset) \
msm_host->var_ops->msm_readl_relaxed(host, offset)
#define msm_host_writel(msm_host, val, host, offset) \
msm_host->var_ops->msm_writel_relaxed(val, host, offset)
/* CQHCI vendor specific registers */
#define CQHCI_VENDOR_CFG1 0xA00
#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
struct sdhci_msm_offset {
u32 core_hc_mode;
u32 core_mci_data_cnt;
u32 core_mci_status;
u32 core_mci_fifo_cnt;
u32 core_mci_version;
u32 core_generics;
u32 core_testbus_config;
u32 core_testbus_sel2_bit;
u32 core_testbus_ena;
u32 core_testbus_sel2;
u32 core_pwrctl_status;
u32 core_pwrctl_mask;
u32 core_pwrctl_clear;
u32 core_pwrctl_ctl;
u32 core_sdcc_debug_reg;
u32 core_dll_config;
u32 core_dll_status;
u32 core_vendor_spec;
u32 core_vendor_spec_adma_err_addr0;
u32 core_vendor_spec_adma_err_addr1;
u32 core_vendor_spec_func2;
u32 core_vendor_spec_capabilities0;
u32 core_ddr_200_cfg;
u32 core_vendor_spec3;
u32 core_dll_config_2;
u32 core_dll_config_3;
u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
u32 core_ddr_config;
u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
};
static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
.core_mci_data_cnt = 0x35c,
.core_mci_status = 0x324,
.core_mci_fifo_cnt = 0x308,
.core_mci_version = 0x318,
.core_generics = 0x320,
.core_testbus_config = 0x32c,
.core_testbus_sel2_bit = 3,
.core_testbus_ena = (1 << 31),
.core_testbus_sel2 = (1 << 3),
.core_pwrctl_status = 0x240,
.core_pwrctl_mask = 0x244,
.core_pwrctl_clear = 0x248,
.core_pwrctl_ctl = 0x24c,
.core_sdcc_debug_reg = 0x358,
.core_dll_config = 0x200,
.core_dll_status = 0x208,
.core_vendor_spec = 0x20c,
.core_vendor_spec_adma_err_addr0 = 0x214,
.core_vendor_spec_adma_err_addr1 = 0x218,
.core_vendor_spec_func2 = 0x210,
.core_vendor_spec_capabilities0 = 0x21c,
.core_ddr_200_cfg = 0x224,
.core_vendor_spec3 = 0x250,
.core_dll_config_2 = 0x254,
.core_dll_config_3 = 0x258,
.core_ddr_config = 0x25c,
.core_dll_usr_ctl = 0x388,
};
static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
.core_hc_mode = 0x78,
.core_mci_data_cnt = 0x30,
.core_mci_status = 0x34,
.core_mci_fifo_cnt = 0x44,
.core_mci_version = 0x050,
.core_generics = 0x70,
.core_testbus_config = 0x0cc,
.core_testbus_sel2_bit = 4,
.core_testbus_ena = (1 << 3),
.core_testbus_sel2 = (1 << 4),
.core_pwrctl_status = 0xdc,
.core_pwrctl_mask = 0xe0,
.core_pwrctl_clear = 0xe4,
.core_pwrctl_ctl = 0xe8,
.core_sdcc_debug_reg = 0x124,
.core_dll_config = 0x100,
.core_dll_status = 0x108,
.core_vendor_spec = 0x10c,
.core_vendor_spec_adma_err_addr0 = 0x114,
.core_vendor_spec_adma_err_addr1 = 0x118,
.core_vendor_spec_func2 = 0x110,
.core_vendor_spec_capabilities0 = 0x11c,
.core_ddr_200_cfg = 0x184,
.core_vendor_spec3 = 0x1b0,
.core_dll_config_2 = 0x1b4,
.core_ddr_config_old = 0x1b8,
.core_ddr_config = 0x1bc,
};
struct sdhci_msm_variant_ops {
u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
u32 offset);
};
/*
* From V5, register spaces have changed. Wrap this info in a structure
* and choose the data_structure based on version info mentioned in DT.
*/
struct sdhci_msm_variant_info {
bool mci_removed;
bool restore_dll_config;
const struct sdhci_msm_variant_ops *var_ops;
const struct sdhci_msm_offset *offset;
};
struct sdhci_msm_host {
struct platform_device *pdev;
void __iomem *core_mem; /* MSM SDCC mapped address */
void __iomem *ice_mem; /* MSM ICE mapped address (if available) */
int pwr_irq; /* power irq */
struct clk *bus_clk; /* SDHC bus voter clock */
struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
/* core, iface, cal, sleep, and ice clocks */
struct clk_bulk_data bulk_clks[5];
unsigned long clk_rate;
struct mmc_host *mmc;
bool use_14lpp_dll_reset;
bool tuning_done;
bool calibration_done;
u8 saved_tuning_phase;
bool use_cdclp533;
u32 curr_pwr_state;
u32 curr_io_level;
wait_queue_head_t pwr_irq_wait;
bool pwr_irq_flag;
u32 caps_0;
bool mci_removed;
bool restore_dll_config;
const struct sdhci_msm_variant_ops *var_ops;
const struct sdhci_msm_offset *offset;
bool use_cdr;
u32 transfer_mode;
bool updated_ddr_cfg;
bool uses_tassadar_dll;
u32 dll_config;
u32 ddr_config;
bool vqmmc_enabled;
};
static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return msm_host->offset;
}
/*
* APIs to read/write to vendor specific registers which were there in the
* core_mem region before MCI was removed.
*/
static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
u32 offset)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return readl_relaxed(msm_host->core_mem + offset);
}
static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
u32 offset)
{
return readl_relaxed(host->ioaddr + offset);
}
static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
struct sdhci_host *host, u32 offset)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
writel_relaxed(val, msm_host->core_mem + offset);
}
static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
struct sdhci_host *host, u32 offset)
{
writel_relaxed(val, host->ioaddr + offset);
}
static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
{
struct mmc_ios ios = host->mmc->ios;
/*
* The SDHC requires internal clock frequency to be double the
* actual clock that will be set for DDR mode. The controller
* uses the faster clock(100/400MHz) for some of its parts and
* send the actual required clock (50/200MHz) to the card.
*/
if (ios.timing == MMC_TIMING_UHS_DDR50 ||
ios.timing == MMC_TIMING_MMC_DDR52 ||
ios.timing == MMC_TIMING_MMC_HS400 ||
host->flags & SDHCI_HS400_TUNING)
return 2;
return 1;
}
static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios curr_ios = host->mmc->ios;
struct clk *core_clk = msm_host->bulk_clks[0].clk;
unsigned long achieved_rate;
unsigned int desired_rate;
unsigned int mult;
int rc;
mult = msm_get_clock_mult_for_bus_mode(host);
desired_rate = clock * mult;
rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
if (rc) {
pr_err("%s: Failed to set clock at rate %u at timing %d\n",
mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
return;
}
/*
* Qualcomm clock drivers by default round clock _up_ if they can't
* make the requested rate. This is not good for SD. Yell if we
* encounter it.
*/
achieved_rate = clk_get_rate(core_clk);
if (achieved_rate > desired_rate)
pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
mmc_hostname(host->mmc), desired_rate, achieved_rate);
host->mmc->actual_clock = achieved_rate / mult;
/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
msm_host->clk_rate = desired_rate;
pr_debug("%s: Setting clock at rate %lu at timing %d\n",
mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
}
/* Platform specific tuning */
static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
{
u32 wait_cnt = 50;
u8 ck_out_en;
struct mmc_host *mmc = host->mmc;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
/* Poll for CK_OUT_EN bit. max. poll time = 50us */
ck_out_en = !!(readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & CORE_CK_OUT_EN);
while (ck_out_en != poll) {
if (--wait_cnt == 0) {
dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
mmc_hostname(mmc), poll);
return -ETIMEDOUT;
}
udelay(1);
ck_out_en = !!(readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & CORE_CK_OUT_EN);
}
return 0;
}
static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
{
int rc;
static const u8 grey_coded_phase_table[] = {
0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
};
unsigned long flags;
u32 config;
struct mmc_host *mmc = host->mmc;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
if (phase > 0xf)
return -EINVAL;
spin_lock_irqsave(&host->lock, flags);
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
rc = msm_dll_poll_ck_out_en(host, 0);
if (rc)
goto err_out;
/*
* Write the selected DLL clock output phase (0 ... 15)
* to CDR_SELEXT bit field of DLL_CONFIG register.
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~CDR_SELEXT_MASK;
config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
rc = msm_dll_poll_ck_out_en(host, 1);
if (rc)
goto err_out;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CDR_EN;
config &= ~CORE_CDR_EXT_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
goto out;
err_out:
dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
mmc_hostname(mmc), phase);
out:
spin_unlock_irqrestore(&host->lock, flags);
return rc;
}
/*
* Find out the greatest range of consecuitive selected
* DLL clock output phases that can be used as sampling
* setting for SD3.0 UHS-I card read operation (in SDR104
* timing mode) or for eMMC4.5 card read operation (in
* HS400/HS200 timing mode).
* Select the 3/4 of the range and configure the DLL with the
* selected DLL clock output phase.
*/
static int msm_find_most_appropriate_phase(struct sdhci_host *host,
u8 *phase_table, u8 total_phases)
{
int ret;
u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
u8 phases_per_row[MAX_PHASES] = { 0 };
int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
bool phase_0_found = false, phase_15_found = false;
struct mmc_host *mmc = host->mmc;
if (!total_phases || (total_phases > MAX_PHASES)) {
dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
mmc_hostname(mmc), total_phases);
return -EINVAL;
}
for (cnt = 0; cnt < total_phases; cnt++) {
ranges[row_index][col_index] = phase_table[cnt];
phases_per_row[row_index] += 1;
col_index++;
if ((cnt + 1) == total_phases) {
continue;
/* check if next phase in phase_table is consecutive or not */
} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
row_index++;
col_index = 0;
}
}
if (row_index >= MAX_PHASES)
return -EINVAL;
/* Check if phase-0 is present in first valid window? */
if (!ranges[0][0]) {
phase_0_found = true;
phase_0_raw_index = 0;
/* Check if cycle exist between 2 valid windows */
for (cnt = 1; cnt <= row_index; cnt++) {
if (phases_per_row[cnt]) {
for (i = 0; i < phases_per_row[cnt]; i++) {
if (ranges[cnt][i] == 15) {
phase_15_found = true;
phase_15_raw_index = cnt;
break;
}
}
}
}
}
/* If 2 valid windows form cycle then merge them as single window */
if (phase_0_found && phase_15_found) {
/* number of phases in raw where phase 0 is present */
u8 phases_0 = phases_per_row[phase_0_raw_index];
/* number of phases in raw where phase 15 is present */
u8 phases_15 = phases_per_row[phase_15_raw_index];
if (phases_0 + phases_15 >= MAX_PHASES)
/*
* If there are more than 1 phase windows then total
* number of phases in both the windows should not be
* more than or equal to MAX_PHASES.
*/
return -EINVAL;
/* Merge 2 cyclic windows */
i = phases_15;
for (cnt = 0; cnt < phases_0; cnt++) {
ranges[phase_15_raw_index][i] =
ranges[phase_0_raw_index][cnt];
if (++i >= MAX_PHASES)
break;
}
phases_per_row[phase_0_raw_index] = 0;
phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
}
for (cnt = 0; cnt <= row_index; cnt++) {
if (phases_per_row[cnt] > curr_max) {
curr_max = phases_per_row[cnt];
selected_row_index = cnt;
}
}
i = (curr_max * 3) / 4;
if (i)
i--;
ret = ranges[selected_row_index][i];
if (ret >= MAX_PHASES) {
ret = -EINVAL;
dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
mmc_hostname(mmc), ret);
}
return ret;
}
static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
{
u32 mclk_freq = 0, config;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
/* Program the MCLK value to MCLK_FREQ bit field */
if (host->clock <= 112000000)
mclk_freq = 0;
else if (host->clock <= 125000000)
mclk_freq = 1;
else if (host->clock <= 137000000)
mclk_freq = 2;
else if (host->clock <= 150000000)
mclk_freq = 3;
else if (host->clock <= 162000000)
mclk_freq = 4;
else if (host->clock <= 175000000)
mclk_freq = 5;
else if (host->clock <= 187000000)
mclk_freq = 6;
else if (host->clock <= 200000000)
mclk_freq = 7;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~CMUX_SHIFT_PHASE_MASK;
config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
}
/* Initialize the DLL (Programmable Delay Line) */
static int msm_init_cm_dll(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int wait_cnt = 50;
unsigned long flags, xo_clk = 0;
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
xo_clk = clk_get_rate(msm_host->xo_clk);
spin_lock_irqsave(&host->lock, flags);
/*
* Make sure that clock is always enabled when DLL
* tuning is in progress. Keeping PWRSAVE ON may
* turn off the clock.
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_CLK_PWRSAVE;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
if (msm_host->dll_config)
writel_relaxed(msm_host->dll_config,
host->ioaddr + msm_offset->core_dll_config);
if (msm_host->use_14lpp_dll_reset) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config &= ~CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
config |= CORE_DLL_CLOCK_DISABLE;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config_2);
}
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_RST;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
if (!msm_host->dll_config)
msm_cm_dll_set_freq(host);
if (msm_host->use_14lpp_dll_reset &&
!IS_ERR_OR_NULL(msm_host->xo_clk)) {
u32 mclk_freq = 0;
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
config &= CORE_FLL_CYCLE_CNT;
if (config)
mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
xo_clk);
else
mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
xo_clk);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
config &= ~(0xFF << 10);
config |= mclk_freq << 10;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config_2);
/* wait for 5us before enabling DLL clock */
udelay(5);
}
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config &= ~CORE_DLL_RST;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config &= ~CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
if (msm_host->use_14lpp_dll_reset) {
if (!msm_host->dll_config)
msm_cm_dll_set_freq(host);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
config &= ~CORE_DLL_CLOCK_DISABLE;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config_2);
}
/*
* Configure DLL user control register to enable DLL status.
* This setting is applicable to SDCC v5.1 onwards only.
*/
if (msm_host->uses_tassadar_dll) {
config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_usr_ctl);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_3);
config &= ~0xFF;
if (msm_host->clk_rate < 150000000)
config |= DLL_CONFIG_3_LOW_FREQ_VAL;
else
config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config_3);
}
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
CORE_DLL_LOCK)) {
/* max. wait for 50us sec for LOCK bit to be set */
if (--wait_cnt == 0) {
dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
mmc_hostname(mmc));
spin_unlock_irqrestore(&host->lock, flags);
return -ETIMEDOUT;
}
udelay(1);
}
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
static void msm_hc_select_default(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
if (!msm_host->use_cdclp533) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec3);
config &= ~CORE_PWRSAVE_DLL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec3);
}
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_MCLK_SEL_MASK;
config |= CORE_HC_MCLK_SEL_DFLT;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Disable HC_SELECT_IN to be able to use the UHS mode select
* configuration from Host Control2 register for all other
* modes.
* Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
* in VENDOR_SPEC_FUNC
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_SELECT_IN_EN;
config &= ~CORE_HC_SELECT_IN_MASK;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Make sure above writes impacting free running MCLK are completed
* before changing the clk_rate at GCC.
*/
wmb();
}
static void msm_hc_select_hs400(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios ios = host->mmc->ios;
u32 config, dll_lock;
int rc;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
/* Select the divided clock (free running MCLK/2) */
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_MCLK_SEL_MASK;
config |= CORE_HC_MCLK_SEL_HS400;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
* register
*/
if ((msm_host->tuning_done || ios.enhanced_strobe) &&
!msm_host->calibration_done) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
config |= CORE_HC_SELECT_IN_HS400;
config |= CORE_HC_SELECT_IN_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec);
}
if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
/*
* Poll on DLL_LOCK or DDR_DLL_LOCK bits in
* core_dll_status to be set. This should get set
* within 15 us at 200 MHz.
*/
rc = readl_relaxed_poll_timeout(host->ioaddr +
msm_offset->core_dll_status,
dll_lock,
(dll_lock &
(CORE_DLL_LOCK |
CORE_DDR_DLL_LOCK)), 10,
1000);
if (rc == -ETIMEDOUT)
pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
mmc_hostname(host->mmc), dll_lock);
}
/*
* Make sure above writes impacting free running MCLK are completed
* before changing the clk_rate at GCC.
*/
wmb();
}
/*
* sdhci_msm_hc_select_mode :- In general all timing modes are
* controlled via UHS mode select in Host Control2 register.
* eMMC specific HS200/HS400 doesn't have their respective modes
* defined here, hence we use these values.
*
* HS200 - SDR104 (Since they both are equivalent in functionality)
* HS400 - This involves multiple configurations
* Initially SDR104 - when tuning is required as HS200
* Then when switching to DDR @ 400MHz (HS400) we use
* the vendor specific HC_SELECT_IN to control the mode.
*
* In addition to controlling the modes we also need to select the
* correct input clock for DLL depending on the mode.
*
* HS400 - divided clock (free running MCLK/2)
* All other modes - default (free running MCLK)
*/
static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
{
struct mmc_ios ios = host->mmc->ios;
if (ios.timing == MMC_TIMING_MMC_HS400 ||
host->flags & SDHCI_HS400_TUNING)
msm_hc_select_hs400(host);
else
msm_hc_select_default(host);
}
static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 config, calib_done;
int ret;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Retuning in HS400 (DDR mode) will fail, just reset the
* tuning block and restore the saved tuning phase.
*/
ret = msm_init_cm_dll(host);
if (ret)
goto out;
/* Set the selected phase in delay line hw block */
ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
if (ret)
goto out;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CMD_DAT_TRACK_SEL;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config &= ~CORE_CDC_T4_DLY_SEL;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config |= CORE_CDC_SWITCH_RC_EN;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config &= ~CORE_START_CDC_TRAFFIC;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
/* Perform CDC Register Initialization Sequence */
writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
/* CDC HW Calibration */
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config |= CORE_SW_TRIG_FULL_CALIB;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config &= ~CORE_SW_TRIG_FULL_CALIB;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config |= CORE_HW_AUTOCAL_ENA;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
config |= CORE_TIMER_ENA;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
calib_done,
(calib_done & CORE_CALIBRATION_DONE),
1, 50);
if (ret == -ETIMEDOUT) {
pr_err("%s: %s: CDC calibration was not completed\n",
mmc_hostname(host->mmc), __func__);
goto out;
}
ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
& CORE_CDC_ERROR_CODE_MASK;
if (ret) {
pr_err("%s: %s: CDC error code %d\n",
mmc_hostname(host->mmc), __func__, ret);
ret = -EINVAL;
goto out;
}
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config |= CORE_START_CDC_TRAFFIC;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
u32 dll_status, config, ddr_cfg_offset;
int ret;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Currently the core_ddr_config register defaults to desired
* configuration on reset. Currently reprogramming the power on
* reset (POR) value in case it might have been modified by
* bootloaders. In the future, if this changes, then the desired
* values will need to be programmed appropriately.
*/
if (msm_host->updated_ddr_cfg)
ddr_cfg_offset = msm_offset->core_ddr_config;
else
ddr_cfg_offset = msm_offset->core_ddr_config_old;
writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
if (mmc->ios.enhanced_strobe) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_ddr_200_cfg);
config |= CORE_CMDIN_RCLK_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_ddr_200_cfg);
}
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
config |= CORE_DDR_CAL_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
ret = readl_relaxed_poll_timeout(host->ioaddr +
msm_offset->core_dll_status,
dll_status,
(dll_status & CORE_DDR_DLL_LOCK),
10, 1000);
if (ret == -ETIMEDOUT) {
pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
mmc_hostname(host->mmc), __func__);
goto out;
}
/*
* Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
* When MCLK is gated OFF, it is not gated for less than 0.5us
* and MCLK must be switched on for at-least 1us before DATA
* starts coming. Controllers with 14lpp and later tech DLL cannot
* guarantee above requirement. So PWRSAVE_DLL should not be
* turned on for host controllers using this DLL.
*/
if (!msm_host->use_14lpp_dll_reset) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec3);
config |= CORE_PWRSAVE_DLL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec3);
}
/*
* Drain writebuffer to ensure above DLL calibration
* and PWRSAVE DLL is enabled.
*/
wmb();
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_host *mmc = host->mmc;
int ret;
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Retuning in HS400 (DDR mode) will fail, just reset the
* tuning block and restore the saved tuning phase.
*/
ret = msm_init_cm_dll(host);
if (ret)
goto out;
if (!mmc->ios.enhanced_strobe) {
/* Set the selected phase in delay line hw block */
ret = msm_config_cm_dll_phase(host,
msm_host->saved_tuning_phase);
if (ret)
goto out;
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_CMD_DAT_TRACK_SEL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
}
if (msm_host->use_cdclp533)
ret = sdhci_msm_cdclp533_calibration(host);
else
ret = sdhci_msm_cm_dll_sdc4_calibration(host);
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
/*
* Tuning is required for SDR104, HS200 and HS400 cards and
* if clock frequency is greater than 100MHz in these modes.
*/
if (host->clock <= CORE_FREQ_100MHZ ||
!(ios->timing == MMC_TIMING_MMC_HS400 ||
ios->timing == MMC_TIMING_MMC_HS200 ||
ios->timing == MMC_TIMING_UHS_SDR104) ||
ios->enhanced_strobe)
return false;
return true;
}
static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
/*
* SDR DLL comes into picture only for timing modes which needs
* tuning.
*/
if (!sdhci_msm_is_tuning_needed(host))
return 0;
/* Reset the tuning block */
ret = msm_init_cm_dll(host);
if (ret)
return ret;
/* Restore the tuning block */
ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
return ret;
}
static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
{
const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
u32 config, oldconfig = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config = oldconfig;
if (enable) {
config |= CORE_CDR_EN;
config &= ~CORE_CDR_EXT_EN;
} else {
config &= ~CORE_CDR_EN;
config |= CORE_CDR_EXT_EN;
}
if (config != oldconfig) {
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
}
}
static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int tuning_seq_cnt = 10;
u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
int rc;
struct mmc_ios ios = host->mmc->ios;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (!sdhci_msm_is_tuning_needed(host)) {
msm_host->use_cdr = false;
sdhci_msm_set_cdr(host, false);
return 0;
}
/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
msm_host->use_cdr = true;
/*
* Clear tuning_done flag before tuning to ensure proper
* HS400 settings.
*/
msm_host->tuning_done = 0;
/*
* For HS400 tuning in HS200 timing requires:
* - select MCLK/2 in VENDOR_SPEC
* - program MCLK to 400MHz (or nearest supported) in GCC
*/
if (host->flags & SDHCI_HS400_TUNING) {
sdhci_msm_hc_select_mode(host);
msm_set_clock_rate_for_bus_mode(host, ios.clock);
host->flags &= ~SDHCI_HS400_TUNING;
}
retry:
/* First of all reset the tuning block */
rc = msm_init_cm_dll(host);
if (rc)
return rc;
phase = 0;
do {
/* Set the phase in delay line hw block */
rc = msm_config_cm_dll_phase(host, phase);
if (rc)
return rc;
rc = mmc_send_tuning(mmc, opcode, NULL);
if (!rc) {
/* Tuning is successful at this tuning point */
tuned_phases[tuned_phase_cnt++] = phase;
dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
mmc_hostname(mmc), phase);
}
} while (++phase < ARRAY_SIZE(tuned_phases));
if (tuned_phase_cnt) {
if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
/*
* All phases valid is _almost_ as bad as no phases
* valid. Probably all phases are not really reliable
* but we didn't detect where the unreliable place is.
* That means we'll essentially be guessing and hoping
* we get a good phase. Better to try a few times.
*/
dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
mmc_hostname(mmc));
if (--tuning_seq_cnt) {
tuned_phase_cnt = 0;
goto retry;
}
}
rc = msm_find_most_appropriate_phase(host, tuned_phases,
tuned_phase_cnt);
if (rc < 0)
return rc;
else
phase = rc;
/*
* Finally set the selected phase in delay
* line hw block.
*/
rc = msm_config_cm_dll_phase(host, phase);
if (rc)
return rc;
msm_host->saved_tuning_phase = phase;
dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
mmc_hostname(mmc), phase);
} else {
if (--tuning_seq_cnt)
goto retry;
/* Tuning failed */
dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
mmc_hostname(mmc));
rc = -EIO;
}
if (!rc)
msm_host->tuning_done = true;
return rc;
}
/*
* sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
* This needs to be done for both tuning and enhanced_strobe mode.
* DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
* fixed feedback clock is used.
*/
static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->clock > CORE_FREQ_100MHZ &&
(msm_host->tuning_done || ios->enhanced_strobe) &&
!msm_host->calibration_done) {
ret = sdhci_msm_hs400_dll_calibration(host);
if (!ret)
msm_host->calibration_done = true;
else
pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
mmc_hostname(host->mmc), ret);
}
}
static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
unsigned int uhs)
{
struct mmc_host *mmc = host->mmc;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u16 ctrl_2;
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
switch (uhs) {
case MMC_TIMING_UHS_SDR12:
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
break;
case MMC_TIMING_UHS_SDR25:
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
break;
case MMC_TIMING_UHS_SDR50:
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
break;
case MMC_TIMING_MMC_HS400:
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
break;
}
/*
* When clock frequency is less than 100MHz, the feedback clock must be
* provided and DLL must not be used so that tuning can be skipped. To
* provide feedback clock, the mode selection can be any value less
* than 3'b011 in bits [2:0] of HOST CONTROL2 register.
*/
if (host->clock <= CORE_FREQ_100MHZ) {
if (uhs == MMC_TIMING_MMC_HS400 ||
uhs == MMC_TIMING_MMC_HS200 ||
uhs == MMC_TIMING_UHS_SDR104)
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
/*
* DLL is not required for clock <= 100MHz
* Thus, make sure DLL it is disabled when not required
*/
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_RST;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
/*
* The DLL needs to be restored and CDCLP533 recalibrated
* when the clock frequency is set back to 400MHz.
*/
msm_host->calibration_done = false;
}
dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
sdhci_msm_hs400(host, &mmc->ios);
}
static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
{
struct platform_device *pdev = msm_host->pdev;
int ret;
if (level)
ret = pinctrl_pm_select_default_state(&pdev->dev);
else
ret = pinctrl_pm_select_sleep_state(&pdev->dev);
return ret;
}
static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
{
if (IS_ERR(mmc->supply.vmmc))
return 0;
return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
}
static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool level)
{
int ret;
struct mmc_ios ios;
if (msm_host->vqmmc_enabled == level)
return 0;
if (level) {
/* Set the IO voltage regulator to default voltage level */
if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
ret = mmc_regulator_set_vqmmc(mmc, &ios);
if (ret < 0) {
dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
mmc_hostname(mmc), ret);
goto out;
}
}
ret = regulator_enable(mmc->supply.vqmmc);
} else {
ret = regulator_disable(mmc->supply.vqmmc);
}
if (ret)
dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
mmc_hostname(mmc), level ? "en":"dis", ret);
else
msm_host->vqmmc_enabled = level;
out:
return ret;
}
static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool hpm)
{
int load, ret;
load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
ret = regulator_set_load(mmc->supply.vqmmc, load);
if (ret)
dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
mmc_hostname(mmc), ret);
return ret;
}
static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool level)
{
int ret;
bool always_on;
if (IS_ERR(mmc->supply.vqmmc) ||
(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
return 0;
/*
* For eMMC don't turn off Vqmmc, Instead just configure it in LPM
* and HPM modes by setting the corresponding load.
*
* Till eMMC is initialized (i.e. always_on == 0), just turn on/off
* Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
* gets invoked. Once eMMC is initialized (i.e. always_on == 1),
* Vqmmc should remain ON, So just set the load instead of turning it
* off/on.
*/
always_on = !mmc_card_is_removable(mmc) &&
mmc->card && mmc_card_mmc(mmc->card);
if (always_on)
ret = msm_config_vqmmc_mode(msm_host, mmc, level);
else
ret = msm_toggle_vqmmc(msm_host, mmc, level);
return ret;
}
static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
{
init_waitqueue_head(&msm_host->pwr_irq_wait);
}
static inline void sdhci_msm_complete_pwr_irq_wait(
struct sdhci_msm_host *msm_host)
{
wake_up(&msm_host->pwr_irq_wait);
}
/*
* sdhci_msm_check_power_status API should be called when registers writes
* which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
* To what state the register writes will change the IO lines should be passed
* as the argument req_type. This API will check whether the IO line's state
* is already the expected state and will wait for power irq only if
* power irq is expected to be triggered based on the current IO line state
* and expected IO line state.
*/
static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
bool done = false;
u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
mmc_hostname(host->mmc), __func__, req_type,
msm_host->curr_pwr_state, msm_host->curr_io_level);
/*
* The power interrupt will not be generated for signal voltage
* switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
* Since sdhci-msm-v5, this bit has been removed and SW must consider
* it as always set.
*/
if (!msm_host->mci_removed)
val = msm_host_readl(msm_host, host,
msm_offset->core_generics);
if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
!(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
return;
}
/*
* The IRQ for request type IO High/LOW will be generated when -
* there is a state change in 1.8V enable bit (bit 3) of
* SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
* which indicates 3.3V IO voltage. So, when MMC core layer tries
* to set it to 3.3V before card detection happens, the
* IRQ doesn't get triggered as there is no state change in this bit.
* The driver already handles this case by changing the IO voltage
* level to high as part of controller power up sequence. Hence, check
* for host->pwr to handle a case where IO voltage high request is
* issued even before controller power up.
*/
if ((req_type & REQ_IO_HIGH) && !host->pwr) {
pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
mmc_hostname(host->mmc), req_type);
return;
}
if ((req_type & msm_host->curr_pwr_state) ||
(req_type & msm_host->curr_io_level))
done = true;
/*
* This is needed here to handle cases where register writes will
* not change the current bus state or io level of the controller.
* In this case, no power irq will be triggerred and we should
* not wait.
*/
if (!done) {
if (!wait_event_timeout(msm_host->pwr_irq_wait,
msm_host->pwr_irq_flag,
msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
dev_warn(&msm_host->pdev->dev,
"%s: pwr_irq for req: (%d) timed out\n",
mmc_hostname(host->mmc), req_type);
}
pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
__func__, req_type);
}
static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
mmc_hostname(host->mmc),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
}
static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_host *mmc = host->mmc;
u32 irq_status, irq_ack = 0;
int retry = 10, ret;
u32 pwr_state = 0, io_level = 0;
u32 config;
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
irq_status = msm_host_readl(msm_host, host,
msm_offset->core_pwrctl_status);
irq_status &= INT_MASK;
msm_host_writel(msm_host, irq_status, host,
msm_offset->core_pwrctl_clear);
/*
* There is a rare HW scenario where the first clear pulse could be
* lost when actual reset and clear/read of status register is
* happening at a time. Hence, retry for at least 10 times to make
* sure status register is cleared. Otherwise, this will result in
* a spurious power IRQ resulting in system instability.
*/
while (irq_status & msm_host_readl(msm_host, host,
msm_offset->core_pwrctl_status)) {
if (retry == 0) {
pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
mmc_hostname(host->mmc), irq_status);
sdhci_msm_dump_pwr_ctrl_regs(host);
WARN_ON(1);
break;
}
msm_host_writel(msm_host, irq_status, host,
msm_offset->core_pwrctl_clear);
retry--;
udelay(10);
}
/* Handle BUS ON/OFF*/
if (irq_status & CORE_PWRCTL_BUS_ON) {
pwr_state = REQ_BUS_ON;
io_level = REQ_IO_HIGH;
}
if (irq_status & CORE_PWRCTL_BUS_OFF) {
pwr_state = REQ_BUS_OFF;
io_level = REQ_IO_LOW;
}
if (pwr_state) {
ret = sdhci_msm_set_vmmc(mmc);
if (!ret)
ret = sdhci_msm_set_vqmmc(msm_host, mmc,
pwr_state & REQ_BUS_ON);
if (!ret)
ret = sdhci_msm_set_pincfg(msm_host,
pwr_state & REQ_BUS_ON);
if (!ret)
irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
else
irq_ack |= CORE_PWRCTL_BUS_FAIL;
}
/* Handle IO LOW/HIGH */
if (irq_status & CORE_PWRCTL_IO_LOW)
io_level = REQ_IO_LOW;
if (irq_status & CORE_PWRCTL_IO_HIGH)
io_level = REQ_IO_HIGH;
if (io_level)
irq_ack |= CORE_PWRCTL_IO_SUCCESS;
if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
if (ret < 0) {
dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
mmc_hostname(mmc), ret,
mmc->ios.signal_voltage, mmc->ios.vdd,
irq_status);
irq_ack |= CORE_PWRCTL_IO_FAIL;
}
}
/*
* The driver has to acknowledge the interrupt, switch voltages and
* report back if it succeded or not to this register. The voltage
* switches are handled by the sdhci core, so just report success.
*/
msm_host_writel(msm_host, irq_ack, host,
msm_offset->core_pwrctl_ctl);
/*
* If we don't have info regarding the voltage levels supported by
* regulators, don't change the IO PAD PWR SWITCH.
*/
if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
u32 new_config;
/*
* We should unset IO PAD PWR switch only if the register write
* can set IO lines high and the regulator also switches to 3 V.
* Else, we should keep the IO PAD PWR switch set.
* This is applicable to certain targets where eMMC vccq supply
* is only 1.8V. In such targets, even during REQ_IO_HIGH, the
* IO PAD PWR switch must be kept set to reflect actual
* regulator voltage. This way, during initialization of
* controllers with only 1.8V, we will set the IO PAD bit
* without waiting for a REQ_IO_LOW.
*/
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
new_config = config;
if ((io_level & REQ_IO_HIGH) &&
(msm_host->caps_0 & CORE_3_0V_SUPPORT))
new_config &= ~CORE_IO_PAD_PWR_SWITCH;
else if ((io_level & REQ_IO_LOW) ||
(msm_host->caps_0 & CORE_1_8V_SUPPORT))
new_config |= CORE_IO_PAD_PWR_SWITCH;
if (config ^ new_config)
writel_relaxed(new_config, host->ioaddr +
msm_offset->core_vendor_spec);
}
if (pwr_state)
msm_host->curr_pwr_state = pwr_state;
if (io_level)
msm_host->curr_io_level = io_level;
dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
irq_ack);
}
static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
{
struct sdhci_host *host = (struct sdhci_host *)data;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
sdhci_msm_handle_pwr_irq(host, irq);
msm_host->pwr_irq_flag = 1;
sdhci_msm_complete_pwr_irq_wait(msm_host);
return IRQ_HANDLED;
}
static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct clk *core_clk = msm_host->bulk_clks[0].clk;
return clk_round_rate(core_clk, ULONG_MAX);
}
static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
{
return SDHCI_MSM_MIN_CLOCK;
}
/*
* __sdhci_msm_set_clock - sdhci_msm clock control.
*
* Description:
* MSM controller does not use internal divider and
* instead directly control the GCC clock as per
* HW recommendation.
**/
static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
/*
* MSM controller do not use clock divider.
* Thus read SDHCI_CLOCK_CONTROL and only enable
* clock with no divider value programmed.
*/
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
sdhci_enable_clk(host, clk);
}
/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (!clock) {
host->mmc->actual_clock = msm_host->clk_rate = 0;
goto out;
}
sdhci_msm_hc_select_mode(host);
msm_set_clock_rate_for_bus_mode(host, clock);
out:
__sdhci_msm_set_clock(host, clock);
}
/*****************************************************************************\
* *
* Inline Crypto Engine (ICE) support *
* *
\*****************************************************************************/
#ifdef CONFIG_MMC_CRYPTO
#define AES_256_XTS_KEY_SIZE 64
/* QCOM ICE registers */
#define QCOM_ICE_REG_VERSION 0x0008
#define QCOM_ICE_REG_FUSE_SETTING 0x0010
#define QCOM_ICE_FUSE_SETTING_MASK 0x1
#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
#define QCOM_ICE_REG_BIST_STATUS 0x0070
#define QCOM_ICE_BIST_STATUS_MASK 0xF0000000
#define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
#define sdhci_msm_ice_writel(host, val, reg) \
writel((val), (host)->ice_mem + (reg))
#define sdhci_msm_ice_readl(host, reg) \
readl((host)->ice_mem + (reg))
static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
{
struct device *dev = mmc_dev(msm_host->mmc);
u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
int major = regval >> 24;
int minor = (regval >> 16) & 0xFF;
int step = regval & 0xFFFF;
/* For now this driver only supports ICE version 3. */
if (major != 3) {
dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
major, minor, step);
return false;
}
dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
major, minor, step);
/* If fuses are blown, ICE might not work in the standard way. */
regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
return false;
}
return true;
}
static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
{
return devm_clk_get(dev, "ice");
}
static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
struct cqhci_host *cq_host)
{
struct mmc_host *mmc = msm_host->mmc;
struct device *dev = mmc_dev(mmc);
struct resource *res;
if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
return 0;
res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
"ice");
if (!res) {
dev_warn(dev, "ICE registers not found\n");
goto disable;
}
if (!qcom_scm_ice_available()) {
dev_warn(dev, "ICE SCM interface not found\n");
goto disable;
}
msm_host->ice_mem = devm_ioremap_resource(dev, res);
if (IS_ERR(msm_host->ice_mem))
return PTR_ERR(msm_host->ice_mem);
if (!sdhci_msm_ice_supported(msm_host))
goto disable;
mmc->caps2 |= MMC_CAP2_CRYPTO;
return 0;
disable:
dev_warn(dev, "Disabling inline encryption support\n");
return 0;
}
static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
{
u32 regval;
regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
/*
* Enable low power mode sequence
* [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
*/
regval |= 0x7000;
sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
}
static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
{
u32 regval;
/* ICE Optimizations Enable Sequence */
regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
regval |= 0xD807100;
/* ICE HPG requires delay before writing */
udelay(5);
sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
udelay(5);
}
/*
* Wait until the ICE BIST (built-in self-test) has completed.
*
* This may be necessary before ICE can be used.
*
* Note that we don't really care whether the BIST passed or failed; we really
* just want to make sure that it isn't still running. This is because (a) the
* BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
* documented to reject crypto requests if the BIST fails, so we needn't do it
* in software too, and (c) properly testing storage encryption requires testing
* the full storage stack anyway, and not relying on hardware-level self-tests.
*/
static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
{
u32 regval;
int err;
err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
50, 5000);
if (err)
dev_err(mmc_dev(msm_host->mmc),
"Timed out waiting for ICE self-test to complete\n");
return err;
}
static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
{
if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
return;
sdhci_msm_ice_low_power_mode_enable(msm_host);
sdhci_msm_ice_optimization_enable(msm_host);
sdhci_msm_ice_wait_bist_status(msm_host);
}
static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
{
if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
return 0;
return sdhci_msm_ice_wait_bist_status(msm_host);
}
/*
* Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
* vendor-specific SCM calls for this; it doesn't support the standard way.
*/
static int sdhci_msm_program_key(struct cqhci_host *cq_host,
const union cqhci_crypto_cfg_entry *cfg,
int slot)
{
struct device *dev = mmc_dev(cq_host->mmc);
union cqhci_crypto_cap_entry cap;
union {
u8 bytes[AES_256_XTS_KEY_SIZE];
u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
} key;
int i;
int err;
if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
return qcom_scm_ice_invalidate_key(slot);
/* Only AES-256-XTS has been tested so far. */
cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
dev_err_ratelimited(dev,
"Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
cap.algorithm_id, cap.key_size);
return -EINVAL;
}
memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
/*
* The SCM call byte-swaps the 32-bit words of the key. So we have to
* do the same, in order for the final key be correct.
*/
for (i = 0; i < ARRAY_SIZE(key.words); i++)
__cpu_to_be32s(&key.words[i]);
err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
QCOM_SCM_ICE_CIPHER_AES_256_XTS,
cfg->data_unit_size);
memzero_explicit(&key, sizeof(key));
return err;
}
#else /* CONFIG_MMC_CRYPTO */
static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
{
return NULL;
}
static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
struct cqhci_host *cq_host)
{
return 0;
}
static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
{
}
static inline int __maybe_unused
sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
{
return 0;
}
#endif /* !CONFIG_MMC_CRYPTO */
/*****************************************************************************\
* *
* MSM Command Queue Engine (CQE) *
* *
\*****************************************************************************/
static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
sdhci_cqe_enable(mmc);
sdhci_msm_ice_enable(msm_host);
}
static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
u32 ctrl;
/*
* When CQE is halted, the legacy SDHCI path operates only
* on 16-byte descriptors in 64bit mode.
*/
if (host->flags & SDHCI_USE_64_BIT_DMA)
host->desc_sz = 16;
spin_lock_irqsave(&host->lock, flags);
/*
* During CQE command transfers, command complete bit gets latched.
* So s/w should clear command complete interrupt status when CQE is
* either halted or disabled. Otherwise unexpected SDCHI legacy
* interrupt gets triggered when CQE is halted/disabled.
*/
ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
ctrl |= SDHCI_INT_RESPONSE;
sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
spin_unlock_irqrestore(&host->lock, flags);
sdhci_cqe_disable(mmc, recovery);
}
static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
u32 count, start = 15;
__sdhci_set_timeout(host, cmd);
count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
/*
* Update software timeout value if its value is less than hardware data
* timeout value. Qcom SoC hardware data timeout value was calculated
* using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
*/
if (cmd && cmd->data && host->clock > 400000 &&
host->clock <= 50000000 &&
((1 << (count + start)) > (10 * host->clock)))
host->data_timeout = 22LL * NSEC_PER_SEC;
}
static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
.enable = sdhci_msm_cqe_enable,
.disable = sdhci_msm_cqe_disable,
#ifdef CONFIG_MMC_CRYPTO
.program_key = sdhci_msm_program_key,
#endif
};
static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
struct platform_device *pdev)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct cqhci_host *cq_host;
bool dma64;
u32 cqcfg;
int ret;
/*
* When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
* So ensure ADMA table is allocated for 16byte descriptors.
*/
if (host->caps & SDHCI_CAN_64BIT)
host->alloc_desc_sz = 16;
ret = sdhci_setup_host(host);
if (ret)
return ret;
cq_host = cqhci_pltfm_init(pdev);
if (IS_ERR(cq_host)) {
ret = PTR_ERR(cq_host);
dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
goto cleanup;
}
msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
cq_host->ops = &sdhci_msm_cqhci_ops;
dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
ret = sdhci_msm_ice_init(msm_host, cq_host);
if (ret)
goto cleanup;
ret = cqhci_init(cq_host, host->mmc, dma64);
if (ret) {
dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
mmc_hostname(host->mmc), ret);
goto cleanup;
}
/* Disable cqe reset due to cqe enable signal */
cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
/*
* SDHC expects 12byte ADMA descriptors till CQE is enabled.
* So limit desc_sz to 12 so that the data commands that are sent
* during card initialization (before CQE gets enabled) would
* get executed without any issues.
*/
if (host->flags & SDHCI_USE_64_BIT_DMA)
host->desc_sz = 12;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
dev_info(&pdev->dev, "%s: CQE init: success\n",
mmc_hostname(host->mmc));
return ret;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
/*
* Platform specific register write functions. This is so that, if any
* register write needs to be followed up by platform specific actions,
* they can be added here. These functions can go to sleep when writes
* to certain registers are done.
* These functions are relying on sdhci_set_ios not using spinlock.
*/
static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 req_type = 0;
switch (reg) {
case SDHCI_HOST_CONTROL2:
req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
REQ_IO_HIGH;
break;
case SDHCI_SOFTWARE_RESET:
if (host->pwr && (val & SDHCI_RESET_ALL))
req_type = REQ_BUS_OFF;
break;
case SDHCI_POWER_CONTROL:
req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
break;
case SDHCI_TRANSFER_MODE:
msm_host->transfer_mode = val;
break;
case SDHCI_COMMAND:
if (!msm_host->use_cdr)
break;
if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
sdhci_msm_set_cdr(host, true);
else
sdhci_msm_set_cdr(host, false);
break;
}
if (req_type) {
msm_host->pwr_irq_flag = 0;
/*
* Since this register write may trigger a power irq, ensure
* all previous register writes are complete by this point.
*/
mb();
}
return req_type;
}
/* This function may sleep*/
static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
{
u32 req_type = 0;
req_type = __sdhci_msm_check_write(host, val, reg);
writew_relaxed(val, host->ioaddr + reg);
if (req_type)
sdhci_msm_check_power_status(host, req_type);
}
/* This function may sleep*/
static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
{
u32 req_type = 0;
req_type = __sdhci_msm_check_write(host, val, reg);
writeb_relaxed(val, host->ioaddr + reg);
if (req_type)
sdhci_msm_check_power_status(host, req_type);
}
static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
{
struct mmc_host *mmc = msm_host->mmc;
struct regulator *supply = mmc->supply.vqmmc;
u32 caps = 0, config;
struct sdhci_host *host = mmc_priv(mmc);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
if (!IS_ERR(mmc->supply.vqmmc)) {
if (regulator_is_supported_voltage(supply, 1700000, 1950000))
caps |= CORE_1_8V_SUPPORT;
if (regulator_is_supported_voltage(supply, 2700000, 3600000))
caps |= CORE_3_0V_SUPPORT;
if (!caps)
pr_warn("%s: 1.8/3V not supported for vqmmc\n",
mmc_hostname(mmc));
}
if (caps) {
/*
* Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
* bit can be used as required later on.
*/
u32 io_level = msm_host->curr_io_level;
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
config |= CORE_IO_PAD_PWR_SWITCH_EN;
if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
config &= ~CORE_IO_PAD_PWR_SWITCH;
else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
config |= CORE_IO_PAD_PWR_SWITCH;
writel_relaxed(config,
host->ioaddr + msm_offset->core_vendor_spec);
}
msm_host->caps_0 |= caps;
pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
}
static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
{
if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
cqhci_deactivate(host->mmc);
sdhci_reset(host, mask);
}
static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
{
int ret;
ret = mmc_regulator_get_supply(msm_host->mmc);
if (ret)
return ret;
sdhci_msm_set_regulator_caps(msm_host);
return 0;
}
static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u16 ctrl, status;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
if (!(host->flags & SDHCI_SIGNALING_330))
return -EINVAL;
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
break;
case MMC_SIGNAL_VOLTAGE_180:
if (!(host->flags & SDHCI_SIGNALING_180))
return -EINVAL;
/* Enable 1.8V Signal Enable in the Host Control2 register */
ctrl |= SDHCI_CTRL_VDD_180;
break;
default:
return -EINVAL;
}
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Wait for 5ms */
usleep_range(5000, 5500);
/* regulator output should be stable within 5 ms */
status = ctrl & SDHCI_CTRL_VDD_180;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if ((ctrl & SDHCI_CTRL_VDD_180) == status)
return 0;
dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
}
#define DRIVER_NAME "sdhci_msm"
#define SDHCI_MSM_DUMP(f, x...) \
pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
SDHCI_MSM_DUMP(
"DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
SDHCI_MSM_DUMP(
"DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
SDHCI_MSM_DUMP(
"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec_func2),
readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
}
static const struct sdhci_msm_variant_ops mci_var_ops = {
.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
};
static const struct sdhci_msm_variant_ops v5_var_ops = {
.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
};
static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
.var_ops = &mci_var_ops,
.offset = &sdhci_msm_mci_offset,
};
static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
.mci_removed = true,
.var_ops = &v5_var_ops,
.offset = &sdhci_msm_v5_offset,
};
static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
.mci_removed = true,
.restore_dll_config = true,
.var_ops = &v5_var_ops,
.offset = &sdhci_msm_v5_offset,
};
static const struct of_device_id sdhci_msm_dt_match[] = {
{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
{},
};
MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
static const struct sdhci_ops sdhci_msm_ops = {
.reset = sdhci_msm_reset,
.set_clock = sdhci_msm_set_clock,
.get_min_clock = sdhci_msm_get_min_clock,
.get_max_clock = sdhci_msm_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
.write_w = sdhci_msm_writew,
.write_b = sdhci_msm_writeb,
.irq = sdhci_msm_cqe_irq,
.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
.set_power = sdhci_set_power_noreg,
.set_timeout = sdhci_msm_set_timeout,
};
static const struct sdhci_pltfm_data sdhci_msm_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &sdhci_msm_ops,
};
static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
struct sdhci_host *host)
{
struct device_node *node = pdev->dev.of_node;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (of_property_read_u32(node, "qcom,ddr-config",
&msm_host->ddr_config))
msm_host->ddr_config = DDR_CONFIG_POR_VAL;
of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
}
static int sdhci_msm_probe(struct platform_device *pdev)
{
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_msm_host *msm_host;
struct clk *clk;
int ret;
u16 host_version, core_minor;
u32 core_version, config;
u8 core_major;
const struct sdhci_msm_offset *msm_offset;
const struct sdhci_msm_variant_info *var_info;
struct device_node *node = pdev->dev.of_node;
host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
if (IS_ERR(host))
return PTR_ERR(host);
host->sdma_boundary = 0;
pltfm_host = sdhci_priv(host);
msm_host = sdhci_pltfm_priv(pltfm_host);
msm_host->mmc = host->mmc;
msm_host->pdev = pdev;
ret = mmc_of_parse(host->mmc);
if (ret)
goto pltfm_free;
/*
* Based on the compatible string, load the required msm host info from
* the data associated with the version info.
*/
var_info = of_device_get_match_data(&pdev->dev);
msm_host->mci_removed = var_info->mci_removed;
msm_host->restore_dll_config = var_info->restore_dll_config;
msm_host->var_ops = var_info->var_ops;
msm_host->offset = var_info->offset;
msm_offset = msm_host->offset;
sdhci_get_of_property(pdev);
sdhci_msm_get_of_property(pdev, host);
msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
/* Setup SDCC bus voter clock. */
msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (!IS_ERR(msm_host->bus_clk)) {
/* Vote for max. clk rate for max. performance */
ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
if (ret)
goto pltfm_free;
ret = clk_prepare_enable(msm_host->bus_clk);
if (ret)
goto pltfm_free;
}
/* Setup main peripheral bus clock */
clk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
goto bus_clk_disable;
}
msm_host->bulk_clks[1].clk = clk;
/* Setup SDC MMC clock */
clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
goto bus_clk_disable;
}
msm_host->bulk_clks[0].clk = clk;
/* Check for optional interconnect paths */
ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
if (ret)
goto bus_clk_disable;
ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
if (ret)
goto bus_clk_disable;
/* OPP table is optional */
ret = devm_pm_opp_of_add_table(&pdev->dev);
if (ret && ret != -ENODEV) {
dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
goto bus_clk_disable;
}
/* Vote for maximum clock rate for maximum performance */
ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
if (ret)
dev_warn(&pdev->dev, "core clock boost failed\n");
clk = devm_clk_get(&pdev->dev, "cal");
if (IS_ERR(clk))
clk = NULL;
msm_host->bulk_clks[2].clk = clk;
clk = devm_clk_get(&pdev->dev, "sleep");
if (IS_ERR(clk))
clk = NULL;
msm_host->bulk_clks[3].clk = clk;
clk = sdhci_msm_ice_get_clk(&pdev->dev);
if (IS_ERR(clk))
clk = NULL;
msm_host->bulk_clks[4].clk = clk;
ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (ret)
goto bus_clk_disable;
/*
* xo clock is needed for FLL feature of cm_dll.
* In case if xo clock is not mentioned in DT, warn and proceed.
*/
msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
if (IS_ERR(msm_host->xo_clk)) {
ret = PTR_ERR(msm_host->xo_clk);
dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
}
if (!msm_host->mci_removed) {
msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(msm_host->core_mem)) {
ret = PTR_ERR(msm_host->core_mem);
goto clk_disable;
}
}
/* Reset the vendor spec register to power on reset state */
writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
host->ioaddr + msm_offset->core_vendor_spec);
if (!msm_host->mci_removed) {
/* Set HC_MODE_EN bit in HC_MODE register */
msm_host_writel(msm_host, HC_MODE_EN, host,
msm_offset->core_hc_mode);
config = msm_host_readl(msm_host, host,
msm_offset->core_hc_mode);
config |= FF_CLK_SW_RST_DIS;
msm_host_writel(msm_host, config, host,
msm_offset->core_hc_mode);
}
host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
SDHCI_VENDOR_VER_SHIFT));
core_version = msm_host_readl(msm_host, host,
msm_offset->core_mci_version);
core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
CORE_VERSION_MAJOR_SHIFT;
core_minor = core_version & CORE_VERSION_MINOR_MASK;
dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
core_version, core_major, core_minor);
if (core_major == 1 && core_minor >= 0x42)
msm_host->use_14lpp_dll_reset = true;
/*
* SDCC 5 controller with major version 1, minor version 0x34 and later
* with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
*/
if (core_major == 1 && core_minor < 0x34)
msm_host->use_cdclp533 = true;
/*
* Support for some capabilities is not advertised by newer
* controller versions and must be explicitly enabled.
*/
if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec_capabilities0);
}
if (core_major == 1 && core_minor >= 0x49)
msm_host->updated_ddr_cfg = true;
if (core_major == 1 && core_minor >= 0x71)
msm_host->uses_tassadar_dll = true;
ret = sdhci_msm_register_vreg(msm_host);
if (ret)
goto clk_disable;
/*
* Power on reset state may trigger power irq if previous status of
* PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
* interrupt in GIC, any pending power irq interrupt should be
* acknowledged. Otherwise power irq interrupt handler would be
* fired prematurely.
*/
sdhci_msm_handle_pwr_irq(host, 0);
/*
* Ensure that above writes are propogated before interrupt enablement
* in GIC.
*/
mb();
/* Setup IRQ for handling power/voltage tasks with PMIC */
msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
if (msm_host->pwr_irq < 0) {
ret = msm_host->pwr_irq;
goto clk_disable;
}
sdhci_msm_init_pwr_irq_wait(msm_host);
/* Enable pwr irq interrupts */
msm_host_writel(msm_host, INT_MASK, host,
msm_offset->core_pwrctl_mask);
ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
sdhci_msm_pwr_irq, IRQF_ONESHOT,
dev_name(&pdev->dev), host);
if (ret) {
dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
goto clk_disable;
}
msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
/* Set the timeout value to max possible */
host->max_timeout_count = 0xF;
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev,
MSM_MMC_AUTOSUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(&pdev->dev);
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_msm_start_signal_voltage_switch;
host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
if (of_property_read_bool(node, "supports-cqe"))
ret = sdhci_msm_cqe_add_host(host, pdev);
else
ret = sdhci_add_host(host);
if (ret)
goto pm_runtime_disable;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
pm_runtime_disable:
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
clk_disable:
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
bus_clk_disable:
if (!IS_ERR(msm_host->bus_clk))
clk_disable_unprepare(msm_host->bus_clk);
pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static int sdhci_msm_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
0xffffffff);
sdhci_remove_host(host, dead);
pm_runtime_get_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (!IS_ERR(msm_host->bus_clk))
clk_disable_unprepare(msm_host->bus_clk);
sdhci_pltfm_free(pdev);
return 0;
}
static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
/* Drop the performance vote */
dev_pm_opp_set_rate(dev, 0);
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
return 0;
}
static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (ret)
return ret;
/*
* Whenever core-clock is gated dynamically, it's needed to
* restore the SDR DLL settings when the clock is ungated.
*/
if (msm_host->restore_dll_config && msm_host->clk_rate) {
ret = sdhci_msm_restore_sdr_dll_config(host);
if (ret)
return ret;
}
dev_pm_opp_set_rate(dev, msm_host->clk_rate);
return sdhci_msm_ice_resume(msm_host);
}
static const struct dev_pm_ops sdhci_msm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
sdhci_msm_runtime_resume,
NULL)
};
static struct platform_driver sdhci_msm_driver = {
.probe = sdhci_msm_probe,
.remove = sdhci_msm_remove,
.driver = {
.name = "sdhci_msm",
.of_match_table = sdhci_msm_dt_match,
.pm = &sdhci_msm_pm_ops,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
module_platform_driver(sdhci_msm_driver);
MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
MODULE_LICENSE("GPL v2");